
Hazard Analysis for Human-on-the-Loop
Interactions in sUAS Systems

Michael Vierhauser
michael.vierhauser@jku.at

Johannes Kepler University Linz
Austria

Md Nafee Al Islam
Ankit Agrawal

Jane Cleland-Huang
JaneHuang@nd.edu

University of Notre Dame, USA

James Mason
james.mason@ngc.com
Northrop Grumman

USA

ABSTRACT
With the rise of new AI technologies, autonomous systems are mov-
ing towards a paradigm in which increasing levels of responsibility
are shifted from the human to the system, creating a transition
from human-in-the-loop systems to human-on-the-loop (HoTL)
systems. This has a significant impact on the safety analysis of
such systems, as new types of errors occurring at the boundaries
of human-machine interactions need to be taken into considera-
tion. Traditional safety analysis typically focuses on system-level
hazards with little focus on user-related or user-induced hazards
that can cause critical system failures. To address this issue, we
construct domain-level safety analysis assets for sUAS (small un-
manned aerial systems) applications and describe the process we
followed to explicitly, and systematically identify Human Interac-
tion Points (HiPs), Hazard Factors and Mitigations from system
hazards. We evaluate our approach by first investigating the extent
to which recent sUAS incidents are covered by our hazard trees,
and second by performing a study with six domain experts using
our hazard trees to identify and document hazards for sUAS usage
scenarios. Our study showed that our hazard trees provided effec-
tive coverage for a wide variety of sUAS application scenarios and
were useful for stimulating safety thinking and helping users to
identify and potentially mitigate human-interaction hazards.

CCS CONCEPTS
• Software and its engineering → Software safety.

KEYWORDS
Human-sUAS interaction, safety analysis, hazard analysis, sUAS

ACM Reference Format:
Michael Vierhauser, MdNafee Al Islam, Ankit Agrawal, Jane Cleland-Huang,
and James Mason. 2021. Hazard Analysis for Human-on-the-Loop Inter-
actions in sUAS Systems. In Proceedings of the 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3468264.3468534

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468534

1 INTRODUCTION
Autonomous systems are increasingly moving towards a paradigm
in which humans and machines work in tandem to achieve rela-
tively complex tasks – typically in systems that are now referred
to as “human-on-the-loop” (HotL) [50]. In contrast to a more tra-
ditional “human-in-the-loop” (HitL) system, in which a human
makes decisions at key points of the system’s execution, a HotL
system exhibits far greater machine autonomy while providing
situational awareness to humans. HotL environments are able to
take full advantage of machine autonomy to perform targeted tasks
efficiently and quickly; however, in addition to traditional hazards,
they introduce the potential for new types of errors that occur at
the boundaries of human-machine interactions. Current paradigms
that explore these interactions in safety-critical systems fail to fully
evaluate the way in which humans contribute to, impact, or fail to
impact, system safety in small Unmanned Aerial Systems (sUAS).

Historically, many hazards have occurred at the human-CPS
interface. For example, in 1988 the US Navy’s USS Vincennes shot
down a civilian plane with 290 people on board. The Vincennes
had entered Iranian water and operators mistakenly identified the
Airbus as an attacking F-14 Tomcat despite the fact that the Airbus
was climbing and emitting appropriate civilian IFF signals. The
mistaken identification was partially attributed to a user interface
flaw which caused the operator to confuse the data of a military
plane in the area with that of the civilian one [17]. Human operators
are frequently blamed for these types of errors which have been
widely reported as contributing factors in 60% to 85% of accidents in
domains such as aviation and medical devices [49]. However, many
of these “human” failures can be directly attributed to flaws in the
underlying system design [42] and could therefore be classified as
design-induced-faults [27].

Similar examples are emerging in the domain of small Unmanned
Aerial Systems, such as the case of a near collision between an sUAS
and a highway patrol helicopter in California in 2015. The sUAS
was flying at over 700 feet even though, based on FAA regulations,
the maximum altitude allowed was 400 feet. In this case, the RPIC
(remote pilot in command) had deliberately set a higher RTL (return
to launch) altitude to avoid electrical pylons. During flight the signal
to the sUAS was lost, and the RTL failsafe mechanism activated
causing the sUAS to return home at an illegal altitude, resulting in
a near collision with the helicopter. While the RPIC was clearly at
fault, the software was developed in a way that allowed the mistake
to happen without raising alerts either when the RTL altitude was
incorrectly configured or during flight when the altitude violation
actually occurred.

https://doi.org/10.1145/3468264.3468534
https://doi.org/10.1145/3468264.3468534

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Vierhauser, Al Islam, Agrawal, Cleland-Huang, Mason

Teams building safety-critical software products are required
to perform a rigorous hazard analysis [44], using techniques such
as Software Fault Tree Analysis (FTA) [59, 61] or Software Fail-
ure Mode, Effects, and Criticality Analysis (FMECA) [47, 57] to
identify hazardous states and a set of mitigating actions which are
linked to safety-related requirements. While the safety analysis
must be performed on individual products, several studies have
shown that preliminary hazard analysis can be initially performed
at the domain level and then contextualized during the application
development process to individual products [15, 18, 31, 62]. Various
frameworks, checklists, and templates exist to guide systems and
software engineers through the process of identifying and mitigat-
ing hazards associated with the development and deployment of
sUAS [20]. However, these tend to focus on system-level hazards
while paying scant attention to the unique human interface aspects
of multi-user, multi-agent systems that are emerging in the sUAS
domain [2, 43, 46, 65].

Furthermore, while human-related hazards in the sUAS domain
share commonalities with those from several other domains such
as multi-agent robotics, autonomous vehicles, and drones used in
the defense domain, they also exhibit unique safety concerns intro-
duced by the deployment of remotely controlled sUAS in potentially
populated areas, limited training of the remote pilots who may be
ill-prepared to handle off-nominal cases, and a rapidly emergent
market of sUAS applications, which in many cases are developed
by hobbyists without training in safety assurance.

This paper describes domain-level safety analysis assets that
explicitly focus upon human-interaction hazards. Our aim is to
create a shared and reusable resource and a structured process for
use by software and systems engineers working in the space of
sUAS application development. We followed a systematic process
that started by reviewing a broad range of academic literature and
white papers describing implemented sUAS frameworks, templates,
and hazard analysis associated with sUAS systems and found that
the majority of hazards identified from the literature are system-
oriented and fail to capture hazards associated with human-sUAS
interactions. We then applied a systematic process that built upon
the system hazards to identify additional hazards associated with
Human Interaction Points (HiPs). This analysis resulted in a set of
domain-level hazard trees designed for safety analysis of diverse
sUAS systems which we evaluated in two ways – first, against de-
tailed accounts of publicly reported sUAS incidents, and second,
through a study involving six developers with domain experience
working with sUAS. Examples throughout the paper are primarily
drawn from our own DroneResponse system [2, 13, 16].

The remainder of the paper is laid out as follows. Section 2 reports
on our systematic process for identifying human-sUAS interaction
hazards from existing literature. Section 3 describes the process we
followed to construct our hazard trees, while Section 4 discusses
their use. Section 5 evaluates coverage of the hazard trees against
reported incidents, while Section 6 reports our study with domain
experts. We analyze results in Section 7. Finally, Sections 8 to 10
discuss threats to validity, related work, and conclusions.

2 sUAS HAZARD ANALYSIS
We performed a systematic literature survey to identify an initial
set of sUAS hazards based on publications reporting safety analysis
techniques applied to sUAS domains. Papers covered topics such
as hazard analysis, Fault Tree Analysis, and safety analysis using
the Goal Structuring Notation [40]. Our aim was not to analyze the
effectiveness of different techniques or frameworks but to identify
specific types of hazards, faults, and safety requirements reported
by authors. The resulting collection of sUAS hazard trees forms the
foundation for our subsequent, more focused, and human-centered
safety analysis (cf. Section 3).

2.1 Data Aggregation and Analysis Process
Our systematic literature search used the ACM, IEEE, and Scopus
digital libraries to identify research papers containing descriptions
of sUAS safety, failures, and incidents. We performed a number
of pilot searches based on keywords collected from an initial set
of papers and refined the search terms multiple times to ensure
that relevant papers were part of the search including, for exam-
ple, “sUAS” (and various synonyms such as UAV) and also “safety”,
“hazard” or “fault” analysis. Two researchers then collected and an-
alyzed the search results, using the Parsifal tool [53]. We removed
duplicates and excluded papers according to the following inclusion
(IC) and exclusion (EC) criteria:

• EC1: Papers not related to sUAS (e.g., airplanes, or large (military-
grade) UAVs) were excluded.

