
Computer Physics Communications 261 (2021) 107810

S
D

✩

C
s

h
0

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

PyXtal: A Python library for crystal structure generation and symmetry
analysis✩,✩✩

cott Fredericks, Kevin Parrish, Dean Sayre, Qiang Zhu ∗

epartment of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154, USA

a r t i c l e i n f o

Article history:
Received 26 November 2019
Received in revised form 11 December 2020
Accepted 17 December 2020
Available online 31 December 2020

Keywords:
Symmetry
Crystallography
Structure prediction
Wyckoff sites
Global optimization
Phase transition

a b s t r a c t

We present PyXtal, a new package based on the Python programming language, used to generate
structures with specific symmetry and chemical compositions for both atomic and molecular systems.
This software provides support for various systems described by point, rod, layer, and space group
symmetries. With only the inputs of chemical composition and symmetry group information, PyXtal
can automatically find a suitable combination of Wyckoff positions with a step-wise merging scheme.
Further, when the molecular geometry is given, PyXtal can generate different dimensional organic
crystals with molecules occupying both general and special Wyckoff positions. Optionally, PyXtal also
accepts user-defined parameters (e.g., cell parameters, minimum distances and Wyckoff positions).
In general, PyXtal serves three purposes: (1) to generate custom structures, (2) to modulate the
structure by symmetry relations, (3) to interface the existing structure prediction codes that require the
generation of random symmetric structures. In addition, we provide several utilities that facilitate the
analysis of structures, including symmetry analysis, geometry optimization, and simulations of powder
X-ray diffraction (XRD). Full documentation of PyXtal is available at https://pyxtal.readthedocs.io.
Program summary
Program Title: PyXtal
CPC Library link to program files: https://doi.org/10.17632/wfyxyhjzwx.1
Licensing provisions: MIT [1]
Programming language: Python 3
Nature of problem: Knowledge of structure at the atomic level is the key to understanding materials’
properties. Typically, the structure of a material can be determined either from experiment (such
as X-ray diffraction, spectroscopy, microscopy) or from theory (e.g., enhanced sampling, structure
prediction). In many cases, the structure needs to be solved iteratively by generating a number of
trial structure models satisfying some constraints (e.g., chemical composition, symmetry, and unit cell
parameters). Therefore, it is desirable to have a computational code that is able to generate such trial
structures in an automated manner.
Solution method: The PyXtal package is able to generate many possible random structures for both
atomic and molecular systems with all possible symmetries. To generate the trial structure, the
algorithm can either start with picking the symmetry sites randomly from high to low multiplicities,
or use sites that are predefined by the user. For molecules, the algorithm can automatically detect the
molecules’ symmetry and place them into special Wyckoff positions while satisfying their compatible
site symmetry. With the support of symmetry operations for point, rod, layer and space groups, PyXtal
is suitable for the computational modeling of systems from zero, one, two, and three dimensional bulk
crystals.
References:
[1] https://opensource.org/licenses/MIT

© 2021 Elsevier B.V. All rights reserved.
✩ The review of this paper was arranged by Prof. D.P. Landau.
✩ This paper and its associated computer program are available via the
omputer Physics Communication homepage on ScienceDirect (http://www.
ciencedirect.com/science/journal/00104655).
∗ Corresponding author.
E-mail address: qiang.zhu@unlv.edu (Q. Zhu).

ttps://doi.org/10.1016/j.cpc.2020.107810
010-4655/© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Knowing the atomic structure is the key to understanding
the properties of materials. Ideally, the full atomic structure
can be experimentally determined through single crystal X-ray
diffraction. If a single crystal sample is not available, only partial

https://doi.org/10.1016/j.cpc.2020.107810
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107810&domain=pdf
https://pyxtal.readthedocs.io
https://doi.org/10.17632/wfyxyhjzwx.1
https://opensource.org/licenses/MIT
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:qiang.zhu@unlv.edu
https://doi.org/10.1016/j.cpc.2020.107810

S. Fredericks, K. Parrish, D. Sayre et al. Computer Physics Communications 261 (2021) 107810

s
t
s
m
s
a
t
c
s
s
f
p
c
p
(
e
A
f

i
n
s
g
c
p
a
p
a
s
p
1
t
p
i
a
m

e
o
b
a
o
u
g
w
1
w
(
a
a
c
e
t
e
p
c

i
c
i
d
c
a
e
Z
w

i
c
i
t

tructural information can be extracted from various charac-
erizations, such as powder X-ray diffraction/absorption, Raman
pectroscopy, nuclear magnetic resonance, and electron
icroscopy. Based on this partial structural information (e.g.,
ymmetry, unit cell), a number of trial structures are constructed
nd optimized at their corresponding thermodynamic condi-
ions. The simulated pattern for each relaxed structure is then
ompared with the observed one. By doing this iteratively, the
tructure can be finally resolved. It has been previously demon-
trated that structures can be predicted computationally using
irst-principles [1,2]. The basic idea of computational structure
rediction is to guess the correct crystal structure under spe-
ific conditions by computationally sampling a wide range of
ossible structures via different global optimization techniques
e.g., random search [3], metadynamics [4], basin hopping [5],
volutionary algorithms [6,7], particle swarm optimization [8]).
fter many attempts, the most energetically stable structure
ound is the one most likely to exist.

For structure determination from either partial experimental
nformation or pure computation, a number of trial structures are
eeded. It is generally believed that by beginning with already-
ymmetric structures, fewer attempts are needed to find the
lobal energy minimum [3,9]. For inorganic crystals, symmetry
onstraints have been encoded in many computational structure
rediction codes such as AIRSS [3], USPEX [9], CALYPSO [10]
nd XtalOpt [7]. For a given crystal with symmetry, the atomic
ositions are classified by Wyckoff positions (WP) [11]. Two
pproaches are used to place the atoms into the Wyckoff sites
o that the structure satisfies the desired symmetry. One is to
re-generate a set of WPs and then add atoms to these sites [10,
2,13]. The other is to place atoms to the most general WPs and
hen merge them to the special sites if there exist close atomic
airs [9,14]. This will be repeated until the desired stoichiometry
s achieved. The development of new computational tools has
llowed the structures of many new and increasingly complex
aterials to be anticipated [2].
For the prediction of organic crystals, the role of symmetry is

ven more pronounced. In the periodically conducted Blind Tests
f organic crystal structure prediction organized by the Cam-
ridge Crystallographic Data Centre [15], most research groups
ttempted to reduce the structure generation to a limited range
f space group choices with one molecule in the asymmetric
nit (Z ′). This is based on a statistical analysis that most or-
anic crystals tend to crystallize in only a few space groups
ith Z ′ = 1 [16]. Currently, there exist a few free packages [17,
8] which allow the generation of random molecular crystals
ith Z ′ = 1. Combined with modern structure search algorithms
including quasi-random [19], parallel tempering [20], genetic
lgorithms [21], and evolutionary methods [14]), one can perform
n extensive search for the plausible structures. Their energies
an then be evaluated with different energy models from the
mpirical to ab-initio level. A recent blind test [15] has shown
hat the combination of effective structure generation and an
nergy ranking scheme can predict not only the structure of sim-
le rigid molecules, but also the molecules representing real-life
hallenges.
Despite the fact that many programs have their own built-

n functions to generate crystals with specific space groups or
lusters with specific point groups, most of these functions are
mplemented in the main packages and cannot work in a stan-
alone manner. To our knowledge, there is only one open source
ode Randspg [12] that provides the interface to generate 3D
tomic crystal structures. Similarly, most molecular crystal gen-
rators only support molecules occupying the general WPs with
′ = 1, except for the recent development of Genarris 2.0 [22]

hich is able to deal with structures having a non-integer value

2

Fig. 1. PyXtal structure generation flowchart. Generation is based on inputs from
the user.

