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a b s t r a c t

An (n, k)-Sperner partition system is a collection of partitions of
some n-set, each into k nonempty classes, such that no class of
any partition is a subset of a class of any other. The maximum
number of partitions in an (n, k)-Sperner partition system is de-
noted SP(n, k). In this paper we introduce a new construction for
Sperner partition systems and use it to asymptotically determine
SP(n, k) in many cases as n

k becomes large. We also give a slightly
improved upper bound for SP(n, k) and exhibit an infinite family
of parameter sets (n, k) for which this bound is tight.

© 2020 Published by Elsevier Ltd.

1. Introduction

A Sperner family is a family of subsets of some ground set such that no set in the family is a subset
of any other. Sperner families have been extensively studied (see [1], for example). Meagher, Moura
and Stevens introduced Sperner partition systems in [10] as a natural variant of Sperner families.
An (n, k)-Sperner partition system is a collection of partitions of some n-set, each into k nonempty
lasses, such that no class of any partition is a subset of a class of any other. Most of the research on
perner partition systems has focused on investigating, for a given n and k, the maximum number

of partitions in an (n, k)-Sperner partition system. This quantity is denoted SP(n, k). The exact value
of SP(n, k) is known in the following situations.
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• SP(n, k) = 1 when k = 1 or k ⩽ n < 2k (for then any partition has a class of size n or 1).

• SP(n, k) =
( n−1
n/k−1

)
when k divides n (see [10]).

• SP(n, k) =
( n−1
⌊n/2⌋−1

)
when k = 2 (using the Erdős–Ko–Rado theorem, see [8]).

• SP(n, k) = 2k when n = 2k + 1 and k is even (see [8]).

Note that for all unsolved cases we have k ⩾ 3, n > 2k and k does not divide n.
In the unsolved cases, bounds are known on SP(n, k). Let n and k be positive integers such that

⩾ k, and let c and r be the unique integers such that n = ck + r and r ∈ {0, . . . , k − 1}. In [10],
he authors show that SP(n, k) ⩽ MMS(n, k) where

MMS(n, k) =

(n
c

)
k − r +

r(c+1)
n−c

.

ote that 0 ⩽ r(c+1)
n−c ⩽ 1 because 0 ⩽ r ⩽ k − 1. Using this upper bound together with Baranyai’s

heorem [2], the authors of [10] establish that SP(n, k) = MMS(n, k) =
(n−1
c−1

)
when k divides n, as

tated above. Finally, they note that SP(n + 1, k) ⩾ SP(n, k) because it is easy to augment an (n, k)-
perner partition system to obtain an (n+ 1, k)-Sperner partition system with the same number of
artitions. Thus they establish a naive lower bound SP(n, k) ⩾ NLB(n, k) where

NLB(n, k) =
1
k

(
n − r
c

)
.

espite its naivety, NLB(n, k) has hitherto been the best lower bound known on SP(n, k) for general
and k. In [8], Li and Meagher show that SP(2k+ 1, k) ∈ {2k− 1, 2k}, SP(2k+ 2, k) ∈ {2k+ 1, 2k+

, 2k+3} and SP(3k−1, k) ⩾ 3k−1. They also establish an inductive lower bound by showing that
P(n + k, k) ⩾ k · SP(n, k) for n ⩾ k ⩾ 2.
In this paper we introduce a new construction for Sperner partition systems using a result of

ryant [3]. With this we are able to establish that the upper bound MMS(n, k) is asymptotically
orrect in many situations where c is large.

heorem 1. Let n and k be integers with n → ∞, k = o(n) and k ⩾ 3, and let c and r be the integers
uch that n = ck + r and r ∈ {0, . . . , k − 1}. Then SP(n, k) ∼ MMS(n, k) if

• n is even and r /∈ {1, k − 1}; or
• k − r → ∞.

Note that the lower bound NLB(n, k) only implies the result of Theorem 1 when r is very small
ompared to k, and the result of [8] that SP(n + k, k) ⩾ k · SP(n, k) never implies Theorem 1 (see
emmas 5 and 6). It is also worth noting that the Sperner partition systems we construct to prove
heorem 1 are almost uniform (see Lemmas 10 and 11, and note that it is easy to augment an almost
niform (n, k)-Sperner partition system to obtain an almost uniform (n + 1, k)-Sperner partition
ystem with the same number of partitions).
We also prove a result which provides an implicit upper bound on SP(n, k) for k ⩾ 4. In order

o state it we require some definitions. For any nonnegative integer i and real number y ⩾ i, let
(y
i

)
epresent 1

i!y(y − 1) · · · (y − i + 1). Define, for each integer c ⩾ 2, a function LLc : {0} ∪ R⩾1
→ R⩾0

by LLc(0) = 0 and, for x ⩾ 1, LLc(x) =
( q
c−1

)
where q is the unique real number such that q ⩾ c and(q

c

)
= x. An equivalent definition for x ⩾ 1 is LLc(x) =

c
q−c+1x where q is as before.

heorem 2. If n and k are integers such that n ⩾ 2k + 2 and k ⩾ 4, then⌈
(1 −

r(c+1)
n ) · SP(n, k)

⌉
+ LLc

(⌊ r(c+1)
n · SP(n, k)

⌋)
⩽

(
n − 1
c − 1

)
,

here c and r are the integers such that n = ck + r and r ∈ {0, . . . , k − 1}.
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For fixed n and k, the left hand side of the inequality⌈
(1 −

r(c+1)
n )p

⌉
+ LLc

(⌊ r(c+1)
n p

⌋)
⩽

(
n − 1
c − 1

)
(1)

is nondecreasing in p and hence there is a unique nonnegative integer p′ such that (1) holds for
each p ∈ {0, . . . , p′

} and fails for each integer p > p′. This p′ is an upper bound for SP(n, k). We
ill see in Corollary 15 that p′ is always at most MMS(n, k). In practice p′ can be found via a binary
earch, beginning with NLB(n, k) ⩽ p′ ⩽ MMS(n, k).
It is worth mentioning the connection between Sperner partition systems and detecting arrays,

hich are used in testing applications to allow the rapid identification and location of faults. We
an represent an (n, k)-Sperner partition system with p partitions as an n × p array in which the
i, j) entry is ℓ if and only if the ith element of the ground set is in the ℓth class of the jth partition
according to arbitrary orderings). This array is then a (1, 1)-detecting array (see [5]) because it has
the property that for any j1, j2 ∈ {1, . . . , p} and ℓ1, ℓ2 ∈ {1, . . . , k}, the set of rows in which the
ymbol ℓ1 appears in column j1 is not a subset of the set of rows in which the symbol ℓ2 appears in
olumn j2. (Intuitively this condition means that the ‘‘signature’’ of any one possible fault cannot be
asked by the signature of any other.) So SP(n, k) can equivalently be interpreted as the maximum
umber of columns in a (1, 1)-detecting array with n rows and k symbols.
This paper is organised as follows. In the next section we introduce some of the notation and

esults we require. In Section 3 we detail the main construction we use to prove Theorem 1 and
stablish that it asymptotically matches the upper bound of MMS(n, k) when c is large and r ̸= k−1.
he proof of Theorem 1 is completed in Section 4 using a variant of our main construction. We
hen move on to prove Theorem 2 in Section 5 and to exhibit an infinite family of parameter sets
or which the upper bound implied by Theorem 2 is tight in Section 6. Finally, in Section 7, we
onclude by examining the performance of our bounds for small parameter sets.

. Preliminaries

For integers n and k with n ⩾ k ⩾ 1 we define c = c(n, k) and r = r(n, k) as the unique
ntegers such that n = ck + r and r ∈ {0, . . . , k − 1}. We use these definitions of c(n, k) and r(n, k)
hroughout the paper and abbreviate to simply c and r where there is no danger of confusion. We
lso use n = ck + r frequently and tacitly in our calculations.
An (n, k)-Sperner partition system is said to be almost uniform if each class of each of its partitions

as cardinality in {⌊
n
k ⌋, ⌈

n
k ⌉} and hence each partition has k− r classes of cardinality c and r classes

f cardinality c + 1. For nonnegative integers x and i, we denote the ith falling factorial x by (x)i.
For a set S and a nonnegative integer i, we denote the set of all i-subsets of S by

(S
i

)
.

A hypergraph H consists of a vertex set V (H) together with a set E(H) of edges, each of which is a
nonempty subset of V (H). We do not allow loops or multiple edges. A clutter is a hypergraph none
of whose edges is a subset of another. A clutter is exactly a Sperner family, but we use the term
clutter when we wish to consider the object through a hypergraph-theoretic lens. A set of edges of
a hypergraph is said to be i-uniform if each edge in it has cardinality i, and a hypergraph is said to
be i-uniform if its entire edge set is i-uniform.