• EC2: Papers not written in English or not available as PDF via
the digital library were excluded.

• IC1: Only papers containing information on sUAS safety-related
information including safety requirements, hazards, or faults
or papers containing information on multi-agent safety-related
information with regards to interaction/collaboration, between
agents (in the title and/or abstract) were included.

Our initial search returned 3462 papers. Applying the exclusion
criteria resulted in a set of 2036 papers, which were reduced to 120
papers after the inclusion criteria were applied.

2.2 Hazard Tree Construction
We then skimmed each paper to identify concrete hazards, faults,
and/or safety-related statements mentioned in the paper. We refer
to these as “safety statements”. We extracted a total of 200 safety
statements from 27 papers, while the remaining 93 papers did not
contain specific examples of safety-related statements for sUAS.

Each of the statements was then transformed into one or more
explicitly stated hazards – each one based on a safety requirement,
fault, or actual hazard reported in the paper. We then used open
coding to identify hazard categories, and as a result established
an initial grouping of eleven different categories (e.g.,“sensors”,
“route planning”). This encoding process was performed by two
researchers with frequent discussions and refinement of the groups
and categories until agreement was reached. We finally identified
eight categories of hazards. In cases where a hazard was related
to multiple categories, we selected the most appropriate one. This
resulted in a final set of 114 distinct “hazard statements”.

Hazard Analysis for Human-on-the-Loop Interactions in sUAS Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

System hazard

C1: Communication failure (e.g., GCS failure,
Loss of wireless signal, or jammed communication)

[5]

C5: Ground control system
for multi sUAS communication fails

[3]

C4: Hand held controller for manual
flight loses connectivity to sUAS

[1]

C2: Communication failure
between ground

and sUAS
[1]

C3: Communication failure
between sUAS

[4]

Figure 1: One of the smaller hazard trees derived from the
literature survey for communication failures. The numbers
indicate the number of associated hazard statements.

As the granularity of the reported hazards varied significantly,
including specific hazards such as “The sUAS deviates from its pre-
defined route due to wind shear” and “Loss of satellite signal”, we
established a hierarchy of hazards (cf. Fig. 1) organized under eight
hazard categories. Where hazards could be grouped under multiple
parent hazards we selected the most appropriate one to avoid du-
plicates, but added a cross-reference to the other hazard tree when
appropriate. We organized all associated hazards into a hierarchy –
where necessary adding intermediate hazards, merging duplicates
or very similar ones, and removing hazards that were deemed out
of scope for an sUAS application or too abstract. Following this
process, 108 hazard nodes remained. We then double-checked the
original list to ensure that the trees provided full coverage of the
hazards identified from the literature and that none had beenmissed.
This task was performed independently by three researchers on
our team. In cases where the assignment was not unanimous, we
discussed the mapping until consensus was reached. This resulted
in five hazards being slightly modified or newly added to the tree.

The resulting hazard trees, based on our literature search, rep-
resented use of prohibited airspace (7 hazard statements), separa-
tion distance (10 hazard statements), communication (10 hazard
statements), hardware and sensor failures (37 hazard statements),
weather (9 hazard statements), pilot error (15 hazard statements),
preflight checks (6 hazard statements), and situational awareness
(14 hazard statements).

3 HUMAN-SUAS INTERACTIONS
One of the main findings of our literature survey was that the
majority of hazards and safety-related statements target system-
level hazards, paying little to no attention to user-related, or user-
induced human-sUAS interaction hazards that can lead to critical
system failures. Given this lack of documented human-interaction
hazards, we applied a systematic process for deriving them from the
system hazards when performing hazard analysis for a certain use
case scenario. Our process is summarized in Fig. 2. We started (step
1) by selecting a system-level hazard from an existing hazard tree.
Next (step 2) we systematically explored each Mission Mode and
identified relevant scenarios that represented Human Interaction
Points (step 3) for each mode. Given a specific HiP, within a given
mode, we systematically explored the role a human could play in
instigating or mitigating the hazard (step 4) with respect to system
design, user design, and hardware and configuration flaws. We

Mission Mode

Maintenance & configuration
Mission planning
Prelaunch configuration
Advisories and weather
Takeoff
Inflight
RTL and Landing

System hazard defined
e.g., UAV loses satellite signal

Hazard Factors

for each
relevant
mode

More
hazards

Human initiated error
Situational awareness
Lack of empowerment

Human Interaction Point

e.g., The operator checks
why a UAV is unable to arm.More

modes

❶

❷ ❸

❹

Domain Assets

Human-sUAS Hazard Tree❺

❻

Figure 2: Hazards and mitigations with associated human
factors and impacts were identified systematically for each
system hazard according tomode, error type, and finally the
impact upon human operators.

used this information to augment the basic system hazard trees to
create a HiP-oriented hazard tree capturing HiP hazards for different
hazard factors. We finally consolidated hazard trees for all relevant
modes associated with the specific hazard (step 5). We now describe
these steps in more detail.

3.1 Mission Modes (Step 2)
All sUAS systems transition through different phases of operation
(i.e., modes). These include pre-flight configuration (including main-
tenance and mission planning), prelaunch configuration checks on
sUAS readiness and retrieval of flight advisories, mission launch,
(post-launch) flight, and RTL (return to launch). Hazard scenarios,
including those associated with human interactions, may occur
across multiple phases of operation with mode-specific charac-
teristics and mitigations [8]. Therefore, hazard analysis must be
performed for each mode [26] and must address the system’s ability
to detect and react to both normal and abnormal events [32]. We
briefly summarize each of the modes that we include in our exam-
ples throughout the paper, as their unique characteristics shape
their associated hazards and mitigations.
• Mission planning: (Multi-)sUAS missions are driven and con-
strained by mission plans that establish rules, mission boundaries,
and goals, enable specific tasks and transitions between tasks, and
set autonomy levels for the sUAS [13]. Actions taken in this mode
can impact safety, for example if an RPIC plans a mission without
considering changes in terrain elevation.
• sUAS Maintenance and configuration: Flight Controller sys-
tems, such as Ardupilot [5] and px4 [54], have large numbers of
configurable parameters. For example, px4 lists 1,382 configuration
points each with a range of allowed values. Users can configure

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Vierhauser, Al Islam, Agrawal, Cleland-Huang, Mason

sUAS using third-party software packages, many of which fail to
provide meaningful constraints.
• Prelaunch configuration checks: The system must check crit-
ical configuration values prior to launch and either correct them
automatically or clearly display warnings. Common errors, as ob-
served in our study, include setting incorrect fail-safe values (e.g.,
RTL altitude above the legally allowed levels).
• Advisory and weather checks: RPICs are required to obtain
flight authorization prior to entering controlled airspaces and to
check weather conditions. Incidents often involve adverse weather
conditions and/or unauthorized flights into controlled airspace.
• Takeoff: Problems not identified during pre-launch activities
can emerge at takeoff, for example, a cable that obstructs a propeller
causing loss of control, communication failures between sUAS, or
sUAS placement on an obstructed launch pad.
• Inflight: During flight, users issue directives to the sUAS. In
addition, the system must provide situational awareness to users so
that they can perceive the current situation, comprehend what is
happening, and make sound decisions [27]. Accidents occur when
users lose situational awareness, often due to well-documented
design “demons” such as information overload [39, 48], attentional
tunneling [56, 60, 64], and out-of-the-loop syndrome [9].
• RTL and landing: RTL and landing modes present unique haz-
ards – for example the need to provide safe passage home if all
sUAS simultaneously transition to RTL due to global loss-of-signal.
3.2 Human Interaction Points (Step 3)
Humans directly interact with sUAS in many different ways, includ-
ing through physical manipulations (e.g., attaching a camera), use
of manual flight controls (e.g., if a human takes physical control of
the sUAS from the software system), as well as through issuing com-
mands, feedback, and setting goals via the user interface [33, 63].
We discuss five common human-sUAS interaction patterns (P1-P5),
based on accounts of human interactions reported in the literature
(e.g., [4, 12, 33, 63]). Each of the following patterns involves actions
and interactions performed by both sUAS and humans. Square
brackets [] depict optional actions.
P1: Monitor (Human) →

[Seek_Explanation (Human) → Explain (sUAS) →]
[Intervene (Human) → Respond (sUAS)]

P2: Request_feedback (sUAS) → Provide_feedback (Human)
→ Act (sUAS) → Monitor (Human)

P3: Adapt+Explain (sUAS) → Monitor (Human)

P4: Observe and Configure (Human) →
Check_Configuration (sUAS or System)

P5: Set_mission_goals (Human) → Plan_mission
(System+sUAS) → Act (sUAS)

The first pattern (P1) is the most common one in a HoTL system
where a human operator’s responsibility is primarily supervisory.
The operator monitors the system and when needed requests an
explanation from the sUAS system. The human may decide to in-
tervene in the sUASs’ behavior, and the sUAS responds accordingly.
In pattern P2, an sUAS explicitly requests permission to perform an
action or requests confirmation that a taken decision was correct.
An example of this is when an sUAS uses onboard vision to detect

a victim during a search-and-rescue mission, and requests confir-
mation from the operator that it made a correct decision to switch
from “search” to “track” mode [2]. The operator provides feedback
which the sUAS acts upon, and the human monitors the response.