of Z ′ (meaning molecules can occupy special WPs). So far, there
s no single code which enables the generation of molecular
rystals with arbitrary Z ′, varying from fractional to multiple
ntegers. While 90% of organic crystals in the Cambridge Struc-
ure Database (CSD) have Z ′=1, recent advances in experimental
polymorph searching and crystal engineering highlight the rich
variety of multi-component crystals (co-crystals, salts, solvates,
etc.) as well as crystal structures with multiple molecules in
the asymmetric unit. For instance, many well-studied molecules,
including aspirin [23], resorcinol [24], coumarin [25], glycine [26],
DDT [27], and ROY [28], were found to adopt crystal structures
with Z ′ > 1. Lastly, neither Randspg nor Genarris supports
the generation of low dimensional crystals, which require ex-
plicit consideration of layer/rod/point-group (instead of space-
group) symmetry operations. Collectively, these cases motivated
us to develop a standalone Python program called PyXtal which
can be used for customized structure generation for different-
dimensional systems, including atomic clusters and 1D/2D/3D
atomic/molecular crystals. In Sections 2 and 3 , we will detail the
algorithms and the software dependencies. The basic usages of
PyXtal will be introduced in Section 4, followed by two example
studies using PyXtal in the context of structure prediction in Sec-
tion 5. Finally, we summarize the features of PyXtal and conclude
the manuscript in Section 6.

2. Algorithms

The core algorithms in PyXtal involve (1) generation of random
symmetric crystals and (2) modulation of structures according to
the symmetry relation.

2.1. Structure generation

PyXtal adopts the following algorithm to generate a trial struc-
ture. First, the user inputs their choice of dimension (0, 1, 2, or
3), symmetry group, stoichiometry, and relative volume of the
unit cell. Optionally, additional parameters may be chosen that
constrain the unit cell and maximum inter-atomic distance toler-
ances. Next, PyXtal checks if the stoichiometry is compatible with
the choice of symmetry group. If the check passes, trial structure
generation begins. Fig. 1 shows a flowchart of the algorithm.

Each step has a maximum number of attempts. If the genera-
tion attempt fails at any point, the algorithm will revert progress

S. Fredericks, K. Parrish, D. Sayre et al. Computer Physics Communications 261 (2021) 107810

f
a
i
p
g
n
i
w
u
u
s

2

c
d
p
F
m
w
b
p
t
s
f

i
P
t
A
O
F

n
t
b
c
t
r
s
s
a

2

u
l
c
d

or the current step and try again until the maximum limit of
ttempts is encountered. This ensures that the algorithm stops
n a reasonable amount of time while still giving each generated
arameter a chance for success. For certain inputs, structure
eneration may take many attempts or fail after the maximum
umber of attempts. Typically, these failures indicate that the
nput parameters are not likely to produce a realistic structure
ithout fine-tuning the atomic positions. In such cases, a larger
nit cell volume or a smaller distance tolerance may prevent fail-
re. Below we discuss the technical details implemented during
tructure generation.

.1.1. Wyckoff compatibility checking
Before generating a trial structure, PyXtal performs a WP

ompatibility check. Since WPs in different space groups have
ifferent multiplicities, this is a required step that ensures com-
atibility between a stoichiometry and its assigned space group.
or example, consider the space group Pn-3n (#222), which has a
inimum WP of 2a, followed by 6b. To create a crystal structure
ith 4 atoms in the unit cell for this symmetry group, the com-
ination of Wyckoff positions must add up to 4. Here, this is not
ossible. The position 2a cannot be repeated, because it falls on
he exact coordinates (1/4, 1/4, 1/4) and (3/4, 3/4, 3/4). A second
et of atoms in the 2a position would overlap the atoms in the
irst position, which is physically impossible.

Thus, from our previous discussion, it is necessary to check the
nput stoichiometry against the WPs of the desired space group.
yXtal implements this by iterating through all possible combina-
ions of WPs within the confinements of the given stoichiometry.
s soon as a valid combination is found, the check returns True.
therwise, if no valid combination is found, the check returns
alse and the generation attempt raises a warning.
Some space groups allow valid combinations of WPs, but do

ot permit many (or any) positional degrees of freedom within
he structure. It may also be the case that the allowed com-
inations result in atoms that are too close together. In these
ases, PyXtal will attempt generation as usual: it will continue
o search for a compatible structure until the maximum limit is
eached, or until a successful generation occurs. In the event that
tructure generation repeatedly fails for a given combination of
pace group and stoichiometry, the user should make note and
void the combination going forward.

.1.2. Lattice generation
The first step in PyXtal’s structure generation is the choice of

nit cell. Depending on the symmetry group, a specific type of
attice must be generated. For all crystals, the conventional cell
hoice is used to avoid ambiguity. Lattice information can be pre-
efined by the user in either vector form (a, b, c , α, β , γ) or in

the form of a 3 × 3 matrix. If lattice information is not provided,
PyXtal will attempt to estimate the volume based on the chemical
composition, resulting in the generation of a random unit cell
which satisfies the input constraints.

The most general case is the triclinic cell, from which other
cell types can be obtained by applying certain constraints. To
generate a triclinic cell, 3 real numbers are randomly chosen
(using a Gaussian distribution centered at 0) as the off-diagonal
values for a 3 × 3 shear matrix. By treating this shear matrix as
a cell matrix, one obtains 3 lattice angles. For the lattice vector
lengths, a random 3-vector between (0, 0, 0) and (1, 1, 1) is
chosen (using a Gaussian distribution centered at (0.5, 0.5, 0.5)).
The relative values of the x, y, and z coordinates are used for a, b,
and c respectively and scaled based on the required volume. For
other cell types, any free parameters are obtained using the same
methods as for the triclinic case, and then constraints are applied.
In the tetragonal case, for example, all angles will be fixed to 90
3

degrees. Thus, only a random vector is needed to generate the
lattice constants.

For low-dimensional systems, not all three unit cell axes are
periodic. Therefore, the algorithm must be altered slightly, as
described below.

For the 2D case, we chose c to be the non-periodic axis
by default. For layer groups 3–7 (P112, P11m, P11a, P112/m,
P112/a), c is also the unique axis; for all other layer groups, a
is the unique axis. The length of c (the crystal’s ‘‘thickness") is
an optional parameter which can be specified by the user. If no
thickness is given, the algorithm will automatically compute a
random value based on a Gaussian distribution centered at the
cubic root of the estimated volume. In other words, c will have
the same length as the other axes on average.

For the 1D case, c is the periodic axis by default. For rod groups
3–7 (P221, Pm11, Pc11, P2/m11, P2/c11), a is the unique axis;
for all other rod groups, c is the unique axis. Instead of choosing
a value for the thickness, we constrain the unit cell based on
the cross-sectional area of the a–b plane. This area can be either
specified by the user or generated randomly. As with the 2D
and 3D cases, there is no preference for any axis to be longer or
shorter than the others unless specified by the user.

