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Abstract—In this paper, we tackle the channel estimation
problem for Pauli channels. Online estimation methods for the
depolarizing channel have been proposed in previous literature.
However, realistic quantum devices often exhibit an asymmetric
behaviour not captured by the symmetric depolarizing model,
implying that the estimation method used by Quantum Turbo
Codes (QTC) should exploit such asymmetry for the error
correcting operations to be successful. Consequently, we propose
an online iterative method that aids in successfully estimating
each of the individual error probabilities associated with the
Pauli channel, ultimately increasing the probability of correct
decoding. The benefits this method provides come at the expense
of an increase in the decoding complexity.

Index Terms—quantum error correction, turbo codes, realistic
devices, estimation

I. INTRODUCTION

Quantum technologies have shown immeasurable potential
to effectively solve several information processing tasks such
as prime number factorization [1] or unstructured database
searches [2]. Unfortunately, quantum information is suscepti-
ble to corruption given its tendency to interact with the sur-
rounding environment. The set of interactions that corrupts the
superposition states that define quantum information is known
as environmental decoherence. Dealing with this phenomenon
appropriately is pivotal to succesfully construct operational
quantum devices. The stratagems that combat the deleterious
effects the aforementioned noise causes on quantum states are
known as Quantum Error Correction Codes (QECC). Quantum
information is so sensitive to decoherence that many think that
quantum computation is unfeasible without the aid of quantum
error correction tools.

Quantum error correction codes have been studied and
designed in the context of the depolarizing channel [3]- [8],
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which is the symmetric instance of the generic Pauli channel
over which the probabilities of bit-flips (X), phase-flips (Z)
and bit-and-phase-flips (Y) are considered to be the same p, =
py = p.. However, not all state of the art implementations of
quantum hardware exhibit such an equiprobable distribution
for Pauli errors [9]. Therefore, the corresponding asymmetry
must be taken into account when designing error detection and
correction methods. For the devices considered at the time of
writing, phase-flip (Z) errors dominate over bit-flips (X) and
bit-and-phase-flips (Y) by several orders of magnitude, and
so the asymmetry degree « of these Pauli channels is defined
as the ratio of the phase-flip probability (p.) over the bit-flip
probability (p). This asymmetry can vary from o 1 to
a = 10% depending on the specific materials and methods
used to create quantum devices [9].

Asymmetric QECCs have been studied in the literature
[9] - [12] under the stringent assumption that the decoders
have perfect knowledge of the asymmetric channel probabil-
ities. However, we are not aware of any work dealing with
QECC:s for asymmetric channels when these probabilities are
not known. For the case of the depolarizing channel, the
authors in [3] were the first to propose an online channel
estimation method capable of operating without the need for
prior knowledge of the channel depolarizing probability.

In this article, we propose an extension of the online
estimation method introduced in [3] to cover the more general
case of the Pauli channel with asymmetries. The performance
of the overall QECC system is tested via Monte Carlo sim-
ulations, and the results show that near-capacity performance
is obtained.

The remainder of the article is organized as follows: Section
IT presents the general Pauli channel and the QTC considered
in this paper. Section III describes the version of the online
estimation method of [3] adapted to the asymmetric channel,
and shows the results obtained for said methodology. Finally,
Section IV presents the conclusions reached in this paper.



II. PAULI CHANNEL AND QUANTUM TURBO CODES
A. Pauli channel

The most popular channel considered in QECC is the so-
called depolarizing channel N'p [3] - [8]. The action of this
channel on an arbitrary quantum state p is defined as

Nb(p,p) = (1—p)p+ g(XpX +YpY +ZpZ), (1)

where p is the depolarizing probability, and X,Y,Z are
the Pauli matrices. However, some of the materials used to
construct quantum devices behave in an asymmetric manner,
where phase-flips (Z) are orders of magnitude more likely to
occur during channel operation than bit-flips (X) and bit-and-
phase-flips (Y) [9]. The quantum channel that captures such
an asymmetry is called Pauli channel Np, and its action on
an arbitrary quantum state p is described as

Np(p, 02,0y P2) =(1 — po — py — D2)p + P XpX

2)
+pyYpY +p.ZpZ,

where p,,py,p. represent the probability that each of the
possible Pauli errors occurs. These probabilities can be related
to the single-qubit relaxation time 73 and dephasing time 75
of the quantum device under consideration as [13]

1—en
Pz = Dy = 1 3
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where ¢ refers to the coherent operation duration. Since p,
and p, are the same, it is convenient to define the following
asymmetry ratio « [14]

