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Abstract—Computer vision approaches are widely used by au-
tonomous robotic systems to sense the world around them and to
guide their decision making as they perform diverse tasks such as
collision avoidance, search and rescue, and object manipulation.
High accuracy is critical, particularly for Human-on-the-loop
(HoTL) systems where decisions are made autonomously by the
system, and humans play only a supervisory role. Failures of
the vision model can lead to erroneous decisions with potentially
life or death consequences. In this paper, we propose a solution
based upon adaptive autonomy levels, whereby the system detects
loss of reliability of these models and responds by temporarily
lowering its own autonomy levels and increasing engagement
of the human in the decision-making process. Our solution is
applicable for vision-based tasks in which humans have time to
react and provide guidance. When implemented, our approach
would estimate the reliability of the vision task by considering
uncertainty in its model, and by performing covariate analysis
to determine when the current operating environment is ill-
matched to the model’s training data. We provide examples from
DroneResponse, in which small Unmanned Aerial Systems are
deployed for Emergency Response missions, and show how the
vision model’s reliability would be used in addition to confidence
scores to drive and specify the behavior and adaptation of the
system’s autonomy. This workshop paper outlines our proposed
approach and describes open challenges at the intersection of
Computer Vision and Software Engineering for the safe and
reliable deployment of vision models in the decision making of
autonomous systems.

Index Terms—computer vision, adaptive autonomy, safety,
uncertainty

I. INTRODUCTION

Computer Vision (CV) models are broadly utilized within
autonomous systems. Examples include driving systems,
factory-floor robots, and small Unmanned Aerial Systems
(sUAS) deployed for emergency response missions. CV is
essential to these applications as it provides critical informa-
tion about the environment in which the system is operating,
and this information is used to support autonomous decision-
making. However, CV systems are not entirely reliable and
can incorrectly identify, or fail to identify, objects in the real
world, leading to incorrect autonomous decisions. One notable
example of CV failure is Uber’s Self-Driving car accident on

March 19, 2018, which resulted in the fatality of a woman
whilst the vehicle was running in autonomous mode with a
human driver as a backup. The recorded telemetry showed the
vision system had detected and classified the woman six sec-
onds before the crash as an unknown object, then as a vehicle,
and finally as a bicycle, resulting in varied predictive responses
based on the car’s inbuilt autonomy logic. The system finally
recognized the need for emergency breaking 1.3 seconds prior
to the impact, but that was too late. Uber stated that emergency
braking maneuvers were not enabled in these circumstances
to reduce “erratic vehicle behavior”, and furthermore, that the
system was not designed to alert the operator. A post-mortem
analysis identified contributing causes as dark clothing on the
pedestrian, lack of side reflectors on the bicycle, front/rear
reflectors perpendicular to the path of the vehicle, and no
roadway lighting at the location of the incident [1].

These types of CV failures have multiple root causes, many
of which are introduced whilst training the CV models. For
example, data bias may be introduced by imbalanced data,
as in the Uber case, or as human-introduced bias (such as
racial biases reflected in recidivism data, or gender biases
reflected in census incomes [2]). Bias can cause a model to
under-perform in certain circumstances. For example, Wilson
et al, [3] reported that state-of-the-art object detection systems
return poorer performance when detecting pedestrians with
darker skin tones regardless of the time of day or whether
the person is occluded. When studying the data used to train
such models, researchers found that there were about 3.5
times as many samples of people with lighter skin tones than
those of people with darker skin. As these kinds of problems
are prevalent across almost all current CV models, software
intensive systems that leverage CV models must be developed
defensively in order to mitigate CV-induced risks.

Human-on-the-loop (HoTL) systems are empowered to
make and enact their own decisions [4] with humans perform-
ing only a supervisory role [5]. Decisions are supported by
the system’s knowledge of the environment, which is often
acquired using CV. In many CV-based scenarios it is essential
for the human supervisor to understand whether the vision
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Fig. 1. The sUAS detects a victim with a medium level of confidence and
low certainty. It requests confirmation from the human operator before raising
a victim-found alert and aborting its search by switching to ‘tracking’ mode.
The human can confirm, reject, or request additional imagery. One reason for
low confidence is that the training data lacks snowy weather examples.