In this paper, an edge colouring of a hypergraph is simply an assignment of colours to its edges
with no further conditions imposed. Let γ be an edge colouring of a hypergraph H with colour set
C . For each c ∈ C , the set γ −1(c) of edges of H assigned colour c is called a colour class of γ . For
each c ∈ C and x ∈ V (H), we denote by degγ

c (x) the number of edges of H that are incident with
the vertex x and are assigned the colour c by γ . Further, for a subset Y of V (H), we say that γ is
almost regular on Y if |degγ

c (x) − degγ
c (y)| ⩽ 1 for all c ∈ C and x, y ∈ Y . We will make use of a

esult of Bryant from [3].

heorem 3 ([3]). Let H be a hypergraph, γ be an edge colouring of H with colour set C, and Y be a
ubset of V (H) such that any permutation of Y is an automorphism of H. There exists a permutation θ
f E(H) such that |θ (E)| = |E| and θ (E)\Y = E \Y for each E ∈ E(H), and such that the edge colouring

γ ′ of H given by γ ′(E) = γ (θ−1(E)) for each E ∈ E(H) is almost regular on Y .
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In fact, we will only require the following special case of Theorem 3.

Lemma 4. Let n and k be integers with n ⩾ k ⩾ 1, let H be a clutter with |V (H)| = n, and let
X1, . . . , Xt} be a partition of V (H) such that any permutation of Xi is an automorphism of H for each
∈ {1, . . . , t}. Suppose there is an edge colouring γ0 of H with colour set C ∪{black} (where C does not

contain black) such that, for each c ∈ C, |γ −1
0 (c)| = k and

∑
x∈Xi

degγ0
c (x) = |Xi| for each i ∈ {1, . . . , t}.

Then there is an (n, k)-Sperner partition system with |C | partitions such that the classes of the partitions
form a subset of E(H).

Proof. Let X = V (H). Roughly speaking, we will perform t applications of Theorem 3, where on
the ith application we ‘‘correct’’ the colouring on Xi. Formally, we will construct a sequence of edge
colourings γ0, . . . , γt of H with colour set C ∪ {black} such that, for each s ∈ {0, . . . , t} and c ∈ C ,
γ −1
s (c)| = k, degγs

c (x) = 1 for each x ∈
⋃s

i=1 Xi, and
∑

x∈Xi
degγs

c (x) = |Xi| for each i ∈ {s+1, . . . , t}.
ote that γ0 satisfies the claimed conditions. Furthermore, it suffices to find an edge colouring γt
atisfying the required conditions. To see this note that, for each c ∈ C , the edges assigned colour
by γt form a partition of X into k nonempty classes because the properties of γt guarantee that

γ −1
t (c)| = k and degγt

c (x) = 1 for each x ∈ X . Thus the non-black colour classes of γt will induce an
n, k)-Sperner partition system with the desired properties (any edges coloured black are not used
s partition classes of the system).
Suppose inductively that an edge colouring γs satisfying the required conditions exists for some

∈ {0, . . . , t − 1}. Now apply Theorem 3 with Y = Xs+1 to γs, to obtain an edge colouring γs+1
f H . For each c ∈ C , |γ −1

s+1(c)| = |γ −1
s (c)| = k and degγs+1

c (x) = degγs
c (x) for each x ∈ X \ Xs+1.

urthermore, degγs+1
c (x) = 1 for each c ∈ C and x ∈ Xs+1, because

∑
x∈Xs+1

degγs+1
c (x) = |Xs+1| and

s+1 is almost regular on Xs+1. Thus γs+1 satisfies the required conditions and the result follows. □

The next two lemmas show that existing results in [8,10] do not suffice to establish Theorem 1.
emma 5 shows that the lower bound of NLB(n, k) only implies the conclusion of Theorem 1 when
is very small compared to k, and Lemma 6 shows that SP(n+ k, k) ⩾ k · SP(n, k) never implies the
onclusion of Theorem 1.

emma 5. For integers n and k with n > 2k, k ⩾ 3, and n → ∞, we have

NLB(n, k) ≁ MMS(n, k)

nless k → ∞ and r = o(k).

roof. Note that

NLB(n, k)
MMS(n, k)

=
k − r +

r(c+1)
n−c

k

(
(n − r)c
(n)c

)
<

k − r +
r(c+1)
n−c

k
.

If k → ∞, then the result follows because r ̸= o(k) and r(c+1)
n−c ⩽ 1. If k ̸→ ∞ and r ⩾ 2, the result

ollows because r(c+1)
n−c ⩽ 1. If k ̸→ ∞ and r = 1, then r(c+1)

n−c ⩽ 2
3 because k ⩾ 3 and c ⩾ 1, and again

he result follows. □

emma 6. For integers n and k with n ⩾ k, k ⩾ 3 and n → ∞, we have

k · MMS(n, k) ≁ MMS(n + k, k).

roof. Let c = c(n, k) and r = r(n, k). Note that

k · MMS(n, k)
MMS(n + k, k)

=
k(c + 1)(k − r +

r(c+2)
n+k−c−1 )(n)c(

k − r +
r(c+1)
n−c

)
(n + k)c+1

⩽
k(c + 1)
n + k

(
(n)c

(n + k − 1)c

)
⩽

(
1 −

k−1
k(c+2)

)c
,
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here we used the fact that r(c+2)
n+k−c−1 ⩽ r(c+1)

n−c in the first inequality and the fact that k(c+1)
n+k ⩽ 1 in

he second. Because k−1
k ⩾ 2

3 , the last expression can be seen to be decreasing in c for c ⩾ 2 and
ence at most 25

36 . □

We conclude this section with a product construction for Sperner partition systems which
generalises the inductive result of Li and Meagher mentioned in the introduction.

Lemma 7. If m, n and k are positive integers such that m ⩾ k and n ⩾ k, then

SP(m + n, k) ⩾ k · SP(m, k) · SP(n, k).

roof. Let X and Y be disjoint sets with |X | = m and |Y | = n. Let p = SP(m, k) and let P =

π1, . . . , πp} be an (m, k)-Sperner partition system on X with p partitions, where πi = {πi,1, . . . , πi,k}

or i ∈ {1, . . . , p}. Let q = SP(n, k) and let Q = {ρ1, . . . , ρq} be an (n, k)-Sperner partition system
n Y with q partitions, where ρj = {ρj,1, . . . , ρj,k} for j ∈ {1, . . . , q}. We claim that{

σi,j,y : i ∈ {1, . . . , p}, j ∈ {1, . . . , q}, y ∈ {1, . . . , k}
}

here

σi,j,y =
{
πi,z ∪ ρj,z+y : z ∈ {1, . . . , k}

}
with the second component of the subscripts treated modulo k) is an (m + n, k)-Sperner partition
ystem with kpq partitions. To see that this claim is true, suppose that πi,z ∪ ρj,z+y ⊆ πi′,z′ ∪ ρj′,z′+y′

or some i, i′ ∈ {1, . . . , p}, j, j′ ∈ {1, . . . , q} and y, z, y′, z ′
∈ {1, . . . , k}. Because X and Y are disjoint,

i,z ⊆ πi′,z′ and ρj,z+y ⊆ ρj′,z′+y′ . So, because P and Q are Sperner partition systems, i = i′, z = z ′,
= j′ and, because z = z ′, y = y′. This establishes the claim and hence the theorem. □

. Main construction

The following technical lemma will be useful in our constructions. It enables us to partition the
dges of certain uniform hypergraphs into triples that are ‘‘balanced’’ in some sense.

emma 8. Let t be a positive integer, let H be a nonempty (2t)-uniform hypergraph with V (H) = X,
nd let Y be a subset of X. Suppose that there are nonnegative integers e0, . . . , et such that

(i) |{E ∈ E(H) : |E ∩ Y |= t + i}| = |{E ∈ E(H) : |E ∩ Y |= t − i}| = ei for each i ∈ {0, . . . , t};
(ii) ei ⩾ ei+1 + s for each i ∈ {0, . . . , s − 1} where s is the largest element of {0, . . . , t} such that

es > 0.

or any p ∈ {0, . . . , ⌊ 1
3 |E(H)|⌋}, we can partition some subset E∗ of E(H) into p (unordered) triples such

hat

•
∑3

i=1 |Ei ∩ Y | = 3t for each triple {E1, E2, E3}; and
• |E∗

i | = |E∗

−i| for each i ∈ {1, . . . , t}, where E∗

i = {E ∈ E∗
: |E ∩ Y | = t + i}.