Dz 1_6%(1_%)
a=22 149 "° - "7 (5)
Pz eTt — 1

Using «, the expression for the Pauli channel (2) can be
rewritten as

Nol(p) =(1 - p)Ipl + 2 XpX
o+ 2
» ©)
+ [
oa+2
where p = p, + py + p..
Table I shows the relaxation time 71, dephasing time 75 and
the asymmetry coefficient for some of the quantum devices
that can currently be found on the market. Note that the
range of values' of the asymmetry coefficients is o € [1,106].
Therefore, any online estimation method applied to aid QTCs
to reach near-capacity performance should be able to cope
with all these scenarios.

ap
YoY + -2 7,7
PY T it

'The value diversity stems from the fact that each device uses a different
technology in order to construct its qubits, i.e., superconducting qubits, trapped
ions, etc.
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TABLE I
RELAXATION TIME 7, DEPHASING TIME 75 AND ASYMMETRY
PARAMETER & FOR SOME OF THE QUANTUM DEVICES THAT ARE
CURRENTLY AVAILABLE

Name T1(us) | Ta(us) | «
IBM Q System One [15] 73.9 69.1 ~1
Rigetti 32Q Aspen-7 [16] 41 35 =~
Google Sycamore [9], [17] ~1 ~ 0.1 ~ 10
Ton Q 11 Qubit [18] > 1010 | > 10° ~ 10%
Intel Q (Spin Qubits) [9], [19] | > 10° > 103 ~ 106

Observe that in the case where the coherent time duration
t of a specific device is such that ¢ << Tj, then « can be
approximated as o & 273 /T5—1 [14]. In the present study, we
assume this condition holds (i.e., we assume that the coherent
time duration of the device is relatively small in comparison to
the relaxation time). However, we will assume no knowledge
of a in the decoding process, and the decoder will estimate its
value on the fly. At first glance, it may seem unnecessary to
estimate the parameter o, as it may be reasonable to assume
that the decoder knows the asymmetry level of the technology
being used. Nevertheless, for quantum operations that require
a significant coherent time duration when compared to the
relaxation time of the device, the parameter o will be a
function of time and will vary, even if the technology is
maintained. Moreover, the relaxation and dephasing times are
dependent on the physical conditions of the device, such as
temperature [20], and fluctuations of those parameters will
lead to changes in the asymmetry level. As a consequence,
estimating « on the fly in the decoding process is of great
importance, since a mismatch between the real value of o and
the one assumed at the decoder would result in substantial
performance degradation.

B. Quantum Turbo Codes

The Quantum Turbo Codes considered in this paper consist
of the interleaved serial concatenation of unassisted QCCs
acting as outer and inner codes, following the rationale of
[9]. Figure 1 presents the full schematic representation of
such a quantum error correction system. The % input logical
qubits that make up the information word |¢;) are first fed
to the outer convolutional encoder V;, and encoded into n’
physical qubits with the help of ancilla qubits and memory
qubits. The codeword [);) consists of n’ physical qubits
generated by the first encoder, which are then passed through
a quantum interleaver II, before being used as the input to
the inner convolutional encoder V5. Such an encoder is an
unassisted device that encodes the interleaved sequence of n’
qubits |¢) into the codeword [i) of length N, aided by
ancilla qubits and memory qubits. The codeword [¢)5) is then
transmitted through a quantum Pauli channel with overall error
probability p and asymmetry ratio «, which inflicts an N-qubit
Pauli error Py € Gy on the codeword. The Pauli channel is
independently applied to each of the qubits of the stream WJg),
and, consequently, each of the qubits experiences a bit-flip (X
operator) with probability p, = p/(a + 2), a phase-flip (Z



operator) with probability p, = ap/(a + 2) or a combination
of both (Y operator) with probability p, = p/(a + 2), as
described in equation (6).

At the output of the depolarizing channel, the state Py |t)2)
is fed to the inverse of the inner encoder 1)2T , which outputs the
decoded state Lo |1p2), where Lo € G, refers to the logical
error suffered by the decoded state due to the operation of
the channel; and the classical syndrome bits S% obtained from
Z basis measurements on the ancilla qubits. The corrupted
logical qubits are then passed through a de-interleaver I1-!
resulting in the state Py |+1), which is supplied to the inverse
of the outer encoder VlT . The resulting output is the state
L4 |3p1), which corresponds to the information quantum state
corrupted by a logical error £; € Gj; and the classical
syndrome bits S7 obtained after measuring the ancilla qubits
on the Z basis. The classical syndromes S5 and S7, obtained in
the inverse decoders Vg and VlT , respectively, are then provided
to the iterative syndrome decoder made up of two serially
concatenated SISO decoders, as shown in Figure 1. Based on
S5 and S7, as well as the channel depolarization probability
P, (P2), both SISO decoders engage in degenerate iterative
decoding [5], [21] to estimate the most likely error coset Yo
that has corrupted the information quantum state. Based on the
aforementioned estimation, a recovery operation R is applied
to the corrupted state £ [+1), yielding the recovered output
|1)-