For 0D clusters, we constrain the atoms to lie within either a
sphere or an ellipsoid, depending on the point group. For spher-
ically or polyhedrally symmetric point groups (C1, Ci, D2, D2h, T ,
Th, O, Td, Oh, I , Ih), we define a sphere centered on the origin. For
all other point groups (which have a unique rotational axis), we
define an ellipsoid with its c-axis aligned with the rotational axis.
The a- and b-axes are always of equal length to ensure rotational
symmetry about the c-axis. The relative lengths for the ellipsoidal
axes are chosen in the same way as for the 3D tetragonal case.
In order for the 0D case to be compatible with the 1D, 2D, and
3D cases, we encode the spheres and ellipsoids as lattices (a
cubic lattice for a sphere, or tetragonal lattice for an ellipsoid).
Then, when generating atomic coordinates, we check whether the
randomly chosen point lies within the sphere or ellipsoid. If not,
we simply retry until it does.

2.1.3. Wyckoff position selection and merging
The central building block for crystals in PyXtal is the WP.

Once a space group and lattice are chosen, WPs are inserted
one at a time to add structure. In PyXtal, we closely follow the
algorithm provided in Ref. [9] to place the atoms in different WPs.
In general, PyXtal starts with the largest available WP, which is
the general position of the symmetry group. If the number of
atoms required is equal to or greater than the size of the general
position, the algorithm proceeds. If fewer atoms are needed, the
next largest WP (or set of WPs) is chosen, in order of descending
multiplicity. This is done to ensure that larger positions are pre-
ferred over smaller ones; this reflects the greater prevalence of
larger multiplicities seen in nature.

Once a WP is chosen, a random 3-vector between (0, 0, 0) and
(1, 1, 1) is created. We call this the generating point for the WP.
Using the closest projection of this vector onto the WP (the WP
being a periodic set of points, lines, or planes), one obtains a set
of coordinates in real space (the atomic positions for that WP).
Then, the distances between these coordinates are checked. If the
atom–atom distances are all greater than a pre-defined limit, the
WP is kept and the algorithm continues. If any of the distances are
too small, it is an indication that the WP would not occur with the
chosen generating point. In this case, the coordinates are merged
together into a smaller WP, if possible. This merging continues
until the atoms are no longer too close together (see Fig. 2).

To merge into a smaller position, the original generating point
is projected into each of the remaining WPs. The WP with the
smallest translation between the original point and the trans-
formed point is chosen, provided that (1) the new WP is a subset

S. Fredericks, K. Parrish, D. Sayre et al. Computer Physics Communications 261 (2021) 107810

d

a
b
(
c
T
t
0
t
f
(
s
o
o
a

h
d
w
l
a
t

t
i
u
t
r

p
t
a
i
a
p
p
o
(
c

e
f
t
p
t
s

Fig. 2. Wyckoff Position Merging Example. Shown are possible merging of the
general position 8c of the 2D point group 4 mm. Moving from 8c to 4b (along
the solid arrows) requires a smaller translation than from 8c to 4a (along the
dashed arrows). Thus, if the atoms in 8c were too close together, PyXtal would
merge them into 4b instead of 4a. The atoms could be further merged into
position 1o by following the arrows shown in the bottom right image.

of the original one, and (2) the new points are not too close
to each other. If the atoms are still too close together after all
possible mergings, the WP is discarded and another attempt is
made.

Once a WP is successfully filled, the inter-atomic distances
between the current WP and the already-added WPs are checked.
If all distances are acceptable, the algorithm continues. More WPs
are then added as needed until the desired number of atoms is
reached. At this point, either a satisfactory structure has been
generated, or the generation has failed. If the generation fails,
then choosing either smaller distances tolerances or a larger
volume factor might increase the chances of success. However,
altering these quantities too drastically may result in less real-
istic crystals. Common sense and system-specific considerations
should be applied when adjusting these parameters.

2.1.4. Distance checking
To produce structures with realistic bonds and bond lengths,

the generated atoms should not be too close together. In PyXtal,
this means that, by default, two atoms should be no closer than
the covalent bond length between them. However, for a given
application, the user may decide that shorter or longer cutoff
distances are appropriate. For this reason, PyXtal has a custom tol-
erance matrix class which allows the user to define the distances
allowed between any two atomic species. There are also options
to use the metallic bond lengths, or to simply scale the allowed
distances by some factor.

Because crystals have periodic symmetry, any point in a crystal
actually corresponds to an infinite lattice of points. Likewise, any
separation vector between two points actually corresponds to
an infinite number of separation vectors. For the purposes of
distance checking, only the shortest of these vectors is relevant.
When a lattice is non-Euclidean, the problem of finding shortest
distances with periodic boundary conditions is non-trivial, and
the general solution can be computationally expensive [29]. So in-
stead, PyXtal uses an approximate solution based on assumptions
about the lattice geometry:
4

Fig. 3. Distorted Unit Cell. Due to the cell’s high level of distortion, the closest
neighbors for a single point lie more than two unit cells away. In this case,
the closest point to the central point is located two cells to the left and one
cell diagonal-up. To find this point using PyXtal’s distance checking method, a
5 × 5 × 5 unit cell will be created. For this reason, a limit is placed on the
istortion of randomly generated lattices.

For any two given points, PyXtal first considers only the sep-
ration vector which lies within the ‘‘central’’ unit cell spanning
etween (0, 0, 0) and (1, 1, 1). For example, if the original two
fractional) points are (−8.1, 5.2, −4.8) and (2.7, −7.4, 9.3), one
an directly obtain the separation vector (−10.8, 12.6, −14.1).
his vector lies outside of the central unit cell, so we translate by
he integer-valued vector (11.0, −12.0, 15.0) to obtain (0.2, 0.6,
.9), which lies within the central unit cell. PyXtal also considers
hose vectors lying within a 3 × 3 × 3 supercell centered on the
irst vector. In this example, these would include (1.2, 1.6, 1.9),
−0.8, −0.4, −0.1), (−0.8, 1.6, 0.9), etc. This gives a total of 27
eparation vectors to consider. After converting to absolute co-
rdinates (by dotting the fractional vectors with the cell matrix),
ne can calculate the Euclidean length of each of these vectors
nd thus find the shortest distance.
Note that this does not work for certain vectors within some

ighly distorted lattices (see Fig. 3). Often, the shortest Euclidean
istance is accompanied by the shortest fractional distance, but
hether this is the case or not depends on how distorted the

attice is. However, because randomly generated lattices in PyXtal
re required to have no angles smaller than 30 degrees or larger
han 150 degrees, this is not an issue.

For two given sets of atoms (for example, when cross-checking
wo WPs in the same crystal), one can calculate the shortest
nter-atomic distances by applying the above procedure for each
nique pair of atoms. This only works if it has already been es-
ablished that both sets on their own satisfy the needed distance
equirements.