model can provide reliable results for a specific vision task
within the current environment, and whether the system should
be trusted to react autonomously, or whether human input is
required. Consider the example shown in Figure 1 in which
an sUAS has detected a potential victim, streams video, and
requests input from the human operator. The system can be
designed with varying degrees of autonomy with respect to
how the sUAS reacts after detecting a candidate victim. For
simplicity’s sake in this discussion, we assume that only one
sUAS has detected the candidate victim – in this case with a
confidence score of 0.43. At this point, the sUAS can (1) ask
the operator what to do, (2) automatically track the victim if
its confidence exceeds a predefined fixed threshold, and then
notify the operator of its actions (HoTL), or (3) decide whether
it is able to start tracking based on the perceived reliability of
the CV model within the current environment. The third option
represents adaptive autonomy in which the sUAS operates
independently when it trusts the information provided by the
underlying CV models, and engages the operator in critical
decisions when the model becomes unreliable.

The aim of this paper is to explore situations in which CV
models may suffer from low reliability, propose techniques for
detecting failures, and specify requirements for dynamically
adjusting autonomy levels and triggering human intervention
when the CV model is unable to perform reliably as illustrated
in Fig. 2. We focus upon scenarios in which humans have
time to react and to provide guidance if needed; however,
our approach can also be used to raise alerts in situations
where the system is making real-time decisions even though
CV reliability is low. We leave the full implementation of the
approach to future work. We draw examples from our own
HoTL DroneResponse system which deploys multiple sUAS

to support time-critical, emergency response missions [6], [7].
The remainder of the paper is structured as follows. Sec-

tion II presents related work and lays the foundation for
our discussion. Section III describes our proposed solution
for assessing model reliability through evaluating uncertainty
and performing covariate analysis with respect to the current
environment. Section IV describes our software engineering
solution for CV-driven decision making and autonomy adapta-
tion, while Section V closes with a discussion of open research
challenges, and Section VI closes with conclusions.

II. BACKGROUND INFORMATION

A self-adaptive system is capable of reconfiguring at run-
time in response to changes in the system and its environ-
ment [8]. Adaptations include changes in run-time behavior,
often realized through switching modes of operation, or by
reconfiguring parameters within a mode. For example, in our
DroneResponse system, an sUAS switches between modes
(e.g., Takeoff, Search, Track) in response to external events
(e.g., destination reached), and can reconfigure its behavior
within a mode (e.g., by changing altitude, or increasing
monitoring frequency). However, in this paper, we focus on a
special form of adaptation that occurs as a result of uncertainty
in the CV model. This form of adaptation represents a tem-
porary switch from HoTL behavior to HiTL (human-in-the-
loop) behavior, when the CV model is perceived as unreliable
for performing the current task. Many Software Engineering
researchers have explored the notion of uncertainty and its
role in self-adaptation [9] including work on identifying gaps
in the training data that might make a CV model less reliable
in certain environments [10]. AI systems, and CV ones in
particular, can cause erratic behavior if they fail to produce
accurate results [11]–[14].
Model Explainability: Much related work has focused on
explaining predictions made by AI models, especially those
leveraging deep neural networks, which tend to provide little
or no human-readable rationale for their internal decisions.
Their black-box nature can conceal biases, deficiencies, and
dubious correlations, which are especially likely when “dataset
shift” occurs between the training data and the current image
stream [15]. Explainable AI (XAI) techniques add a layer of
transparency to this process, whether it is a heat map of pixel
importance [16], [17], auxiliary model (an explanation model
built for each image) [18], [19], or using attribution based
confidence metrics [20]. Such methods provide explanations in
the form of feature attributions (how much they influence the
magnitude of a prediction), similar examples, counterfactuals
(examples of changes to an image that would have caused a
different decision), rules, and visualizations, thus, introducing
further clarity during the model development and deployment
phases. For instance, feature attribution can indicate that a
model relies too heavily on backgrounds of the images rather
than the objects of interest in the foreground. Explainable
AI can provide useful insights for testing and improving CV
models. For example, it might be found that a CV model fails
to detect target objects (e.g., people) in rainy conditions due
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Fig. 2. The vision model is trained on a specific dataset which can
introduce bias into the vision-based decision-making. This introduces the
critical question of whether the model can be trusted to make a correct decision
in the given context.

to partial occlusion of the object. This in turn could lead to
modified training data including more rainy scenarios. How-
ever, explanations of CV decisions deployed in autonomous
systems have limited runtime utility, when agents (e.g., sUAS)
must make immediate adaptation decisions.