As mentioned previously, the aim of this paper is to adapt
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Fig. 1. Schematic of the QTC. P¢(.) and P§(.) denote the a-priori and
extrinsic probabilities related to each of the SISO decoders used for turbo
decoding. The k input logical qubits that make up the information word
|11) are first fed to the outer convolutional encoder Vi, and encoded into
n’ physical qubits |t)1) with the help of ancilla qubits and memory qubits.
The codeword |t1) is then passed through a quantum interleaver II, before
being used as the input to the inner convolutional encoder V2, which aided
by ancillary qubits and memory qubits encodes the interleaved sequence of
n’ qubits |+b2) into the codeword |1)2) of length N.
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TABLE 11
NOISE LIMITS p* FOR QUANTUM RATE R = 1/9 AS A FUNCTION OF THE
ASYMMETRY COEFFICIENT OF THE CHANNEL a.

PTO1R-PTO1R (Unassisted)
o 1 102 107 10°
p* | 0.1603 | 0.2729 | 0.3056 | 0.3064

the online estimation system designed in [3] for the depolar-
izing channel to the more general asymmetric Pauli channel.
With that purpose in mind, the QCCs used for the quantum
turbo code in Figure 1 are the "PTO1R” unassisted convolu-
tional encoders that were used in [9]. The seed transformation?
associated with the convolutional encoders is

U = {1355,2847,558,2107, 3330, 739,

@)
2009, 286, 473, 1669, 1979, 189}.

Performing the interleaved concatenation of two of those
QCCs engenders the QTCs that will be considered through-
out this paper. We will refer to such a concatenated error
correction scheme as the "PTOIR-PTOIR” configuration,
following previous work in the literature. This QTC is formed
by two similar QCC encoders of rate 1/3 resulting in a rate
Ry = Rin X Rour = 1/3x1/3 = 1/9 error correction scheme.
Additionally, the entanglement consumption of the code will
be null as all the encoders are unassisted QCCs. Finally, each
of the "PTOIR” encoders is aided by 3 memory qubits in
order to perform the convolutional encoding operation.

This configuration was extensively studied in [6] for asym-
metry values o € {1,10%,10%, 10} under the assumption that
channel information is known at the decoder. For that reason,
we will employ it as a benchmark for this paper and we will
test the configuration with the proposed estimation method for
these asymmetry coefficients. The unassisted hashing bound
for the Pauli channel is calculated as [9]

Cqo(pe, Py, pz) =1+ (1 — p)logy(1 — p) + pg logy (pz)

(8)
+ py logs(py) + = logy (p2),

where p = p, +p, + p.. The asymmetry coefficient o can be
used in order to rewrite (8) as

)

Cq(p,a) =14 (1 —p)logy(1 —p) + (aLfQ) log, (

ap ap
— )1 — .
- <a+2) °g2(a+2>

Using the values presented in Table I for realistic quantum
devices, we can calculate the noise limit p* for each of them by
using the hashing bound in equation (9). Table II presents these
noise limits for different values of the asymmetry coefficient
when the quantum rate is Rg = 1/9.

p
a+2

®

2The seed transformation I/ is represented using the decimal representation
presented in [5].



III. ONLINE ESTIMATION METHOD FOR THE PAULI
CHANNEL

In this section, we describe the modified online estima-
tion algorithm for the asymmetric channel. Furthermore, we
present results that support the claim that the proposed method
successfully achieves the task at hand.

A. Online method for the Pauli channel

The online estimation method presented in [3] for the
depolarizing channel is grounded in the idea of exploiting
the already available channel physical error probability dis-
tribution P7(P5|S%) at each iteration j and for each i*" qubit
when running the sum-product algorithm on the turbo decoder.
In [3], it was concluded that a mismatch between the true
depolarizing probability and the depolarizing probability fed
to the decoder results in a degradation of the error correction
capability of the QECC. Successful estimation is even more
important for the general Pauli channels considered here,
which depend on more parameters than depolarizing channels.

Based on these probabilities, the depolarizing parameter p
can be estimated at iteration j as

. 1N
=1~ N;PJ(% = 1183). (10)
In previous works, these probabilities were left unused, and
only the probabilities related to the logical error P§(Ls)
associated with the inner QCC were further processed.

