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1. Introduction

A Sperner family is a family of subsets of some ground set such that no set in the family is a subset
of any other. Sperner families have been extensively studied (see [1], for example). Meagher, Moura
and Stevens introduced Sperner partition systems in [10] as a natural variant of Sperner families.
An (n, k)-Sperner partition system is a collection of partitions of some n-set, each into k nonempty
classes, such that no class of any partition is a subset of a class of any other. Most of the research on
Sperner partition systems has focused on investigating, for a given n and k, the maximum number
of partitions in an (n, k)-Sperner partition system. This quantity is denoted SP(n, k). The exact value
of SP(n, k) is known in the following situations.
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SP(n, k) = 1 when k = 1 or k < n < 2k (for then any partition has a class of size n or 1).
SP(n, k) = ) when k divides n (see [10]).

(n/k 1

SP(n, k) = when k = 2 (using the Erdés-Ko-Rado theorem, see [8]).

(Ln/ZJq)
SP(n, k) = 2k when n = 2k + 1 and k is even (see [8]).

Note that for all unsolved cases we have k > 3, n > 2k and k does not divide n.

In the unsolved cases, bounds are known on SP(n, k). Let n and k be positive integers such that
n > k, and let ¢ and r be the unique integers such thatn =ck+randr € {0, ...,k — 1}. In [10],
the authors show that SP(n, k) < MMS(n, k) where
(c)

—r—+

MMS(n, k) = r((ﬂ

Note that 0 < T(”Cl) < 1 because 0 < r < k — 1. Using this upper bound together with Baranyai’s
theorem [2], the authors of [10] establish that SP(n, k) = MMS(n, k) = (2 ]) when k divides n, as
stated above. Finally, they note that SP(n + 1, k) > SP(n, k) because it is easy to augment an (n, k)-
Sperner partition system to obtain an (n+ 1, k)-Sperner partition system with the same number of
partitions. Thus they establish a naive lower bound SP(n, k) > NLB(n, k) where

NLB(n, k) = %(n : r).

Despite its naivety, NLB(n, k) has hitherto been the best lower bound known on SP(n, k) for general
n and k. In [8], Li and Meagher show that SP(2k + 1, k) € {2k — 1, 2k}, SP(2k + 2, k) € {2k + 1, 2k +
2,2k+ 3} and SP(3k — 1, k) > 3k — 1. They also establish an inductive lower bound by showing that
SP(n + k, k) > k-SP(n, k) forn > k > 2.

In this paper we introduce a new construction for Sperner partition systems using a result of
Bryant [3]. With this we are able to establish that the upper bound MMS(n, k) is asymptotically
correct in many situations where c is large.

Theorem 1. Let n and k be integers with n — oo, k = o(n) and k > 3, and let c and r be the integers
such thatn=ck+randr € {0, ..., k — 1}. Then SP(n, k) ~ MMS(n, k) if

enisevenandr ¢ {1,k — 1}; or
e k—r — o

Note that the lower bound NLB(n, k) only implies the result of Theorem 1 when r is very small
compared to k, and the result of [8] that SP(n + k, k) > k - SP(n, k) never implies Theorem 1 (see
Lemmas 5 and 6). It is also worth noting that the Sperner partition systems we construct to prove
Theorem 1 are almost uniform (see Lemmas 10 and 11, and note that it is easy to augment an almost
uniform (n, k)-Sperner partition system to obtain an almost uniform (n + 1, k)-Sperner partition
system with the same number of partitions).

We also prove a result which provides an implicit upper bound on SP(n, k) for k > 4. In order
to state it we require some definitions. For any nonnegative integer i and real number y > i, let (51’)
represent ,y( —1)---(y — i+ 1). Define, for each integer ¢ > 2, a function LL, : {0} UR>! — R0
by LL¢(0) = 0 and, for x > 1, LL.(x) = (.?,) where q is the unique real number such that g > ¢ and
(C) = X. An equivalent definition for x > 1 is LL.(x) = x where g is as before.

q— C-H

Theorem 2. If n and k are integers such that n > 2k + 2 and k > 4, then

B r(c+1) r(c+1) n—1
[ )- SP(n, k)] + LLc (| "< - SP(n, k) |) < (C_ 1>’

where c and r are the integers such thatn =ck+randr € {0,...,k— 1}.
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For fixed n and k, the left hand side of the inequality

= ] e (752 < (1) g
is nondecreasing in p and hence there is a unique nonnegative integer p’ such that (1) holds for
each p € {0,...,p'} and fails for each integer p > p’. This p’ is an upper bound for SP(n, k). We
will see in Corollary 15 that p’ is always at most MMS(n, k). In practice p’ can be found via a binary
search, beginning with NLB(n, k) < p’ < MMS(n, k).

It is worth mentioning the connection between Sperner partition systems and detecting arrays,
which are used in testing applications to allow the rapid identification and location of faults. We
can represent an (n, k)-Sperner partition system with p partitions as an n x p array in which the
(i,j) entry is £ if and only if the ith element of the ground set is in the £th class of the jth partition
(according to arbitrary orderings). This array is then a (1, 1)-detecting array (see [5]) because it has
the property that for any ji,j, € {1,...,p} and ¢4, ¢, € {1,...,k}, the set of rows in which the
symbol £, appears in column j is not a subset of the set of rows in which the symbol ¢, appears in
column j,. (Intuitively this condition means that the “signature” of any one possible fault cannot be
masked by the signature of any other.) So SP(n, k) can equivalently be interpreted as the maximum
number of columns in a (1, 1)-detecting array with n rows and k symbols.

This paper is organised as follows. In the next section we introduce some of the notation and
results we require. In Section 3 we detail the main construction we use to prove Theorem 1 and
establish that it asymptotically matches the upper bound of MMS(n, k) when c is large and r # k—1.
The proof of Theorem 1 is completed in Section 4 using a variant of our main construction. We
then move on to prove Theorem 2 in Section 5 and to exhibit an infinite family of parameter sets
for which the upper bound implied by Theorem 2 is tight in Section 6. Finally, in Section 7, we
conclude by examining the performance of our bounds for small parameter sets.

2. Preliminaries

For integers n and k with n > k > 1 we define c = c(n, k) and r = r(n, k) as the unique
integers such that n =ck+r and r € {0, ..., k — 1}. We use these definitions of c(n, k) and r(n, k)
throughout the paper and abbreviate to simply ¢ and r where there is no danger of confusion. We
also use n = ck + r frequently and tacitly in our calculations.

An (n, k)-Sperner partition system is said to be almost uniform if each class of each of its partitions
has cardinality in {| 7 |, [ 1} and hence each partition has k —r classes of cardinality c and r classes
of cardinality ¢ + 1. For nonnegative integers x and i, we denote the ith falling factorial x by (x);.
For a set S and a nonnegative integer i, we denote the set of all i-subsets of S by (f)

A hypergraph H consists of a vertex set V(H) together with a set £(H) of edges, each of which is a
nonempty subset of V(H). We do not allow loops or multiple edges. A clutter is a hypergraph none
of whose edges is a subset of another. A clutter is exactly a Sperner family, but we use the term
clutter when we wish to consider the object through a hypergraph-theoretic lens. A set of edges of
a hypergraph is said to be i-uniform if each edge in it has cardinality i, and a hypergraph is said to
be i-uniform if its entire edge set is i-uniform.

