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Performance of non-CSS LDGM-based quantum
codes over the misidentified depolarizing channel
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Abstract—Quantum Low Density Generator Matrix (QLDGM)
codes based on Calderbank-Steane-Shor (CSS) constructions
have shown unprecedented error correction capabilities in the
paradigm of quantum communication. Recently, a strategy based
on non-CSS quantum codes derived from QLDGM CSS codes
has been shown to surpass other Quantum Low Density Parity
Check (QLDPC) schemes proposed in the literature over the
depolarizing channel. Given the importance of quantum channel
estimation and the impact it has on the performance of QLDPC
codes, in this article, we study the behaviour of non-CSS QLDGM
codes under the umbrella of channel mismatch. We begin by
showing how a relatively accurate estimate of the quantum
channel is pivotal for these codes to perform appropriately. We
follow this by analyzing an off-line and an on-line quantum
channel parameter estimation technique, as well as discussing
how these methods affect the Quantum Error Correction (QEC)
codes under consideration. Finally, we show how the on-line
methodology yields similar performance to the perfect channel
knowledge scenario despite its relative simplicity.

Index Terms—Quantum Error Correction, Quantum Low
Density Parity Check codes, Depolarizing Channel, Channel
Mismatch.

I. INTRODUCTION

In the realm of classical communications, turbo codes [1]
and Low Density Parity Check (LDPC) codes [2], [3], [4],
are known to exhibit capacity-approaching performance at a
reasonable decoding computational complexity. Turbo codes
offer great flexibility in terms of their block length and rate.
The first quantum codes based on turbo codes appeared in
[5]. [6], and have since been modified and improved [7]- [13].
Aside from their block length and rate flexibility being on par
with that of turbo codes, the sparse nature of LDPC codes
guarantees that their quantum equivalents will require small
numbers of quantum interactions per qubit during the error
correction procedure [14], avoiding additional quantum gate
errors and facilitating fault-tolerant computations. These traits
make QLDPC codes especially well suited for quantum error
correction.

Quantum LDPC codes are built by casting classical LDPC
codes in the framework of stabilizer codes [15], which enables
the design of quantum codes from any arbitrary classical
binary and quaternary codes. Oftentimes, this is accomplished
by designing QLDPC codes based on a particular subset of
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the family of stabilizer codes known as CSS codes [16],
[17], which provides a straightforward method to design
quantum codes from existing classical codes. In [18] and [19]
CSS QLDPC codes based on Low Density Generator Matrix
(LDGM) codes [20], a specific type of LDPC code whose
generator matrix is also sparse, were shown to yield perfor-
mance and code construction improvements. In [21] and [22],
the performance of these codes was substantially improved by
using a parallel concatenation of two regular LDGM codes.
However, it is important to note that the performance of CSS
codes is limited by an unsurpassable bound, referred to as
the CSS lower bound [23]. This inspires the search for non-
CSS stabilizer codes, as they should theoretically be able to
outperform CSS codes if designed optimally. Non-CSS LDPC-
based codes were proposed in [24] and [25] but they failed to
outperform existing CSS QLDPC codes for comparable block
lengths. Recently, the non-CSS inspired LDGM-based strategy
proposed in [26] was shown to outperform all other CSS and
non-CSS codes of similar complexity.

Most of the research related to the performance of QLDPC
codes has been conducted under the tacit premise that perfect
knowledge of the quantum channel in question is available.
In reality, such a scenario is highly unlikely, meaning that
analyzing how the behaviour of these codes changes in terms
of the existing information about the quantum channel is of
significant relevance. Such a study was conducted for the
quantum depolarizing channel by Y. Xie et al in [27]. In [28],
the same authors designed an improved decoding strategy for
QLDPC codes when only an estimate of the channel depo-
larizing probability is available. The aforementioned method
makes use of quantum channel identification, which requires
the introduction of a probe (a known quantum state) into
the quantum channel and the subsequent measurement of the
channel output state to produce an accurate estimate of the
depolarizing probability. This procedure typically makes use
of additional qubits and results in a latency increase. Thus, the
design of methodologies capable of minimizing this overhead
while yielding performance similar to the perfect channel
knowledge scenario is germane to this field of research. In
[13], a so-called on-line depolarizing probability estimation
technique is derived for Quantum Turbo Codes (QTCs). This



method yields similar performance to that obtained when using
the same QTCs with perfect channel information but without
the need for additional resources. In light of this outcome,
a similar on-line estimation procedure for QLDPC codes is
proposed in this article.