Uncertainty Estimation: Our approach requires the system
to evaluate the reliability of the CV model and adapt au-
tonomous behavior accordingly. Uncertainty can be quantified
by considering the confidence with respect to the model, the
data, and the physical sensor(s). Many approaches have been
explored, including augmenting AI systems with auxiliary
confidence-estimating modules [21], directly calibrating the
decision probabilities [22], and taking Bayesian estimates of
certainty [23]. The first two techniques involve training a
separate component of the system to calibrate decisions as
probabilities directly interpretable as confidence scores. The
latter adds a supplemental model that estimates the conditional
distribution of the model decisions given the system and its
data. All techniques output the probability that the system will
be reliable, regardless of whether the unreliability is caused by
unfamiliar data, noise, or other confounding signals.

Integrating Humans in the Decision-Making Process: Finally,
researchers have investigated when and where humans should
be involved in decision-making processes in order to maximize
the benefits of autonomy whilst interjecting human feedback
when needed for correctness, safety, regulatory compliance,
or other purposes. Examples include runtime supervision of
autonomous driving systems for safety purposes [24], training
machine learning solutions in health informatics to increase
their accuracy [25], and human-robot partnerships in machine
assembly tasks [26]. For example, Cai et al., [27] proposed
an approach in which a robot collects multiple images of
an object, classifies them using a trained deep convolutional
neural network, and when confidence is low for some subset
of the images, it determines whether it should autonomously
reposition itself to potentially achieve a better viewpoint
or whether it should request help from a remote operator.
This approach is similar to our proposed adaptive autonomy
solution.

III. CV-SUPPORTED AUTONOMY

DroneResponse deploys multiple sUAS to support emer-
gency response missions [6], [7], [28]. It is designed as a
HoTL system empowered to make and enact decisions [4]
supported by its onboard CV. Enabling higher degrees of au-
tonomy is particularly important in DroneResponse missions,
where multiple sUAS are deployed simultaneously to perform
time-constrained search-and-rescue, surveillance, or delivery
tasks.

A. Estimating Loss of Reliability

Our approach determines the trust that the sUAS system
should place in CV predictions based upon confidence and
reliability of the underlying model, where confidence is de-
fined as the probability that a CV decision is correct given
the evidence it considers, and reliability is estimated using
notions of uncertainty arising from noise and model or ob-
servation incompleteness [29]. Finally, covariate shift analysis
is performed to determine the model’s performance under
multiple continuous covariates to allow us to estimate the
model’s reliability in any real-time operating condition. These
covariates can be specified as any attributes that may affect the
efficacy of the vision model within the given operating domain,
such as the attributes depicted in Fig. 5 for the DroneResponse
river-rescue scenario.

B. Modeling and Detecting Unreliability

Our approach utilizes two different techniques for estimat-
ing the loss of reliability. The first, is based on the formal
notion of uncertainty, derived using a Bayesian Belief Network
(BBN), while the second is based on an estimation of the
covariate shift between the current scene and the data used to
train the model. We discuss each of these approaches.

Uncertainty in CV Models: Uncertainty is typically estimated
using Bayesian surrogate estimators, that enable the CV
algorithm to infer its own degree of certainty, represented
as one or more probability scores. We adopt state-of-the-art
techniques in uncertainty estimation. Loquercio et al., [30]
proposed the use of BBNs and Monte-Carlo sampling to
derive uncertainty from both the data and model. Specifically,
data noise, arising from the sensor, is assumed to follow a
normal distribution based on known noise characteristics. In
our sUAS system, these characteristics could include glare,
excess vibration caused by the sUAS and/or the camera mount,
physical occlusion of objects to be detected, or general image
noise. Uncertainty among the parameters is estimated by
Monte Carlo sampling of the parameters with test time dropout
– that is, reducing the population before sampling for the sake
of tractability. The model makes several predictions using such
subsets, the variance of which is the model certainty. The
full system uncertainty is then the total variance of the data
uncertainty propagated through the model. In other words, it is
the the extent to which the estimation of uncertainty changes
between each layer of the CV model, from that induced by
sensor noise up to the model parameters of the output layer.