In this paper, an edge colouring of a hypergraph is simply an assignment of colours to its edges
with no further conditions imposed. Let y be an edge colouring of a hypergraph H with colour set
C. For each ¢ € C, the set y~!(c) of edges of H assigned colour c is called a colour class of y. For
each ¢ € C and x € V(H), we denote by deg/ (x) the number of edges of H that are incident with
the vertex x and are assigned the colour c by y. Further, for a subset Y of V(H), we say that y is
almost regular on Y if |degl(x) — deg/(y)] < 1forall c € C and x,y € Y. We will make use of a
result of Bryant from [3].

Theorem 3 ([3]). Let H be a hypergraph, y be an edge colouring of H with colour set C, and Y be a
subset of V(H) such that any permutation of Y is an automorphism of H. There exists a permutation 0
of &(H) such that |6(E)| = |E| and O(E)\Y = E\Y for each E € £(H), and such that the edge colouring
v’ of H given by y'(E) = y(6~(E)) for each E € &(H) is almost regular on Y.
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In fact, we will only require the following special case of Theorem 3.

Lemma 4. Let n and k be integers with n > k > 1, let H be a clutter with |V(H)| = n, and let

{X1,...,X:} be a partition of V(H) such that any permutation of X; is an automorphism of H for each
ie{1,...,t}. Suppose there is an edge colouring yo of H with colour set C U {black} (where C does not
contain black) such that, for each c € C, |y0’](c)| = k and erxi deg!®(x) = |X;| foreachie {1,...,t}.

Then there is an (n, k)-Sperner partition system with |C| partitions such that the classes of the partitions
form a subset of E(H).

Proof. Let X = V(H). Roughly speaking, we will perform t applications of Theorem 3, where on
the ith application we “correct” the colouring on X;. Formally, we will construct a sequence of edge
colourings Y0, - - -, ¥r of H with colour set C U {black} such that, for each s € {0, ...,t} and c € C,
lys'(c)| = k, deg?*(x) = 1 for each x € | J;_, X;, and erx degl*(x) = |X;| foreachi e {s+1,...,t}.
Note that y, satisfies the claimed conditions. Furthermore, it suffices to find an edge colourmg Ve
satisfying the required conditions. To see this note that, for each c € C, the edges assigned colour
¢ by y: form a partition of X into k nonempty classes because the properties of y; guarantee that
|y[_1(c)| = k and deg!'(x) = 1 for each x € X. Thus the non-black colour classes of y; will induce an
(n, k)-Sperner partition system with the desired properties (any edges coloured black are not used
as partition classes of the system).

Suppose inductively that an edge colouring y; satisfying the required conditions exists for some
s e {0,...,t —1}. Now apply Theorem 3 with Y = X1 to ys, to obtain an edge colouring ys.1
of H. For each ¢ € C, |y’ ()] = |y‘ (c)] = k and degl**'(x) = degl*(x) for each x € X \ Xs41.
Furthermore, deg!**!(x) = 1 for each ¢ € C and x € X,,1, because erx degl**'(x) = |X;11| and
¥s+1 is almost regular on X, 1. Thus y; satisfies the required conditions and the result follows. O

The next two lemmas show that existing results in [8,10] do not suffice to establish Theorem 1.
Lemma 5 shows that the lower bound of NLB(n, k) only implies the conclusion of Theorem 1 when
r is very small compared to k, and Lemma 6 shows that SP(n + k, k) > k - SP(n, k) never implies the
conclusion of Theorem 1.

Lemma 5. For integers n and k with n > 2k, k > 3, and n — oo, we have
NLB(n, k) = MMS(n, k)

unless k — oo and r = o(k).

Proof. Note that

NLB(n, k)  k—r+"E0 i py\  k—r+ 1D

MMS(n, k) k m. )~ k
If k — oo, then the result follows because r # o(k) and r(”l) < 1.Ifk 4 oo and r > 2, the result
follows because '(C+C1 < 1.Ifk 4 ooand r = 1, then '(C“ £ because k > 3 and ¢ > 1, and again

the result follows. O

Lemma 6. For integers n and k withn > k, k > 3 and n — oo, we have

k - MMS(n, k) ~ MMS(n + k, k).

Proof. Let c = c(n, k) and r = r(n, k). Note that

k-MMS(n, k) k(c+ 1)(k —r + 12 )(n) _Me+1) ( (n) )
(

MMS(n koK) (k—r+ D)y k), ntk (k-1

c
k=1
< (1 - k(c+2)) ’




Y. Chang, CJ. Colbourn, A. Gowty et al. / European Journal of Combinatorics 90 (2020) 103165 5
where we used the fact that nfkcfczl] < "D i the first inequality and the fact that k(r:rk” < 1in
k—1

the second. Because = = % the last expression can be seen to be decreasing in ¢ for ¢ > 2 and

hence at most 2. [

We conclude this section with a product construction for Sperner partition systems which
generalises the inductive result of Li and Meagher mentioned in the introduction.

Lemma 7. If m, n and k are positive integers such that m > k and n > k, then

SP(m + n, k) > k - SP(m, k) - SP(n, k).

Proof. Let X and Y be disjoint sets with |[X| = m and |Y| = n. Let p = SP(m, k) and let P =

{1, ..., my} be an (m, k)-Sperner partition system on X with p partitions, where ; = {m; 1, ..., 7}
fori e {1,...,p}. Let ¢ = SP(n, k) and let Q = {p1, ..., pg} be an (n, k)-Sperner partition system
on Y with q partitions, where p; = {pj1. ..., pjk} forj € {1, ..., q}. We claim that

{ojyie{l, .. phiell,....qhye(l,....k}
where

Oijy = {7[,',2 U Pjz+y + Z € {], ey k}}

(with the second component of the subscripts treated modulo k) is an (m + n, k)-Sperner partition
system with kpq partitions. To see that this claim is true, suppose that 7; , U pj ;4y C 7y U pj 774y
forsomei,i’ € {1,...,pLj,j €{1,...,q)andy,z,y,z € {1,..., k}. Because X and Y are disjoint,
iz € 7y and pj 1y € py /4y SO, because P and Q are Sperner partition systems, i =i, z = 7/,
j=j and, because z = z/, y = y'. This establishes the claim and hence the theorem. O

3. Main construction

The following technical lemma will be useful in our constructions. It enables us to partition the
edges of certain uniform hypergraphs into triples that are “balanced” in some sense.

Lemma 8. Let t be a positive integer, let H be a nonempty (2t)-uniform hypergraph with V(H) = X,
and let Y be a subset of X. Suppose that there are nonnegative integers ey, . .., e; such that

(i) {E€e&H): |[ENY|=t+i}|={E€ &H): |[ENY|=t —i}| =e; foreachie {0,...,t};
(ii) e; > ej1 + s for each i € {0,...,s — 1} where s is the largest element of {0, ..., t} such that
es > 0.