The remainder of this paper is structured as follows. In
section II a brief review of the necessary preliminaries on
stabilizer codes and quantum LDGM-based codes is provided.
This is followed by a succint description of how good non-CSS
LDGM-based codes are designed in section III. In section IV,
the depolarizing channel is introduced, the off-line and on-line
estimation techniques are presented, and the simulation results
are discussed. Section V concludes our discourse.

II. PRELIMINARIES

In this section, a brief review of important concepts, defi-
nitions, and notation related to stabilizer codes and QLDGM
codes is provided.

A. Quantum Information

The simplest quantum mechanical system and the basic unit
in quantum information is known as the qubit. In the state
vector formulation, it is denoted by [¢)) = «|0) + S |1) € Ha;
where a, 8 € C, |a|?+|8]?> = 1 and H refers to the complex
Hilbert space of J\gimension 2. A quantum state of N qubits
is written as Y>_, " |i), where oy, € C and 3, Joi]? = 1.
Suppose an N-qubit quantum state |w) € HSY is transmitted
through a noisy quantum channel'. The output of the channel
can be written as F |w), where the error operator E represents
an N-fold tensor product of single qubit error operators e;,
where j = 1,..., N. In QEC, these one-qubit error operators
are represented by the X, Y, and Z Pauli operators, which
together with the 2 x 2 identity matrix I define the set of single
qubit Pauli operators {I, X,Y, Z}. We then define the N-fold
Pauli group Gy by computing the N-fold tensor product of
these single qubit Pauli operators and including the possible
overall factors 1,41, i.e Gy = {811, B2 X, B3Y, BaZ}OV,
where f, = {%1, +i}.

B. Stabilizer codes

Stabilizer codes are a class of QEC codes that can be effi-
ciently designed based on existing classical codes. A stabilizer
code C(S) is defined by a set of operators S that generate
an abelian subgroup of the N-fold Pauli group Gy under
multiplication. The codespace defined by the stabilizer group
is

O(8) = {lv) € HE™ = Sil) = |v), Vi},

i.e, the simultaneous +1-eigenspace defined by the elements
of the stabilizer group S.

The generators of a stabilizer code, or more generally, Pauli
operators on N qubits, can be described in terms of their
symplectic representation [29]. Using this representation, each
element of the N-fold Pauli group can be written as a unique
binary string of length 2N, which is built by joining two

1H5®N denotes the complex Hilbert space of dimension 2%.
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separate binary strings of length N. Individually, each of the
length N binary strings represents the presence or absence of
a Z or X operator on each of the N qubits with a ‘1’ or a
‘0, respectively. Considered jointly, the strings also represent
I and Y operators. For example,

YZXIX = (11000]10101).

Applying this representation to the generators S; of a stabilizer
code enables the definition of a Quantum Parity Check Matrix
(QPCM) for the code. The parity check matrix of a quantum
stabilizer code will be in the form Hy = (H,|H,), where row
© of matrix Hg is the symplectic representation of stabilizer
generator .S;.

Using this QPCM notation, the requirement that stabilizer
generators must commute can be re-expressed for the entire
stabilizer code as

H,xH,=(H,H' + H,H )mod2 =0, (1)

where the % operator, known as the symplectic product,
represents the operation itself. This expression, referred to as
the Symplectic Criterion, is significant because it determines
which existing classical codes can be used to design stabilizer
codes.

In most quantum channels, decoherence is modelled by
means of errors that belong to the N-fold Pauli group, which
either commute or anticommute with each of the stabilizer
generators S; of a given stabilizer code C(.S) [29]. An error
sequence E can be described using the symplectic represen-
tation as the length 2NN binary string e. If we write e as
(e.|es), when multiplying e in terms of the symplectic product
(mod2) by a row of the parity check matrix of a stabilizer
code, 0 will be obtained if F and the generator associated
to that row commute, whereas 1 will be obtained if they
anticommute. Multiplying this symplectic representation of
the error operators by the quantum parity check matrix of a
stabilizer code will yield the quantum syndrome s. That is,

s=Hg*e=(H.e, + Hgze.)mod2 , 2)

where e = (e,|e;) is the symplectic representation of the error
pattern, Hy = (H.|H) is the quantum parity check matrix
of a stabilizer code, and s represents the quantum syndrome.
We will later use this syndrome in the decoding process to
estimate the symplectic representation of the error sequence
e.