Thanks to symmetry, one needs not calculate every atomic
air between two WPs. For two WPs, A and B, it is only necessary
o calculate either (1) the separations between one atom in A
nd all atoms in B, or (2) one atom in B and all atoms in A. This
s because the symmetry operations which duplicate a point in
WP also duplicate the separation vectors associated with that
oint. This is also true for a single WP; for example, in a Wyckoff
osition with 16 points, only 15 (the number of pairs involving
ne atom) distance calculations are needed, as opposed to 120
the total number of pairs). This can significantly speed up the
alculation for larger WPs.
For a single WP, it is necessary to calculate the distances for

ach unique atom–atom pair after symmetry reduction, but also
or the lattice vectors for each atom by itself. Since the lattice is
he same for all atoms in the crystal, this check only needs to be
erformed on a single atom of each species. For atomic crystals,
his just means ensuring that the generated lattice vectors are
ufficiently long.

S. Fredericks, K. Parrish, D. Sayre et al. Computer Physics Communications 261 (2021) 107810

b
o

p
i
c
b
b
s
c
t
t
t
c
m
W
c
m
i
c
m
o
m
z
p
a
u

2

c
S
a
c
c
l
a
o

(
m
T
a
W

o
G
e

t
m

Fig. 4. Dependence of shortest distances on molecular orientation. Rotation
of the molecules about the a or b (but not the c) axis would cause the
enzene molecules to overlap. PyXtal checks for overlap whenever a molecular
rientation is altered.

For molecules, the process is slightly more complicated. De-
ending on the molecule’s orientation within the lattice, the
nter-atomic distances can change. Additionally, one must cal-
ulate the distances not just between molecular centers, but
etween every unique atom–atom pair. This increases the num-
er of needed calculations in rough proportion to the square of
ize of the molecules. As a result, this is typically the largest time
ost for generation of molecular crystals. The issue of checking
he lattice is also dependent on molecular orientation. Thus,
he lattice must be checked for every molecular orientation in
he crystal. To do this, the atoms in the original molecule are
hecked against the atoms in periodically translated copies of the
olecule. Here, standard atom–atom distance checking is used.
hile several approximate methods for inter-molecular distance

hecking exist, their performance is highly dependent on the
olecular shape and number of atoms. The simplest method

s to model the molecule as a sphere, in which case only the
enter–center distances are needed. This works well for certain
olecules, like buckminsterfullerene, which have a large number
f atoms and are approximately spherical in shape. But a spherical
odel works poorly for irregularly shaped molecules like ben-
ene (see Fig. 4), which may have short separations along the
erpendicular axis, but must be further apart along the planar
xes. We provide spherical distance checking as an option for the
ser, but direct atom–atom distance checking is used by default.

.1.5. Molecular orientations
In crystallography, atoms are typically assumed to be spheri-

ally symmetric point particles with no well-defined orientation.
ince the object occupying a crystallographic WP is usually an
tom, it is further assumed that the object’s symmetry group
ontains the WP’s site symmetry as a subgroup. If this is the
ase, the only remaining condition for occupation of a WP is the
ocation within the unit cell. However, if the object is instead
molecule, then the WP compatibility is also determined by
rientation and shape.
To handle the general case, one must ensure that the object is

1) sufficiently symmetric, and is (2) oriented such that its sym-
etry operations are aligned with the Wyckoff site symmetry.
he result is that objects with different point group symmetries
re only compatible with certain WPs. For a given molecule and
P, one can find all valid orientations as follows:
1. Determine the molecule’s point group and point group

perations. This is currently handled by Pymatgen’s built-in Point-
roupAnalyzer class [30], which produces a list of symmetry op-
rations for the molecule.
2. Associate an axis to every symmetry operation. For a ro-

ation or improper rotation, we use the rotational axis. For a
irror plane, we use an axis perpendicular to the plane. Note
5

that inversional symmetry does not add any constraints, since
the inversion center is always located at the molecule’s center
of mass.

3. Choose up to two non-collinear axes from the site sym-
metry and calculate the angle between them. Find all conjugate
operation pairs (with the same order and type) in the molecular
point symmetry with the same angle between the axes, and
store the rotation which maps the pairs of axes onto each other.
For example, if the site symmetry were mmm, then we could
choose two reflectional axes, say the x- and y-axes or the y-
and z-axes. Then, we would look for two reflection operations in
the molecular symmetry group. If the angle between these two
operation axes is also 90 degrees, we would store the rotation
that maps the two molecular axes onto the Wyckoff axes. We
would also do this for every other pair of reflections with 90
degrees separating them.

4. For a given pair of axes, there are two rotations which can
map one onto the other. There is one rotation which maps the
first axis directly onto the second and another rotation which
maps the first axis onto the opposite of the second axis. Depend-
ing on the molecular symmetry, the two resulting orientations
may or may not be symmetrically equivalent. So, using the list
of rotations calculated in step 3, remove redundant orientations
which are equivalent to each other.

5. For each found orientation, check that the rotated molecule
is symmetric under the Wyckoff site symmetry. To do this, simply
check the site symmetry operations one at a time by applying
each operation to the molecule and checking for equivalence with
the untransformed molecule.

6. For the remaining valid orientations, store the rotation ma-
trix and the number of degrees of freedom. If two axes were used
to constrain the molecule, then there are no degrees of freedom. If
one axis is used, then there is one rotational degree of freedom,
and we store the axis about which the molecule may rotate. If
no axes are used (because there are only point operations in the
site symmetry), then there are three (stored internally as two)
degrees of freedom, meaning the molecule can be rotated freely
in 3 dimensions.

PyXtal performs these steps for every WP in the symmetry
group and stores the nested list of valid orientations. When a
molecule must be inserted into a WP, an allowed orientation is
randomly chosen from this list. This forces the overall symmetry
group to be preserved since symmetry-breaking WPs do not
have any valid orientations to choose from. The above algorithm
is particularly useful to generate molecular crystals with non-
integer number of molecules in the asymmetric unit, which occur
frequently for molecules with high point group symmetry.

One important consideration is whether a symmetry group
will produce inverted copies of the constituent molecules. In
many cases, a chiral molecule’s mirror image will possess dif-
ferent chemical or biological properties [31]. For pharmaceutical
applications in particular, one may not want to consider crystals
containing mirror molecules. By default, PyXtal does not generate
crystals with mirror copies of chiral molecules. The user can
choose to allow inversion if desired.

2.2. Structure modulation

In many applications, it is often necessary to derive a new
structure from the parent structure models. The main concept
is to start from a simple, highly symmetrical crystal structure
and to derive more complicated structures by applying a fairly
small distortion or chemical substitution. Noticeable examples
include non-reconstructive phase transitions and catalogue of
structural prototype. In structure prediction methods such as
simulated annealing and evolutionary algorithms, the generation

S. Fredericks, K. Parrish, D. Sayre et al. Computer Physics Communications 261 (2021) 107810

i
(
o
W
a
(
p
s
o
I

3

p
S
o
m
u
p
t
t
t
m

4

l
u

4

f

Fig. 5. A schematic example to illustrate group–subgroup transition from Fd-3m
(8a) to I41/amd (4a).

of new structures are usually obtained by applying a random
perturbation on both lattice vectors and atomic coordinates. In
this context, the introduction of symmetry relation can reduce
the search space greatly. PyXtal provides two ways of structure
manipulation based on the symmetry constraints.

2.2.1. Perturbation on asymmetric unit
The most straightforward way to preserve the crystal sym-

metry is to perturb only the atoms in the asymmetric unit. For
atomic crystals, we only apply a random perturbation to each
Wyckoff site if it has free coordinates. For molecular crystals, the
whole molecule can be reoriented along the allowed rotational
axes. If the molecule has flexible rotors, additional perturbation
on these dihedral angles can be applied as well. Optionally, the
cell parameters can be changed as well based on the symmetry
constraints. Applying the symmetry-preserved mutation can be
used to effectively search for molecular crystals in a constrained
space group symmetry.