In P3, the sUAS adapts independently and then provides an
explanation of the adaptation. An example would be when an sUAS
makes an RTL decision due to low battery. The human monitors
the action and if necessary intervenes by following pattern P1. In
P4, the human configures and checks the system – either during
flight or prior to flight. Finally, in P5, the human sets mission goals
which guide and constrain the actions the sUAS are allowed to take
including tasks they will perform, permissions to act autonomously,
and ways in which they will collaborate with other sUAS and with
human supervisors. We explored instances of these patterns across
common and exception scenarios for diverse flight modes, and used
them to aid in the identification of human-interaction points.

3.3 Human Hazard Factors (Step 4)
We further explore three types of human-interaction errors. Human
initiated errors are quite common in the sUAS domain, as many
pilots have limited training. Examples include ignoring regulations
and restrictions, or failing to follow established processes. Loss
of situational awareness, occurs when the user is unable to fully
perceive the current situation, comprehend what is happening, and
make sound decisions [27]. For example, if the system provides
inaccurate information about the health or location of an sUAS, or
fails to explain why an sUAS behaves in a certain way (e.g., the
sUAS stopped at a certain point and does not move further), the
user may make suboptimal decisions for how to proceed with the
mission. Finally, lack of empowerment occurs when the operator is
aware of the state of the mission, knows what they would like to
do, but the system does not provide the means for them to do it. A
simple example is when the system fails to provide the user with
the option of canceling a flight route currently in progress.

3.4 Constructing the Hazard Trees (Steps 5 & 6)
Finally, based on this systematic approach for identifying human-
sUAS hazards, we constructed hazard trees capturing the system
hazard, sub-hazards, and human-sUAS hazards to be addressed.
Partial examples for two hazard trees (sUAS collisions and pre-
flight configurations) are reported in Fig. 3. These initial trees were
continually refined into domain-level assets (step 6) throughout
the remainder of our study as additional hazards emerged. This
refinement process is further described in Section 5.2 based on ad-
ditional hazards discovered through analyzing reported incidents.
Our final set of eight hazard trees is listed in Table 1. We also
identify candidate mitigations. For example, in Fig. 3b, hazard PX7
could be mitigated by the requirement that “The system shall store
a list of default arming checks to be applied to all UAVs by type (e.g.,
PX4, Ardupilot). An alert shall be displayed if any UAV’s internal
configuration differs from the expected arming checks.”.

While this paper does not focus on the process of establishing
mitigations, our GitHub-hosted hazard trees do include a (growing)
list of mitigation options for each human-interaction error1.

1sUAS Repository: https://github.com/SAREC-Lab/sUAS-UseCases

https://github.com/SAREC-Lab/sUAS-UseCases

Hazard Analysis for Human-on-the-Loop Interactions in sUAS Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Hazard
System hazard

Hazard
F1: A UAV flies dangerously

close to another object or
collides with it

Hazard
F2: A UAV flies too

close to ground-based
objects (e.g., ground,

trees, buildings,
people)

Hazard
F5: The UAV does

not have an accurate
terrain map and/or

accurate geolocation
and is therefore

not able to determine
the correct altitude

to fly at

Hazard
F11: The UAV crashes

into the terrain
or another object

right after an operator
manually assumes

control of the system
from the computerized

system

Hazard
FX6: When the operator
assumes manual control

during the mission
and switches (e.g.,

throttle) are set
incorrectly, the
UAV responds

dramatically
(e.g., plunging
to the ground)

Hazard
FX8: When the operator
assumes manual control

of the UAV, they
do not know how

the UAV is oriented
(i.e., which direction
the UAV is facing)
and find it difficult

to immediately control
the UAV

Hazard
F3: Minimum separation

distance and/or
__time-to-impact__
threshold is violated

between airborne
UAVs

Hazard
FX2: The operator
has no means of

overriding the onboard
autonomy and/or

cannot do so quickly
enough in order

to avoid a collision
with the terrain

Hazard
FX1: The operator

is unaware that
the UAV is flying
too close to the

terrain

Hazard
F8: GPS accuracy
is unexpectedly

degraded

Hazard
FX3: The operator

is unaware that
GPS accuracy is

degraded and that
UAVs are in danger
of mid-air collisions

Hazard
FX7: The operator

is unaware that
the switches are
set incorrectly

(a) Hazards related to sUAS collisions

Hazard
System hazard

Hazard
P1: Physical Preflight
UAV setup misses
important checks

Hazard
P2: UAVs are not
placed correctly

for launch

Hazard
PX1 Operator

places UAVs too
close to each other or

with insufficient clearance
prior to launch

Hazard
P3: UAV is not flight-ready

Hazard
PX11 It is difficult

for the user to
check and configure

multiple UAVs simultaneously

Hazard
P5: No geofence has

been established

Hazard
PX4 The system does

not provide appropriate
information regarding

the geofence, so
the operator is

unable to determine
whether it has been

set correctly or
not

Hazard
P6: UAV is not

configured correctly
for flight

Hazard
PX5: User is unaware

that the system
is not configured

correctly

Hazard
PX8 User has configured

autopilot in an
unsafe way (e.g.,
setting minimum

number of satelite
fixes required to
1, or setting the

RTL altitude illegally
high or dangerously

low)

Hazard
P7: The payload is

too heavy or
unbalanced

Hazard
P12: The user sets

switches on hand-held
controller incorrectly

(e.g., throttle,
RTL, LAND)

Hazard
PX9 Operator attaches

overly heavy or
insecured payload

to UAV

Also see Sensor and
Hardware Hazard Tree

Hazard
PX6: User is unaware

that failsafe and
other flight actions

are configured incorrectly
(e.g., RTL actions)

Hazard
PX7: User is unaware

that critical arming
checks are disabled

(e.g., satellite
connections, accelerometer

health)

(b) Hazards associated with preflight checks and configurations.

Figure 3: Two partial hazard trees. System nodes were derived from the literature survey, while colored nodes were derived
from our analysis of human-interaction errors. Legend: Gray=system hazards, blue=human initiated errors, green=loss of
situational awareness, yellow=lack of empowerment.

Description: Multiple UAVs dispatched to search for victim.
Primary Actor: Drone Commander (DC)
Trigger: The DC activates the search.
Main Success Scenario:

1. The UAV performs synchronized takeoff
[mode: Takeoff]

a) UAVs are not placed correctly for launch (system haz.)
i.Operator places UAVs too close to each other for launch [HE]
ii.Operator places UAVs in area with insufficient clearance [HE]

….

2. DroneRescue tracks and displays the location and state
of each UAV [mode: Inflight]
a) Communication Failure between ground and UAVs (system haz.)

i. The operator is unable to receive status data from the UAVs
and loses situational awareness [SA]

…

(more steps….)

Figure 4: Use case Vignette includes (system-level hazards),
missionmodes, and (respectiveHiPs), whereHE=Human Er-
ror, SA=Loss of Situational Awareness.

4 LEVERAGING THE HAZARD TREES
In this section we assume the role of an end user (e.g., an sUAS
system developer) and show how a user could leverage our hazard
trees, and the process we developed, to identify relevant human-
interaction factors for a specific sUAS application. Our example is

based on the use case vignette shown in Fig. 4 for a search-and-
rescue scenario. We systematically examine each step of the use
case and identify its HiPs and their associated flight modes and
hazard groups. In this example we focus on the use case step related
to synchronized takeoff which occurs in takeoff mode. We identify a
HiP in which the operator prepares the sUAS for launch, and then
select relevant hazard trees of preflight configuration, weather, and
mission planning. The user retrieves those hazard trees and utilizes
them to aid in the hazard analysis process. In this case, we identify
our first system-level hazard from the preflight configuration tree
stating that “UAVs are not placed correctly for launch”. The tree
offers two associated HiPs defined as human errors for “Operator
places UAVs too close to each other prior to launch” and “Operator
places UAVs in location with insufficient clearance prior to launch”.
We follow a similar process for all subsequent steps.