Proof. We prove the result by induction on |E(H)|. In fact, we prove a slightly stronger result in
which we do not require the full strength of (ii) when p = 1 but only that e0 ⩾ 1 (note |E(H)| ⩾ 3
when p = 1). Let s be the largest element of {0, . . . , t} such that es > 0. Let the type of an edge
E of H be |E ∩ Y | − t and the type of a triple be the multiset [x1, x2, x3] where x1, x2, x3 are the
types of the three edges in the triple. If p = 0 the result is trivial. If p = 1, we can take a single
triple of type [−s, 0, s], because |E(H)| ⩾ 3 and e0 > 0. So we may assume p ⩾ 2. In each of
a number of cases below we first choose some initial triples of specified types and then add the
remaining triples (if any are required) by applying our inductive hypothesis to the hypergraph H ′

formed by the unassigned edges. The edges in the initial triples can be chosen arbitrarily subject to
their specified type.
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Case Initial triples
s = 0 [0, 0, 0]
s = 1 [−1, 0, 1]
s = 2, (e2 = 1 or p = 2) [−2, 1, 1] and [2, −1, −1]
s = 2, e2 ⩾ 2, p ⩾ 3 [−2, 0, 2], [−2, 1, 1] and [2, −1, −1]
s ⩾ 3 odd [−s, i, s − i] and [s, −i, i − s] for i ∈ {1, . . . ,min(es, ⌊ p

2⌋,
s−1
2 )}

s ⩾ 4 even [−s, i, s − i] and [s, −i, i − s] for i ∈ {1, . . . ,min(es, ⌊ p
2⌋, s − 1)}

If s ∈ {0, 1, 2}, then using (i) and (ii) it is easy to confirm that we can choose triples of the types
listed and then apply our inductive hypothesis to find the rest of the triples, so assume s ⩾ 3. For
each i ∈ {−s, . . . , s}, let di be the number of edges of type i that are in the initial triples. Let b =

s−1
2

if s is odd, let b = s − 1 if s is even, and let b′
= min(es, ⌊ p

2⌋).

• If b′ > b, then d0 = 0, d−s = ds = b and di =
2b
s−1 for each i ∈ {−s + 1, . . . , s − 1} \ {0}. Using

this fact, along with (i) and (ii), it can be confirmed that we can choose triples of the types
listed and then apply our inductive hypothesis to find the rest of the triples.

• If b′ ⩽ b, then d0 = 0, d−s = ds = b′ and di ∈ {⌊
2b′

s−1⌋, ⌈
2b′

s−1⌉} for each i ∈ {−s+1, . . . , s−1}\{0}.
Using this fact, along with (i) and (ii), it can be confirmed that we can choose triples of the
types listed and then apply our inductive hypothesis to find the rest of the triples. To see this,
note the following.

– If es ⩽ ⌊
p
2⌋, then H ′ contains no edges of type s or −s, so the condition (ii) required to

apply our inductive hypothesis is weaker. Because of this, the fact that |di − dj| ⩽ 1 for
i, j ∈ {0, . . . , s − 1} is sufficient to establish this condition.

– If ⌊
p
2⌋ < es, then we only require one further triple and so the fact that e0 ⩾ 1 suffices to

establish our inductive hypothesis. □

The next, very simple, lemma will be used to show that condition (ii) of Lemma 8 holds in the
ituations in which it is applied.

emma 9. Let n and t be positive integers such that n ⩾ 6t − 2 is even, and let ei =
(n/2
t−i

)(n/2
t+i

)
for

ach i ∈ {0, . . . , t}. Then ei > ei+1 + t for each i ∈ {0, . . . , t − 1}.

roof. The result holds when t = 1, so assume that t ⩾ 2. Let i ∈ {0, . . . , t − 1}. By routine
calculation

ei =
(t+i+1)(n−2t+2i+2)

(t−i)(n−2t−2i) ei+1 ⩾ (t+1)(n−2t+2)
t(n−2t) ei+1 =

(
1 +

n+2
t(n−2t)

)
ei+1.

Thus it suffices to show that ei+1 ⩾ t2 because then n+2
t(n−2t) ei+1 > t . If i ∈ {0, . . . , t − 2}, then

ei+1 ⩾ t2 because
( n/2
t−i−1

)( n/2
t+i+1

)
⩾ n

2 ·
n
2 ⩾ t2. Also, et =

(n/2
2t

)
⩾

(n/2
2

)
⩾ t2 because n ⩾ 6t − 2. □

The following lemma encapsulates the main construction used in our proof of Theorem 1. Recall
hat c = c(n, k) and r = r(n, k) are the integers such that n = ck + r and r ∈ {0, . . . , k − 1}.

emma 10. Let n and k be integers such that n ⩾ 2k, k ⩾ 3, r ̸= 0, and n and ck are both even. Let
∈ {1, . . . , ⌊ c

2⌋} such that u =
c
2 if r = k − 1. There exists an almost uniform (n, k)-Sperner partition

system with p partitions where

p = min
(⌊

a(u)
k − r

⌋
,

⌊
b(u)
r

⌋)
, a(u) =

c−u∑
i=u

(
n/2
i

)(
n/2
c − i

)
,

b(u) = 2
u−1∑
i=0

(
n/2
i

)(
n/2

c + 1 − i

)
.
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roof. Note that r is even because n and ck are both even. Fix u ∈ {1, . . . , ⌊ c
2⌋} and let a = a(u)

nd b = b(u). Let X1 and X2 be disjoint sets such that |X1| = |X2| =
n
2 , and let X = X1 ∪ X2. For each

(i, j) ∈ N × N, let

E(i,j) = {E ⊆ X : |E ∩ X1| = i, |E ∩ X2| = j}

and note |E(i,j)| =
(n/2

i

)(n/2
j

)
. Let

A =

⋃
(i,j)∈I ′

E(i,j), where I ′ = {(i, j) ∈ N × N : i + j = c,min(i, j) ⩾ u}

B =

⋃
(i,j)∈I ′′

E(i,j), where I ′′ = {(i, j) ∈ N × N : i + j = c + 1,min(i, j) ⩽ u − 1}.

Note that |A| = a and |B| = b. Furthermore, no set in A is a subset of a set in B because, for any
A ∈ A and B ∈ B, |A ∩ Xi| ⩾ u > |B ∩ Xi| for some i ∈ {1, 2}. So the hypergraph H with vertex set
X and edge set A ∪ B is a clutter. Let C be a set of p colours other than black. Observe that, for
each i ∈ {1, 2}, any permutation of Xi is an automorphism of H . Thus, by Lemma 4, it suffices to
find an edge colouring γ of H with colour set C ∪ {black} such that, for each c ∈ C , |γ −1(c)| = k
and

∑
x∈Xi

degγ
c (x) =

n
2 for each i ∈ {1, 2}. Note that the resulting Sperner partition system will be

lmost uniform because each edge in H has size c or c + 1. Call a set of edges E ′
⊆ E(H) compatible

f
∑

E∈E ′ |E ∩ X1| =
∑

E∈E ′ |E ∩ X2|.
ase 1. Suppose that k is even. Then each partition in an almost uniform (n, k)-Sperner partition
ystem contains an even number, k− r , of classes of cardinality c and an even number, r , of classes
f cardinality c + 1.
Because |E(i,j)| = |E(j,i)| for each (i, j) ∈ I ′′, we can partition B into b

2 compatible pairs. Also,
|E(i,j)| = |E(j,i)| for each (i, j) ∈ I ′ and, if c is even, a pair of edges from Ec/2,c/2 is compatible. Thus,
we can find ⌊

a
2⌋ disjoint compatible pairs in A (one edge in Ec/2,c/2 will be unpaired in the case

here c is even and |Ec/2,c/2| is odd, and all edges will be paired otherwise).
Take an edge colouring γ of H with colour set C ∪ {black} such that each non-black colour

lass contains r edges in B that form r
2 compatible pairs and k − r edges in A that form k−r

2
ompatible pairs, and all remaining edges are coloured black. This can be accomplished because
r
2p ⩽ r

2⌊
b
r ⌋ ⩽ b

2 and k−r
2 p ⩽ k−r

2 ⌊
a

k−r ⌋ ⩽ ⌊
a
2⌋. Observe that for each c ∈ C we have that∑

x∈X degγ
c (x) = r(c + 1) + (k − r)c = n and, because the colour class can be partitioned into

ompatible pairs,
∑

x∈X1
degγ

c (x) =
∑

x∈X2
degγ

c (x). Thus, as desired, we have that
∑

x∈Xi
degγ

c (x) =
n
2

for each c ∈ C and i ∈ {1, 2}.
Case 2. Suppose that k is odd, c is even, and r ̸= k − 1. Then each partition in an almost uniform
n, k)-Sperner partition system contains an odd number, k − r , of classes of cardinality c and
an even number, r , of classes of cardinality c + 1. Apply Lemma 8 with Y = X1, t =

c
2 , and

i = |E(t−i,t+i)| = |E(t+i,t−i)| for each i ∈ {0, . . . , t} to find p disjoint triples of edges in A. The
ypotheses of Lemma 8 can be seen to be satisfied using Lemma 9 and because p ⩽ ⌊

a
k−r ⌋ ⩽ ⌊

a
3⌋

since k − r ⩾ 3. Note that each triple given by Lemma 8 is compatible, and that the number of
edges in E(i,j) assigned to triples is equal to the number of edges in E(j,i) assigned to triples for
each (i, j) ∈ I ′. Thus we can partition all, or all but one, of the unassigned edges in A into ⌊

a−3p
2 ⌋

compatible pairs. Take an edge colouring γ of H with colour set C∪{black} such that each non-black
colour class contains r edges in B that form r

