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ABSTRACT

Multi-electrode arrays such as “Neuropixels” probes enable
the study of neuronal voltage signals at high temporal and
single-cell spatial resolution. However, in vivo recordings
from these devices often experience some shifting of the
probe (due e.g. to animal movement), resulting in poorly
localized voltage readings that in turn can corrupt estimates
of neural activity. We introduce a new registration method
to partially correct for this motion. In contrast to previous
template-based registration methods, the proposed approach
is decentralized, estimating shifts of the data recorded in mul-
tiple timebins with respect to one another, and then extracting
a global registration estimate from the resulting estimated
shift matrix. We find that the resulting decentralized regis-
tration is more robust and accurate than previous template-
based approaches applied to both simulated and real data, but
nonetheless some significant non-stationarity in the recovered
neural activity remains that should be accounted for by down-
stream processing pipelines. Open source code is available at
https://github.com/evarol/NeuropixelsRegistration.

Index Terms— Microelectrode array, registration, decen-
tralized algorithms, spike sorting, neuroscience

1. INTRODUCTION

Recent advances in multi-electrode array (MEA) technology
enable the recording of neural activity throughout the brains
of behaving animals, at single-cell spatial resolution and sub-
millisecond temporal resolution, over timescales of hours or
even days [3, 4, 5, 2]. During long recordings, it is inevitable
that the probes will shift in position, due for example to subtle
movements experienced by the brain during external move-
ment of the animal. These shifts in turn translate into nonsta-
tionarities that can contaminate downstream analyses of the
inferred neural activity. Therefore, inferring the amount of
movement that is experienced by the MEA and correcting the
voltage signal to account for this movement has been identi-
fied as a crucial step in the analysis of MEA data [6].

Since the MEA is equipped with a geometrical layout,
one can think of the probe recording as a series of images
of voltage readings, where each electrode acts as a pixel.
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Therefore, MEA motion correction can be cast as a video
registration problem — but with several important caveats.
First, the “videos” of voltage signals from active neurons are
highly sparse relative to the sampling rate of voltage record-
ings; therefore salient landmarks that can be used to register
one frame to another are absent in most of the recording.
Second, when there is neural firing activity that can be used
to anchor registration, the firing patterns may not be consis-
tent over time, i.e., different subpopulations of neurons might
be observable at different time intervals, creating a lack of
correspondences for registration. Further, the signal to noise
ratio of voltage recordings is not as high as those observed
in many medical imaging registration tasks or natural image
videos, further making the motion estimation problem diffi-
cult. Lastly, unlike traditional grid-like pixel layouts, MEAs
occasionally have scattered pixel positions. This makes the
signal interpolation step after displacement estimation chal-
lenging due to irregular placement of signal recordings.

[2] recently introduced template-based registration meth-
ods for Neuropixels data (see also [7] for an earlier approach),
building on approaches that are popular for registering other
types of neural recordings [8, 9]. The basic idea here is to
learn a “template” image and to estimate the optimal shift
in each timebin to match the data to the estimated template
image. This approach works well when the observed neural
activity is stable enough to form a single coherent template
image across the full dataset, but fails if different neural pop-
ulations are active during different temporal segments of the
recording (implying that a single template will not fully cap-
ture the activity prevalent in each timebin).

Here we introduce a more robust decentralized registra-
tion approach. Instead of assuming the existence of a single
template image, we estimate relative displacements with re-
spect to every pair of frames, and then extract a global dis-
placement estimate from the resulting matrix of pairwise lo-
cal displacements. We show that one does not need to exe-
cute every pair of registration problems, as subsampling can
be utilized to reliably estimate global displacement due to the
low-rank nature of the estimated displacement matrix. The re-
sulting decentralized registration framework significantly im-
proves displacement estimation in several challenging exper-
imental datasets.
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Fig. 1. In vivo electrophysiological recordings are subject to motion artifacts (A; mouse figure reproduced from [1]). To estimate
the amount of motion, each time chunk of data (1 second) is represented using spatial histograms (B). The spatial histograms
across all time chunks are pairwise registered to each other (C). Using pairwise displacement estimates (D), global position-
ing is inferred (E); dataset from https://github.com/flatironinstitute/neuropixels-data-sep-2020/blob/master/doc/cortexlab1.md.
Global displacement is used to register the time chunks to a motion corrected space. The action potential superpositions prior
to motion correction exhibit highly variable signal amplitudes due to motion (F; color indicates time within the trial, so we see
that early spike shapes differ significantly from later spikes). Motion effects are reduced after registration, and the decentralized
motion estimates yield a higher signal-to-noise ratio yield (H) compared to the template based registration approach in [2] (G).