Foranyp € {0, ..., L% |E(H)|]}, we can partition some subset £* of £(H) into p (unordered) triples such
that

° Z; |E; NY| = 3t for each triple {E;, E, E3}; and
o & =& foreachie {1,... t}, where & ={Eec&*: [ENY| =t +i}.

Proof. We prove the result by induction on |£(H)|. In fact, we prove a slightly stronger result in
which we do not require the full strength of (ii) when p = 1 but only that eg > 1 (note |E(H)| > 3
when p = 1). Let s be the largest element of {0, ..., t} such that e; > 0. Let the type of an edge
E of H be [ENY| — t and the type of a triple be the multiset [x1, x,, x3] where x;, x5, x3 are the
types of the three edges in the triple. If p = 0 the result is trivial. If p = 1, we can take a single
triple of type [—s, 0, s], because |£(H)| > 3 and ey > 0. So we may assume p > 2. In each of
a number of cases below we first choose some initial triples of specified types and then add the
remaining triples (if any are required) by applying our inductive hypothesis to the hypergraph H’
formed by the unassigned edges. The edges in the initial triples can be chosen arbitrarily subject to
their specified type.
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Case Initial triples

s=0 [0, 0, 0]

s=1 [-1,0,1]

s=2,(eg=1orp=2) [-2,1,1] and [2, —1, —1]

s=2,e>2,p>3 [—2,0,2],[-2,1,1] and [2, —1, —1]

s> 3odd [—s.i,s—iland [s, —i,i —s] for i € {1,..., min(e, | ], ')}
s > 4 even [—s,i,s —i] and [s, —i,i—s] fori € {1, ..., min(es, L%J,s - 1)}

If s € {0, 1, 2}, then using (i) and (ii) it is easy to confirm that we can choose triples of the types
listed and then apply our inductive hypothesis to find the rest of the triples, so assume s > 3. For
eachi e {—s,..., s}, let d; be the number of edges of type i that are in the initial triples. Let b = %
if sis odd, let b = s — 1 if s is even, and let b’ = min(e;, L%J).

o Ifb' > b, thendy=0,d_s =d; =b and d; = % foreachie {—s+1,...,s— 1} \ {0}. Using
this fact, along with (i) and (ii), it can be confirmed that we can choose triples of the types
listed and then apply our inductive hypothesis to find the rest of the triples.

o Ifb' < b thendy =0,d_; =d; =b'and d; € {| 2], [ 21} foreachi € {—s+1,...,5—1}\{0)}.
Using this fact, along with (i) and (ii), it can be confirmed that we can choose triples of the
types listed and then apply our inductive hypothesis to find the rest of the triples. To see this,
note the following.

- Ifes < L%J, then H' contains no edges of type s or —s, so the condition (ii) required to
apply our inductive hypothesis is weaker. Because of this, the fact that |d; — d;j| < 1 for
i,j €{0,...,s— 1} is sufficient to establish this condition.

- If L ] < es, then we only require one further triple and so the fact that eq > 1 suffices to
establlsh our inductive hypothesis. O

The next, very simple, lemma will be used to show that condition (ii) of Lemma 8 holds in the
situations in which it is applied.

Lemma 9. Let n and t be positive integers such that n > 6t — 2 is even, and let e; = (}°) ('t‘fl) for
eachie {0, ..., t}. Thene; > ei 1+t foreachic {0,...,t — 1}.

Proof. The result holds when t = 1, so assume that t > 2. Leti € {0,...,t — 1}. By routine
calculation

(t+i+1)(n—2t+2i+2)

L ) (t+1)(n—-2t+2) , n+2 X
€ = T(rhn-2r-2n Ct1 2 fn-an  Citl1 = (1 + t(n72t)) Cit1-

Thus it suffices to show that e;;; > t? because then t(n Zt)e,ﬂ > t. Ifi € {0,. — 2}, then

eip1 > t2 because (tfﬁl)(tﬂﬁl) > 1.0 > 2 Also, e = (%) > (") > t? because n > 6t —-2. 0

The following lemma encapsulates the main construction used in our proof of Theorem 1. Recall
that ¢ = c¢(n, k) and r = r(n, k) are the integers such thatn =ck+randr € {0,..., k — 1}.

Lemma 10. Let n and k be integers such that n > 2k, k > 3, r # 0, and n and ck are both even. Let

ue{l,..., 5]} such that u = 5 if r = k — 1. There exists an almost uniform (n, k)-Sperner partition
system wzth p partmons where

. a(u) b(u) — (1n/2\ ( n/2
) )
2“‘ n/2 n/2
("))

i=



Y. Chang, CJ. Colbourn, A. Gowty et al. / European Journal of Combinatorics 90 (2020) 103165 7

Proof. Note that r is even because n and ck are both even. Fix u € {1,..., 3]} and let a = a(u)
and b = b(u). Let X; and X, be disjoint sets such that |X;| = |X3| = g and let X = X; UX5. For each
(i,j) e N x N, let

i ={ECX:ENXi| =10, [ENXy| =]}
2y (n/2
and note || = (") ("?). Let

A—US,] where I' = {(i,j) € N x N :i+j = ¢, min(i, j) > u}
(i,j)el’

B= U Eij)s where I” = {(i,j) e Nx N:i+j=c+ 1, min(i,j) <u— 1}.
(i,j)el”

Note that |A| = a and |B| = b. Furthermore, no set in A is a subset of a set in B because, for any
A€ Aand B € B, |ANX;j| > u > |BNX;| for some i € {1, 2}. So the hypergraph H with vertex set
X and edge set A U B is a clutter. Let C be a set of p colours other than black. Observe that, for
each i € {1, 2}, any permutation of X; is an automorphism of H. Thus, by Lemma 4, it suffices to
find an edge colouring y of H with colour set C U {black} such that, for each ¢ € C, |y ~!(c)| = k
and erxi deg? (x) = § for each i € {1, 2}. Note that the resulting Sperner partition system will be
almost uniform because each edge in H has size c or ¢ + 1. Call a set of edges & € £(H) compatible
if) pee [ENXi| =Y e [ENX].

Case 1. Suppose that k is even. Then each partition in an almost uniform (n, k)-Sperner partition
system contains an even number, k — r, of classes of cardinality ¢ and an even number, r, of classes
of cardinality ¢ + 1.

Because |&ij)| = |&;,| for each (i,j) € I”, we can partition B into g compatible pairs. Also,
|&i.jl = |&;,»! for each (i,j) € I' and, if ¢ is even, a pair of edges from &, ¢/» is compatible. Thus,
we can find L%J disjoint compatible pairs in A (one edge in &/, > Will be unpaired in the case
where c is even and |&2 ¢2| is odd, and all edges will be paired otherwise).

Take an edge colouring y of H with colour set C U {black} such that each non-black coltl?ur

r T

class contains r edges in B that form 5 compatible pairs and k — r edges in A that form =5*

compatible pairs, and all remaining edges are coloured black. This can be accomplished because

lLQJ < g and "z;rp < "%’Lﬁj < |3]. Observe that for each ¢ € C we have that

erx degl(x) = r(c + 1) + (k — r)c = n and, because the colour class can be partitioned into

compatible pairs, erx1 degl (x) = erxz deg! (x). Thus, as desired, we have that erxi degl(x) =3

foreachc e Candie {1, 2}.