Once human-interaction hazards are identified, we can propose
mitigating requirements. For example, the inappropriate placement
of sUAS could be mitigated through including a clearance check
in a prelaunch checklist, or by adding a new feature to the system
that raises a placement alert if the minimum separation distance is
violated between sUAS prior to launch.

5 INCIDENT REPORT COVERAGE
The first part of our evaluation assesses the coverage of human-sUAS
incidents across the hazard trees. We collected reports of incidents,
accidents, and failures related to sUAS usage from news services

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Vierhauser, Al Islam, Agrawal, Cleland-Huang, Mason

Table 1: Final, refinedHazard Groupswith system- (SYS) and
user-hazards human-sUAS interaction hazards (HI)

Hazards
ID Cause of Hazard SYS HI

CL Collisions: between sUAS, other objects, and terrain 9 7
CM Communication: loss of comm with sUAS 7 7
HS Hardware/Sensors: e.g., cameras, GPS, parachutes 14 7
MA Mission Awareness: Mission status, decision making 7 11
MP Mission Planning: Flight routes and task allocation 5 3
PC Preflight Configuration: Geofence, launch, params 7 12
RC Regulatory Compliance: Airspace, flight constraints 9 9
WT Weather: Extreme temperature & wind 4 9

Table 2: sUAS Incidents involving as reported publicly
and/or through regulatory bodies

Source URL #

Aviation Safety Reporting
System (ASRS)

http://asrs.arc.nasa.gov/docs/
rpsts/uav.pdf (ACN: 1599671)

50

Wikipedia collection of
incidents

en.wikipedia.org/wiki/List_
of_UAV-related_incidents

109

dedrone – Collection of
Worldwide Drone Incidents

www.dedrone.com/resources/
incidents/all

100

The Center for the Study of
the Drone – Bard College

http://dronecenter.bard.edu/
drone-incidents

30

UK Air Accidents
Investigation Branch reports

https://www.gov.uk/aaib-
reports?keywords=UAS

50

and regulatory bodies. In total we inspected 339 reports of sUAS
incidents from five different sources as depicted in Table 2. Three
members of our team analyzed the incidents and mapped reported
human-interaction failures to the eight hazard groups and to the
three hazard factors. For each incident, one teammember performed
the initial mapping and a second member checked the mappings.
In case of disagreement, all three people discussed the results to
reach consensus. Aggregated results are reported in Fig. 5.

5.1 Results
The majority of reports simply stated that an sUAS was sighted
in prohibited airspace without any discussion of the contributing
cause, while only 54 provided detailed accounts. 43 of these included
human-related factors, providing insights into the prevalence and
root causes of different incidents and indicating that the majority
of incidents involved human factors. For example, some incidents
related to entering a prohibited airspace were caused by lack of
preflight configuration or appropriate configuration checks (cov-
ered by the hazard trees “Regulatory Compliance” and “Preflight
Configuration”). These accidents could be avoided by using a flight
authorization system. Similarly, in the case of pilot errors (e.g.,
losing line-of-sight to the sUAS), or hardware errors, (e.g., loss of
GPS), appropriate prelaunch configuration checks such as correct
fail-safe settings, could have mitigated these incidents (cf. “Preflight
Configuration”).

Hazard Groups
CL CM HS MA MP PC RC WT

Human initiated error 13 0 6 2 5 8 4 2

Loss of situational awareness 17 2 7 4 5 5 4 3

Lack of empowerment 7 4 6 0 3 3 3 1

Figure 5: A heatmap showing human-interaction factors
mapped against hazard groups according to their occurrence
in the analyzed incident reports.

Three of these incidents are summarized in Table 3 [I1-I3]. Two
cases (I1,I3) were related to (near) collisions with other aircraft,
and all of them involved human initiated error either inflight (I1,
I3) or as a result of preflight configuration errors (I2). Human initi-
ated errors included ignoring airspace warnings (I1), flying BVLOS
(beyond visual line of sight) (I1), and failing to obtain permission
to fly in controlled airspace (I3), both of which could well be miti-
gated through imposing constraints on flight planning (see hazard
tree Regulatory Compliance) and increasing situational awareness
levels through providing more warnings, recommendations, and
even prohibitions (see tree Mission Awareness). In the second inci-
dent (I2), the RPIC illegally set the RTL altitude to approximately
750 feet in order to avoid pylons and other obstacles if a fail-safe
caused the sUAS to switch to RTL mode. As sUAS can be config-
ured using open-source applications (e.g., QGroundControl [55] or
MissionPlanner [6]), their configurations must be checked for un-
desirable settings immediately prior to flight. Responsible software
packages should also warn anytime a user configured the autopilot
in a potentially illegal or dangerous way. Finally, in incident I3,
the operator reported that he suffered from stress due to multi-
tasking, and failed to notice that the system had started reporting
altitude in meters and not feet. This type of stress is quite common
when humans supervise autonomous systems, and is referred to
as Workload, Anxiety, Fatigue, and Other Stressors (WAFOS) by
Endsley [27]. However, the incident could have been avoided with
a legally established geofence or by raising alerts if unexpected
configurations were introduced. These three incidents highlight the
importance of software engineers designing, implementing, and
testing sUAS systems systematically to address safety concerns
related to human-sUAS interactions.

5.2 Analysis & Hazard Tree Refinement
As depicted in Fig. 5, many of the reported incidents included col-
lisions and were attributed to loss of situational awareness (17
instances) or directly related to human error (13 instances). The
second most common category was preflight configuration issues,
where either the pilot was partially at fault (8 instances) or the
system did not provide adequate or sufficient information to con-
figure the system correctly (5 instances). Altogether, we conclude
that incidents were reported for each hazard group and that all
reported human-interaction factors were successfully mapped to
one or more of the hazard groups.

Based on our observations we performed a few updates to im-
prove the structure and clarity of the trees. We observed that pi-
lot/operator related hazards occurred primarily due to loss of mis-
sion awareness and prelaunch configuration problems, and there-
fore redistributed pilot hazards to these two categories. We further

http://asrs.arc.nasa.gov/docs/rpsts/uav.pdf
http://asrs.arc.nasa.gov/docs/rpsts/uav.pdf
en.wikipedia.org/wiki/List_of_UAV-related_incidents
en.wikipedia.org/wiki/List_of_UAV-related_incidents
www.dedrone.com/resources/incidents/all
www.dedrone.com/resources/incidents/all
http://dronecenter.bard.edu/drone-incidents
http://dronecenter.bard.edu/drone-incidents
https://www.gov.uk/aaib-reports?keywords=UAS
https://www.gov.uk/aaib-reports?keywords=UAS

Hazard Analysis for Human-on-the-Loop Interactions in sUAS Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 3: Example sUAS-Incidents with Human Contributing Factors

ID Incident Type Incident Description Human-Related
Hazard

Ref

I1 UAV collision with hot-air
balloon flying in unauth.
airspace over Boise, Idaho
in 2018

The amateur pilot overrode warnings about flying in unauthorized
airspace close to airport without permission from ATC. The UAV
went beyond visual line of sight and RPIC was unaware that the
UAV was repeatedly shearing against the balloon until propellers
fell off. Pilot was unskilled with hand-held controls.

Ignoring critical
warnings;
Flying BVLOS.

[37]

I2 Near collision with
Highway Patrol helicopter
over Martinez, California
between 700 and 800 feet in
2015

Max. altitude allowed for UAV flights in the USA is 400ft (or 100ft
above buildings). The RPIC had overridden the altitude at which
UAVs return to launch to avoid electrical pylons. When signal was
lost with the UAV during flight, it switched to RTL mode, and
operated on autopilot at prohibited altitudes placing it into the
flight path of the helicopter.

Critical default values
overridden by user in a
3rd party tool;
Failure to check
configurations prior to
launch.

[11]

I3 UAV was flown to an
altitude that was in excess
of the 400 FT AGL
limitation specified within
FAR Part 107

The RPIC believed that altitude was being reported in feet; and
was not aware that it had been reset to meters. As a result he
accidentally flew to approx 492 feet, claiming that the mistake
was caused by his focus on avoiding flying near obstacles or over
people, coupled with the delayed awareness that the software had
reset to metric units.

Delayed awareness of
UAV status, WAFOS
(Workload, Anxiety,
Fatigue, and other
Stressors situational
awareness demon)

[7]

extracted several hazards from across multiple categories into a
new category named “Inflight Mission Awareness” which grouped
hazards related to situational awareness. This new category in-
cludes hazards such as “The operator is overwhelmed by status
information for multiple UAVs” and “ The operator is unable to
handle multiple alerts simultaneously”. This produced the current
set of eight hazard groups which are listed in Table 1 and were used
for the subsequent study with domain experts.