C. CSS Codes

Two binary classical LDPC codes can only be used to con-
struct a stabilizer code if they satisfy the symplectic criterion
(1). The first design strategy one could devise to construct
stabilizer codes would be the random selection of pairs of
classical LDPC codes. However, finding two LDPC codes
of reasonable block size that satisfy (1) is highly unlikely.
Calderbank-Shor-Steane codes [16], [17], provide a more
efficient design strategy than random selection of classical



codes. The quantum parity check matrix of these codes is
written as

H. 0
Hp = (H,|H,;) = z ’ 3
Q ( Z‘ x) ( 0 Hx) ) 3)
H. 0
where H, = %) and H, = /
: ( 0 ¢ <H$

In this construction, H, and H] are the parity check
matrices of two classical LDPC codes C; and Cb, respectively,
where each matrix is used to correct either bit-flips (H)
or phase-flips (H,). The classical codes are chosen so that
Cs- C C1, where Cy is the dual of the classical LDPC code
Cs. This design constraint, generally referred to as the CSS
condition, reduces (1) to (H,H,)mod2 = 0.

D. Systematic classical LDGM codes

Let C be a systematic LDGM code. Then, its generator
matrix G and its parity check matrix H can be written as

G=(01P)
~ T )
i = (PT 1),

where I denotes the identity matrix, and P = [py,] is a

sparse matrix. Because LDGM codes belong to the family
of linear block codes, these matrices satisfy (GH”)mod2 =
(ﬁ G‘T)mod2 0, ensuring that if they are used in (3),
the resulting QPCM satisfies the symplectic criterion. Those
systematic LDGM codes in which the rows and columns of
the PCM have degrees’> X and Y, respectively, are denoted
as (X,Y) regular LDGM codes. Regular LDGM codes are
known to be asymptotically bad [3], displaying error floors that
do not decrease with the block length. However, in [30], codes
built via the parallel concatenation of two regular LDGM
codes® were shown to yield significant reduction in these error
floors.

Classical LDPC decoding is performed by solving the equa-
tion s = H.e, where s represents the received syndrome, H,.
is the PCM of the code, and e is the symplectic representation
of the error pattern we wish to recover. Given that LDGM
codes are a specific subset of LDPC codes, they are decoded in
exactly the same manner as generic LDPC codes, by applying
belief propagation [31] (BP) [31] or the sum-product algorithm
(SPA) [32] over the factor graph [32] associated to the equation
s = H_e.

E. Quantum LDGM CSS codes

Intuition calls for the QPCM of a QLDGM CSS code to be
built by simply taking the classical LDGM code with parity
check and generator matrices H and G, and setting H, =

2The degree of the columns is the number of nonzero entries per column of
the PCM. The degree of the rows is given by the number of nonzero entries
per row of the PCM. An LDGM code is said to be regular when all the
rows of its PCM have the same number of nonzero entries, X, and so do its
columns, Y.

3The parallel concatenation of regular LDGM codes is equivalent to an
LDGM code with an irregular degree distribution.
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H and H, = G in (3), since the property (GH”)mod2 =
(HGT)mod2 = 0, ensures the fulfilment of the symplectic
criterion. However, this results in a QPCM H, of size N x 2N
and a code of quantum rate g = 0, which cannot be used
for encoding purposes. To build a valid quantum code, the
number of rows in Hg must be reduced while ensuring that
(1) is fulfilled. In [18], this was achieved by applying the
following theorem.

Theorem 1: Given the generator and parity check ma-
trices of a systematic LDGM code (4), define Hm~1X N =
[]\/[1]7”1 XMy [H]anN and szxN = [MQ]m,zan [G]nnga
where n; +no = N and M; and M, are low-density full-
rank binary matrices whose number of rows satisfy m; < nj
and mg < ng, respectively. Then, the quantum PCM shown
in (5), obtained by setting H, = H and H, = G in (3), is
the quantum PCM of an LDGM-based CSS code with rate
RQ N 7713\17 —mo .