Case 2. Suppose that k is odd, c is even, and r # k — 1. Then each partition in an almost uniform
(n, k)-Sperner partition system contains an odd number, k — r, of classes of cardinality ¢ and
an even number, r, of classes of cardinality ¢ + 1. Apply Lemma 8 with Y = X;, t = % and
e = |&t—it+i)l = |Et+it—iy| for each i € {0, ..., t} to find p disjoint triples of edges in A. The
hypotheses of Lemma 8 can be seen to be satisfied using Lemma 9 and because p < Lﬁj < L%J
since k — r > 3. Note that each triple given by Lemma 8 is compatible, and that the number of
edges in &;j) assigned to triples is equal to the number of edges in &;; assigned to triples for
each (i,j) € I'. Thus we can partition all, or all but one, of the unassigned edges in A into | %= 3”J
compatible pairs. Take an edge colouring y of H with colour set CU{black} such that each non- black
colour class contains r edges in B that form 5 5 compatible pairs and k —r edges in A that form one
compatible triple and *=L=3 ’ 3 compatlble palrs and all remaining edges are coloured black. This can
be accomplished because Ip< 1P <band ==2p < |52 (since 2 p < T | |- 2 < S
and k‘%p is an integer). Then y has the properties we desire.

Case 3. Suppose that k is odd, c is even, and r = k — 1. Then u = 2 by our hypotheses and
A = &2,c2- Let y be an edge colouring of H w1th colour set C U {black} such that each non-black
colour class contains k — 1 edges in B that form “=! compatible pairs and one edge in A. Again y
has the properties we desire. O
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To extend the approach of Lemma 10 to cases where n is even and ck is odd would involve finding
complementary triples of edges in B. This can be difficult because the edges in B are “unbalanced”
in terms of the sizes of their intersections with X; and X,. To circumvent this problem we will
introduce, in Section 4, a variation on our construction in which the edges in B are “balanced”.
First, however, we show that, when c is large and r # k— 1, the lower bound implied by Lemma 10
asymptotically matches the MMS(n, k) upper bound, recalling that
()

n—c
Proof of Theorem 1 when n and ck are even. By our hypotheses, r # k — 1. Furthermore,
SP(n, k) = MMS(n, k) when r = 0, so we may assume 2 < r < k — 1. Let a(j) and b(j) be as defined
in Lemma 10 for eachj € {1, ..., | 5]}, and additionally define a(0) = ( ) b(0)=0,a(l5/+1)=0,
and b(L%J +1) = (},). Foreachj e {0,...,[5] + 1}, let q; = | & | and b; = |22 ]. Note that
g = -+ = aLc/2J+1 =0,0=by << ch/2J+1, ap > by and Aic/2)+1 < b\_C/ZJ—H' Let w be the
unique integer in {0, L 1} such that a1 < byy; and a,, > b,. By applying Lemma 10 with
u=w+41(or tr1v1ally 1f w = | 5]) we have SP(n, k) > a,1, and by applying Lemma 10 with u = w
(or trivially if w = 0) we have SP(n, k) > by,. Furthermore, one of these bounds is the best bound
achievable via Lemma 10 because @41 > -+ > |c/2)4+1 and by < -- b,,, By definition of the
function a, we have a(w + 1) = a(w) — 8(”15)2)("/2) where § = 2ifw < Sand§ = 1ifw = §

Hence 2
_ s(M?) (/2 n/2\ (n/2
SP(n, k) > ay+q = La(w) 8( w )(Cw)J 0 _ w

> w -1 2
k—r k—r 2)

We will bound a,, and then apply (2). We now show that

(c+1)b(w):(n—c)<<n)—a(w)>—5’(n—2w+2)( "/2>< n/2 ) (3)
c w—1/\c—w+1

where 8 = 1if w > 1and § = 0 if w = 0. We may assume w > 1, for otherwise w = 0, b(w) = 0,
a(w) = (C) and (3) holds. Now apply Lemma 10 with u = w, let A and B be as defined in its proof,
and let A° = (¥) \ A. Note that [A4| = a(w), |B] = b(w) and |A°| = () — a(w). We now count, in
two ways, the number of pairs (S, B) such that S € A, Be Band S C B.

e Each of the b(w) sets in B has exactly ¢ 4+ 1 subsets in ()C() and each of these is in A, because
no set in A is a subset of a set in 3.

e By the definition of A, min(|S N X;, [SNX;|) < w — 1 for each S € A°. Each of the () — a(w)
sets in .A° has n—c supersets in (H]) For each S € A° such that min(|S N X4[, SN X3]) < w—2,

all of these supersets of S are in B. For each of the 2(”/2])(C_"ﬁl) sets S € A° such that

min(|S N X;], [SNXz|) = w — 1, exactly § — w + 1 of these supersets of S are not in B.

Equating our two counts, we see that (3) does indeed hold.

Because a, > b,, we have L“("')J Lb("’)J which implies 7 (“’)

a(w )

> or equivalently b(w) <
kTa(w) Substituting this into (3 ) and solvmg for a(w) we see
(k —r)((7) — Ln=2wt2) (n/2y n/2
a(w) - ((c) n—c r(c+(1w 1) (cfw+1)) ) (4)

k—r+
Using a,, > “(w) — 1 and (4) in (2) we obtain

(p) — SR () () s()()
k—r+ r(”l) k—r

SP(n, k) > -2,
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or, equivalently,

8 (n—2w+2) /2 /2 1) /2 /2
SP(n, k) > (rcl) - nn—tJr (J—l)(c—nw—k—]) - 8(1 + (n— cc)+k r))(nw )(cn—w) _9 (5)
k—r + r(cirl)

In the above, note that 8’ < 1,8 < 2, =222 < 3 when w > 1 because k > 3, and nr(ﬁk”r) <1
because r < k —
Note that (”/2)(”/2) < ((72)(2,) for any x € {0, ..., c}. By using this fact and then applying

x J \c—x lc/2]/ \[c/2]
Stirling’s approximation we have, for n — oo with k = o(n) and any x € {0, ..., c},
n/2 n/2 n
(")(22)/ (1) < et + o < g o) = ot
(note that n — oo with k = o(n) implies c — o0). Applying this fact twice in (5) yields

SP(n, k) > MMS(n, k)(1 — o(1)). Combined with the fact that SP(n, k) < MMS(n, k), this establishes
the result. O

4. Proof of Theorem 1

As discussed after Lemma 10, we require a variation on our main construction in order to
complete the proof of Theorem 1.