6 EVALUATION BY DOMAIN EXPERTS
The second part of our study was designed to evaluate whether the
hazard trees were useful for analyzing and identifying requirements
associated with human-sUAS interactions. We invited six experts
from the sUAS domain to review use cases describing sUASmissions
and to utilize our hazard trees to augment a set of use cases with
human-interaction hazards using the process described in Section 4.
None of these participants were involved in the development of the
hazard trees or in the development of the systematic process.

6.1 Study Design
The study was divided into three parts, that included an initial
semi-structured interview, an analysis task, and closing interview.
All phases of the study focused on two primary use cases in which
sUAS were used to support (1) river search and rescue, and (2)
environmental water sampling. Both top-level use cases invoked
supporting use cases to activate and arm sUAS, generate flight routes,
and to plan non-intersecting routes through leasing airspace. In ad-
dition, the river rescue use case invoked active victim tracking and
the environmental sampling use case invoked flight authorization.
We piloted the study internally with one user, made improvements,
and then conducted the study as follows.

Initial Briefing: At the start of the interview we described the
Hazard Factors that we had addressed, namely human initiated error,
lack of situational awareness, and lack of empowerment; however, we
also stated that discussion was not limited to these factors. We then
presented participants with one of the primary use cases and asked
them to brainstorm potential safety hazards for each step of the use
case with the focus on human interaction and/or human failures
using a think-out-loud protocol [36]. We time-boxed this discussion
to 15 minutes, as that was sufficient to understand the types of issue
each participant would identify, while seeking a complete analysis
would require much longer. Our aim was to establish a baseline for
how developers currently think about, and identify human-sUAS
hazards. The interview was recorded using Zoom and automatically
transcribed for later analysis.

After the brainstorming task was completed, we spent approxi-
mately 10 minutes explaining the task to be performed. We intro-
duced the eight hazard groups and their associated hierarchies of
system and human-interaction hazards and then pointed the par-
ticipants to an 8 minute (take-home) online video that they could
use to further familiarize them with the hazard trees and the study
process.
Study Task: The study task was performed individually. We as-
signed participants into one of two groups (river rescue, environ-
mental sampling). Each participant was given their ownmulti-sheet
google spreadsheet which included (1) a summary of the 8 hazard
groups, (2) individual sheets for the primary use case, and four
supporting ones. Each use case included metadata, a list of suc-
cess steps, and a matrix for evaluating each step and marking (a)
whether each of the 8 hazards was relevant, and (b) in the case of
supporting use cases, exactly which hazards from the hazard trees
were relevant. Fig. 6 shows the main part of the spreadsheet for
one particular supporting use case. Hyperlinks allowed the user

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Vierhauser, Al Islam, Agrawal, Cleland-Huang, Mason

Figure 6: An example of the hazards identified by one of the participants for the supporting use case of Active Tracking.

to easily move between use cases and to view the hazard trees on
GitHub We instructed participants to spend up to 45 minutes, to
systematically evaluate each use case step and to mark the relevant
hazards.
Follow-up Interview: In a follow-up interview we asked partici-
pants a series of open-ended questions about their experience in
working with the hazard trees. Questions included (1) To what ex-
tent did the trees help you to identify potential human interaction
errors? (2) Was it difficult to find a matching hazard group and/or
specific hazard for a use case step? (3) Was there anything missing
or unclear with the groups or hazard trees? (4) When flying a drone,
have you ever experienced an incident that was at least partially
caused by a human-sUAS interaction problem? (5) If so, do you
think that incident could have been prevented or mitigated if you
had addressed hazards described in the hazard trees (please explain
your answer)? In addition, we used a rubric to elicit feedback on
usability and efficiency of the approach. The follow-up interview
was also recorded and transcribed.

6.2 Study Participants
We recruited six participants for our study, each of them with ex-
tensive domain expertise in piloting sUAS or developing non-trivial
sUAS applications. As shown in Table 4, their experience ranged
from 2 to 8 years working on sUAS development projects, with an
average of 3.67 years. We also indicate whether they had experience
with software, hardware, and/or in a multi-sUAS environment. In
cases where a participant had prior experience with river rescue
(P3) or environmental sampling (P2, P6), we assigned them to those
respective use cases. We opted to include only highly qualified
domain experts who represent our target users, even though this
reduced the size of our participant pool. However, Nielsen [51]
has shown, that five or six participants are sufficient for providing
meaningful and in-depth feedback on a research design solution
such as the hazard trees.

6.3 Initial Interview Analysis
We performed an inductive coding analysis [45] on the transcripts
from the initial meetings. The researcher that conducted the inter-
view performed the initial analysis and this was then cross-checked
by a second researcher. We identified four themes that were ob-
served across several of the discussions. First, several of our partici-
pants focused upon system-level hazards rather than human-related
ones, and were sometimes unable to identify any human-interaction
hazards. For example, participant P4 stated that “I don’t see any

Table 4: Study participants

Application domain Exp UCMult HW SW

P1 sUAS dispatch & Call center UI 4 yrs ES • •
P2 Environmental Applications 8 yrs ES • •
P3 Multi-sUAS Search and Rescue 2 yrs RR • •
P4 Safety& Security/Emerg. Resp. 2 yrs RR •
P5 Defibrillator Delivery 4 yrs RR • •
P6 Environmental Applications 2 yrs ES • •

Legend: ES=Environmental Sampling, RR=River rescue,
Mult=Multi-sUAS development, HW=Hardware, SW=Software.

opportunities for human error” associated with defining a coverage
area and allocating routes to sUAS. In fact, five out of six of our
participants (with the exception of P2) focused more on system-
level hazards than human-related ones. In a closely related theme,
three of the participants requested additional explanations about
human-interaction errors, indicating that this was a new concept
for them. Finally, we observed several examples of “blaming the
operator” without consideration for how a design flaw in the sys-
tem might have increased the likelihood of an operator error. For
example, P5 observed that the user could set an incorrect mode for
takeoff (human error), but did not mention that the system failed to
raise an alert which could have notified the operator of the problem.

6.4 Task Analysis and Follow-up Interviews
Once participants had completed the task, we analyzed the map-
pings from use case steps to hazards. We report aggregated results
in Table 5. For the two primary use cases (River Rescue and En-
vironmental Sampling), most participants found mappings to all
eight hazard groups. For the supporting use cases, agreement was
significantly lower. Out of 48 potential mappings (i.e., 6 supporting
use cases × 8 hazard groups) there were only seven cases in which
all participants agreed to the mapping, but 15 cases in which at least
2/3 agreed. Similarly, there were eight cases of full agreement that
the hazard group was not relevant and 20 cases with at least 2/3
agreement. There were only five potential mappings which lacked
2/3 consensus.

As reported in Table 5, the participants found each hazard group
to be useful across at least some of the use cases. In total, Commu-
nication (or the loss thereof) was mentioned 58 times in total, Hard-
ware/Sensors were mentioned 52 times, and Mission Awareness
mentioned 51 times. Collision was mentioned the least with only
24 mentions over all use cases. All six participants mentioned the

Hazard Analysis for Human-on-the-Loop Interactions in sUAS Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 5: Participant majority consensus for whether a spe-
cific hazard group was relevant for two top level use-cases
(River Rescue and Environmental Sampling) and five sup-
porting use cases.

Hazard Group
Use Case CL CM HS MA MP PC RG WT
River Rescue
Environmental Sampling

Activate & arm # # # # #
Area coverage # # # H# # #
Flight authorization # # #
Lease airspace # H# H# # #
Active tracking H# # # # H# #
Legend: : 2/3 Majority Agreement that the hazard group is
related,H#: Lack of Agreement,#: 2/3 Majority Agreement that the
hazard group is not related. The highest ranked hazard groups per
use case are underlined in red.

usefulness of the hazard trees. For example, P2 stated that “the trees
were very useful way to connect the hazards”, while P3 stated that
“they were super useful...there were things I wouldn’t have thought of”.
We also observed several cases in which a participant had stated
during the initial interview that there were no human-interaction
hazards associated with a specific use case step, but found relevant
ones when using the hazard trees. For example, when equipped
with the hazard tree, P3 identified previously undetected hazards
associated with “Loss of Communication”, “Mission Planning”, and
“Regulatory Compliance” for the area coverage use case. This indi-
cates that the hazard groups provide valuable information regarding
human-sUAS interactions.

Based on a 4-point Likert scale (very efficient, efficient, ineffi-
cient, very inefficient), 4 out of 6 participants stated that use of
the hazard groups was “efficient”, and that the grouping improved
the assignment task; however, two participants rated the task of
identifying and assigning hazards as inefficient. Subsequently, the
feedback was somewhat mixed. P2 stated that he “was hunting
around a bit” but that he “liked the categorization” and “the color
coding” while P5 stated that “the organization of hazards within
each of the respective trees makes it pretty easy to search a tree”. P3
shared that “After 15 or 20 minutes everything seemed to kind of
make sense” but that “there is a lot of information because it is a
complex problem”. We discuss this issue further in Section 7.