2. METHODS

The proposed registration framework involves several steps,
illustrated schematically in figure 1. First, the data is band-
pass filtered (200Hz-3000hz) and normalized by median
absolute deviation (MAD) to account for electrode specific
noise levels. Then, following [2], the recording is broken into
one-second time chunks, within which spatial histograms are
extracted to represent the signal support (Fig.1-B). Spatial
histograms capture the counts of events within each time
chunk in bins that represent depth position along the elec-
trode and signal amplitude'. All pairs of such histograms are
registered to one another to estimate a decentralized displace-
ment matrix which is then used to estimate global positioning
(Fig.1-C,D,E). Given the global positioning, the electrode
data in each time chunk is interpolated using Gaussian pro-
cess regression (again, see [2] for details) to represent its
values by undoing the observed displacement, yielding a
registered, motion corrected recording (Fig.1-G). In the fol-

1Other featurizations of the data are possible and could be swapped in
here in a modular fashion; the registration method described here only re-
quires a distance function between the featurized data in different time bins.
Good featurizations will be as invariant as possible to changes in firing rates
between different time bins.

lowing sections, we describe the decentralized displacement
estimation technique in further detail.

2.1. Decentralized displacement estimation

If we have collected 7" spatial histograms, each capturing the
counts of signal events of particular spatial location and am-
plitude in non-overlapping segments of recording time, we
can treat each of these histograms as a two-dimensional im-
age and utilize existing subpixel registration algorithms [11]
to infer the vertical displacement that maximizes the corre-
lation between two histograms. Computing all such pairs of
displacements, we can form a pairwise displacement matrix
D ¢ RT*T_ If subsampling is employed, i.e. only a sub-
set of all pairs of displacements are estimated, we can denote
the pairs of samples by which displacement is estimated by a
subsampling bookkeeping matrix S € {0,1}7*T. Given D
and S, we can estimate the global positioning of time sam-
ples since the joint displacement information is a realization
of a low-rank matrix (assuming sufficient rigidity) [12, 13].
We can decompose the low-rank system using the following
objective:

min[|S © (D - (1p" - p17)) [} (1
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Fig. 2. Effect of registration on real data. (A) Pairwise displacement matrix that is used to robustly estimate global displacement,
shown in (B) (black and yellow traces). The Kilosort2.5 [10] template-based estimate (green) is slightly different. (C) shows
the peak-to-peak amplitude over time of all spiking events detected by Kilosort2 [10] on two channels, indexed by 163 and
194, in unregistered data (blue), after template based registration (green), and decentralized registration (yellow). The peak-
to-peak variability is the lowest after decentralized registration — but notice that even in the best case there remains some
motion-induced variability in the spike heights. (D) shows the units’ action potential waveforms over time on each channel,
in unregistered data and after template based registration and decentralized registration. Blue indicates that the waveform was
early in the recording and red late in the recording. In both cases, the decentralized registration minimizes the motion-induced

variability of the recovered spike shape.

which can be solved in closed form:

+
p= (diag(vec(S)) (I ®1-1® I)) diag(vec(S))vec(D)
@

Here ® denotes the Kronecker tensor product, T denotes the
Moore-Penrose pseudoinverse, vec(-) denotes the matrix vec-
torization operation, diag(-) denotes the diagonal matrix with
input elements, and the entries of p € RT reflect the relative
displacements of the 7" spatial-histogram representations of
the data (see Fig. 1D or 2A for examples).