In the online estimation method of [3], once ﬁ(j) was
obtained it was fed back to the outer SISO decoder to be
used in the next iteration as the a priori channel probability
distribution. Simulation results showed that by setting p*) to
the noise limit p* for the first iteration, good performance was
obtained.

For the case considered in this work, the online estimation
method for the general asymmetric Pauli channel, at each
iteration j the channel probabilities ﬁgj ) with g€ {X,Y,Z}
must be estimated. Following the same reasoning as in the
depolarizing channel, we propose the following estimator:

. 1N
py) = N;PJ“’% = 918%), (1n
where g € {X,Y,Z}. Once such values are obtained, they
are used to derive the a priori channel probability distribution
pch(Pg), which is fed back to the inner SISO decoder for the
next iteration of the turbo decoding sum-product algorithm, as
reflected in figure 2.

Note that in (11), each of the probabilities associated with
each of the non-identity Pauli matrices is calculated indepen-
dently. One might wonder why not to use the fact that for
the asymmetric channel being considered the probabilities for
bit-flip and bit-and-phase-flip are equal, and thus to force the
estimator to estimate ;353 ) = ﬁg(,] ) by calculating the mean of
both. In principle, this would lead to better performance, as
information about the channel structure would be indirectly fed
to the decoder. However, as it will be seen in the simulation
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Fig. 2. Modified QTC decoder to perform online estimation of the distribution
of the general Pauli channel based on the measured syndrome S%. The figure
only presents the inner SISO part of the decoder, as the rest of the turbo
decoder remains unchanged.

results, the proposed decoder achieves the same performance
as a decoder that has knowledge of the channel parameters.
Consequently, the only benefit that might be obtained by
applying such restriction in the estimation procedure would be
to lower the decoding complexity. Reducing the complexity
is desirable, but we consider that the method proposed in
(11) is more interesting, as it will be valid for all types of
Pauli channels and not just for the asymmetric model being
considered in this paper.

The final matter that must be established in order to ap-
propriately define the iterative online estimation algorithm is
the selection of the values for the first iteration, f)él), g €
{X,Y, Z;,». Following the reasoning of [3], it seems logical to
select 15,(]1 = ap’/(a+2) for g =7 and ]35(,1) =pi/(a+2)
for g = {X,Y}, where p}, refers to the noise limit for the
code with channel asymmetry ««. However, the parameter « is
unknown by the receiver, and so we cannot set such a starting
point for the algorithm. Consequently, we will select the value
for the first iteration as a constant for each g. Observing
figure 10 in [3], it can be inferred that the selection of the
initial values is not crucial in terms of code performance if
the number of iterations for the turbo decoding algorithm is
sufficient. In light of these results, and of the fact that the
noise limit pj, increases® with the value of a [9], we will
select the starting point of the algorithm as ﬁél) =pi_1/3,Vg.
The estimated asymmetry parameter for each iteration can be
obtained as
ﬁ(gjz)z

ﬁéj:)x

al) = (12)

3Since operating beyond the noise limit of a code does not make sense, it
is logical to select the smallest noise limit as the starting point of all possible
asymmetry coefficients o. The smallest noise limit is given by the symmetric
case a =1 [9].



The proposed estimation method is applicable for all pos-
sible values of c.

B. Simulation Results

In this section we perform Monte Carlo simulations to asses
the performance of Quantum Turbo Codes using the proposed
online estimation method for asymmetric Pauli channels. For
this purpose, the QTC scheme presented in section II has been
used with a block length of £ = 1000 logical qubits, as done
in [9] for the system using perfect channel information.

In order to perform the numerical simulations, as in [3], [7],
an N-qubit error is randomly generated in each transmission
round as explained in (6). At the decoder, the syndromes S7
and S3 are computed first, and the turbo decoding algorithm
runs until the hard decisions on the estimated logical errors
are the same as in the previous iteration, or until the number
of iterations reaches the maximum value.

The operational figure of merit selected in order to evaluate
the performance of these quantum error correction schemes is
the Word Error Rate (WER), which is the probability that at
least one qubit of the received block is incorrectly decoded.

Regarding the numerical Monte Carlo methods used in order
to estimate the WER of the different QTCs, the following rule
of thumb has been used in order to select the number of blocks
to be transmitted, Npjocks:

100
WER'

As explained in [3], [7], under the assumption that the
observed error events are independent, this results in a 95%
confidence interval of about (0.8WER,1.25WER), where
WER refers to the empirically estimated value for the WER.