H 0 M H 0

HQ = (HZ|H9L) = (0 G) = ( 0 Mzé) . ©)

Quantum CSS LDGM codes are decoded by solving the
quantum analogue of equation s = H_.e, which is shown in
(2). This is achieved by running the SPA over the factor graph
defined by the QPCM given in (5) and which characterizes
the aforementioned equation. This specific factor graph is
derived in [18], by splitting the symplectic representation of
the error pattern into two parts, e = (e|e;), and relating it
to the syndrome via a two step process®. In the following,
we illustrate this derivation for e,, the part of the symplectic
representation of the error sequence related to the X operators.
The procedure for e, is identical but using G instead of H in

(6).

s=He, = MHe, = Mi[P" Te,. (©)
If we now split e, into e, = (e,, €,,)T, we can write
dy = [PT e, = [PT T xn (eml)
€x2/ Nx1
= PnTl Xng [€I1]TL2><1 + [erz]Tth' (7)
We then relate d, to the syndrome as
Smyx1 =M1m1m1dn1x1 (®)

Based on expressions (7) and (8), as well as their equivalents
when using e, and G in (6), we can obtain the generic factor
graph of a quantum CSS LDGM-based code. Such a graph is
shown in Figure 1.

The matrix multiplications used to perform the linear row
operations on H and G generate a middle layer, represented
by the ¢ and d nodes, in both decoding subgraphs of Figure 1.
This new layer hampers the decoding algorithm, especially
during the initial decoding iterations, since a priori infor-
mation regarding the aforementioned middle layer nodes is

4The syndrome is obtained as shown in (2).



Fig. 1. Generalized factor graph for a QLDGM CSS scheme. The dotted line
is included to emphasize the separation of the two constituent subgraphs. The
leftmost subgraph decodes the X errors while the one on the right decodes

the Z errors. We have assumed that m1 = mo = m and n1 = no = %

not available. In [18], the authors circumvent this lack of
information by using the so-called doping technique of [33].
This method introduces degree-1 syndrome nodes into the
decoding graph, known as s4 nodes, that transmit correct
information to the d nodes they are connected to, ultimately
pushing the decoding process in the right direction.

III. NON-CSS LDGM-BASED QUANTUM CODES

Non-CSS codes are appealing due to their ability to exploit
redundancy more efficiently than CSS schemes. Moreover,
given that this type of code is not limited by the stringent CSS
design constraints, non-CSS codes can theoretically surpass
the CSS bound and get closer to the Hashing bound of a
quantum channel. In [26], the LDGM-based CSS schemes
of [19] - [22] are transformed into a non-CSS structure
that outperforms other existing quantum codes of comparable
complexity. In said work, different methods of constructing
such non-CSS codes are provided. Here, we will be using a
code based on the first structure proposed in [26].

A. Syndrome node combination to design non-CSS codes

The non-CSS design process begins by taking a CSS
quantum code based on classical LDGM codes [19]- [22] as
the starting point. As shown by the CSS factor graph of Figure
1, the code used as a starting point will be associated to two
separate decoding subgraphs, one for H and the other for G.
The upper layers of these subgraphs (the number and degree
distribution of the d, s4, and sp nodes) will be defined by two
identical matrices M (y; 1, x) of size m X % These matrices
are described by the notation (y;1,z) and the parameter ¢,
which allows us to appropriately represent the upper layer
of the CSS decoding graph. The notation is interpreted as
follows: y represents the degree’® of the d nodes, t is the
number of syndrome nodes that are forced to have degree 1
(as required by the doping technique mentioned earlier) which
we refer to as s, nodes, and x represents the degree of the

5The degree of a node is the number of edges it is connected to.
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remaining syndrome nodes, referred to as sp nodes. The non-
CSS scheme is constructed as follows:

1) First, generate a new matrix, My:

M, = me% O'mX%
Oy M, ~ '
X X2 ) amx N

2) Select g nodes out of the 2t s4 nodes of matrix M,°,
which we will refer to as s¢ nodes, and add an edge from
these nodes to the d nodes on the side of the decoding
graph they are not connected to. We apply a criterion to
ensure that these new connections are not made randomly:
the edges added to the q selected s, nodes can only be
made to a d node (d, or d,) that is a da node. We
define d4 nodes as any d nodes that are connected to
an sy node. Of the ¢ s¢ nodes, half of them proceed
from s4 nodes in the CSS subgraph used to decode the
X operators, while the other half come from s 4 nodes in
the CSS subgraph used to decode the Z operators. Figure
2 illustrates how an s node is generated.

®

~ ~
d; d, dy d

2

Fig. 2. Generation of an s¢ node. The upper nodes represent the syndrome
nodes while the bottom nodes represent the d nodes (d; and d. denote the d
nodes associated to each of the separate CSS decoding subgraphs). The s 4
nodes are represented in yellow, the d 4 nodes are shown in red, and the s¢
node is pictured in green.