2.2.2. Group–subgroup transition
When one crystal is converted to another by a phase transi-

tion, the symmetries of the crystal structures are usually related.
The so called group–subgroup has been well discussed mathe-
matically. It is possible to list all possible subgroup types for every
space-group type and to specify the subgroups in a general way
by formulae. The international crystallography volume [32], as
well as the online Bilbao Crystallographic Server [33], have pro-
vided the symmetry relations between a given space group G and
ts possible maximal translationengleiche (t) and klassengleiche
k) subgroups H . Ideally, to complete the transition from G to H ,
ne needs to know the cell transformation matrix, as well as the
yckoff splitting scheme. For a given crystal structure, PyXtal

llows to either systematically extract all possible transformation
subject to a cutoff index of symmetry reduction), or randomly
ick one possible transformation path between G and H . Fig. 5
hows an example to illustrate the transition from a structure
ccupying 8a in Fd-3m to another structure occupying 4a in
41/amd symmetry.

. Dependencies

All of the code is written in Python 3. Like many other Python
ackages, it relies on several external libraries. NumPy [34],
ciPy [35] and Pandas [36] are required for the general purposes
f scientific computing and data processing. In addition, two
aterials science libraries, Pymatgen [30] and Spglib [37], were
sed to facilitate the symmetry analysis. Optionally, the code
rovides an interface with Openbabel [38] if the users wants
o import the molecules from additional file formats other than
he plain xyz format. An ASE [39] interface is also enabled if
he user wants to do further structure analysis such as structure
anipulation or geometry optimization based on ASE.
6

. Example usages

PyXtal can be either used as a binary executable or stand-alone
ibrary for use in Python scripts. Below we introduce the basic
sages in brief.

.1. Command line utilities

Currently, several utilities are available to access the different
unctionality of PyXtal. They include:

1. pyxtal_symmetry.py
2. pyxtal_main.py
3. pyxtal_test.py

First, the users are advised to run the pyxtal_test.py to quickly
test if all modules are working correctly after the installation. The
rest of the utilities are designed for different analysis purposes.

The pyxtal_symmetry.py utility allows one to easily access the
symmetry information for a given symmetry group using either
the group name or international number.

$ pyxtal_symmetry.py -s 64
-- Spacegroup --# 64 (Cmce)--
16gsite symm: 1
8fsite symm: m..
8esite symm: .2.
8dsite symm: 2..
8csite symm: -1
4bsite symm: 2/m..
4asite symm: 2/m..

Listing 1: Example usage of the pyxtal_symmetry.py utility.

The pyxtal_main.py can be used to directly generate one trial
structure based on the given symmetry group and chemical com-
position. Below, we give the example scripts to generate different
types of symmetric objects, including

1. a random C60 cluster with Ih point group symmetry;
2. a trial diamond structure with Fd-3m space group symme-

try;
3. a crystal of two C60 molecules per primitive unit cell with

Cmc21 symmetry

$ pyxtal_main.py -e C -n 60 -d 0 -s Ih
$ pyxtal_main.py -e C -n 2 -s 227
$ pyxtal_main.py -m -e C60 -n 4 -s 36

Listing 2: Example usages of the pyxtal_main utility.

The generated structures will be saved to text files in cif format
for crystals and xyz format for clusters.

4.2. Structure modulation and analysis

In addition to structure generation and manipulation, PyXtal
also provides several other utilities, such as XRD analysis. Below,
we give the example scripts to (1) generate a cubic crystal, (2)
perturb the structure to lower the crystal symmetry by following
the group–subgroup relation, and (3) compare two PXRD between
two structures. Finally, Fig. 6 displays the simulated XRDs be-
tween two structures, where the similarity between two XRDs
are also given according to the correlation function as suggested
previously [40,41]. Note the split of XRD peaks.

from pyxtal import pyxtal
from pyxtal.XRD import Similarity

generate a random crystal
C1 = pyxtal()
C1.from_random(3, 227, [’C’], [8])

S. Fredericks, K. Parrish, D. Sayre et al. Computer Physics Communications 261 (2021) 107810

L
a

4

w
w
a
a

w
l
g
d
t
t
a
d
a
2
o
d
f

Fig. 6. The comparison of simulated X-ray diffraction patterns between the
original structure and the perturbed structure from the group–subgroup relation.

perturbation without changing the symmetry
C2 = C1.copy()
C2.apply_perturbation()

lower the symmetry from cubic to tetragonal
C2 = C1.subgroup_once(H=141)

Compute the XRD
xrd1 = C1.get_XRD()
xrd2 = C2.get_XRD()

Compare two structures by XRD
p1 = xrd1.get_profile()
p2 = xrd2.get_profile()
s = Similarity(p1, p2, x_range=[15, 90])
s.show(filename=’xrd-comparison.png’)

isting 3: Example usages of PyXtal’s structural manipulation
nd analysis utilities

.3. Structure prediction

PyXtal allows the user to generate random crystal structures
ith given symmetry constraints. There are several parameters
hich can be specified, but only a few are necessary. Below is
n example script to generate 100 random clusters for 36 carbon
toms.
from pyxtal import pyxtal
from random import choice

pgs = range(1, 33)
clusters = []
for i in range(100):

while True:
pg = choice(pgs)
cluster = pyxtal()
cluster.from_random(0, pg, [’C’], [36],

force_pass=True)
if cluster.valid:

clusters.append(cluster)
break

Listing 4: A Python script to generate 100 random C36 clusters

With the generated structures, one can perform further anal-
ysis such as geometry optimization and powder X-ray diffrac-
tion pattern simulation. PyXtal also provides the preliminary
modules for such tasks. Alternatively, the trial structures can be
easily adapted to the structural objects for other libraries, such
as ASE [39] or Pymatgen [30], or be dumped to text files in cif,
xyz, or POSCAR format. More examples can be found in the online
documentation https://pyxtal.readthedocs.io.

5. Applications

Our primary purpose for developing PyXtal is to provide more
likely trial structures to solve the structural determination prob-
lem. It can be useful for at least two cases. First, one can generate
7

the trial structures based on the partial information determined
from experiment (e.g., unit cell, symmetry, composition). Sec-
ondly, it can be used to determine the ground state structure in a
first-principle manner based on global optimization. It has been
shown [6,10,12] that by beginning with already-symmetric struc-
tures, fewer attempts are needed to find the global energy mini-
mum. To demonstrate the general utility of pre-symmetrization,
we performed a number of benchmarks for different systems.
Below we give two examples for the global structural search
on the low-energy Lennard-Jones (LJ) clusters and carbon/silicon
allotropes.