2 compatible pairs and k− r edges in A that form one
compatible triple and k−r−3

2 compatible pairs, and all remaining edges are coloured black. This can
be accomplished because r

2p ⩽ r
2⌊

b
r ⌋ ⩽ b

2 and k−r−3
2 p ⩽ ⌊

a−3p
2 ⌋ (since k−r−3

2 p ⩽ k−r
2 ⌊

a
k−r ⌋−

3p
2 ⩽ a−3p

2
and k−r−3

2 p is an integer). Then γ has the properties we desire.
ase 3. Suppose that k is odd, c is even, and r = k − 1. Then u =

c
2 by our hypotheses and

A = Ec/2,c/2. Let γ be an edge colouring of H with colour set C ∪ {black} such that each non-black
colour class contains k − 1 edges in B that form k−1

2 compatible pairs and one edge in A. Again γ

has the properties we desire. □
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To extend the approach of Lemma 10 to cases where n is even and ck is odd would involve finding
complementary triples of edges in B. This can be difficult because the edges in B are ‘‘unbalanced’’
in terms of the sizes of their intersections with X1 and X2. To circumvent this problem we will
introduce, in Section 4, a variation on our construction in which the edges in B are ‘‘balanced’’.
First, however, we show that, when c is large and r ̸= k−1, the lower bound implied by Lemma 10
asymptotically matches the MMS(n, k) upper bound, recalling that

MMS(n, k) =

(n
c

)
k − r +

r(c+1)
n−c

.

roof of Theorem 1 when n and ck are even. By our hypotheses, r ̸= k − 1. Furthermore,
P(n, k) = MMS(n, k) when r = 0, so we may assume 2 ⩽ r < k − 1. Let a(j) and b(j) be as defined
n Lemma 10 for each j ∈ {1, . . . , ⌊ c

2⌋}, and additionally define a(0) =
(n
c

)
, b(0) = 0, a(⌊ c

2⌋+1) = 0,
nd b(⌊ c

2⌋ + 1) =
( n
c+1

)
. For each j ∈ {0, . . . , ⌊ c

2⌋ + 1}, let aj = ⌊
a(j)
k−r ⌋ and bj = ⌊

b(j)
r ⌋. Note that

0 ⩾ · · · ⩾ a⌊c/2⌋+1 = 0, 0 = b0 ⩽ · · · ⩽ b⌊c/2⌋+1, a0 > b0 and a⌊c/2⌋+1 < b⌊c/2⌋+1. Let w be the
nique integer in {0, . . . , ⌊ c

2⌋} such that aw+1 ⩽ bw+1 and aw > bw . By applying Lemma 10 with
u = w+1 (or trivially if w = ⌊

c
2⌋) we have SP(n, k) ⩾ aw+1, and by applying Lemma 10 with u = w

(or trivially if w = 0) we have SP(n, k) ⩾ bw . Furthermore, one of these bounds is the best bound
achievable via Lemma 10 because aw+1 ⩾ · · · ⩾ a⌊c/2⌋+1 and b0 ⩽ · · · ⩽ bw . By definition of the
unction a, we have a(w + 1) = a(w) − δ

(n/2
w

)( n/2
c−w

)
, where δ = 2 if w < c

2 and δ = 1 if w =
c
2 .

Hence

SP(n, k) ⩾ aw+1 =

⌊
a(w) − δ

(n/2
w

)( n/2
c−w

)
k − r

⌋
⩾ aw −

δ
(n/2

w

)( n/2
c−w

)
k − r

− 1. (2)

We will bound aw and then apply (2). We now show that

(c + 1)b(w) = (n − c)
((

n
c

)
− a(w)

)
− δ′(n − 2w + 2)

(
n/2

w − 1

)(
n/2

c − w + 1

)
, (3)

here δ′
= 1 if w ⩾ 1 and δ′

= 0 if w = 0. We may assume w ⩾ 1, for otherwise w = 0, b(w) = 0,
(w) =

(n
c

)
and (3) holds. Now apply Lemma 10 with u = w, let A and B be as defined in its proof,

nd let Ac
=

(X
c

)
\ A. Note that |A| = a(w), |B| = b(w) and |Ac

| =
(n
c

)
− a(w). We now count, in

wo ways, the number of pairs (S, B) such that S ∈ Ac , B ∈ B and S ⊆ B.

• Each of the b(w) sets in B has exactly c + 1 subsets in
(X
c

)
and each of these is in Ac , because

no set in A is a subset of a set in B.
• By the definition of A, min(|S ∩ X1|, |S ∩ X2|) ⩽ w − 1 for each S ∈ Ac . Each of the

(n
c

)
− a(w)

sets in Ac has n−c supersets in
( X
c+1

)
. For each S ∈ Ac such that min(|S ∩ X1|, |S ∩ X2|) ⩽ w−2,

all of these supersets of S are in B. For each of the 2
( n/2
w−1

)( n/2
c−w+1

)
sets S ∈ Ac such that

min(|S ∩ X1|, |S ∩ X2|) = w − 1, exactly n
2 − w + 1 of these supersets of S are not in B.

Equating our two counts, we see that (3) does indeed hold.
Because aw > bw , we have ⌊

a(w)
k−r ⌋ > ⌊

b(w)
r ⌋ which implies a(w)

k−r >
b(w)
r or equivalently b(w) <

r
k−r a(w). Substituting this into (3) and solving for a(w) we see

a(w) >
(k − r)

((n
c

)
−

δ′(n−2w+2)
n−c

( n/2
w−1

)( n/2
c−w+1

))
k − r +

r(c+1)
n−c

. (4)

Using aw >
a(w)
k−r − 1 and (4) in (2) we obtain

SP(n, k) >

(n
c

)
−

δ′(n−2w+2)
n−c

( n/2
w−1

)( n/2
c−w+1

)
r(c+1) −

δ
(n/2

w

)( n/2
c−w

)
k − r

− 2,

k − r + n−c
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r, equivalently,

SP(n, k) >

(n
c

)
−

δ′(n−2w+2)
n−c

( n/2
w−1

)( n/2
c−w+1

)
− δ

(
1 +

r(c+1)
(n−c)(k−r)

)(n/2
w

)( n/2
c−w

)
k − r +

r(c+1)
n−c

− 2. (5)

n the above, note that δ′ ⩽ 1, δ ⩽ 2, n−2w+2
n−c ⩽ 3

2 when w ⩾ 1 because k ⩾ 3, and r(c+1)
(n−c)(k−r) ⩽ 1

because r ⩽ k − 1.
Note that

(n/2
x

)(n/2
c−x

)
⩽

( n/2
⌊c/2⌋

)( n/2
⌈c/2⌉

)
for any x ∈ {0, . . . , c}. By using this fact and then applying

Stirling’s approximation we have, for n → ∞ with k = o(n) and any x ∈ {0, . . . , c},(
n/2
x

)(
n/2
c − x

)/(
n
c

)
⩽

√
2n

πc(n−c) (1 + o(1)) ⩽
√

2k
πc(k−1) (1 + o(1)) = o(1)

note that n → ∞ with k = o(n) implies c → ∞). Applying this fact twice in (5) yields
P(n, k) > MMS(n, k)(1 − o(1)). Combined with the fact that SP(n, k) ⩽ MMS(n, k), this establishes
he result. □

. Proof of Theorem 1

As discussed after Lemma 10, we require a variation on our main construction in order to
omplete the proof of Theorem 1.

emma 11. Let n and k be integers such that n ⩾ 2k, k ⩾ 3, n is even and ck is odd. Let
∈ {

c+1
2 , . . . , c − 1} be such that u =

c+1
2 if r = 1. There exists an almost-uniform (n, k)-Sperner

partition system with p partitions where

p = min
(⌊

a(u)
k − r

⌋
,

⌊
b(u)
r

⌋)
, a(u) = 2

c∑
i=u+1

(
n/2
i

)(
n/2
c − i

)
,

b(u) =

u∑
i=c+1−u

(
n/2
i

)(
n/2

c + 1 − i

)
.

roof. Note that each partition in an almost uniform (n, k)-Sperner partition system contains an
ven number, k− r , of classes of cardinality c and an odd number, r , of classes of cardinality c + 1.
Fix u ∈ {

c+1
2 , . . . , c − 1} and let a = a(u) and b = b(u). Let X1 and X2 be disjoint sets such that

|X1| = |X2| =
n
2 , and let X = X1 ∪ X2. As in the proof of Lemma 10, for each (i, j) ∈ N × N, let

E(i,j) = {E ⊆ X : |E ∩ X1| = i, |E ∩ X2| = j}.