Figure 3 shows the results obtained for the QTCs described
in section II using the generalized online estimation method
presented in section III-A. The waterfall shaped curves de-
picted in said figure compare the performance of the "PTO1R-
PTOIR” configuration when it corrects errors of asymmetric
nature and its decoder has access to perfect channel infor-
mation, to the performance of the decoder that estimates
those channel parameters while simultaneously decoding the
information. It is obvious that both methods exhibit similar
error correcting capabilities in terms of WER performance.
Consequently, the generalized online estimation method allows
the QTCs to attain excellent performance regardless of the
nature of the channel. This outcome is of significant relevance,
since it means that the QTC decoder can be applied to any
Pauli channel. Therefore, no channel-specific QTC decoders
that need to know the exact noise model beforehand are
required.

To finalize the study of the QTCs that use the online
estimator to tackle the lack of knowledge about the channel
parameters, we discuss the number of iterations required by
the turbo decoder algorithm to succesfully estimate the logical
error coset. In [9], the authors claim that setting the maximum
number of iterations beyond I,,,, = 4 produced no benefits
in the decoding process. However, the utilization of the online

Notocks = 13)
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method introduced in our work requires the decoder to execute
more iterations so that the recovery operation can be calculated
correctly. This need arises because the decoder estimates the
channel parameters during every decoding iteration, which
inadvertently implies that subsequent estimates become in-
creasingly accurate as more decoding rounds take place. Thus,
the decoder requires sufficient iterations for the channel infor-
mation to be accurate enough to produce satisfactory estimates
of the logical error coset through additional turbo decoder
rounds. For the codes considered in this article, we have
observed that setting the maximum number of iterations to
less than I,,,,, = 32 implies a loss in the WER performance,
while increasing the parameter beyond this value yields no
benefit for the QTCs under consideration. As a result, the
worst case decoding scenario using our estimator takes 8
times the number of decoding rounds required by a decoder
that has knowledge of the channel parameters. However, the
increase in complexity is justified by the flexibility provided
by the online estimation method, since if we assume that the
channel remains constant for the duration of the block, the
QTC performance will not be compromised if the nature of the
channel changes from block to block, regardless of whether
the change occurs in the gross error probability p or in the
asymmetry level of the Pauli channel «. Therefore, QTCs will
achieve excellent performance independently of the nature of
the channel or its time evolution.

Another question that comes up when analyzing the per-
formance of the proposed online asymmetry-considering es-
timator is how it measures up against the online estimator
proposed in [3]. The answer to this question will give us
information regarding the importance of asymmetry to decode
QTCs. Figure 4 shows the results obtained by running the
turbo decoder with the estimator from [3], as well as the results
obtained for the extended online estimator proposed in this
paper, when we consider the Pauli channels with asymmetry
coefficients o = 10% and « = 10%. Notice that neglecting the
possibility that the channel might be asymmetric and treating it
like a depolarizing channel leads to huge performance losses.
Upon further examination of figure 4, it can be seen that using
the estimator from [3] for the Pauli channel always results,
independently of the nature of «, in the QTC performance
corresponding to the symmetric case o = 1. As a consequence,
if asymmetry is not considered in the error correction system,
the performance loss experienced by the QTCs will correspond
to the distance between the waterfall region presented by the
decoder that has perfect knowledge of the channel parameters
and the waterfall region of the decoder for the depolarizing
channel, which increases with the growth of the asymmetry
coefficient «. In practical situations, since the quantum channel
might be asymmetric, using the extended online estimator
proposed in this paper is paramount if one wants to maintain
excellent performance.

IV. CONCLUSIONS

We have presented an extension of an existing online
estimation method for the depolarizing channel, making it
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capable of considering the asymmetries that are present in the

decoherence models of realistic quantum devices. The noise in

these devices is modeled using the well known Pauli channel,
which has been shown to be biased towards Z type errors for
some of the qubit construction technologies that are being used
in this day and age. As a consequence, the existing estimation
methods fail to perform appropriately for technologies used in
the construction of quantum devices.

Our proposed extended method uses the information that
is processed in each iteration of the sum-product decoder to
estimate each probability of the asymmetric channel individ-
ually. Monte Carlo simulations corroborate that the proposed

nline estimation method is successful in aiding the QTC to

achieve the same performance as when it has access to the
channel parameters. This positive outcome comes at the cost of
a slight increase in the complexity of the decoding algorithm.
However, the flexibility that the proposed method provides,
allowing the QTCs to be able to operate close to their hashing
bounds without requiring any knowledge of the Pauli channel
parameters or of how they evolve in time, far outweighs this

minor drawback.
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