At this stage, My has been transformed into a new matrix
M. We multiply M/, by the QPCM of the CSS code to derive
the QPCM of the non-CSS code. This matrix product morphs
the upper layer of the original CSS decoding graph of figure
1 into a new version characterized by the following novelties:

o There are ¢ s¢ nodes that serve to join both sides of the
graph.

o Some d nodes are connected to both s4 and s¢ nodes.

These modifications force the s and d nodes of the non-CSS
decoding graph to have a somewhat irregular edge distribution.
Indeed, the “regularity” of the d nodes has been broken
in order to connect the separate CSS decoding subgraphs,
resulting in £ d, nodes and £ d. nodes having an additional
edge. Furthermore, now ¢ s nodes have two edges, one of
them directed towards a d, node and the other towards a
d, node. It is important to mention that decoding of these
quantum LDGM-based schemes, independently of their CSS
or non-CSS nature, is based on complete factor graphs like
the one shown in Figure 1. This is different from decoding
over the factor graph associated to the final matrix obtained
from the product M) Hcss. The rationale is the same as in
serial concatenated LDGM schemes used in classical error

%Note that My, as defined in (9), is a simple algebraic representation of
the upper layer of the graph in Figure 1.



correction, where decoding on the factor graph associated
to the product of the matrices of the constituent codes also
results in worse performance. This occurs because the product
eliminates edges in the factor graph, introduces more cycles,
and increases the density of ones [35] thus degrading the
performance of the message passing algorithm.

The performance of this novel non-CSS structure will be
heavily influenced by the value of ¢. If we select ¢ << m,
the decrease in the number of s nodes providing perfect
information will be small and should have negligible impact in
the decoding process’. On the contrary, the degree-2 s¢ nodes
allow the exchange of information between both sides of the
graph as the iterative decoding process progresses, potentially
improving the decoding performance. In [26], for a Rg = %
non-CSS code of block length N = 19014 the optimum value

of ¢ was found to be 500.

IV. THE QUANTUM DEPOLARIZING CHANNEL AND
CHANNEL ESTIMATION

A. The Quantum Depolarizing Channel

The effects quantum decoherence has on quantum informa-
tion are usually described by means of quantum channels, N.
A widely applied quantum channel model used to represent
the decoherence effects suffered by quantum information de-
scribed by a density matrix p, is the generic Pauli channel Ap.
The effect of the Pauli channel Np upon an arbitrary quantum
state is described by

Ne(p) = (1=p.

A qubit then experiences a bit-flip (X operator) with prob-
ability p,, a phase-flip (Z operator) with probability p, or a
combination of both (a Y operator) with probability p,,.

Most of the work conducted on quantum error correction
considers the independent depolarizing channel model [5], [7],
[24], [25]. This model is a specific instance of the Pauli Chan-
nel in which the individual depolarizing probabilities are all
equal, i.e p, =p, =p, = g, and the channel is characterized
by the depolarizing probability p. When quantum states of
N qubits are considered, the errors that take place belong to
the N-fold Pauli group Gy. Because we are considering the
independent instance of the Pauli channel, these errors will act
independently on each qubit causing an X, Z, or Y error with
probability p/3 and leaving them unchanged with probability

(1-p).

B. Quantum Channel Ildentification

— Py —Pz)p+ P XpX +p,YpY +p.ZpZ.

A common assumption in the field of QEC is that perfect
knowledge of the quantum channel under consideration is
available prior to decoding. In reality, this information cannot
be readily obtained, and estimates of the corresponding quan-
tum channel parameter must be derived. In this paper, given
that we only consider the depolarizing channel, the decoder
must be provided with an estimate of the channel depolarizing

7A total of q 54 nodes get converted into s nodes, which do not provide
perfect information.
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probability. If the estimated value of the depolarizing proba-
bility p is different to its actual value p, i.e. p # p, channel
mismatch occurs, which leads to performance degradation.