We integrate this technique as a module into our proposed
framework, providing a streaming confidence interval in the
range [0, 1], which comprises uncertainty estimates from both
the camera and the vision model, accounting for noise and
incompleteness. As a scaffold, we add a hysteresis band that
filters transient noise, making the algorithm less sensitive
to minor fluctuations which would otherwise produce false
positives or negatives. The video stream is transformed into
semantic data representing confident (no intervention), uncer-
tain (possible intervention), and no confidence (intervention
required). These parameters can be tuned using field data
and adjusted according to intervention budgets. In the case
of DroneResponse they would be adjusted based upon a
combination of safety factors, event occurrence, and human
resources. For example, if multiple sUAS raised alerts at the
same time, and the human operator is unable to process all
of them, then the events must be prioritized for intervention,
while other sUAS make their best judgments until the operator
is able to review, and then confirm or refute their decisions.

Covariate Shift Analysis: In addition to estimating uncertainty
generated by the model, it can be helpful to understand the
effects of covariates on the model’s performance within an
operating context. Covariates refer to the known measured
attributes within the data. A situation known as covariate shift
occurs when the training data differs from the data seen at
the time a prediction is made. This can result in incorrect
predictions with high levels of confidence [31], a problem
which is common in real-time detection models. For example,
a CV model trained only in good visibility conditions, might
underperform in low visibility.

We propose the formation of a generative model based on
the work of McCurrie et al. [32] to capture the distribution be-
tween multiple continuous covariates and model performance
and to subsequently inform the decision making process.

In reference to a person detection model, the generative
model could be formulated in three distinct steps:

1) Data annotation: Given a dataset containing N images,
we annotate the images with relevant covariates. While
covariates such as age, gender, and race might need to be
manually annotated, other covariates such as clothing, an-
gle of view, occlusion, environmental factors, and weather
conditions could be extracted with attribute classifiers.
Two classifiers that we have developed include a weather
classifier and a semantic segmentation model for labeling
different parts of the river. Our weather model is built using
an ensemble of binary support vector machines trained
for pertinent attributes (i.e., light, rain, snow, etc.). It
tags each of the N images with corresponding weather
and daylight meta-characteristics (Figure 3). Our semantic
segmentation model tags data with setting and terrain meta-
characteristics (e.g., water, river bank). For this segmenta-
tion model, we utilized DeepLab [33] for relevant operating
covariates (Figure 4).

2) Estimate pairwise similarities: The pairwise distance or
similarity between the dataset and the image itself is calcu-

Fig. 3. Our trained weather classifier can take a video stream (1) and tag with
weather characteristics (2). Covariate shift can be assessed by comparing the
weather distribution for the training data against the current image stream.

Fig. 4. Our use of the DeepLab [33] semantic segmentation model applied
to video acquired for a river rescue scenario from the South Bend Fire
Department, successfully encoded the pixels corresponding to ‘river’ and
‘people’ from the frame of reference (right panel). Segmentation models could
be used to automate the meta-tagging of pertinent covariates.

lated by constructing a matrix in with N2 data points where
each row (query) represents the image being sampled, and
each column (gallery) represents the collection of images
on which the generated model has been formed. Given a
data point (Xk, yk) for k ∈ {1, ..., N2}, yk represents the
similarity between two images and Xk is the vector of all
the query and gallery attributes. This also includes a user-
defined Boolean attribute which returns ‘true’ when the
query and gallery attributes are matched and ‘false’ when
they are not matched.

3) Density regression: Finally, we estimate the full density
of the general distribution of predictive scores over the
continuous covariates in order to determine the extent
to which the current image from the operating context
matches the images in the training set. We first calculate
the conditional true positive rate (TPR):

TPR(fpr|X) = FM (F−1
M̄

(fpr|X)|X)

This provides the TPR at a given false positive rate (fpr) for
a precondition X , which is the covariate vector mentioned
before. Here FM and FM̄ are the cumulative distribution
functions (CDF) of the match and non-match distribution.
The above relation can be utilized at runtime to estimate the
reliability of the model given the covariates of the operating
condition.

By extracting and analyzing covariates in this way, and
by detecting uncertainty in the CV models with respect to
the current CV-task, the system can determine the extent to



Fig. 5. The model’s Meta-characteristics are identified for the domain of river
search and rescue, that could impact the trustworthiness of the Vision Model.
Numbers in the leaf nodes depict the percentage of training samples from
the dataset that match each of the meta-tags. Note: These numbers are not
derived from actual datasets and are used for illustrative purposes only.

which it can make autonomous decisions and whether human
intervention is required.