5.1. Clusters with empirical Lennard-Jones potential

Finding the ground state of LJ clusters of given size is an
established benchmark for global optimization methods [5]. Here,
it shows that local optimization, combined with randomly gener-
ated symmetric clusters, is sufficient to solve the problem with
small sizes of LJ clusters. For the purposes of this benchmark,
we focus on three cluster sizes, namely 38, 55, and 75. For each
cluster size, 20,000 structures were generated: 10,000 with no
pre-defined symmetry and 10,000 with symmetry chosen ran-
domly from among PyXtal’s 56 built-in point groups. A potential
of 4(1

r12
−

1
r6
) was assigned to each atom–atom pair. Each struc-

ture was locally optimized using the conjugate gradient (CG)
method in SciPy’s optimize.minimize function [35]. As shown in
Fig. 7, the ground state was found much more frequently when
the initial structures possessed some point group symmetry. With
pre-symmetrization, the ground state was found 278 times for
size 38 clusters, 73 times for size 55, and 1 time for size 75.
Without pre-symmetrization, the ground state was not found at
all. Though the numbers of hits on the ground states may change
in another run, the statistical rule still holds. Second, while the
ground state is found more frequently with pre-symmetrization,
the average energy is higher. This is because pre-symmetrization
spans the possible structure space more effectively, while purely
random structures are more clustered around a specific energy
range.

5.2. Carbon and silicon crystals with ab-initio calculations

We also combined PyXtal with ab-initio codes to search for
the elemental allotropes of carbon and silicon at 0 K and ambient
pressure. 1000 random structures each were generated for 2, 4, 6,
8, and 16 atoms in the primitive unit cell. A random space group
between 2 and 230 was chosen for each structure. This gave a
total of 5000 structures for each element. Each structure was
optimized using the PBE–GGA functional [42] as implemented in
the VASP code [43,44], following a multiple-step strategy from
low, normal, to accurate precision. The final geometries were then
calculated with an energy cutoff of 600 eV and 0.15 K-spacing. For
carbon, the expected structures of diamond and graphite were
found frequently in each run, as well as londsdaelite, sp3 carbon
ith various ring topologies, and various multi-layer graphite-

ike structures. Similarly, our simulation on silicon yielded the
round state of cubic diamond structures for each of the runs with
ifferent numbers of atoms per primitive unit cell, demonstrating
hat adding symmetry constraints is beneficial to quickly identify
he low-energy structures with high symmetry. Moreover, it is
gain interesting to analyze the energy distribution of the ran-
omly generated structures as shown in Fig. 8. For both carbon
nd silicon, the energy landscape appears to be narrower for size-
primitive cells. It appears that beyond about 4, the number

f atoms in the primitive cell has little influence on the energy
istribution. This again suggests that pre-symmetrization is an ef-
ective means to prevent the clustering of glassy structures found

https://pyxtal.readthedocs.io

S. Fredericks, K. Parrish, D. Sayre et al. Computer Physics Communications 261 (2021) 107810
Fig. 7. Energy distribution for Lennard Jones clusters with the sizes of (a) 38,
(b) 55 and (c) 75. The insets are the corresponding ground state geometries.

Fig. 8. The box and whisker plots for the energy distribution of the randomly
generated (a) carbon and (b) silicon crystals with 2, 4, 6, 8, 16 atoms per
primitive unit cell.

in pure random generations for large systems [9]. Therefore,
pre-symmetrization provides a better choice for global energy
optimization. In addition, pre-symmetrization can provide a more
diverse dataset for training machine learning force fields [45,46].

6. Conclusion

In this manuscript, we present a software package PyXtal.
The core features of PyXtal have been highlighted, with further
8

documentation available online.1 In PyXtal, the symmetry con-
straints are further refined in three ways. The first is a merging
algorithm [14] which controls the distribution of WPs through
statistical means. The second is a new algorithm for placing
molecules into special WPs. Last is the structure modulation by
the observation of the symmetry relation. This allows for more
realistic and complex structures to be generated by keeping the
symmetry as high as possible. PyXtal is not a complete structure
prediction package; it only generates the trial structures with a
given symmetry group. Other tools exist that perform structure
generation and other steps in the CSP process [3,7,9,10]. The
main goals in developing PyXtal are as follows: (1) to develop
a free, open-source Python package for the materials science
community, (2) to handle the generation of symmetric structures
described by different symmetry groups from 0D to 3D, (3) to
handle molecular WPs in a generalized manner, (4) to provide
a tool to analyze the symmetry relation. We also demonstrated
that using the pre-symmetrized structures as the starting seeding
structures can effectively improve the success rate of finding
the low energy configuration. As such, PyXtal can be interfaced
with other structure prediction codes that require the generation
of trial structures. Access to the source code and development
information are available on the GitHub page at https://github.
com/qzhu2017/PyXtal. The code is currently under version 0.1.7
at the time of writing. It is expected to update frequently. Further
development and application of the mathematical background
should enable more complex structure types to be studied in the
future.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We acknowledge the NSF, USA (I-DIRSE-IL: 1940272) and
NASA, USA (80NSSC19M0152) for their financial supports. The
computing resources are provided by XSEDE (TG-DMR180040).

References

[1] A.R. Oganov, Modern Methods of Crystal Structure Prediction, John Wiley
& Sons, 2011, http://dx.doi.org/10.1002/9783527632831.

[2] A.R. Oganov, C.J. Pickard, Q. Zhu, R.J. Needs, Nat. Rev. Mater. 4 (2019)
331–348, http://dx.doi.org/10.1038/s41578-019-0101-8.

[3] C.J. Pickard, R. Needs, J. Phys. Condens. Matter 23 (5) (2011) 053201,
http://dx.doi.org/10.1088/0953-8984/23/5/053201.

[4] R. Martoňák, A. Laio, M. Parrinello, Phys. Rev. Lett. 90 (7) (2003) 075503,
http://dx.doi.org/10.1103/PhysRevLett.90.075503.

[5] D.J. Wales, J.P.K. Doye, J. Phys. Chem. A 101 (28) (1997) 5111–5116,
http://dx.doi.org/10.1021/jp970984n.

[6] A.R. Oganov, C.W. Glass, J. Chem. Phys. 124 (24) (2006) 244704, http:
//dx.doi.org/10.1063/1.2210932.

[7] D.C. Lonie, E. Zurek, Comput. Phys. Comm. 182 (2) (2011) 372–387, http:
//dx.doi.org/10.1016/j.cpc.2010.07.048.

[8] Y. Wang, J. Lv, L. Zhu, Y. Ma, Phys. Rev. B 82 (9) (2010) 094116, http:
//dx.doi.org/10.1103/PhysRevB.82.094116.

[9] A.O. Lyakhov, A.R. Oganov, H.T. Stokes, Q. Zhu, Comput. Phys. Comm. 184
(4) (2013) 1172–1182, http://dx.doi.org/10.1016/j.cpc.2012.12.009.

[10] Y. Wang, J. Lv, L. Zhu, Y. Ma, Comput. Phys. Comm. 183 (10) (2012)
2063–2070, http://dx.doi.org/10.1016/j.cpc.2012.05.008.

[11] H. Wondratschek, M.I. Aroyo, Int. Tables Crystallogr. A (2016) 12–21.
[12] P. Avery, E. Zurek, Comput. Phys. Comm. 213 (2017) 208–216, http://dx.

doi.org/10.1016/j.cpc.2016.12.005.
[13] R. Domingos, K.M. Shaik, B. Militzer, Phys. Rev. B 98 (2018) 174107,

http://dx.doi.org/10.1103/PhysRevB.98.174107.