Unlike the proof of Lemma 10, let

A =

⋃
(i,j)∈I ′

E(i,j), where I ′ = {(i, j) ∈ N × N : i + j = c,max(i, j) ⩾ u + 1}

B =

⋃
(i,j)∈I ′′

E(i,j), where I ′′ = {(i, j) ∈ N × N : i + j = c + 1,max(i, j) ⩽ u}.

ote that |A| = a and |B| = b. Furthermore, no set in A is a subset of a set in B because, for
ny A ∈ A and B ∈ B, |A ∩ Xi| > u ⩾ |B ∩ Xi| for some i ∈ {1, 2}. Thus the hypergraph H with
ertex set X and edge set A ∪ B is a clutter. Observe that, for each i ∈ {1, 2}, any permutation of
i is an automorphism of H . Let C be a set of p colours other than black. By Lemma 4, it suffices to
ind an edge colouring γ of H with colour set C ∪ {black} such that, for each c ∈ C , |γ −1(c)| = k
and

∑
x∈Xi

degγ
c (x) =

n
2 for each i ∈ {1, 2}. Note that the resulting Sperner partition system will be

lmost uniform because each edge in H has size c or c + 1. Again, call a set of edges E ′
⊆ E(H)

ompatible if
∑

|E ∩ X | =
∑

|E ∩ X |.
E∈E ′ 1 E∈E ′ 2
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Case 1. Suppose that r ̸= 1. Apply Lemma 8 with Y = X1, t =
c+1
2 , and ei = |E(t−i,t+i)| = |E(t+i,t−i)|

for each i ∈ {0, . . . , t} to find p disjoint triples of edges in B. The hypotheses of Lemma 8 can be
seen to be satisfied using Lemma 9 and because p ⩽ ⌊

b
r ⌋ ⩽ ⌊

b
3⌋ since r ⩾ 3. Note that each triple

given by Lemma 8 is compatible, and that the number of edges in E(i,j) assigned to triples is equal
o the number of edges in E(j,i) assigned to triples for each (i, j) ∈ I ′′. Thus we can partition all, or
all but one, of the unassigned edges in B into ⌊

b−3p
2 ⌋ compatible pairs. Take an edge colouring γ of

H with colour set C ∪ {black} such that each non-black colour class contains r edges in B that form
one compatible triple and r−3

2 compatible pairs and k−r edges in A that form k−r
2 compatible pairs,

nd all remaining edges are coloured black. This can be accomplished because k−r
2 p ⩽ k−r

2 ⌊
a

k−r ⌋ ⩽ a
2

and r−3
2 p ⩽ ⌊

b−3p
2 ⌋ (note that r−3

2 p is an integer less than or equal to r
2⌊

b
r ⌋ −

3p
2 ). Then γ has the

properties we desire.
Case 2. Suppose that r = 1. Then u =

c+1
2 by our hypotheses and B = E(c+1)/2,(c+1)/2. Take an edge

colouring γ of H with colour set C∪{black} such that each non-black colour class contains one edge
in B and k−1 edges in A that form k−1

2 compatible pairs. Again γ has the properties we desire. □

The approach of Lemma 11 can also be applied when n and k are both even. However, computa-
ional evidence indicates that this approach almost always underperforms Lemma 10. We can now
rove the remainder of Theorem 1.

roof of Theorem 1. We saw in Section 3 that Theorem 1 holds when n and ck are both even.
Here, we first use Lemma 11 to deal with almost all of the remaining cases where n is even, and
then use the monotonicity of SP(n, k) in n to complete the rest of the proof.
Case 1. Suppose that n is even, ck is odd, and r ̸= 1. The proof is very similar to the proof in the
case where n and ck are even, but we highlight the differences.

Let a(j) and b(j) be as defined in Lemma 11 for each j ∈ {
c+1
2 , . . . , c − 1}, and additionally

efine a( c−1
2 ) =

(n
c

)
, b( c−1

2 ) = 0, a(c) = 0, and b(c) =
( n
c+1

)
− 2

(n/2
c+1

)
. For each j ∈ {

c−1
2 , . . . , c},

let aj = ⌊
a(j)
k−r ⌋ and bj = ⌊

b(j)
r ⌋. Note that a(c−1)/2 ⩾ · · · ⩾ ac = 0, 0 = b(c−1)/2 ⩽ · · · ⩽ bc ,

a(c−1)/2 > b(c−1)/2 and ac < bc . Let w be the unique integer in {
c−1
2 , . . . , c − 1} such that aw > bw

and aw+1 ⩽ bw+1. By applying Lemma 11 with u = w + 1 (or trivially if w = c − 1) we have
P(n, k) ⩾ aw+1. By definition of a, we have a(w + 1) = a(w) − 2

( n/2
w+1

)( n/2
c−w−1

)
and hence

SP(n, k) ⩾ aw+1 =

⌊
a(w) − 2

( n/2
w+1

)( n/2
c−w−1

)
k − r

⌋
⩾ aw −

2
( n/2
w+1

)( n/2
c−w−1

)
k − r

− 1. (6)

We now show that

(c + 1)b(w) = (n − c)
((

n
c

)
− a(w)

)
− δ′(n − 2w)

(
n/2
w

)(
n/2

c − w

)
, (7)

here δ′
= 1 if w ⩾ c+1

2 and δ′
= 0 if w =

c−1
2 . We may assume w ⩾ c+1

2 , for otherwise w =
c−1
2 ,

b(w) = 0, a(w) =
(n
c

)
and (7) holds. Consider applying Lemma 11 with u = w, let A and B be as

efined in its proof, and let Ac
=

(X
c

)
\ A. Note that |A| = a(w), |B| = b(w) and |Ac

| =
(n
c

)
− a(w).

e now count, in two ways, the number of pairs (S, B) such that S ∈ Ac , B ∈ B and S ⊆ B.

• Each of the b(w) sets in B has exactly c + 1 subsets in
(X
c

)
and each of these is in Ac , because

no set in A is a subset of a set in B.
• By the definition of A, max(|S ∩ X1|, |S ∩ X2|) ⩽ w for each S ∈ Ac . Each of the

(n
c

)
− a(w) sets

in Ac has n − c supersets in
( X
c+1

)
. For each S ∈ Ac such that max(|S ∩ X1|, |S ∩ X2|) ⩽ w − 1,

all of these supersets of S are in B. For each of the 2
(n/2

w

)( n/2
c−w

)
sets S ∈ Ac such that

max(|S ∩ X1|, |S ∩ X2|) = w, exactly n
2 − w of these supersets of S are not in B.

By equating our two counts, (7) holds.
Using (6) and (7) in place of (2) and (3), it is now routine to obtain the desired conclusion by

ollowing the argument from the case of the proof where n and ck are even.
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Case 2. Suppose that n is odd, or that n is even and r = 1. By our hypotheses, k − r → ∞. Note
that

MMS(n − 1, k)
MMS(n, k)

=
k − r +

r(c+1)
n−c

k − r + 1 +
(r−1)(c+1)
n−c−1

·
n − c
n

⩾
k − r

k − r + 1
·
k − 1
k

= 1 − o(1),

where the first inequality follows because r(c+1)
n−c ⩾ (r−1)(c+1)

n−c−1 and n−c
n ⩾ k−1

k and the second equality
ollows because k − r → ∞. Hence we have MMS(n − 1, k) = MMS(n, k)(1 − o(1)). Thus, if
SP(n − 1, k) = MMS(n − 1, k)(1 − o(1)), we have

SP(n, k) ⩾ SP(n − 1, k) = MMS(n − 1, k)(1 − o(1)) = MMS(n, k)(1 − o(1)). (8)

If n is even and r = 1, we have SP(n − 1, k) = MMS(n − 1, k) from [10] and thus (8) definitely
holds. So the theorem holds in all the cases where n is even. But, having established this, we may
assume that n is odd and we know that SP(n − 1, k) = MMS(n − 1, k)(1 − o(1)). Hence the proof is
complete, using (8). □

5. Proof of Theorem 2

Let X be a ground set, let S be a family of subsets of X , and let i be an integer. If each set in S
has cardinality at least i, then we define ∆i(S) to be the family of all sets in

(X
i

)
that are subsets of

some set in S . Similarly, if each set in S has cardinality at most i, then we define the ∇
i(S) to be

the family of all sets in
(X
i

)
that are supersets of some set in S .

The following theorem, due to Lovász [9, p. 95], gives a convenient approximation to the
Kruskal–Katona theorem (see [6,7] for the original theorem).

Theorem 12 ([9]). If i ⩾ 2 is an integer, X is a set and S ⊆
(X
i

)
, then |∆i−1(S)| ⩾ LLi(|S|).