Several participants mentioned that they leveraged systems haz-
ards to help them identify human-interaction hazards. P4 explained
that he first “identified system flaws and then followed them down the
tree to uncover potential human-sUAS interaction problems” while
P5 stated that he “started at mid-level (system) hazards and found
relevant human-interaction hazards below that”.

Finally, all participants were able to elucidate on at least one
human-interaction problem they had personally experienced, and
all agreed that knowledge of the hazard trees during the devel-
opment process could have helped them foresee and mitigate the
reported problem. For example, P1 described a real-life incident
he had experienced which led to unnecessary human intervention
resulting in a crash, and stated that “we probably would have thought

more about (how to address the hazards) had we looked over those
hazard trees” and said that “preflight check(s) could have alerted
to the throttle position” thereby preventing the accident. In gen-
eral, our participants indicated that the real value of the trees is in
providing examples that encourage safety thinking.

7 DISCUSSION
Based on the analysis of reported incidents and sUAS accidents by
regulators and the media, we found that human initiated errors
and loss of situational awareness dominated the reported incidents.
Based on our analysis and the feedback from our domain experts,
we conclude that several of the reported incidents could have po-
tentially been prevented or mitigated by addressing the hazards
collected in our domain-level trees.

Our study with domain experts indicated that developers in
our study focused on system-level hazards, most likely because
they were more familiar with addressing system problems and
less knowledgeable about the role of human-related hazards. This
was the case even though they understood the full scope of the
study, including its focus on human-interaction errors. Based on
the mappings they created when using our hazard trees and their
feedback in the final interview, we conclude that the hazard trees
facilitated safety thinking from a human-interaction point of view
and provided a good starting point for “digging deeper” into these
types of hazards.

A second important consideration is the need for better tool
support. While our study participants reported that identifying
types of hazards (aka hazard groups) was quite easy, finding specific
hazards added an additional level of complexity and as a result,
sifting through all hazards in all (relevant) trees was rather tedious.
This led to the conclusion that additional tool support could ease
the burden of looking for potential matching hazards. While we do
not propose a “checklist-like tool”, as this could provide a false sense
of completeness, features for searching, filtering, and annotating
the trees could ease the task of identifying relevant hazards.

Table 6: Two human-interaction hazards with examples of
potential mitigations.

Hazard: PX1: Operator places UAVs too close to each other prior
to launch

PX1-S1: RPIC receives proper training to conduct mandatory
preflight checks (Process Requirement).
PX1-S2:The system checks the coordinates of all UAVs on the
ground and raises an alert if any of them are located less than
minimum separation distance apart (Safety Requirement).

Hazard: CX3: The human operator is unable to receive status data
from the UAV using the software-based system.

CX3-S1: The approximate position and the uncertainty of the
UAV’s current position on the map must be visually depicted
(e.g., by creating an increasingly large “circle” around the last
known, or projected position of the UAV (Safety Requirement).

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Vierhauser, Al Islam, Agrawal, Cleland-Huang, Mason

In addition, our aim is to provide a resource for addressing haz-
ard analysis and safety assurance throughout the software engi-
neering lifecycle in order to aid sUAS developers in building safer
systems that empower and support diverse operators. Our hazard
trees include a set of candidate mitigations associated with each
human-interaction hazard as illustrated in Table 6. The current list
of mitigations is included our online repository. Our approach is
designed to address an emergent problem in the domain of sUAS
development by providing a reusable set of hazard descriptions and
mitigations aimed at inspiring and supporting a safety mindset for
sUAS developers.

8 THREATS TO VALIDITY
Our work is subject to several validity threats. While we have
shown that it is applicable to real-world incidents and use case
scenarios, the limited number of incident reports makes it likely
that other types of incidents are not yet covered. Furthermore,
additional external evaluation of the process is required to ensure
its applicability in a more broader scenario. The analyzed incident
reports sparsely covermulti-sUAS applications and custom software
solutions. The majority of reports are related to the use of off-the-
shelf applications (such as Mission Planner and DJI’s propriatery
software system), and do not represent multi-sUAS missions. Given
the increasingly common reports of sUAS incidents and the dearth
of information discussing root causes, we have created a shareable
resource that can be used as a starting point for analyzing human-
sUAS hazards in a specific application.

We considered several alternate study designs, including a con-
trolled experiment that would involve specifying requirements for
a system with, and without, our hazard trees. However, to accom-
plish this in a non-trivial way would require significant time and
effort, beyond available resources. Our approach, falls under the
broad umbrella of design science, in which it has been shown that
even a limited number of participants provides useful usability feed-
back to iteratively refine a design [51]. Another threat is related
to the experience of the participants. While all participants have
experience in handling and operating sUAS, only one participant
had previous experience with multi-sUAS missions. Therefore, we
expect additional human-sUAS interaction hazards to emerge from
these types of systems and application use cases. We release our
set of hazard trees as a publicly available community resource that
is meant to evolve over as new incidents are reported from which
hazards can be identified.

We attempted to minimize internal validity threats associated
with the incident analysis and study, by dividing the transcription
of audio recordings among two researchers and cross-checking the
resulting transcripts, codes, and emergent themes. For the incident
coverage, three researchers performed the analysis and each inci-
dent was checked by two researchers. In case of a disagreement,
the incident was reevaluated until agreement was reached.

9 RELATED WORK
The most closely related work is in safety assurance, hazard slicing,
and situational awareness.

Safety Assurance:Work by Denney and Pai [19, 21, 24, 25] in this
area addresses different aspects of sUAS and UAV safety providing

automation support and tools for creating and maintaining safety
assurance cases. They emphasise reuse of safety assurance cases by
proposing domain-independent and domain-specific patterns [22,
29]. Other work has created reusable safety case patterns as build-
ing blocks for future product development [10, 19, 21, 23, 29, 35].
In the area of safety cases maintenance, Kelly and Weaver [40]
presented a set of patterns and recommended the use of modularity
to support safety cases evolution. Kelly and McDermid [41] investi-
gated changes in evidence, context, assumption and requirements
nodes to determine how changes impact the safety assurance case.

Hazard Slicing: Similar to our approach of dividing a large hazard
tree into several sub-trees to better address the different aspects,
several researchers have shown the benefits of hazard-based slic-
ing [38, 58]. Agrawal et al. [3, 14] proposed SAFA (Software Artifact
Forest Analysis) that uses underlying trace links to create and visu-
alize hazards trees and their respective mitigations in the context of
an evolving safety-critical software system. SafeSlice [28] extracts
design slices based on functional safety requirements. Other work
in this area focuses on generating artifact slices using formal ver-
ification techniques to support safety analysis [38, 58]. However,
these approaches are all system focused with little to no emphasis
on user induced hazards and faults. While these types of hazards are
important, specific processes, methods, or guidelines for identifying
and mitigating human-interaction related hazards are missing.

HCI/Situational Awareness: The seminal work on Situational
Awareness (SA) by Endsley [27] focused on user-centered design
identifying eight common design errors that occur frequently in
user interface designs and which inhibit SA. Several studies in this
area explicitly explore SA and shortcomings of user interfaces for
various types of systems such as tsunami early warning systems [1],
electric mining shovels [52] or operator interactions with a single
robot or machine [30, 34]. While the HCI community has exam-
ined this problem from various angles, they focus primarily on the
user-interface design and not on broader sets of hazards which our
approach is designed to address.

10 CONCLUSION
In this paper, we have presented an approach for systematically
deriving human-interaction hazards for sUAS systems. Based on a
literature survey we identified eight different categories of hazards,
that serve as a starting point for a human-centered hazard analysis.
As part of the process, we identified different mission modes and
contributing hazard factors, derived patterns for Human Interaction
Points (HiPs), and constructed an initial set of reusable hazard trees.
As part of our future work we plan on further extending our hazard
tree library, exploring ways to make it more scalable, including
providing tool support to facilitate navigation and identification
of relevant parts of a hazard tree for domain-specific multi-sUAS
applications. We also plan to extend our work into the design,
implementation, and test lifecycle to provide support for realizing
hazard mitigations.

ACKNOWLEDGMENTS
This project has been partially funded by the Linz Institute of Tech-
nology, the US National Science Foundation (SHF-1909007, CNS-
1931962) and by support from Northrop Grumman.