IV. SPECIFYING AUTONOMY ADAPTATION
REQUIREMENTS

Our framework supports the development of a CV-driven so-
lution with awareness of the model’s reliability. Given this self-
awareness, we can specify requirements and design a system
capable of adapting its own autonomous behavior according to
the perceived reliability. Whittle et al., [9] previously proposed
the RELAX language for specifying requirements of self-
adaptive systems. RELAX provides the means of describing
uncertainty using natural language or Fuzzy branching tem-
poral logic and supports the notion of requirements satisficing
in which requirements can be relaxed to address uncertainty.
However, in this initial paper, we adopt the simpler EARS
(Easy Requirements Specification) notation [34], [35] which
is sufficiently expressive to define adaptive behaviors proposed
by our approach.

We identify human-sUAS interaction points by leveraging
our existing meta-model for human-on-the-loop interactions
in multi-agent missions [7]. In addition to modeling typical
human-sUAS interactions, the model includes ‘probing ques-
tions’ designed to aid in the discovery and specification of
autonomy requirements. The following three questions are par-
ticularly pertinent to our discussion of CV-related autonomy
and human interventions.

Q1: When and where do the agents exhibit autonomous
decision-making behavior?

Q2: Under normal operating conditions, what decisions
should the agent be able to make autonomously?

Q3: How is the autonomy suppressed or increased at
this interaction point? (e.g., modifying the confidence
threshold for automatically tracking a potential victim,
disabling/enabling the ability to track without permis-
sion, ... )

We answer these questions in order to specify system level
requirements which ultimately must be realized through lower
level software requirements and design constraints. Here we
focus primarily on design-level requirements which specify
rules for switching between autonomous behavior and human-
intervention. We err on the side of caution and engage the
operator in the decision making process whenever (1) loss of
reliability of the CV model exceeds a predefined threshold
and/or (2) when the covariate shift indicates that the CV
model training data does not provide sufficient coverage for
the current environment. We establish internal thresholds for
each of these and define loss of reliability=TRUE when either
uncertainty exceeds uncertainty threshold or the covariate
analysis returns a score < covariate coverage.

We apply the questions (Q1, Q2, Q3) to aid in specifying
the requirements for autonomy adaptation of our running
example (see Figure 1) in which the sUAS detects a victim and
determines what actions should be taken (Q1). To answer Q2
we specify the following autonomy requirements (AR) where
CS is the confidence score generated by the CV model.

AR1: When the CV model identifies a candidate vic-
tim in the river with CS >= detect threshold and
loss of reliability=FALSE then the sUAS autonomously
transitions into tracking mode and notifies the operator.

AR2: When the CV model identifies a candidate vic-
tim in the river with CS >= detect threshold and
loss of reliability=TRUE then the sUAS temporarily re-
duces its autonomy level, and raises a high-priority alert
requesting permission from the operator to transition
into tracking mode.

AR3: When the CV model identifies a candidate victim in
the river with alert threshold < CS < detect threshold
then the sUAS raises a low-priority alert and continues
with its current tracking task.

We address Q3 at the design level. Instead of the system
limiting the autonomy of the sUAS, we imbue the sUAS with
self-awareness so that it detects loss of reliability of the CV
model and temporarily overrides its own autonomy to request
help in its decision-making ability.

Returning to our earlier example in which an sUAS detects
a candidate victim in the river (cf Fig. 1), if we assume that
detect threshold if 0.4, but loss of reliability=‘true’ due to
the presence of snow in the operating environment without
sufficient representation in the training set, the requirement
AR2 is activated and the human is alerted about the potential
victim sighting, and engaged in the decision-making process.
In this case, the human might request ‘get more imagery’
triggering the sUAS to reposition itself and stream further
imagery, or could reject the sighting and direct the sUAS to
continue its search.



This workshop paper focuses on describing how CV confi-
dence, uncertainty, and covariate shift can be used to specify
autonomous behavior. Experimental analysis of thresholds, and
full integration of our approach within DroneResponse is left
for future work.

V. OPEN CHALLENGES

This paper has laid out a practical approach for lever-
aging CV models within autonomous systems. It describes
our proposed framework, which in turn builds upon cutting
edge research from both the Computer Vision and Software
Engineering communities. To deploy the proposed solution on
sUAS operating in potentially unknown environments requires
us to address a number of open challenges associated with the
CV models themselves, and their safe and reliable adoption
within autonomous systems.