Lemma 11. Let n and k be integers such that n > 2k, k > 3, n is even and ck is odd. Let

ue {%, ...,c — 1} be such that u = % if r = 1. There exists an almost-uniform (n, k)-Sperner

partition system with p partitions where

o) [22]) -2 (7))

i=u+1
“ (n/2 n/2
b(u):_z <i><c+1—i>‘

i=c+1-u

Proof. Note that each partition in an almost uniform (n, k)-Sperner partition system contains an
even number, k — r, of classes of cardinality ¢ and an odd number, r, of classes of cardinality c + 1.
Fixue (<, ...,c— 1} and let a = a(u) and b = b(u). Let X; and X, be disjoint sets such that

X1l = |X2| = % and let X = X; U X,. As in the proof of Lemma 10, for each (i,j) € N x N, let

£y = 1E S X [ENXi| =i, [ENX| =j}.

Unlike the proof of Lemma 10, let

A—UE,] where I' = {(i,j) e N x N:i+j = c, max(i,j) > u+ 1}
(i,j)el’
B= U Eij)s where I” = {(i,j) e Nx N:i+j=c+ 1, max(i,j) < u}.
(ij)el”
Note that |A|] = a and |B| = b. Furthermore, no set in A is a subset of a set in B because, for

any A € Aand B € B, |ANXj| > u > |BNXj| for some i € {1,2}. Thus the hypergraph H with
vertex set X and edge set A U B is a clutter. Observe that, for each i € {1, 2}, any permutation of
X; is an automorphism of H. Let C be a set of p colours other than black. By Lemma 4, it suffices to
find an edge colouring y of H with colour set C U {black} such that, for each ¢ € C, |y~'(c)| = k
and erxi deg!(x) = 5 for each i € {1, 2}. Note that the resulting Sperner partition system will be
almost uniform because each edge in H has size ¢ or ¢ + 1. Again, call a set of edges & C &(H)
compatible if Y ;. [ENX1| =Y por IENXa|.
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Case 1. Suppose that r # 1. Apply Lemma 8 with Y = Xj, t = % and e; = |E—i.t+i)l = |E+ie—i
for each i € {0, ..., t} to find p disjoint triples of edges in B. The hypotheses of Lemma 8 can be
seen to be satisfied using Lemma 9 and because p < L?J L | since r > 3. Note that each triple
given by Lemma 8 is compatible, and that the number of edges in &) a551gned to triples is equal
to the number of edges in &; ;) assigned to trlples for each (i, j) € I”. Thus we can partition all, or
all but one, of the unassigned edges in B into L 5 J compatible pairs. Take an edge colouring y of
H with colour set CU {black} such that each non-black colour class contains r edges in B that form
one compatible triple and TT compatible pairs and k—r edges in A that form k2 compatlble palrs
and all remaining edges are coloured black. This can be accomplished because p L — rj < 2
and %p < Lb_%J (note that %p is an integer less than or equal to %L?J - —) Then y has the
properties we desire.

Case 2. Suppose that r = 1. Then u = % by our hypotheses and B = &1)2,(c+1)/2- Take an edge
colouring y of H with colour set CU {black} such that each non-black colour class contains one edge

in B and k — 1 edges in A that form “ compatible pairs. Again y has the properties we desire. O

The approach of Lemma 11 can also be applied when n and k are both even. However, computa-
tional evidence indicates that this approach almost always underperforms Lemma 10. We can now
prove the remainder of Theorem 1.

Proof of Theorem 1. We saw in Section 3 that Theorem 1 holds when n and ck are both even.
Here, we first use Lemma 11 to deal with almost all of the remaining cases where n is even, and
then use the monotonicity of SP(n, k) in n to complete the rest of the proof.

Case 1. Suppose that n is even, ck is odd, and r # 1. The proof is very similar to the proof in the
case where n and ck are even, but we highlight the differences.
Let a(j) and b(j) be as defined in Lemma 11 for each j € {<-,...,c — 1}, and additionally

define a(31) = (}), b(3*) = 0, a(c) = 0, and b(c) = (.},) — 2( %). For eachj € {S1,....,c},
let qj = L,fU)J and b; L@J. Note that ge_1)2 > -+ > ac = 0,0 = be_1)2 < --- < b,
Ac—1)2 > be—1y2 and ac < b.. Let w be the unique integer in {%, ..., c — 1} such that a,, > b,,
and a1 < by+q. By applying Lemma 11 with u = w + 1 (or trivially if w = ¢ — 1) we have
SP(n, k) > a,,11. By definition of a, we have a(w + 1) = a(w) — 2(*)(,"/*,) and hence

c+1

w+1/ \c—w—1
_2 n/2 n/2 n/2 n/2
SP(1.K) > Gy = \\a(w) k(wj;)(cmJ > a, — (w+ll)£crw ) 1 (6)

We now show that

(c + 1)b(w) = (n — ¢) ((Z) - a(w)) —§(n— 2w)("f) (C"_/zw), 7)

where 8’ = 1if w > <1 and 8 = 0 if w = . We may assume w > <51, for otherwise w = <7,
b(w) = 0, a(w) = (C) and (7) holds. Consider applying Lemma 11 w1th u = w, let A4 and B be as
defined in its proof, and let A° = (¥) \ A. Note that |A| = a(w), || = b(w) and |.A°| = (7) — a(w).

We now count, in two ways, the number of pairs (S, B) such that S € A°, Be Band S C B.

e Each of the b(w) sets in B has exactly ¢ + 1 subsets in ()C() and each of these is in A, because
no set in A is a subset of a set in 3.

e By the definition of .4, max(|S N Xi[, |S N X3]) < w for each S € A°. Each of the ( ) a(w) sets
in A€ has n — c supersets in (c+l) For each S € A such that max(|[SN X[, [SNX3]) < w — 1,

all of these supersets of S are in 5. For each of the 2("/?)(2) sets S € A° such that

max(|S N X1, |SNX;|) = w, exactly 2 5 — w of these supersets of S are not in B.

By equating our two counts, (7) holds.
Using (6) and (7) in place of (2) and (3), it is now routine to obtain the desired conclusion by
following the argument from the case of the proof where n and ck are even.
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Case 2. Suppose that n is odd, or that n is even and r = 1. By our hypotheses, k — r — co. Note
that

MMS(n —1,k) k — r+r(c+1) n-c k—r I<—1_1 ol1)
MMS(n, k) k—r+1+ CNetD)  q “k—-r+1 k ’
where the first inequality follows because ~ (”” > % and =< "’T1 and the second equality

>
follows because k — r — oo. Hence we have MMS(n — 1, k) = MMS(n, k)(1 — o(1)). Thus, if
SP(n — 1, k) = MMS(n — 1, k)(1 — o(1)), we have

SP(n, k) > SP(n — 1, k) = MMS(n — 1, k)(1 — 0(1)) = MMS(n, k)(1 — o(1)). (8)

If nis even and r = 1, we have SP(n — 1, k) = MMS(n — 1, k) from [10] and thus (8) definitely
holds. So the theorem holds in all the cases where n is even. But, having established this, we may
assume that n is odd and we know that SP(n — 1, k) = MMS(n — 1, k)(1 — o(1)). Hence the proof is
complete, using (8). O

5. Proof of Theorem 2

Let X be a ground set, let S be a family of subsets of X, and let i be an 1nteger If each set in S
has cardinality at least i, then we define A'(S) to be the family of all sets in (1) that are subsets of
some set in S. Slmllarly, if each set in S has cardinality at most i, then we define the Vi(S) to be
the family of all sets in ( ) that are supersets of some set in S.