Hazard Analysis for Human-on-the-Loop Interactions in sUAS Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

REFERENCES
[1] 2009. Interaction Design for Situation Awareness-Eyetracking and Heuristics for

Control Centers.
[2] A. Agrawal, S. Abraham, B. Burger, C. Christine, L. Fraser, J. Hoeksema, S. Hwang,

E. Travnik, S. Kumar, W. Scheirer, J. Cleland-Huang, M. Vierhauser, R. Bauer, and
S. Cox. 2020. The Next Generation of Human-Drone Partnerships: Co-Designing
an Emergency Response System. In Proc. of the 2020 Conf. on Human Factors in
Computing Systems.

[3] A. Agrawal, S.Khoshmanesh, M. Vierhauser, M. Rahimi, J. Cleland-Huang, and
R. R. Lutz. 2019. Leveraging artifact trees to evolve and reuse safety cases. In
Proc. of the 41st Int’l Conf. on Software Engineering. 1222–1233.

[4] Ankit Agrawal, Jan-Philipp Steghöfer, and Jane Cleland-Huang. 2020. Model-
Driven Requirements for Humans-on-the-Loop Multi-UAV Missions. In Proc. of
the 10th Int’l Model-Driven Requirements Engineering WS.

[5] Ardupilot. 2020. Ardupilot – open source autopilot software. https://ardupilot.org.
[Last accessed 01-06-2021].

[6] Ardupilot. 2020. MissionPlanner. https://ardupilot.org/planner. [Last accessed
01-06-2021].

[7] Aviation Safety Reporting System. 2021. ASRS Database Report Set: Unmanned
Aerial Vehicle (UAV) Reports (ACN: 1599671). https://asrs.arc.nasa.gov/docs/
rpsts/uav.pdf [Last accessed 01-06-2021].

[8] Paul Baybutt. 2012. Process hazard analysis for phases of operation in the process
life cycle. Process Safety Progress 31, 3 (2012), 279–281.

[9] FrancescoNBiondi, Monika Lohani, Rachel Hopman, SydneyMills, JoelMCooper,
and David L Strayer. 2018. 80MPH and out-of-the-loop: Effects of real-world semi-
automated driving on driver workload and arousal. In Proc. of the Human Factors
and Ergonomics Society Annual Meeting, Vol. 62. SAGE Publications, 1878–1882.

[10] Robin E. Bloomfield and Kateryna Netkachova. 2014. Building Blocks for Assur-
ance Cases. In Proc. of the 25th IEEE Int’l Symp. on Software Reliability Engineering
Workshops. 186–191.

[11] CBS SF Bay Area News Outlet. 2015. Pilot Of Drone That Nearly Hit CHP Heli-
copter Says It Was On Autopilot. https://sanfrancisco.cbslocal.com/2015/12/17/
drone-near-miss-chp-helicopter-martinez-owen-ouyang-apology-autopilot.
[Last accessed 01-06-2021].

[12] Jane Cleland-Huang and Ankit Agrawal. 2020. Human-Drone Interactions with
Semi-Autonomous Cohorts of Collaborating Drones. In Proc. of the Interdisci-
plinary WS on Human-Drone Interaction; co-located with the 2020 ACM CHI Conf.
on Human Factors in Computing Systems.

[13] Jane Cleland-Huang, Ankit Agrawal, Md Nafee Al Islam, Eric Tsai, Maxime
Van Speybroeck, and Michael Vierhauser. 2020. Requirements-Driven Configura-
tion of Emergency Response Missions with Small Aerial Vehicles. In Proc. of the
24th ACM Conf. on Systems and Software Product Lines. 1–12.

[14] J. Cleland-Huang, A. Agrawal, M. Vierhauser, and C. Mayr-Dorn. 2021. Visualiz-
ing Change in Agile Safety-Critical Systems. IEEE Software 38, 03 (May 2021),
43–51.

[15] Jane Cleland-Huang, Mats Per Erik Heimdahl, Jane Huffman Hayes, Robyn R.
Lutz, and Patrick Maeder. 2012. Trace Queries for Safety Requirements in High
Assurance Systems. In Proc. of the Int’l Working Conf. on Requirements Engineering:
Foundation for Software Quality. 179–193.

[16] Jane Cleland-Huang, Michael Vierhauser, and Sean Bayley. 2018. Dronology: an
incubator for cyber-physical systems research. In Proc. of the 40th Int’l Conf. on
Software Engineering: New Ideas and Emerging Results. 109–112.

[17] Nancy J. Cook. 2007. Stories of Modern Technology Failures and Cognitive Engi-
neering Successes. CRC Press, 2007.

[18] Josh Dehlinger and Robyn R. Lutz. 2006. PLFaultCAT: A Product-Line Software
Fault Tree Analysis Tool. Autom. Softw. Eng. 13, 1 (2006), 169–193.

[19] Ewen Denney and Ganesh Pai. 2014. Automating the assembly of aviation safety
cases. IEEE Transactions on Reliability 63, 4 (2014), 830–849.

[20] Ewen Denney and Ganesh Pai. 2015. Argument-based airworthiness assurance
of small UAS. In Proc. of the 2015 IEEE/AIAA 34th Digital Avionics Systems Conf.
IEEE, 5E4–1.

[21] Ewen Denney and Ganesh Pai. 2016. Composition of safety argument patterns.
In Proc. of the Int’l Conf. on Computer Safety, Reliability, and Security. Springer,
51–63.

[22] Ewen Denney and Ganesh Pai. 2016. Safety considerations for UAS ground-based
detect and avoid. In Proc. of the IEEE/AIAA 35th Digital Avionics Systems Conf.
IEEE, 1–10.

[23] Ewen Denney, Ganesh Pai, and Josef Pohl. 2012. Heterogeneous Aviation Safety
Cases: Integrating the Formal and the Non-formal. In Proc. of the 17th IEEE Int’l
Conf. on Engineering of Complex Computer Systems. 199–208.

[24] Ewen Denney, Ganesh J. Pai, and Ibrahim Habli. 2015. Dynamic Safety Cases
for Through-Life Safety Assurance. In Proc. of the 37th IEEE/ACM Int’l Conf. on
Software Engineering. 587–590.

[25] Ewen Denney, Ganesh J. Pai, and Iain Whiteside. 2017. Modeling the Safety
Architecture of UAS Flight Operations. In Proc. of the 2017 Int’l Conf. on Computer
Safety, Reliability, and Security.

[26] Homayoon Dezfuli, Allan Benjamin, Christopher Everett, Martin Feather, Peter
Rutledge, Dev Sen, and Robert Youngblood. 2015. NASA System Safety Handbook.

Volume 2: System Safety Concepts, Guidelines, and Implementation Examples.
(2015).

[27] Mica R. Endsley. 2011. Designing for Situation Awareness: An Approach to User-
Centered Design, Second Edition (2nd ed.). CRC Press, Inc., Boca Raton, FL, USA.

[28] Davide Falessi, Shiva Nejati, Mehrdad Sabetzadeh, Lionel Briand, and Antonio
Messina. 2011. SafeSlice: a model slicing and design safety inspection tool for
SysML. In Proc. of the 19th ACM SIGSOFT Symp. and the 13th European Conf. on
Foundations of Software Engineering. ACM, 460–463.

[29] Martin S. Feather and Lawrence Z. Markosian. 2013. Architecting and generaliz-
ing a safety case for critical condition detection software: an experience report. In
Proc. of the 1st Int’l WS on Assurance Cases for Software-Intensive Systems. 29–33.

[30] K. Fellah and M. Guiatni. 2019. Tactile Display Design for Flight Envelope
Protection and Situational Awareness. IEEE Transactions on Haptics 12, 1 (Jan
2019), 87–98.

[31] Qian Feng and Robyn R. Lutz. 2005. Bi-directional safety analysis of product
lines. Journal of Systems and Software 78, 2 (2005), 111–127.

[32] Donald Firesmith. 2004. Engineering Safety Requirements, Safety Constraints,
and Safety-Critical Requirements. Journal of Object Technology 3, 3 (2004), 27–42.

[33] Markus Funk. 2018. Human-drone interaction: Let’s get ready for flying user
interfaces! Interactions 25, 3 (2018), 78–81.

[34] Matthew C. Gombolay, Anna Bair, Cindy Huang, and Julie A. Shah. 2017. Compu-
tational design of mixed-initiative human-robot teaming that considers human
factors: situational awareness, workload, and workflow preferences. I. J. Robotics
Res. 36, 5-7 (2017), 597–617.

[35] Richard Hawkins, Ibrahim Habli, and Tim Kelly. 2013. Principled Construction
of Software Safety Cases. In Proc. of the Next Generation of System Assurance
Approaches for Safety-Critical Systems WS of the 32nd Int’l Conf. on Computer
Safety, Reliability and Security.