Challenge #1, Discovering & assessing salient covari-
ates: As discussed in section III-B, identifying covariates
is a challenging problem due to the black box nature of
neural networks and the vast space of potential covariates.
We need the ability to determine which covariates to include
in our reliability model, the extent to which they impact
performance (individually and as a group) and ways to un-
derstand prominent covariates which may not be human-
comprehensible. Some related work has been in coercing
CV models to discover features in training and visualizing
features, e.g. [36]. Activation maps can indicate what features
invoke larger responses from a model and thus pave the way
to covariate discovery. The challenge here is to identify the
covariates that affect reliability, extract covariates at runtime
during an sUAS deployment, and to estimate uncertainty based
on these factors.

Challenge #2, Extracting attributes from image data: Most
datasets used to train vision models are assembled to support
specific tasks. For example, object detection and recognition
datasets such as PASCAL VOC [37], Imagenet [38], and MS-
COCO [39] consist of thousands of images with labels for
common objects, such as “person” with thousands of images
representing people. However, none of these particular datasets
take into consideration latent characteristics within the image
such as light conditions, weather, terrain, or diverse character-
istics of the people themselves. As a result, models trained on
these datasets can fail due to out-of-distribution inputs [40],
[41]. For instance, object detectors such as YOLO [42] trained
on the PASCAL dataset, may perform better when localizing
people on a bright sunny day than on a rainy or a snowy
day since the dataset does not have sufficient representation
of images under such weather conditions. When deployed
in HoTL environments, their failures can lead to erroneous
decisions. However, manually annotating the training set with
this information, in order to evaluate covariate shift is time-
consuming and difficult. The challenge is therefore to develop,
reliable and automated techniques for meta-tagging covariates
in the training set. We provided examples of two techniques

for detecting weather conditions and identifying elements of
a scene using semantic segmentation.

Challenge #3, Capturing real-time context: In addition
to understanding the distribution of covariates in the training
data, we also need to detect relevant covariates within the
operating context at runtime. Diverse information sources can
be leveraged, such as weather services, onboard sensors, and
automated meta-taggers – potentially using the same classifiers
that were applied to the training data. In addition, human input
can be elicited to take advantage of operators’ perspectives of
the environment.

Challenge #4: Safety Assurance of CV-Driven systems
Prior research has developed techniques for addressing safety
assurance for self-adaptive systems [43]–[45]; however, there
is a need for closer integration of the three-way interplay be-
tween reliability of state of the art CV models and predictions,
the adaptive role of human engagement, and the subsequent
creation and generation of safety assurance cases (SAC) [46]–
[49] which provide evidence for system safety [50]–[52]. In
particular, the safety case must show that thresholds are set
at levels that effectively balance agent autonomy with human
intervention.

Challenge #5: Human-Machine Interaction Our proposed
approach engages humans-in-the-loop with the aim of increas-
ing accuracy of the CV-driven decision making. However, prior
work has identified different hazards that are introduced when
humans place undue trust in the behavior of an autonomous
system and as a result, fall out-of-the-loop [53], and engage
in decision making without sufficient situational awareness.
The engagement of humans in supervising and intervening in
CV tasks requires careful analysis to explore the tradeoffs of
introducing new Human-Computer interactions errors.

VI. CONCLUSIONS

This paper has presented an adaptive, informal framework
for supporting the reliable deployment of CV models in the
decision making of autonomous systems and the associated
open challenges. It has proposed a framework for determining
the reliability of the CV model by estimating the uncertainty
of the model and capturing the covariate shift. The level
of autonomy of the system is determined according to the
model’s reliability. In addition, the paper has described an
approach for identifying and specifying uncertainty-driven
autonomy requirements driven. We have presented proof-of-
concept techniques for parts of our proposed solution, but have
not yet integrated and fully validated all the pieces within our
DroneResponse system.
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and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019,
pp. 13 991–14 002. [Online]. Available: https://proceedings.neurips.cc/
paper/2019/file/8558cb408c1d76621371888657d2eb1d-Paper.pdf

[32] M. McCurrie, H. Nicholson, W. J. Scheirer, and S. Anthony, “Modeling
score distributions and continuous covariates: A bayesian approach,” in
2020 IEEE International Joint Conference on Biometrics (IJCB), 2020,
pp. 1–9.

[33] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848,
2017.

[34] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach to
requirements syntax (ears),” in 2009 17th IEEE International Require-
ments Engineering Conference, 2009, pp. 317–322.

[35] J. Cleland-Huang and M. Vierhauser, “Discovering, analyzing, and
managing safety stories in agile projects,” in RE. IEEE Computer
Society, 2018, pp. 262–273.