The following theorem due to Lovasz [9, p. 95], gives a convenient approximation to the
Kruskal-Katona theorem (see [6,7] for the original theorem).

Theorem 12 ([9]). If i > 2 is an integer, X is a set and S < (}), then |A™1(S)| > LL(|S|).

Recall that the function LL; was defined just prior to the statement of Theorem 2 in the
introduction. It will be important for our purposes that, for a fixed integer i > 2, LLi(x) is
monotonically increasing and concave in x for x > 1 (see [4, Lemma 4]). We will make use of
the following simple consequence of Theorem 12.

Lemma 13. Let H be a clutter With edge set &£, and c be a positive integer such that |E| > c for each
E € £ Then |A°(€)| > min(|&], (*) + 1).

Proof. If each edge in £ has cardinality c, then A°(£) = £ and the result holds trivially. So we may
suppose inductively that the maximum cardinality of an edge in £ is j > ¢ + 1 and that the result
holds if the maximum cardinality of an edge in £ is j — 1.

Let & ={E € £: [E| =i} foreachi € {c, ..., j}, and let H* be a hypergraph with vertex set V(H)
and edge set £&* = (£\ &)U Af”(sj). Because H is a clutter, H* is a clutter and Aﬁl(sj) is disjoint
from &_.

o If |§] < (zf "), then |gj| = () for some real y < 2j— 1 and hence |A771(&)| > (jf]) > (;’) = |&]|

using Theorem 12. Thus |£*| > |£].
o If [&] > (zf].’]), then |A71(g)| > (i’_’f) > (**!) by Theorem 12 and so |€*| > (*) + 1.
So in either case |£*] > min(|&], (*/") + 1). The result now follows by applying our inductive
hypothesis to £* and noting that A°(£*) = A°(€). O

The bulk of the work of proving Theorem 2 is accomplished in the following lemma. It establishes
that (1) holds subject to the existence of a clutter with desirable properties. It then only remains
to show that, given an (n, k)-Sperner partition system with p partitions, a clutter satisfying the
hypotheses of Lemma 14 can be obtained by considering the partition classes containing a particular
element. (In fact, we must also do some tedious checking to ensure that (1) holds for “small” values
of p not covered by Lemma 14.) In the proof of Theorem 2, this special element is chosen as one
that, according to a certain metric, tends overall to appear in smaller partition classes.
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Lemma 14. Let n and k be integers such that n > 2k + 2 and k > 3, and let p be an integer such that
n—1 2c+1 n—1
p=>max (s (D) - C). () + 1)

If there is a clutter with n — 1 vertices and edge set £ such that |€| > p and ) .

[(1 = "=0)p] + 1L (| “0p)) < (": :)

c

c—|E| - plk=r)

i , then

Proof. Let H be a clutter satisfying the hypotheses of the lemma and let X’ = V(H). For each
ie{0,....,n—1},let & ={E€&:|E|=i}andlet &., = &1 U---UE,_1. We abbreviate rpc(k 07
to ao. Note thatay = [(1— ’(C“ )p] using n = ck+r. We consider two cases according to minimum
cardinality of an edge in &.

Case 1. Suppose that |[E| > ¢ — 1 for each E € ¢&. Then the only edges in £ that make a
positive contribution towards ) ;_, Il are those in &_; and so by our hypotheses we must have

E[+1
Leeql = p"n ") and hence |&._1| > ao. Also, because p > (- )+l we have € ¢ ( ) and hence
|5C| +|Es¢| > 1. Let H* be the hypergraph with vertex set X’ and edge set £ = (£ \ E-c)U A (Ec).
Then £&* = &_1 U & U A°(£-.) and, because H is a clutter, H* is a clutter and A°(&.) is disjoint
from &.. )

There are ('_}) sets in (*,), and because H* is a clutter each of these can be in at most one of
&1 and A& U AS(E.()). Thus, by Theorem 12,

-1
We consider two subcases according to the value of |£.].
Case 1a. Suppose that |&.| < (*}"). Then |AS(£-)| > |€-c| = |€] — |&] — |€c—1| by Lemma 13. So
|E| + |AS(E~¢)| > max(p — |E—1], 1) because |&| > p and |&:| + |E~¢| > 1. Thus, using the fact that
LL. is monotonically increasing, (9) implies that

-1
|gc—1| + LLC(|£C| + |AC(8>C)|) < (Z ) (9)

fl&cal) < <Z : }) where f(a) = a + LL; (max (p — a, 1)) .

Consider f as a function on the real domain ay < a < |&|, noting that we have seen ag <
|€c—1] < |€]. Because f(|&—1]) < (I~;), certainly the global minimum of f is at most (_}). Now,
f is monotonically increasing for p — 1 < a < |&| and, because LL. is concave, f is concave for
ap < a<p— 1 Thus, f achieves its global minimum either at a = ao or at a = p — 1. However,
fop—1)=p—14candp—1> (”’]) by our hypotheses. Thus f achieves its global minimum at

a = ap and we have f(ag) < ( ) Now the result follows because

flao) = ap + LLe(p — ap) = [ (1 — ““F)p] + LL. (| “<0p ).

2c+1 E k—
Case 1b. Suppose that |£..c| > (*}"). Because Y., IE\‘H' > Hen,
n—1
k—
Men) < gl = Y el < Heeal — 5 1els
i=c+1
where the last inequality follows because =¢ > for eachi € {c + 1,...,n — 1}. Thus

i+1 c+z
Eoel < SEE|gy| — BN Also, |A%(eL)| > (*) by the hypothesis of this subcase and
Lemma 13. Combining these facts and || > p, we have

€+ 1A (E)l = |E] = |Ec—1] = [Eoc] +[A(Ec)| > max (BT _ 22101 0) 4 (>F1).

c

Thus, (9) implies that

n—1
g(l&c1l) < (c B 1) where g(a) = a + LL (max (22D 20424 ) 4 (24T

c
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Consider g as function on the real domain ag < a < |£€| and note that the global minimum of g
is less than (g:}) Now, g is monotonically increasing for a; < a < |€| and concave for ag < a < ay,

where a; = Pc(ék’r) Thus, it achieves its global minimum either at a = ag or at a = a;. However,
glar) = a; + (**)) = (*7]) using the hypothe51s that p > (7)) = (*])). Thus we have

c—1 c—1
(k r)

g(ao) < (7). Now, setting 8 = ag

g(ap) = ao + LL¢ (p — ao + (2‘“) — €25) > ap + LLe(p — ag).
As in Case 1a, the result follows.

Case 2. Suppose that |E| < ¢ — 2 for some E € &. Using Case 1 as a base case, we may suppose
inductively that the minimum cardinality of an edge in € is j < ¢ — 2 and that the lemma holds
when the minimum cardinality of an edge in £ is j + 1. For any family S of subsets of X, define

d(8S) =7 s \5||+1 Note we have assumed that d'(€) > ”(kn_r).