To study the sensitivity of the non-CSS QLDGM scheme
to the channel mismatch phenomenon, we consider a scenario
where p is varied while the true depolarizing probability
remains fixed. Figure 3 shows the results for the Qubit Error
Rate (QBER), which represents the fraction of qubits that
experience an error. For the simulations we have used the
Rg = § g = 500 non-CSS code derived based on the
first methodology presented in [26], and we have selected
values of p that gradually get closer to the waterfall region of
the code (p = [0.05,0.06,0.07,0.075,0.0775,0.08]). Utilizing
this simulation structure allows us to study the sensitivity
of the code to the accuracy of p when the actual value of
the depolarizing probability is varied. The specific code we
have employed is based on an underlying parallel-concatenated
LDGM code that has degree distribution P[(8, 8)(3,60)]. The
notation P[(y1,y1); (y2, 22)] indicates the degree distributions
of the constituent regular LDGM codes utilized in the parallel
concatenation, i.e they are both regular LDGM codes with de-
gree distributions (y1,y1) and (yo, 22), respectively. We have
chosen the parallel concatenation with the smallest degrees
tested in [26] in order to ease simulation requirements. Finally,
the ¢ = 500 M/, matrix is obtained from two identical matrices
defined by the configuration M (3;1,8.72) and ¢t = 4361,
which are the same to those used in [26].
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Fig. 3. Simulated QBER as a function of the estimated depolarizing

probability p when the true depolarizing probability p is fixed.

As shown in Figure 3, for smaller values of p, i.e p < 0.075
(the error floor region of the code), the less accurate p needs
to be to attain a performance similar to when perfect channel
knowledge is available, i.e, when p = p. On the contrary,
when the waterfall region of the code is considered by setting
p > 0.075, higher accuracy of the estimate p will be necessary
to achieve the best possible performance. This is reflected by
the decrease in width of the flat regions of the QBER curves
as p is increased, where the flat region is defined as the part of



the curve where the QBER is not significantly degraded [13].
This reduction in the size of the flat region indicates that the
precision of the estimate p becomes increasingly important as
p grows. For instance, if instead of estimating the value of
the depolarizing probability we fix p to p* = 0.127, which
corresponds to the Hashing limit for a Rg i quantum
code, Figure 4 shows that for small values of p the resulting
performance would be very close to that of a scheme with
perfect knowledge of the depolarizing probability, but the
performance degradation would increase for larger values of
p. It is clear from these results that techniques capable of
providing good estimates of p are necessary when facing a
channel mismatch scenario. This is discussed in the following
subsections, where two different estimation methodologies
than can be used to obtain p are presented.

1) Off-line Estimation Method: In quantum channel iden-
tification, a known quantum state o, referred to as the probe,
is exposed to the effects of a specific quantum channel I'(p)
which is dependent on some parameter p. Performing quantum
measurements on the output quantum state o, (p) yields classi-
cal information from which an estimation of p can be obtained.
Numerous experimental schemes have been devised to perform
quantum channel identification: the input quantum state can be
unentangled, it can be entangled with ancilla qubits or other
probes, or even multiple probes could be used. Given that
analyzing the performance of these schemes is outside the
scope of this paper, we will assume that an estimation set-up
capable of obtaining the information-theoretical optimal per-
formance is available. Optimal estimation of the depolarizing
probability p of the depolarizing channel has previously been
studied by making use of a metric known as the quantum
Fisher information. The quantum Fisher information of p is
given by

J(p) = Trloo(p)L*(p)],

where o,(p) is the output quantum state and L(p) is the
symmetric logarithm derivative defined implicitly as

doo(p) 1

dp Q[E(p)ao(p) + Jo(p)[:(p)].

Since estimations of p are dependent on statistically dis-
tributed quantum measurements obtained from o,(p), the
estimate of the depolarizing probability p will be a random
variable. Therefore, quantum channel identification comes
down to selecting a procedure that provides the most ac-
curate values of p. This is analogous to finding a method
that minimizes the variance of the estimation E{(p — p)?)},
assuming that the estimator is unbiased, E{p} = p. The
best possible performance of any estimator is defined by the
quantum Cramér-Rao bound. As previously mentioned, we
operate under the assumption that our estimator attains the
information-theoretical optimal performance, thus, its variance
will be bounded by the quantum Cramér-Rao bound

1 1

M d (D) T,

var(p) >

(p)’
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where J,,, (p) = n,,J(p) defines the overall Fisher informa-
tion for n,,, independent quantum measurements [36] and J(p)
denotes the Fisher information of p for a single measurement.

Based on the results shown in figure 3, where we studied the
QBER in terms of the mismatched depolarizing probability p,
we can now compute the average QBER (p) with regard to the
real depolarizing probability of the channel p. This is shown
in (10), where P(p) is the probability density function of our
optimal estimator.