[36] W. Yang, H. Huang, Z. Zhang, X. Chen, K. Huang, and S. Zhang, “To-
wards rich feature discovery with class activation maps augmentation for
person re-identification,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

[37] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The Pascal visual object classes (VOC) challenge,” IJCV, vol. 88,
no. 2, pp. 303–338, 2010.

[38] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “ImageNet large
scale visual recognition challenge,” IJCV, vol. 115, no. 3, pp. 211–252,
2015.

[39] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf
http://archive.ics.uci.edu/ml
http://proceedings.mlr.press/v70/guo17a.html
http://www.sciencedirect.com/science/article/pii/S1071581919300461
http://www.sciencedirect.com/science/article/pii/S1071581919300461
https://doi.org/10.1007/s40708-016-0042-6
https://doi.org/10.1007/s40708-016-0042-6
https://proceedings.neurips.cc/paper/2019/file/8558cb408c1d76621371888657d2eb1d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/8558cb408c1d76621371888657d2eb1d-Paper.pdf


[40] R. G. VidalMata, S. Banerjee, B. RichardWebster, M. Albright, P. Dava-
los, S. McCloskey, B. Miller, A. Tambo, S. Ghosh, S. Nagesh et al.,
“Bridging the gap between computational photography and visual recog-
nition,” arXiv preprint arXiv:1901.09482, 2019.

[41] S. Banerjee, R. G. VidalMata, Z. Wang, and W. J. Scheirer, “Report on
ugˆ 2+ challenge track 1: Assessing algorithms to improve video object
detection and classification from unconstrained mobility platforms,”
arXiv preprint arXiv:1907.11529, 2019.

[42] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[43] B. H. C. Cheng, R. J. Clark, J. E. Fleck, M. A. Langford, and P. K.
McKinley, “AC-ROS: assurance case driven adaptation for the robot
operating system,” in MoDELS. ACM, 2020, pp. 102–113.

[44] S. Jahan, M. Pasco, R. F. Gamble, P. K. McKinley, and B. H. C. Cheng,
“MAPE-SAC: A framework to dynamically manage security assurance
cases,” in FAS*W@SASO/ICAC. IEEE, 2019, pp. 146–151.

[45] M. Trapp and D. Schneider, “Safety assurance of open adaptive systems
- A survey,” in Models@run.time@Dagstuhl, ser. Lecture Notes in
Computer Science, vol. 8378. Springer, 2011, pp. 279–318.

[46] R. Bloomfield and P. Bishop, “Safety and assurance cases: Past, present
and possible future–an Adelard perspective,” in Making Systems Safer.
Springer, 2010, pp. 51–67.

[47] C. M. Holloway, “Safety case notations: Alternatives for the non-
graphically inclined?” in Proc. of the 3rd IET Int’l Conf. on System
Safety. IET, 2008, pp. 1–6.

[48] R. Hawkins, I. Habli, T. Kelly, and J. McDermid, “Assurance cases and
prescriptive software safety certification: A comparative study,” Saf. Sci.,
vol. 59, pp. 55–71, 2013.

[49] T. Kelly and R. Weaver, “The Goal Structuring Notation–a safety
argument notation,” in Proc. of the Dependable Systems and Networks
2004 WS on Assurance Cases. Citeseer, 2004, p. 6.

[50] J. Chen, M. Goodrum, R. A. Metoyer, and J. Cleland-Huang, “How
do practitioners perceive assurance cases in safety-critical software
systems?” in CHASE@ICSE. ACM, 2018, pp. 57–60.

[51] U.K. Ministry of Defence, “Defence Standard 00-56, Issue 7: Safety
Management Requirements for Defence Systems. Part 1: Requirements,”
2017.

[52] P. J. Graydon and C. M. Holloway, “An investigation of proposed
techniques for quantifying confidence in assurance arguments,” Saf. Sci.,
vol. 92, pp. 53–65, feb 2017.

[53] M. R. Endsley, Designing for Situation Awareness: An Approach to
User-Centered Design, Second Edition, 2nd ed. Boca Raton, FL, USA:
CRC Press, Inc., 2011.


	Introduction
	Background Information
	CV-Supported Autonomy
	Estimating Loss of Reliability
	Modeling and Detecting Unreliability

	Specifying Autonomy Adaptation Requirements
	Open Challenges
	Conclusions
	References