Let H* be the hypergraph with vertex set X’ and edge set £&* = (£ \ &) U V/T1(&). Because
H is a clutter, H* is a clutter and Vf“(gj) is disjoint from &j,q. Thus it suffices to show that
d/(Vf“(Sj)) > d'(&) and |Vf+1(£j)| > |&| because then we will be able to apply our inductive
hypothesis to H* to obtain the required result.

Each edge in & is a subset of n —j — 1 edges in Vf“(é?]) and each edge in Vf“(sj) is a superset
of at most j + 1 edges in &. Thus |V/*1(&)| > ‘f 1|5]| and

c(2k r)
and noting that 0 < § < 1,

i1 —j—1(n—j—1 —i=1)(n—j-1)
AV () = S5V > %igﬂ e 4@

where the second equallty follows because d'(&;) = j+1 |€]| Thus d/(Vf“(S )) = d'(&) and [€¥] > |€]

as required because, using j € {0,...,c — 2} and k > 3, we havec —j— 1 > %(c —j) and
n—j—1>2(G3+2). O

Proof of Theorem 2. Let pg = SP(n, k), let X be a set with [X| = n, and let P be an (n, k)-Sperner
partition system on ground set X with po partitions. We may assume r # 0 because, when r = 0,
SP(n k) = (!~}) and (1) clearly holds with p = (I}). So, in addition to n > 2k + 2, we have

c—1
1 2c+1 -1
>4c+ 1. Letp; = max(c(Zk r)((n ) (ccjl))’ (101—1) +1).
Case 1. Suppose that pg > p1. We will find a clutter satisfying the conditions of Lemma 14 and so

complete the proof. For each x € X, let P(x) be the set of all partition classes of P that contain
x. For a subset S of X we define d(S) = ¢ + 1 — |S|, and for a family S of subsets of X we define

= Y 5.5 d(S). Note that, for each partition s in P, we have d(r) = k—r because 7 has exactly
k classes and the sum of the cardlnalltles of the classes is equal to n = ck + r. For a vertex x € X,
we further define d(x ZSEP(X) T ). Thus we have that Yowex dx) =" d(m) = po(k — 1). Let

z be an element ofX such that d(z) > d(x) for each x € X and observe that d(z) > 2% et H
be the hypergraph with vertex set X’ = X \ {z} and edge set £ = {S\ {z} : S € P(z)}. Note that H
is a clutter and |€] = po because P is a Sperner partition system with po partitions. Thus, because
d(z) > p(’(’; D and Po > D1, H satisfies the conditions of Lemma 14 and we can apply it to produce
the required result.

Case 2. Suppose that py < p;. In this case we show directly that (1) holds for some real number
p > p1 and hence that it holds for p = pg (recall that the left hand side of (1) is nondecreasing in
p).

Case 2a. Suppose that ¢ = 2. Then, when r = 2, we have p; = 2k 4+ 2 and (1) holds because

LL,(6) < 5. Whenr > 3, p; = 242k 4+ r — 6) and it can be seen that (1) holds if and

only if LLp(| &= |) < |r + 5 + ZI=2)|. This holds for each integer r > 4 because then
-6 < 9r < ("3%). It also holds for r = 3 because LL,(9) < 8

Case 2b. Suppose that ¢ > 3. Let p, = ﬁ((gj) — 1) and note that p, > p;. Noting that
1-— @ = C“‘ ") it can be seen that (1) will hold with p = p, provided that

uc(igz*:; () = 1) < [ () + 222 (10)
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Let z = 2dcHD ( 1) = 1) be the argument of LL in (10) and note that if z > (**!"), then it follows

c(2k—r)
from the deflmtlon of LL; that LL.(z) < 2sz and thus that (10) holds. Because r > 1, we have

z> 25“‘;22(("’1) 1). This latter expression is an increasing function of n for n > 4c + 1. Thus, for

c > 9 we have z > (*") because z > S22 (("7]) — 1) > ZE2((*)) — 1) and

L2 () - 1) /0N = 55 () /() - 52/ C0) = 553 - 107 =1

Furthermore, by explicit calculation, we have z > ZE2((*) — 1) > (*}") for ¢ = 8. We also have

z> 22 () 1) (3C+1) for c € {4,5,6,7} and n > 31 and for ¢ = 3 and n > 61. This leaves

only a limited number of pairs (n, k) to be checked. Using a computer, it is routine to compute p;
for each pair and verify that (1) holds for p = p;. O

We conclude this section by showing that a slightly weaker version of the upper bound implied
by Theorem 2 can be written in a form that is very reminiscent of the expression for MMS(n, k),
and that this implies that our upper bound is always at least as good as MMS(n, k).

Corollary 15. If n and k are integers such that n > 2k+ 2,k > 4 and r # 0,

SP(n, k) < )

(c+1)
(k_r)‘f‘g_ccﬁ

(11)

where q is the real number such that q > ¢ and (%) = "<

by Theorem 2 is less than MMS(n, k).

- SP(n, k). Furthermore, the bound implied

Proof. Observe that SP(n, k) > NLB(n, k) = (%) implies ““*!) . SP(n, k) > (¢ “). Further, it is
routine to verify - 2(%) = £(*) > (*") sincer > 1whenc > 3 andr > 2 when ¢ = 2. Thus
we have @ SP(n k) > (ZCC’]) It follows that q is well defined. Further, because LL.(1) = c,

LL((*")) = (*.") and LLc is concave, the derivative of LL.(x) is less than 1 for all x > (*_") and
hence, for any real € > 0,

LL (| "t . SP(n, k)| + €) < LLc (| “<E2 - SP(n, k) |) +
Thus we can deduce from Theorem 2 the slightly weaker conclusion that
n—1
(1 "€D) . SP(n, k) + LL. ("< - SP(n, k)) < (C 1). (12)

By applying LL.(x) = p CHx in (12) and solving for SP(n, k) we obtain (11).
Now, using SP(n, k) < MMS(n, k), we have

T(C+1 -SP(n, k) < & < 1(” - 1>.

(n—c)(k—r) =
T+ r(c+1) 2 ¢

Thus, ¢ < n — 1 and so the bound implied by this corollary and, therefore, the bound implied by
Theorem 2 are less than MMS(n, k). O

6. The casen =3k — 6

In this section we exhibit a new infinite family of parameter sets (n, k) for which we can
precisely determine SP(n, k). For this family, the value of SP(n, k) matches the upper bound given
by Theorem 2, and hence it supplies examples both of the theorem’s usefulness and of situations
in which its bound is tight.

Lemma 16. Let k > 11 be an integer such that k # 4 (mod 6) and let n = 3k — 6. Then
SP(n, k) = [5(k — 2)].



Y. Chang, CJ. Colbourn, A. Gowty et al. / European Journal of Combinatorics 90 (2020) 103165 15

Proof. First, suppose for a contradiction that SP(n, k) > L%(k —2)?] + 1. Note that L%(k —2P|+1=
%(k —2)>+ 68 where § = % if kis odd and § = 1 if k is even. Then Theorem 2 implies that (1) holds
withn=3k—6and p = %(k — 2)% + 6 and hence, via routine calculation,

2k — 3 + LLy(| (k* — 8k + 12)]) < 3k — 7.