QBER(s) = [ QBER()P(7)dp. (10

As in [13], we assume that P(p) is the truncated normal
distribution defined between a and b, with mean p, and
variance ﬁ Choosing the variance of P(p) as the inverse
of the asymptotically achievable Fisher information allows us
to assess the best possible accuracy of our quantum channel
identification methods. The overall Fisher information .J,,  (p)
will vary in terms of the type of selected quantum probe.
We will only consider the case where unentangled pure states
are used as channel probes. In this case, the overall Fisher

information is given by J,,, (p) = nm(M) [34].
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Fig. 4. Average QBER in terms of p when the number of used probes n,
is varied.

Figure 4 shows the result of computing QBER(p) for the
non-CSS QLDGM code considered in this paper as a function
of the number of channel probes n,,. In [13], the off-line
estimation protocol achieves the same performance as the
perfect channel information case when n,, =~ 1000. The
results shown in Figure 4 indicate that convergence is faster for
our codes, since performance close to the perfect information
case is obtained for n,, ~ 100. Also in [13], methodologies
based on using maximally entangled pairs as probes (EPR
pairs instead of pure states) resulted in faster convergence to
the perfect information case, i.e less probes where required
than when using unentangled pure states.

Regardless of the type of quantum probe, the main handicap
of off-line estimation protocols is that if the channel varies



for every transmitted block, the overall rate of the QLDPC
code that is being used will be severely reduced. Although
this reduction in rate is asymptotically negligible for constant
channels, it represents a significant drawback when using this
estimation method in rapidly varying quantum channels.

2) On-line Estimation Method: In a similar fashion to what
is done in [13] for QTCs, slight modifications to the generic
sum-product syndrome-based iterative QLDPC decoder allow
us to estimate the depolarizing probability while decoding is
taking place. This on-line estimation scheme does not require
quantum channel identification, meaning that rate reduction
is avoided regardless of the type of quantum channel under
consideration, be it constant or block-to-block time varying.

Decoding of a non-CSS QLDGM code is performed by
running the sum product algorithm over the factor graph
associated to the equation s = Hg * e, where s is the
measured syndrome, Hg is the QPCM of the code®, and e
is the symplectic representation of the error pattern induced
by the quantum channel. The decoding objective is to find the
most likely estimate of the channel error from the observed
syndrome, i.e, the decoder must find the most likely estimate
of the channel error, E, such that the estimated syndrome
§ = Hgxé (M), x Hcss) * €, is equal to the observed
syndrome s, where ¢é is the symplectic representation of E.

With this purpose, the decoding process works as follows:
First, the sum product algorithm is initialized using a “flood-
ing” schedule in which lower layer nodes transmit messages
upwards in a layer-by-layer sequential manner until the top-
most nodes are reached. These messages are based on an initial
estimate of the depolarizing probability of the channel p(V),
which is used to compute the a priori log likelihood ratios
of the algorithm. Once information gets to the top layer, we
say that the graph has been “flooded” with information, and
decoding can actually begin. Decoding then proceeds using
a reversed schedule, in which, starting from the top-most
syndrome nodes, messages are exchanged downwards and
layer-by-layer until the bottom-most nodes are reached. The
messages transmitted by the syndrome nodes are computed
considering information of the measured syndrome s. Once
two messages have been transmitted over every edge of the
factor graph, an iteration of the decoding algorithm has been
completed. At the end of each iteration, an estimate of the
symplectic representation of the error pattern é is produced
and used to compute 5. If s = 3, then the algorithm has
finished. If s # §, the algorithm continues until it finds a
matching syndrome or until a maximum number of iterations
is reached. We can obtain an estimate of the depolarizing
probability at each iteration j by assessing the number of X,
Y, and Z operators present in the estimated error pattern’ E

8Recall that to reap the benefits of the non-CSS structure, the decoding
algorithm must be run over the complete factor graph representation of the
matrix product that defines H¢. Decoding on the factor graph representation
of the final matrix obtained from the product M [’i X Hcss results in worse
performance.

9F describes the error pattern using Pauli Operators, which can be easily
obtained from its symplectic representation é.
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and dividing them by the block length of the code. This is
analogous to computing

N
P =1 ;;P(”(Ei = I|3), (11)
where [V is the block length of the code, I is the identity oper-
ator, F; is the i-th component of the quaternary representation
(in terms of I, X,Y, and Z operators) of the estimated error
pattern, and P\ (E; = I|3) is the probability at iteration j that
the i-th component of the estimated error pattern is equal to
the identity operator conditioned on the estimated syndrome.