Recall that the function LLi was defined just prior to the statement of Theorem 2 in the
introduction. It will be important for our purposes that, for a fixed integer i ⩾ 2, LLi(x) is
monotonically increasing and concave in x for x ⩾ 1 (see [4, Lemma 4]). We will make use of
the following simple consequence of Theorem 12.

Lemma 13. Let H be a clutter with edge set E , and c be a positive integer such that |E| ⩾ c for each
E ∈ E . Then |∆c(E)| ⩾ min(|E|,

(2c+1
c

)
+ 1).

Proof. If each edge in E has cardinality c , then ∆c(E) = E and the result holds trivially. So we may
suppose inductively that the maximum cardinality of an edge in E is j ⩾ c + 1 and that the result
holds if the maximum cardinality of an edge in E is j − 1.

Let Ei = {E ∈ E : |E| = i} for each i ∈ {c, . . . , j}, and let H∗ be a hypergraph with vertex set V (H)
and edge set E∗

= (E \ Ej) ∪ ∆j−1(Ej). Because H is a clutter, H∗ is a clutter and ∆j−1(Ej) is disjoint
from Ej−1.

• If |Ej| ⩽
(2j−1

j

)
, then |Ej| =

(y
j

)
for some real y ⩽ 2j−1 and hence |∆j−1(Ej)| ⩾

( y
j−1

)
⩾

(y
j

)
= |Ej|

using Theorem 12. Thus |E∗
| ⩾ |E|.

• If |Ej| >
(2j−1

j

)
, then |∆j−1(Ej)| >

(2j−1
j−1

)
⩾

(2c+1
c

)
by Theorem 12 and so |E∗

| ⩾
(2c+1

c

)
+ 1.

So in either case |E∗
| ⩾ min(|E|,

(2c+1
c

)
+ 1). The result now follows by applying our inductive

hypothesis to E∗ and noting that ∆c(E∗) = ∆c(E). □

The bulk of the work of proving Theorem 2 is accomplished in the following lemma. It establishes
that (1) holds subject to the existence of a clutter with desirable properties. It then only remains
to show that, given an (n, k)-Sperner partition system with p partitions, a clutter satisfying the
hypotheses of Lemma 14 can be obtained by considering the partition classes containing a particular
lement. (In fact, we must also do some tedious checking to ensure that (1) holds for ‘‘small’’ values
f p not covered by Lemma 14.) In the proof of Theorem 2, this special element is chosen as one
hat, according to a certain metric, tends overall to appear in smaller partition classes.



12 Y. Chang, C.J. Colbourn, A. Gowty et al. / European Journal of Combinatorics 90 (2020) 103165

P
i

|

E

C

|

w

L

Lemma 14. Let n and k be integers such that n ⩾ 2k+ 2 and k ⩾ 3, and let p be an integer such that

p ⩾ max
(

2n
c(2k−r)

((n−1
c−1

)
−

(2c+1
c−1

))
,
(n−1
c−1

)
+ 1

)
.

If there is a clutter with n − 1 vertices and edge set E such that |E| ⩾ p and
∑

E∈E
c−|E|

|E|+1 ⩾ p(k−r)
n , then⌈(

1 −
r(c+1)

n

)
p
⌉

+ LLc
(⌊ r(c+1)

n p
⌋)

⩽

(
n − 1
c − 1

)
.

roof. Let H be a clutter satisfying the hypotheses of the lemma and let X ′
= V (H). For each

∈ {0, . . . , n − 1}, let Ei = {E ∈ E : |E| = i} and let E>c = Ec+1 ∪ · · · ∪ En−1. We abbreviate ⌈
pc(k−r)

n ⌉

to a0. Note that a0 = ⌈(1−
r(c+1)

n )p⌉ using n = ck+ r . We consider two cases according to minimum
cardinality of an edge in E .
Case 1. Suppose that |E| ⩾ c − 1 for each E ∈ E . Then the only edges in E that make a
positive contribution towards

∑
E∈E

c−|E|

|E|+1 are those in Ec−1 and so by our hypotheses we must have
1
c |Ec−1| ⩾

p(k−r)
n and hence |Ec−1| ⩾ a0. Also, because p ⩾

(n−1
c−1

)
+ 1, we have E ⊈

( X ′

c−1

)
and hence

Ec | + |E>c | ⩾ 1. Let H∗ be the hypergraph with vertex set X ′ and edge set E∗
= (E \ E>c)∪ ∆c(E>c).

Then E∗
= Ec−1 ∪ Ec ∪ ∆c(E>c) and, because H is a clutter, H∗ is a clutter and ∆c(E>c) is disjoint

from Ec .
There are

(n−1
c−1

)
sets in

( X ′

c−1

)
, and because H∗ is a clutter each of these can be in at most one of

c−1 and ∆c−1(Ec ∪ ∆c(E>c)). Thus, by Theorem 12,

|Ec−1| + LLc
(
|Ec | + |∆c(E>c)|

)
⩽

(
n − 1
c − 1

)
. (9)

We consider two subcases according to the value of |E>c |.
ase 1a. Suppose that |E>c | ⩽

(2c+1
c

)
. Then |∆c(E>c)| ⩾ |E>c | = |E| − |Ec | − |Ec−1| by Lemma 13. So

|Ec | + |∆c(E>c)| ⩾ max(p − |Ec−1|, 1) because |E| ⩾ p and |Ec | + |E>c | ⩾ 1. Thus, using the fact that
LLc is monotonically increasing, (9) implies that

f (|Ec−1|) ⩽
(
n − 1
c − 1

)
where f (a) = a + LLc (max (p − a, 1)) .

Consider f as a function on the real domain a0 ⩽ a ⩽ |E|, noting that we have seen a0 ⩽
Ec−1| ⩽ |E|. Because f (|Ec−1|) ⩽

(n−1
c−1

)
, certainly the global minimum of f is at most

(n−1
c−1

)
. Now,

f is monotonically increasing for p − 1 < a ⩽ |E| and, because LLc is concave, f is concave for
a0 ⩽ a ⩽ p − 1. Thus, f achieves its global minimum either at a = a0 or at a = p − 1. However,
f (p − 1) = p − 1 + c and p − 1 ⩾

(n−1
c−1

)
by our hypotheses. Thus f achieves its global minimum at

a = a0 and we have f (a0) ⩽
(n−1
c−1

)
. Now the result follows because

f (a0) = a0 + LLc(p − a0) =
⌈(

1 −
r(c+1)

n

)
p
⌉

+ LLc
(⌊ r(c+1)

n p
⌋)

.

Case 1b. Suppose that |E>c | >
(2c+1

c

)
. Because

∑
E∈E

c−|E|

|E|+1 ⩾ p(k−r)
n ,

p(k−r)
n ⩽ 1

c |Ec−1| −

n−1∑
i=c+1

i−c
i+1 |Ei| ⩽

1
c |Ec−1| −

1
c+2 |E>c |,

here the last inequality follows because i−c
i+1 ⩾ 1

c+2 for each i ∈ {c + 1, . . . , n − 1}. Thus
|E>c | ⩽ c+2

c |Ec−1| −
p(c+2)(k−r)

n . Also, |∆c(E>c)| >
(2c+1

c

)
by the hypothesis of this subcase and

emma 13. Combining these facts and |E| ⩾ p, we have

|Ec |+|∆c(E>c)| = |E|−|Ec−1|−|E>c |+|∆c(E>c)| > max
( p(c+1)(2k−r)

n −
2c+2

c |Ec−1|, 0
)
+

(2c+1
c

)
.