Subsampling allows us to reduce the number of pairwise
comparisons from O(T?) to O(T log(T)/€?) while incurring
an error of (1 £ ¢) relative to the full-sampled displacement
estimate, due to the boundedness of displacement errors and
Hoeffding’s inequality [14, 15].

In addition to subsampling, the S matrix can further en-
code registration faults between the ith and jth samples i.e.
displacement estimates that have incurred a loss greater than a
particular variance threshold. By setting S; ; = 0 for all such
cases, the displacement solution derived from (2) can result
in improved registration performance in challenging datasets
with low firing rates and large displacements.

In contrast, in template based registration, the positioning
of each time point is estimated directly by inferring the dis-
placement to a template, which is an average of all the spatial
histogram representations. The main difference between de-
centralized registration and template based registration is that
in decentralized registration, each time chunk of data is regis-
tered to each other, rather to a “central” template. Template-
based registration is prone to displacement errors whenever a
particular time chunk does not resemble the template.
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Fig. 3. Displacement estimation in a dataset with substantial non-rigid drift (data available through
https://github.com/evarol/NeuropixelsRegistration). (A) shows the original spike depths and amplitudes (indicated by
grayscale; darker ticks correspond to bigger spikes) over time in this recording. (B) shows displacement estimates by non-rigid
template-based (blue) and decentralized (red) methods at 10 different depths. The decentralized estimates visually track the
data from panel A accurately, while template based estimates remain very noisy (even after significant smoothing), as the
estimated template is corrupted by the large shift at the end of the recording. (C) shows the spike depths and amplitudes of the

first 1000 seconds (indicated by the black box in panel A) after decentralized registration, which is robust to the changes in

firing patterns, while template based registration (D) induces significant noise and apparent motion in the recovered signal.

2.2. Non-rigid estimation

As noted in [2], the displacement along the probe may be non-
constant, due most likely to differences in the rigidity of brain
regions at different depths. (See Fig. 3 for an example.) To
estimate a different displacement at each depth, we perform
displacement estimation at K equally spaced depths. Instead
of using a hard window to select these different subsets of
data (as in [2]), we found that a more robust approach was to
utilize soft windowing, where for each K selected depth, we
upweight the data using a Gaussian window before estimat-
ing the optimal shift. Finally, again following [2], we apply
Gaussian process regression to interpolate the registered data,
given the spatiotemporal displacement field estimated above.

3. RESULTS

We explored the impact of registration on real data using
a Neuropixels2.0 recording of 1000 seconds in which the
experimenters purposely induced “artificial” drift, and com-
pared our method to the state-of-the-art Kilosort2.5 regis-
tration [2]. Over the course of the experiment, the neurons
move with respect to the MEA, and their spikes’ detected
amplitudes and shapes change over time. We spike-sorted
the data using Kilosort2 [10] and manually curated the output

to recover clean, interpretable neural units. The difference
between Kilosort2.5 (green) and our decentralized approach
(black and yellow, after smoothing) displacement estimates is
shown in (Fig.2B). After registration, the peak-to-peak ampli-
tude (Fig. 2C) and shapes of the units’ waveforms (Fig.2D)
become more stable over time. Decentralized registration
leads to a better correction than Kilosort2.5 registration in the
examples shown here, though importantly, even in the best
case, there are some visible remaining motion-induced “wob-
bles” in the spike heights, which would need to be tracked by
downstream spike sorting processing.

Next we chose a more challenging Neuropixels1.0 dataset,
recorded in a mouse during the behavioral task described in
[16]. This dataset displays an atypically large and non-rigid
drift (Fig. 3A), leading to a failure in the template-based reg-
istration approach implemented in Kilosort2.5 [2] (panel D).
The assumption of a single fixed template across the full tem-
poral length of the experiment does not hold here, leading to
noisy and inaccurate registration results. In contrast, the de-
centralized registration is more robust, leading to qualitative
improvements in registration accuracy (panels B and C).
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