1 https://pyxtal.readthedocs.io.

https://github.com/qzhu2017/PyXtal
https://github.com/qzhu2017/PyXtal
https://github.com/qzhu2017/PyXtal
http://dx.doi.org/10.1002/9783527632831
http://dx.doi.org/10.1038/s41578-019-0101-8
http://dx.doi.org/10.1088/0953-8984/23/5/053201
http://dx.doi.org/10.1103/PhysRevLett.90.075503
http://dx.doi.org/10.1021/jp970984n
http://dx.doi.org/10.1063/1.2210932
http://dx.doi.org/10.1063/1.2210932
http://dx.doi.org/10.1063/1.2210932
http://dx.doi.org/10.1016/j.cpc.2010.07.048
http://dx.doi.org/10.1016/j.cpc.2010.07.048
http://dx.doi.org/10.1016/j.cpc.2010.07.048
http://dx.doi.org/10.1103/PhysRevB.82.094116
http://dx.doi.org/10.1103/PhysRevB.82.094116
http://dx.doi.org/10.1103/PhysRevB.82.094116
http://dx.doi.org/10.1016/j.cpc.2012.12.009
http://dx.doi.org/10.1016/j.cpc.2012.05.008
http://refhub.elsevier.com/S0010-4655(20)30405-7/sb11
http://dx.doi.org/10.1016/j.cpc.2016.12.005
http://dx.doi.org/10.1016/j.cpc.2016.12.005
http://dx.doi.org/10.1016/j.cpc.2016.12.005
http://dx.doi.org/10.1103/PhysRevB.98.174107
https://pyxtal.readthedocs.io

S. Fredericks, K. Parrish, D. Sayre et al. Computer Physics Communications 261 (2021) 107810
[14] Q. Zhu, A. Oganov, C. Glass, H.T. Stokes, Acta Crystallogr. Sect. B 68 (2012)
215–26, http://dx.doi.org/10.1107/S0108768112017466.

[15] A.M. Reilly, R.I. Cooper, C.S. Adjiman, S. Bhattacharya, A.D. Boese, J.G.
Brandenburg, P.J. Bygrave, R. Bylsma, J.E. Campbell, R. Car, D.H. Case, R.
Chadha, J.C. Cole, K. Cosburn, H.M. Cuppen, F. Curtis, G.M. Day, R.A. DiStasio
Jr, A. Dzyabchenko, B.P. van Eijck, D.M. Elking, J.A. van den Ende, J.C. Facelli,
M.B. Ferraro, L. Fusti-Molnar, C.-A. Gatsiou, T.S. Gee, R. de Gelder, L.M.
Ghiringhelli, H. Goto, S. Grimme, R. Guo, D.W.M. Hofmann, J. Hoja, R.K.
Hylton, L. Iuzzolino, W. Jankiewicz, D.T. de Jong, J. Kendrick, N.J.J. de Klerk,
H.-Y. Ko, L.N. Kuleshova, X. Li, S. Lohani, F.J.J. Leusen, A.M. Lund, J. Lv, Y.
Ma, N. Marom, A.E. Masunov, P. McCabe, D.P. McMahon, H. Meekes, M.P.
Metz, A.J. Misquitta, S. Mohamed, B. Monserrat, R.J. Needs, M.A. Neumann,
J. Nyman, S. Obata, H. Oberhofer, A.R. Oganov, A.M. Orendt, G.I. Pagola, C.C.
Pantelides, C.J. Pickard, R. Podeszwa, L.S. Price, S.L. Price, A. Pulido, M.G.
Read, K. Reuter, E. Schneider, C. Schober, G.P. Shields, P. Singh, I.J. Sugden,
K. Szalewicz, C.R. Taylor, A. Tkatchenko, M.E. Tuckerman, F. Vacarro, M.
Vasileiadis, A. Vazquez-Mayagoitia, L. Vogt, Y. Wang, R.E. Watson, G.A.
de Wijs, J. Yang, Q. Zhu, C.R. Groom, Acta Crystallogr. Sect. B 72 (4) (2016)
439–459, http://dx.doi.org/10.1107/S2052520616007447.

[16] W.H. Baur, D. Kassner, Acta Crystallogr. Sect. B 48 (4) (1992) 356–369,
http://dx.doi.org/10.1107/S0108768191014726.

[17] B.P. van Eijck, J. Kroon, J. Comput. Chem. 20 (8) (1999) 799–812, http://dx.
doi.org/10.1002/(SICI)1096-987X(199906)20:8<799::AID-JCC6>3.0.CO;2-Z.

[18] J.R. Holden, Z. Du, H.L. Ammon, J. Comput. Chem. 14 (4) (1993) 422–437,
http://dx.doi.org/10.1002/jcc.540140406.

[19] D.H. Case, J.E. Campbell, P.J. Bygrave, G.M. Day, J. Chem. Theory Comput.
12 (2) (2016) 910–924, http://dx.doi.org/10.1021/acs.jctc.5b01112.

[20] M.A. Neumann, F.J. Leusen, J. Kendrick, Angew. Chem. Int. Ed. 120 (13)
(2008) 2461–2464, http://dx.doi.org/10.1002/anie.200704247.

[21] F. Curtis, X. Li, T. Rose, Á. Vázquez-Mayagoitia, S. Bhattacharya, L.M.
Ghiringhelli, N. Marom, J. Chem. Theory Comput. 14 (4) (2018) 2246–2264,
http://dx.doi.org/10.1021/acs.jctc.7b01152.

[22] R. Tom, T. Rose, I. Bier, H. O’Brien, A. Vazquez-Mayagoitia, N. Marom,
Comput. Phys. Comm. 250 (2020) 107170, http://dx.doi.org/10.1016/j.cpc.
2020.107170.

[23] A.G. Shtukenberg, C.T. Hu, Q. Zhu, M.U. Schmidt, W. Xu, M. Tan, B. Kahr,
Cryst. Growth Des. 17 (6) (2017) 3562–3566, http://dx.doi.org/10.1021/acs.
cgd.7b00673.

[24] Q. Zhu, A.G. Shtukenberg, D.J. Carter, T.-Q. Yu, J. Yang, M. Chen, P. Raiteri,
A.R. Oganov, B. Pokroy, I. Polishchuk, P.J. Bygrave, G.M. Day, A.L. Rohl,
M.E. Tuckerman, B. Kahr, J. Am. Chem. Soc. 138 (14) (2016) 4881–4889,
http://dx.doi.org/10.1021/jacs.6b01120.

[25] A.G. Shtukenberg, Q. Zhu, D.J. Carter, L. Vogt, J. Hoja, E. Schneider, H. Song,
B. Pokroy, I. Polishchuk, A. Tkatchenko, et al., Chem. Sci. 8 (7) (2017)
4926–4940, http://dx.doi.org/10.1039/C7SC00168A.

[26] W. Xu, Q. Zhu, C.T. Hu, Angew. Chem. Int. Ed. 129 (8) (2017) 2062–2066,
http://dx.doi.org/10.1002/ange.201610977.

[27] J. Yang, C.T. Hu, X. Zhu, Q. Zhu, M.D. Ward, B. Kahr, Angew. Chem. Int. Ed.
56 (34) (2017) 10165–10169, http://dx.doi.org/10.1002/anie.201703028.

[28] M. Tan, A. Shtukenberg, S. Zhu, W. Xu, E. Dooryhee, S.M. Nichols, M.D.
Ward, B. Kahr, Q. Zhu, Roy revisited, again: The eighth solved structure,
Faraday Discuss, http://dx.doi.org/10.1039/C8FD00039E.