Thus, (9) implies that

g(|Ec−1|) <

(
n − 1

)
where g(a) = a + LLc

(
max

( p(c+1)(2k−r)
n −

2c+2
c a, 0

)
+

(2c+1
c

))
.

c − 1
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Consider g as function on the real domain a0 ⩽ a ⩽ |E| and note that the global minimum of g
is less than

(n−1
c−1

)
. Now, g is monotonically increasing for a1 < a ⩽ |E| and concave for a0 ⩽ a ⩽ a1,

where a1 =
pc(2k−r)

2n . Thus, it achieves its global minimum either at a = a0 or at a = a1. However,
(a1) = a1 +

(2c+1
c−1

)
⩾

(n−1
c−1

)
using the hypothesis that p ⩾ 2n

c(2k−r) (
(n−1
c−1

)
−

(2c+1
c−1

)
). Thus we have

(a0) <
(n−1
c−1

)
. Now, setting δ = a0 −

pc(k−r)
n and noting that 0 ⩽ δ < 1,

g(a0) = a0 + LLc
(
p − a0 +

(2c+1
c

)
−

c+2
c δ

)
⩾ a0 + LLc(p − a0).

s in Case 1a, the result follows.
ase 2. Suppose that |E| ⩽ c − 2 for some E ∈ E . Using Case 1 as a base case, we may suppose
nductively that the minimum cardinality of an edge in E is j ⩽ c − 2 and that the lemma holds
hen the minimum cardinality of an edge in E is j + 1. For any family S of subsets of X , define

d′(S) =
∑

S∈S
c−|S|
|S|+1 . Note we have assumed that d′(E) ⩾ p(k−r)

n .
Let H∗ be the hypergraph with vertex set X ′ and edge set E∗

= (E \ Ej) ∪ ∇
j+1(Ej). Because

H is a clutter, H∗ is a clutter and ∇
j+1(Ej) is disjoint from Ej+1. Thus it suffices to show that

d′(∇ j+1(Ej)) ⩾ d′(Ej) and |∇
j+1(Ej)| ⩾ |Ej| because then we will be able to apply our inductive

hypothesis to H∗ to obtain the required result.
Each edge in Ej is a subset of n − j − 1 edges in ∇

j+1(Ej), and each edge in ∇
j+1(Ej) is a superset

of at most j + 1 edges in Ej. Thus |∇
j+1(Ej)| ⩾ n−j−1

j+1 |Ej| and

d′(∇ j+1(Ej)) =
c−j−1
j+2 |∇

j+1(Ej)| ⩾ (c−j−1)(n−j−1)
(j+1)(j+2) |Ej| =

(c−j−1)(n−j−1)
(c−j)(j+2) d′(Ej),

where the second equality follows because d′(Ej) =
c−j
j+1 |Ej|. Thus d′(∇ j+1(Ej)) ⩾ d′(Ej) and |E∗

| ⩾ |E|

s required because, using j ∈ {0, . . . , c − 2} and k ⩾ 3, we have c − j − 1 ⩾ 1
2 (c − j) and

n − j − 1 ⩾ 2(j + 2). □

Proof of Theorem 2. Let p0 = SP(n, k), let X be a set with |X | = n, and let P be an (n, k)-Sperner
artition system on ground set X with p0 partitions. We may assume r ̸= 0 because, when r = 0,
P(n, k) =

(n−1
c−1

)
and (1) clearly holds with p =

(n−1
c−1

)
. So, in addition to n ⩾ 2k + 2, we have

n ⩾ 4c + 1. Let p1 = max( 2n
c(2k−r) (

(n−1
c−1

)
−

(2c+1
c−1

)
),

(n−1
c−1

)
+ 1).

Case 1. Suppose that p0 ⩾ p1. We will find a clutter satisfying the conditions of Lemma 14 and so
omplete the proof. For each x ∈ X , let P(x) be the set of all partition classes of P that contain
. For a subset S of X we define d(S) = c + 1 − |S|, and for a family S of subsets of X we define
(S) =

∑
S∈S d(S). Note that, for each partition π in P , we have d(π ) = k− r because π has exactly

classes and the sum of the cardinalities of the classes is equal to n = ck + r . For a vertex x ∈ X ,
e further define d(x) =

∑
S∈P(x)

d(S)
|S| . Thus we have that

∑
x∈X d(x) =

∑
π∈P d(π ) = p0(k − r). Let

be an element of X such that d(z) ⩾ d(x) for each x ∈ X and observe that d(z) ⩾
p0(k−r)

n . Let H
e the hypergraph with vertex set X ′

= X \ {z} and edge set E = {S \ {z} : S ∈ P(z)}. Note that H
s a clutter and |E| = p0 because P is a Sperner partition system with p0 partitions. Thus, because
(z) ⩾ p0(k−r)

n and p0 ⩾ p1, H satisfies the conditions of Lemma 14 and we can apply it to produce
he required result.
ase 2. Suppose that p0 < p1. In this case we show directly that (1) holds for some real number
⩾ p1 and hence that it holds for p = p0 (recall that the left hand side of (1) is nondecreasing in

p).
Case 2a. Suppose that c = 2. Then, when r = 2, we have p1 = 2k + 2 and (1) holds because
LL2(6) ⩽ 5. When r ⩾ 3, p1 =

2k+r
2k−r (2k + r − 6) and it can be seen that (1) holds if and

nly if LL2(⌊ 3r(2k+r−6)
2k−r ⌋) ⩽ ⌊r + 5 +

2r(r−3)
2k−r ⌋. This holds for each integer r ⩾ 4 because then

3r(2k+r−6)
2k−r < 9r ⩽

(r+5
2

)
. It also holds for r = 3 because LL2(9) ⩽ 8.

ase 2b. Suppose that c ⩾ 3. Let p2 =
2n

c(2k−r) (
(n−1
c−1

)
− 1) and note that p2 ⩾ p1. Noting that

1 −
r(c+1)

n =
c(k−r)

n , it can be seen that (1) will hold with p = p2 provided that

LL
(

2r(c+1) ((n−1)
− 1

))
⩽

⌊ r (n−1)
+

2k−2r ⌋ . (10)
c c(2k−r) c−1 2k−r c−1 2k−r
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Let z =
2r(c+1)
c(2k−r) (

(n−1
c−1

)
− 1) be the argument of LLc in (10) and note that if z ⩾

(3c+1
c

)
, then it follows

from the definition of LLc that LLc(z) ⩽ c
2c+2 z and thus that (10) holds. Because r ⩾ 1, we have

⩾ 2c+2
2n−c−2 (

(n−1
c−1

)
− 1). This latter expression is an increasing function of n for n ⩾ 4c + 1. Thus, for

c ⩾ 9 we have z ⩾
(3c+1

c

)
because z ⩾ 2c+2

2n−c−2 (
(n−1
c−1

)
− 1) ⩾ 2c+2

7c (
( 4c
c−1

)
− 1) and

2c+2
7c

(( 4c
c−1

)
− 1

) /(3c+1
c

)
=

2c+2
21c+7

( 4c
c−1

)/( 3c
c−1

)
−

2c+2
7c

/(3c+1
c

)
⩾ 2c+2

21c+7 (
4
3 )

c−1
− 10−7 ⩾ 1.

urthermore, by explicit calculation, we have z ⩾ 2c+2
7c (

( 4c
c−1

)
− 1) ⩾

(3c+1
c

)
for c = 8. We also have

z ⩾ 2c+2
2n−c−2 (

(n−1
c−1

)
− 1) ⩾

(3c+1
c

)
for c ∈ {4, 5, 6, 7} and n ⩾ 31 and for c = 3 and n ⩾ 61. This leaves

only a limited number of pairs (n, k) to be checked. Using a computer, it is routine to compute p1
for each pair and verify that (1) holds for p = p1. □

We conclude this section by showing that a slightly weaker version of the upper bound implied
by Theorem 2 can be written in a form that is very reminiscent of the expression for MMS(n, k),
and that this implies that our upper bound is always at least as good as MMS(n, k).

Corollary 15. If n and k are integers such that n ⩾ 2k + 2, k ⩾ 4 and r ̸= 0,

SP(n, k) ⩽

(n
c

)
(k − r) +

r(c+1)
q−c+1

(11)

where q is the real number such that q ⩾ c and
(q
c

)
=

r(c+1)
n · SP(n, k). Furthermore, the bound implied

y Theorem 2 is less than MMS(n, k).

roof. Observe that SP(n, k) ⩾ NLB(n, k) =
1
k

(ck
c

)
implies r(c+1)

n · SP(n, k) > r
k2

(ck
c

)
. Further, it is

routine to verify r
k2

(ck
c

)
⩾ r

16

(4c
c

)
>

(2c−1
c

)
since r ⩾ 1 when c ⩾ 3 and r ⩾ 2 when c = 2. Thus

we have r(c+1)
n · SP(n, k) >

(2c−1
c

)
. It follows that q is well defined. Further, because LLc(1) = c ,

LLc(
(2c−1

c

)
) =

(2c−1
c

)
and LLc is concave, the derivative of LLc(x) is less than 1 for all x ⩾

(2c−1
c

)
and

hence, for any real ϵ > 0,

LLc
(⌊ r(c+1)

n · SP(n, k)
⌋

+ ϵ
)

< LLc
(⌊ r(c+1)

n · SP(n, k)
⌋)

+ ϵ.