[36] Andreas Holzinger. 2005. Usability engineering methods for software developers.
Commun. ACM 48, 1 (2005), 71–74.

[37] Teton Valley News Julia Tellman. 2018. First-ever recorded drone-hot air
balloon collision prompts safety conversation. https://www.postregister.
com/news/local/first-ever-recorded-drone-hot-air-balloon-collision-prompts-
safety/article_7cc41c24-6025-5aa6-b6dd-6d1ea5e85961.html. [Last accessed
01-06-2021].

[38] Shuanglong Kan. 2014. Traceability and model checking to support safety require-
ment verification. In Proc. of the 22nd ACM SIGSOFT Int’l Symp. on Foundations
of Software Engineering. ACM, 783–786.

[39] Leah Kaufman and Brad Weed. 1998. Too much of a good thing?: Identifying
and resolving bloat in the user interface. In Proc. of the CHI 98 Conf. Summary on
Human Factors in Computing Systems. 207–208.

[40] Tim Kelly and Rob Weaver. 2004. The goal structuring notation–a safety argu-
ment notation. In Proc. of the dependable systems and networks 2004 workshop on
assurance cases. Citeseer, 6.

[41] Tim P Kelly and John A McDermid. 2001. A systematic approach to safety case
maintenance. Reliability Engineering & System Safety 71, 3 (2001), 271–284.

[42] L.T. Kohn, J.M. Corrigan, and M.s. Donaldson. 1999. To err is human, Building a
safety health system. Washington, DC: National Academy Press (1999).

[43] Yasuhiro Kuriki and Toru Namerikawa. 2014. Consensus-based cooperative
formation control with collision avoidance for a multi-UAV system. In Proc. of
the 2014 American Control Conf. IEEE, 2077–2082.

[44] Nancy G. Leveson. 1995. Safeware, System Safety and Computers. AddisonWesley.
[45] Mai Skjott Linneberg and Steffen Korsgaard. 2019. Coding qualitative data: A

synthesis guiding the novice. Qualitative Research Journal (2019).
[46] Yuanna Liu and Hao Lu. 2019. A strategy of multi-UAV cooperative path planning

based on CCPSO. In Proc. of the 2019 IEEE Int’l Conf. on Unmanned Systems. IEEE,
328–333.

[47] Robyn R. Lutz and Robert M. Woodhouse. 1997. Requirements Analysis Using
Forward and backward Search. Ann. Software Eng. 3 (1997), 459–475.

[48] Joanna McGrenere, Ronald M. Baecker, and Kellogg S. Booth. 2002. An Evaluation
of aMultiple Interface Design Solution for Bloated Software. In Proc. of the SIGCHI
Conf. on Human Factors in Computing Systems (Minneapolis, Minnesota, USA).
ACM, 164–170.

[49] D.C. Nagel. 1998. Human error in aviation Operations. Human factors in Aviation,
E.L.Weiner and E.C.Nagel (Eds) 19890047069, 34 (1998), 263–303.

[50] Saeid Nahavandi. 2017. Trusted autonomy between humans and robots: toward
human-on-the-loop in robotics and autonomous systems. IEEE Systems, Man,
and Cybernetics Magazine 3, 1 (2017), 10–17.

[51] Jakob Nielsen and Thomas K Landauer. 1993. A mathematical model of the
finding of usability problems. In Proc. of the INTERACT’93 and CHI’93 Conf. on
Human Factors in Computing Systems. 206–213.

[52] E Onal, C Craddock, and Mica Endsley. 2013. From Theory to Practice: How
Designing for Situation Awareness Can Transform Confusing, Overloaded Shovel
Operator Interfaces, Reduce Costs, and Increase Safety. In Proc. of the Int’l Symp.
on Automation and Robotics in Construction.

[53] Parsif.al. 2021. Tool support for Systematic Literature Reviews. https://parsif.al.
[Last accessed 01-06-2021].

https://ardupilot.org
https://ardupilot.org/planner
https://asrs.arc.nasa.gov/docs/rpsts/uav.pdf
https://asrs.arc.nasa.gov/docs/rpsts/uav.pdf
https://sanfrancisco.cbslocal.com/2015/12/17/drone-near-miss-chp-helicopter-martinez-owen-ouyang-apology-autopilot
https://sanfrancisco.cbslocal.com/2015/12/17/drone-near-miss-chp-helicopter-martinez-owen-ouyang-apology-autopilot
https://www.postregister.com/news/local/first-ever-recorded-drone-hot-air-balloon-collision-prompts-safety/article_7cc41c24-6025-5aa6-b6dd-6d1ea5e85961.html
https://www.postregister.com/news/local/first-ever-recorded-drone-hot-air-balloon-collision-prompts-safety/article_7cc41c24-6025-5aa6-b6dd-6d1ea5e85961.html
https://www.postregister.com/news/local/first-ever-recorded-drone-hot-air-balloon-collision-prompts-safety/article_7cc41c24-6025-5aa6-b6dd-6d1ea5e85961.html
https://parsif.al

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Vierhauser, Al Islam, Agrawal, Cleland-Huang, Mason

[54] PX4. 2021. Open Source Flight Controller. https://px4.io. [Last accessed 01-06-
2021].

[55] QGroundControl. 2021. Ground Control Station. http://qgroundcontrol.com.
[Last accessed 01-06-2021].

[56] Nicolas Regis, Frédéric Dehais, Emmanuel Rachelson, Charles Thooris, Sergio
Pizziol, Mickaël Causse, and Catherine Tessier. 2014. Formal Detection of Atten-
tional Tunneling in Human Operator-Automation Interactions. IEEE Transactions
Human-Machine Systems 44, 3 (2014), 326–336.

[57] Donald J. Reifer. 1979. Software Failure Modes and Effects Analysis. IEEE
Transactions on Reliability R-28,3 (1979), 247–249.

[58] Mehrdad Sabetzadeh, Shiva Nejati, Lionel Briand, and Anne-Heidi Evensen Mills.
2011. Using SysML for modeling of safety-critical software-hardware interfaces:
Guidelines and industry experience. In Proc. of the IEEE 13th Int’l Symp. on High-
Assurance Systems Engineering. IEEE, 193–201.

[59] Neil R. Storey. 1996. Safety Critical Computer Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[60] Tim Claudius Stratmann and Susanne Boll. 2016. Demon Hunt - The Role of
Endsley’s Demons of Situation Awareness in Maritime Accidents. In Proc. of the

Int’l Working Conf. on Human Error, Safety, and System Development. Springer,
203–212.

[61] Kevin J. Sullivan, Joanne Bechta Dugan, and David Coppit. 1999. The Galileo
Fault Tree Analysis Tool. In Digest of Papers: FTCS-29, The Twenty-Ninth Annual
Int’l Symp on Fault-Tolerant Computing. IEEE Computer Society, 232–235.

[62] Hongyu Sun, Miriam Hauptman, and Robyn R. Lutz. 2007. Integrating Product-
Line Fault Tree Analysis into AADL Models. In Proc. of the 10th IEEE Int’l Symp.
on High Assurance Systems Engineering. IEEE Computer Society, 15–22.

[63] Dante Tezza and Marvin Andujar. 2019. The State-of-the-Art of Human–Drone
Interaction: A Survey. IEEE Access 7 (2019), 167438–167454.

[64] Christopher D Wickens and Amy L Alexander. 2009. Attentional tunneling
and task management in synthetic vision displays. The International Journal of
Aviation Psychology 19, 2 (2009), 182–199.

[65] Xueyi Zou, Rob Alexander, and John McDermid. 2016. Testing method for multi-
uav conflict resolution using agent-based simulation and multi-objective search.
Journal of Aerospace Information Systems 13, 5 (2016), 191–203.

https://px4.io
http://qgroundcontrol.com

	Abstract
	1 Introduction
	2 sUAS Hazard Analysis
	2.1 Data Aggregation and Analysis Process
	2.2 Hazard Tree Construction

	3 Human-sUAS Interactions
	3.1 Mission Modes (Step 2)
	3.2 Human Interaction Points (Step 3)
	3.3 Human Hazard Factors (Step 4)
	3.4 Constructing the Hazard Trees (Steps 5 & 6)

	4 Leveraging the Hazard Trees
	5 Incident Report Coverage
	5.1 Results
	5.2 Analysis & Hazard Tree Refinement

	6 Evaluation by Domain Experts
	6.1 Study Design
	6.2 Study Participants
	6.3 Initial Interview Analysis
	6.4 Task Analysis and Follow-up Interviews

	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Conclusion
	References