However, because (*;%) = 1(k* — 9k +20) < [1(k* — 8k + 12)] for k > 11, we have that
LL,( L%(k2 — 8k + 12)]) > k — 4 and hence a contradiction.

Now we construct an (n, k)-Sperner partition system with L%(k—Z)ZJ partitions and so complete
the proof. Let p = L%(k—z)zj, let X1, Xo and X3 be disjoint sets such that |X;| = |X3| = |X3] = k—2,
and let X = X; UX, UXj3. For each i € {1, 2, 3}, let

A={ACX:|Al=2and JANX]| = 1 for eachj € {1,2,3}\ {i}}
Bi={BC X :|B|=3andB C Xj}.

Let A = A;UA;U A3z and B = B;UB, UBs, and let H be the hypergraph with vertex set X and edge
set AUB. Note that no set in A is a subset of a set in B and thus H is a clutter. Observe that, for each
i € {1,2, 3}, any permutation of X; is an automorphism of H. Let C be a set of p colours other than
black. By Lemma 4, it suffices to find an edge colouring y of H with colour set C U {black} such that,
for each ¢ € C, colour c is assigned to 6 edges in A and k— 6 edges in Band )_, _, deg/(x) =k —2
for eachi € {1, 2, 3}.

We now describe how to find an edge colouring that satisfies the conditions we have specified.
If k = 1o0r2(mod 6), then p = 0(mod 3) and we let {C;, C;, C3} be a partition of C such that
|G| = |G] = IG5 = %. If k =5 (mod 6), then p = 1 (mod 3) and we let {C;, C;, C3} be a partition
of C such that |C;| = % and |G| = |G| = %. We describe how to choose the edges from A in
each non-black colour class of y; the remaining edges in each non-black class can be chosen from
B arbitrarily subject to our specified conditions, and then any remaining edges are coloured black.

xeX;

o If k = 0 (mod 3) then, for each ¢ € C, assign colour ¢ to two edges in A; for each i € {1, 2, 3};

e If k = 1(mod 6) then, for each j € {1, 2, 3} and ¢ € , assign colour c to four edges in .4; and
one edge in A; for eachi € {1, 2, 3} \ {j};

e If k = 2 (mod 3) then, for each j € {1, 2, 3} and ¢ € Cj, assign colour ¢ to three edges in 4; for
eachi e {1,2,3}\ {j}.

It only remains to check that there are sufficiently many edges in .4; and B3; for each i € {1, 2, 3} that
we can choose an edge colouring in this manner. Using the fact that | 4;| = (k—2)? and |B;| = (k;Z)
for each i € {1, 2, 3}, it is routine to check this by considering cases according to the congruence

class of k modulo 6. O

Again, the Sperner partition systems constructed to prove Lemma 16 are almost uniform.
7. Bounds for small n and k

We conclude this paper by displaying the values of the upper and lower bounds we have
obtained for some small parameters (n, k).

In Table 1 we list, for 4 < k < 7 and 2k + 2 < n < 33 a lower bound and an upper bound
on SP(n, k) in the top and bottom rows respectively of the appropriate cell. The upper bound is
the bound implied by Theorem 2 and is followed by the improvement over MMS(n, k) in brackets.
The lower bound is the best one attainable via our results and those of [8,10] and is followed by
the source of the bound according to the following key. “M” refers to a bound obtained through
the monotonicity of SP(n, k) in n; “[8]" refers to one of the bounds given in [8] (and stated in our
introduction); “L7” refers to Lemma 7 and is followed by the values of m and n used; and finally
“L10” and “L11” refer to Lemmas 10 and 11 and are followed by the value of u used. The exception
to the above is when k divides n, in which case the known exact value of SP(n, k) is placed by itself
in the cell.
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Table 1
Lower and upper bounds on SP(n, k).
n k=4 k=5 k=6 k=7
10 L10 (1)
10 TG
11 [8]
1 19 (8)
12 L10 (1)
12 55 13 5)
13 55 M 12 M
72 (12) 19 (8)
14 55 M 17 L10 (1) 13 [8]
110 (23) 33 (12) 15 (5)
55 M 13 M
15 190  (37) 91 20 (8)
91 M 28 L10 (1) 15 (8]
16 455 14 (16) 29 (13) 75
17 455 M 91 M 28 M 15 M
636 (67) 162 (28) 51 (17) 21 (8)
18 648 L10 (2) 91 M 136 27 L10 (1)
994 (133) 243 (48) 30 (10)
19 648 M 91 M 136 M 27 M
1719 (219) 410 (74) 167 (17) 42 (17)
210 L10 (1) 40 L10 (1)
20 3876 969 21 (34) 70 (25
21 3876 M 969 M 210 M 190
5601 (428) 1290 (103) 308 (54)
22 5544 L10 (2) 1008 L10 (2) 210 M 190 M
8844 (888) 1849 (208) 454 (87) 227 (20)
23 5544 M 1008 M 210 M 190 M
15355 (1469) 2808 (366) 751 (134) 291 (36)
3366 L10 (2) 190 M
24 33649 4734 (579) 1 384 (58)
33649 M 1771 M 190 M
25 49 605 (2971) 10626 2271 (144) 525 (92)
26 40 898 L10 (3) 10626 M 1771 M 286 L11 (2)
78 927 (6343) 14514 (834) 3071 (285) 762 (144)
27 40898 M 10626 M 1771 M 286 M
137 410 (10595) 21020 (1750) 4311 (494) 1242 (220)
16016 L11 (3) 4140 L10 (2)
28 296010 32169 (3150) 6408 (818) 2925
29 296010 M 16 830 L7 (5, 24) 4140 M 2925 M
442 270 (21745) 54342 (5035) 10 606 (1269) 3643 (187)
621075 L10 (3) 3003 L10 (1)
30 707 796 (47 420) 118755 23751 4723 (366)
31 621075 M 118755 M 23751 M 3003 M
1234969 (79818) 164701 (7327) 31093 (1389) 6291 (615)
139568 L10 (2) 33600 L10 (2) 4800 L10 (2)
32 2629575 240248 (15 849) 42433 (2876) 8682 (999)
33 2629575 M 139568 M 33600 M 4800 M
3966 925 (165,264) 369 680 (29044) 60038 (5113) 12 696 (1601)
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Fig. 1. Best known bounds on SP(n, 5) compared to NLB(n, 5) and MMS(n, 5).
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Fig. 2. Best known bounds on SP(n, 10) compared to NLB(n, 10) and MMS(n, 10).

17

Figs. 1 and 2 visualise bounds on SP(n, k) for the example values k = 5 and k = 10 respectively.
Values of n between 2k + 2 and 100 appear on the horizontal axis, and above each are a grey and a
black line segment. The grey segment gives the interval between NLB(n, k) and MMS(n, k), whereas
the black segment gives the interval between the best known lower and upper bounds on SP(n, k)

according to the results in this paper and in [8,10]. Note that the vertical axis is log scaled.
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