[29] L. Babai, Combinatorica 6 (1) (1986) 1–13, http://dx.doi.org/10.1007/
BF02579403.
9

[30] S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D.
Gunter, V.L. Chevrier, K.A. Persson, G. Ceder, Comput. Mater. Sci. 68 (2013)
314–319, http://dx.doi.org/10.1016/j.commatsci.2012.10.028.

[31] I.-H. Suh, K.H. Park, W.P. Jensen, D.E. Lewis, J. Chem. Educ. 74 (7) (1997)
800, http://dx.doi.org/10.1021/ed074p800.

[32] H. Wondratschek, U. Müller, Int. Union. Crystallogr. (2006) http://dx.doi.
org/10.1107/97809553602060000110.

[33] M.I. Aroyo, J.M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G.
Madariaga, A. Kirov, H. Wondratschek, Z. Kristallogr. Cryst. Mater. 221 (1)
(2006) 15–27, http://dx.doi.org/10.1524/zkri.2006.221.1.15.

[34] T.E. Oliphant, A Guide To NumPy, 1, Trelgol Publishing, USA, 2006.
[35] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberl and, T. Reddy, D.

Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der
Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A.R.J. Nelson, E.
Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E.W. Moore, J. Vand
erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R.
Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy
1.0–Fundamental Algorithms for Scientific Computing in Python, ArXiv
E-Prints, S... Contributors, 2019, arXiv:1907.10121.

[36] W. McKinney, Data structures for statistical computing in python, in: S.
van der Walt, J. Millman (Eds.), Proceedings of the 9th Python in Science
Conference, 2010, pp. 51–56.

[37] A. Togo, I. Tanaka, Spglib: A Software Library for Crystal Symmetry
Search, 2018, arXiv:1808.01590.

[38] R. Guha, M.T. Howard, G.R. Hutchison, P. Murray-Rust, H. Rzepa, C.
Steinbeck, J.K. Wegner, E. Willighagen, J. Chem. Inf. Model. 46 (2006) 991,
http://dx.doi.org/10.1021/ci050400b.

[39] A.H. Larsen, J.J. Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M.
Dułak, J. Friis, M.N. Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C.
Jennings, P.B. Jensen, J. Kermode, J.R. Kitchin, E.L. Kolsbjerg, J. Kubal, K.
Kaasbjerg, S. Lysgaard, J.B. Maronsson, T. Maxson, T. Olsen, L. Pastewka,
A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K.S. Thygesen,
T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, K.W. Jacobsen, J. Phys.
Conden. Matter 29 (27) (2017) 273002, http://dx.doi.org/10.1088/1361-
648x/aa680e.

[40] R. de Gelder, R. Wehrens, J.A. Hageman, J. Comput. Chem. 22 (3)
(2001) 273–289, http://dx.doi.org/10.1002/1096-987X(200102)22:3<273::
AID-JCC1001>3.0.CO;2-0.

[41] S. Habermehl, P. Mörschel, P. Eisenbrandt, S.M. Hammer, M.U. Schmidt,
Crystal Engineering and Materials 70 (2) (2014) 347–359, http://dx.doi.
org/10.1107/S2052520613033994.

[42] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868,
http://dx.doi.org/10.1103/PhysRevLett.77.3865.

[43] G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15–50, http://dx.
doi.org/10.1016/0927-0256(96)00008-0.

[44] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169–11186, http:
//dx.doi.org/10.1103/PhysRevB.54.11169.

[45] V.L. Deringer, C.J. Pickard, G. Csányi, Phys. Rev. Lett. 120 (2018) 156001,
http://dx.doi.org/10.1103/PhysRevLett.120.156001.

[46] E.V. Podryabinkin, E.V. Tikhonov, A.V. Shapeev, A.R. Oganov, Phys. Rev. B
99 (2019) 064114, http://dx.doi.org/10.1103/PhysRevB.99.064114.

http://dx.doi.org/10.1107/S0108768112017466
http://dx.doi.org/10.1107/S2052520616007447
http://dx.doi.org/10.1107/S0108768191014726
http://dx.doi.org/10.1002/(SICI)1096-987X(199906)20:8<799::AID-JCC6>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1096-987X(199906)20:8<799::AID-JCC6>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1096-987X(199906)20:8<799::AID-JCC6>3.0.CO;2-Z
http://dx.doi.org/10.1002/jcc.540140406
http://dx.doi.org/10.1021/acs.jctc.5b01112
http://dx.doi.org/10.1002/anie.200704247
http://dx.doi.org/10.1021/acs.jctc.7b01152
http://dx.doi.org/10.1016/j.cpc.2020.107170
http://dx.doi.org/10.1016/j.cpc.2020.107170
http://dx.doi.org/10.1016/j.cpc.2020.107170
http://dx.doi.org/10.1021/acs.cgd.7b00673
http://dx.doi.org/10.1021/acs.cgd.7b00673
http://dx.doi.org/10.1021/acs.cgd.7b00673
http://dx.doi.org/10.1021/jacs.6b01120
http://dx.doi.org/10.1039/C7SC00168A
http://dx.doi.org/10.1002/ange.201610977
http://dx.doi.org/10.1002/anie.201703028
http://dx.doi.org/10.1039/C8FD00039E
http://dx.doi.org/10.1007/BF02579403
http://dx.doi.org/10.1007/BF02579403
http://dx.doi.org/10.1007/BF02579403
http://dx.doi.org/10.1016/j.commatsci.2012.10.028
http://dx.doi.org/10.1021/ed074p800
http://dx.doi.org/10.1107/97809553602060000110
http://dx.doi.org/10.1107/97809553602060000110
http://dx.doi.org/10.1107/97809553602060000110
http://dx.doi.org/10.1524/zkri.2006.221.1.15
http://refhub.elsevier.com/S0010-4655(20)30405-7/sb34
http://arxiv.org/abs/1907.10121
http://arxiv.org/abs/1808.01590
http://dx.doi.org/10.1021/ci050400b
http://dx.doi.org/10.1088/1361-648x/aa680e
http://dx.doi.org/10.1088/1361-648x/aa680e
http://dx.doi.org/10.1088/1361-648x/aa680e
http://dx.doi.org/10.1002/1096-987X(200102)22:3<273::AID-JCC1001>3.0.CO;2-0
http://dx.doi.org/10.1002/1096-987X(200102)22:3<273::AID-JCC1001>3.0.CO;2-0
http://dx.doi.org/10.1002/1096-987X(200102)22:3<273::AID-JCC1001>3.0.CO;2-0
http://dx.doi.org/10.1107/S2052520613033994
http://dx.doi.org/10.1107/S2052520613033994
http://dx.doi.org/10.1107/S2052520613033994
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevLett.120.156001
http://dx.doi.org/10.1103/PhysRevB.99.064114

	PyXtal: A Python library for crystal structure generation and symmetry analysis
	Introduction
	Algorithms
	Structure generation
	Wyckoff compatibility checking
	Lattice generation
	Wyckoff position selection and merging
	Distance checking
	Molecular orientations

	Structure modulation
	Perturbation on asymmetric unit
	Group–subgroup transition

	Dependencies
	Example usages
	Command line utilities
	Structure modulation and analysis
	Structure prediction

	Applications
	Clusters with empirical Lennard-Jones potential
	Carbon and silicon crystals with ab-initio calculations

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