Once pU) is obtained, it is used as the depolarizing proba-
bility to compute the necessary sum-product messages in the
following iteration. Due to the iterative nature of the decoding
algorithm, we expect that each successive estimate pU/) will
get closer to the actual value of p, leading to better decoding
performance.

The last matter to discuss is how an appropriate value for
the initial estimate of the depolarizing probability H(") can
be obtained. It is intuitive to assume that this initialization
might affect the convergence of the estimates pU) to p, thus
having an impact on decoder performance. Given that in [13]
excellent performance was observed regardless of the value of
the initial estimate, we conducted an analysis by varying p(*)
while p remained fixed. The results are shown in Figure 5,
where each dashed curve corresponds to a different value of
the true depolarizing probability p. The curves associated to
the original decoder, which where previously shown in Figure
3, are also included in Figure 5 as continuous lines.

—8—p=005 = 0.075 = Original Decoder | ]
—6—p=0.06 —k—p = 0.0775 = = =Online Scheme
——p =007 p=008
108 | 7 T
0 0.05 0.1 0.15 0.2
p

Fig. 5. Simulated QBER as a function of the initial estimate of the depo-
larizing probability of the channel (). The continuous lines are associated
to the original iterative QLDPC decoder which uses p(1) for every iteration
as if it were the true depolarizing probability. The dashed lines are obtained
when the modified iterative decoder that uses the on-line estimation method
is applied.

Upon closer inspection of the above figure, we can see that
the performance of the on-line estimation method is similar
to that of the perfect information scenario regardless of the
value of p(V). In fact, the modified on-line decoder significantly



outperforms the original mismatched decoder, as is reflected
by the flatter appearance of the curves associated to it. Figure
5 also shows how the sensitivity of the modified on-line
decoder to the initial estimate p(*) increases as p grows. This
is reflected in a reduction of the flatness of the on-line curves
as p increases, which is most noticeable for p = 0.0775 and
p = 0.08.

Once the depolarizing probability is higher than a certain
threshold (p > 0.075 in the scenario we consider), we enter
into the waterfall region of the code, where qubit errors occur
with much higher probability than in the error-floor region.
Even though the on-line method computes pU) during every
iteration, our simulations results show that for sufficiently
large values of p, if f)(l) is either too small or too large,
the convergence of $9) to p is weakened and performance is
hindered. This happens due to a combination of two factors:
On one hand, performance of the code is worse outside of
the error floor region, and so the estimated error patterns
are much more likely to have errors. On the other, small
or large enough values of p(!) make initial estimates of the
error pattern contain either not enough or too many X, Y,
and Z operators, corrupting the values of P (E; = I|3) to
the point that subsequent estimates p{) become increasingly
inaccurate. This does not occur in the error floor region, where
p) converges to p regardless of the value of p(V).

Ideally, we would like to define the value of p(*) for which
performance with the on-line estimation method is optimal.
If we look at the curves corresponding to p = 0.0775 and
p = 0.08, we can see performance is significantly degraded
when pM) < 0.05 or p(V) > 0.13. For the Rg = 1 code
under consideration, the hashing limit is p* = 0.127, which
falls within the range 0.05 < p* < 0.13. Thus, performance
on par with the perfect channel information scenario can be
obtained with the on-line estimation method, regardless of
the actual value of the depolarizing probability and without
any additional resources or reductions in code rate, by setting

Pt = p*.
V. CONCLUSION

In this work we have studied the sensitivity of non-CSS
QLDPC codes to the channel mismatch phenomenon in the
depolarizing channel. The codes are based on the generator
and parity check matrices of regular LDGM codes. Our
analysis reveals an increasing impact of channel mismatch on
decoder performance as the depolarizing probability of the
channel grows. The mismatch effect is especially noticeable
in the waterfall region of the code. To combat the lack
of channel knowledge that causes this mismatch, we have
discussed both an off-line and an on-line estimation protocol
to obtain estimates of the channel depolarizing probability. As
in the case of QTCs, the on-line estimation scheme outper-
forms off-line channel identification techniques in terms of
overall coding rate, while maintaining excellent performance.
In contrast to what happens with QTCs, simulation results
show that the on-line estimation method is slightly dependent
on the initial estimate of the depolarizing probability when
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operating in the waterfall region. Selecting the initial estimate
of the depolarizing probability as the hashing limit of the code
in question yields good performance regardless of the actual
value of the depolarizing probability.
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