Thus we can deduce from Theorem 2 the slightly weaker conclusion that(
1 −

r(c+1)
n

)
· SP(n, k) + LLc

( r(c+1)
n · SP(n, k)

)
⩽

(
n − 1
c − 1

)
. (12)

y applying LLc(x) =
c

q−c+1x in (12) and solving for SP(n, k) we obtain (11).
Now, using SP(n, k) ⩽ MMS(n, k), we have

r(c+1)
n · SP(n, k) ⩽

(n−1
c

)
1 +

(n−c)(k−r)
r(c+1)

⩽
1
2

(
n − 1

c

)
.

hus, q < n − 1 and so the bound implied by this corollary and, therefore, the bound implied by
heorem 2 are less than MMS(n, k). □

. The case n = 3k − 6

In this section we exhibit a new infinite family of parameter sets (n, k) for which we can
precisely determine SP(n, k). For this family, the value of SP(n, k) matches the upper bound given
y Theorem 2, and hence it supplies examples both of the theorem’s usefulness and of situations
n which its bound is tight.

emma 16. Let k ⩾ 11 be an integer such that k ̸≡ 4 (mod 6) and let n = 3k − 6. Then
SP(n, k) = ⌊

1
2 (k − 2)2⌋.
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Proof. First, suppose for a contradiction that SP(n, k) ⩾ ⌊
1
2 (k−2)2⌋+1. Note that ⌊

1
2 (k−2)2⌋+1 =

1
2 (k− 2)2 + δ where δ =

1
2 if k is odd and δ = 1 if k is even. Then Theorem 2 implies that (1) holds

ith n = 3k − 6 and p =
1
2 (k − 2)2 + δ and hence, via routine calculation,

2k − 3 + LL2(⌊ 1
2 (k

2
− 8k + 12)⌋) ⩽ 3k − 7.

owever, because
(k−4

2

)
=

1
2 (k

2
− 9k + 20) < ⌊

1
2 (k

2
− 8k + 12)⌋ for k ⩾ 11, we have that

L2(⌊ 1
2 (k

2
− 8k + 12)⌋) > k − 4 and hence a contradiction.

Now we construct an (n, k)-Sperner partition system with ⌊
1
2 (k−2)2⌋ partitions and so complete

the proof. Let p = ⌊
1
2 (k−2)2⌋, let X1, X2 and X3 be disjoint sets such that |X1| = |X2| = |X3| = k−2,

and let X = X1 ∪ X2 ∪ X3. For each i ∈ {1, 2, 3}, let

Ai = {A ⊆ X : |A| = 2 and |A ∩ Xj| = 1 for each j ∈ {1, 2, 3} \ {i}}
Bi = {B ⊆ X : |B| = 3 and B ⊆ Xi}.

Let A = A1 ∪A2 ∪A3 and B = B1 ∪B2 ∪B3, and let H be the hypergraph with vertex set X and edge
set A∪B. Note that no set in A is a subset of a set in B and thus H is a clutter. Observe that, for each
i ∈ {1, 2, 3}, any permutation of Xi is an automorphism of H . Let C be a set of p colours other than
black. By Lemma 4, it suffices to find an edge colouring γ of H with colour set C ∪{black} such that,
for each c ∈ C , colour c is assigned to 6 edges in A and k− 6 edges in B and

∑
x∈Xi

degγ
c (x) = k− 2

for each i ∈ {1, 2, 3}.
We now describe how to find an edge colouring that satisfies the conditions we have specified.

If k ≡ 1 or 2 (mod 6), then p ≡ 0 (mod 3) and we let {C1, C2, C3} be a partition of C such that
|C1| = |C2| = |C3| =

p
3 . If k ≡ 5 (mod 6), then p ≡ 1 (mod 3) and we let {C1, C2, C3} be a partition

of C such that |C1| =
p+2
3 and |C2| = |C3| =

p−1
3 . We describe how to choose the edges from A in

each non-black colour class of γ ; the remaining edges in each non-black class can be chosen from
B arbitrarily subject to our specified conditions, and then any remaining edges are coloured black.

• If k ≡ 0 (mod 3) then, for each c ∈ C , assign colour c to two edges in Ai for each i ∈ {1, 2, 3};
• If k ≡ 1 (mod 6) then, for each j ∈ {1, 2, 3} and c ∈ Cj, assign colour c to four edges in Aj and

one edge in Ai for each i ∈ {1, 2, 3} \ {j};
• If k ≡ 2 (mod 3) then, for each j ∈ {1, 2, 3} and c ∈ Cj, assign colour c to three edges in Ai for

each i ∈ {1, 2, 3} \ {j}.

t only remains to check that there are sufficiently many edges in Ai and Bi for each i ∈ {1, 2, 3} that
e can choose an edge colouring in this manner. Using the fact that |Ai| = (k−2)2 and |Bi| =

(k−2
3

)
or each i ∈ {1, 2, 3}, it is routine to check this by considering cases according to the congruence
lass of k modulo 6. □

Again, the Sperner partition systems constructed to prove Lemma 16 are almost uniform.

. Bounds for small n and k

We conclude this paper by displaying the values of the upper and lower bounds we have
btained for some small parameters (n, k).
In Table 1 we list, for 4 ⩽ k ⩽ 7 and 2k + 2 ⩽ n ⩽ 33 a lower bound and an upper bound

n SP(n, k) in the top and bottom rows respectively of the appropriate cell. The upper bound is
he bound implied by Theorem 2 and is followed by the improvement over MMS(n, k) in brackets.
he lower bound is the best one attainable via our results and those of [8,10] and is followed by
he source of the bound according to the following key. ‘‘M’’ refers to a bound obtained through
he monotonicity of SP(n, k) in n; ‘‘[8]’’ refers to one of the bounds given in [8] (and stated in our
ntroduction); ‘‘L7’’ refers to Lemma 7 and is followed by the values of m and n used; and finally
‘L10’’ and ‘‘L11’’ refer to Lemmas 10 and 11 and are followed by the value of u used. The exception
o the above is when k divides n, in which case the known exact value of SP(n, k) is placed by itself
n the cell.
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Table 1
Lower and upper bounds on SP(n, k).
n k = 4 k = 5 k = 6 k = 7

10 10 L10 (1)
11 (5)

11 11 [8]
19 (8)

12 55 12 L10 (1)
13 (5)

13 55 M 12 M
72 (12) 19 (8)

14 55 M 17 L10 (1) 13 [8]
110 (23) 33 (12) 15 (5)

15 55 M 91 13 M
190 (37) 20 (8)

16 455 91 M 28 L10 (1) 15 [8]
114 (16) 29 (13) 17 (5)

17 455 M 91 M 28 M 15 M
636 (67) 162 (28) 51 (17) 21 (8)

18 648 L10 (2) 91 M 136 27 L10 (1)
994 (133) 243 (48) 30 (10)

19 648 M 91 M 136 M 27 M
1 719 (219) 410 (74) 167 (17) 42 (17)

20 3 876 969 210 L10 (1) 40 L10 (1)
221 (34) 70 (25)

21 3 876 M 969 M 210 M 1905 601 (428) 1 290 (103) 308 (54)

22 5 544 L10 (2) 1 008 L10 (2) 210 M 190 M
8 844 (888) 1 849 (208) 454 (87) 227 (20)

23 5 544 M 1 008 M 210 M 190 M
15 355 (1469) 2 808 (366) 751 (134) 291 (36)

24 33 649 3 366 L10 (2) 1 771 190 M
4 734 (579) 384 (58)

25 33 649 M 10 626 1 771 M 190 M
49 605 (2971) 2 271 (144) 525 (92)

26 40 898 L10 (3) 10 626 M 1 771 M 286 L11 (2)
78 927 (6343) 14 514 (834) 3 071 (285) 762 (144)

27 40 898 M 10 626 M 1 771 M 286 M
137 410 (10595) 21 020 (1750) 4 311 (494) 1 242 (220)

28 296 010 16 016 L11 (3) 4 140 L10 (2) 2 92532 169 (3150) 6 408 (818)

29 296 010 M 16 830 L7 (5, 24) 4 140 M 2 925 M
442 270 (21745) 54 342 (5035) 10 606 (1269) 3 643 (187)

30 621 075 L10 (3) 118 755 23 751 3 003 L10 (1)
707 796 (47420) 4 723 (366)

31 621 075 M 118 755 M 23 751 M 3 003 M
1 234 969 (79818) 164 701 (7327) 31 093 (1389) 6 291 (615)

32 2 629 575 139 568 L10 (2) 33 600 L10 (2) 4 800 L10 (2)
240 248 (15849) 42 433 (2876) 8 682 (999)

33 2 629 575 M 139 568 M 33 600 M 4 800 M
3 966 925 (165,264) 369 680 (29044) 60 038 (5113) 12 696 (1601)
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Fig. 1. Best known bounds on SP(n, 5) compared to NLB(n, 5) and MMS(n, 5).

Fig. 2. Best known bounds on SP(n, 10) compared to NLB(n, 10) and MMS(n, 10).

Figs. 1 and 2 visualise bounds on SP(n, k) for the example values k = 5 and k = 10 respectively.
alues of n between 2k+ 2 and 100 appear on the horizontal axis, and above each are a grey and a
lack line segment. The grey segment gives the interval between NLB(n, k) and MMS(n, k), whereas
he black segment gives the interval between the best known lower and upper bounds on SP(n, k)
ccording to the results in this paper and in [8,10]. Note that the vertical axis is log scaled.
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