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Abstract—Runtime monitoring is essential for ensuring the
safe operation and enabling self-adaptive behavior of Cyber-
Physical Systems (CPS). It requires the creation of system
monitors, instrumentation for data collection, and the definition
of constraints. All of these aspects need to evolve to accommodate
changes in the system. However, most existing approaches lack
support for the automated generation and setup of monitors and
constraints for diverse technologies and do not provide adequate
support for evolving the monitoring infrastructure. Without this
support, constraints and monitors can become stale and become
less effective in long-running, rapidly changing CPS. In this “new
and emerging results” paper we propose a novel framework for
model-integrated runtime monitoring. We combine model-driven
techniques and runtime monitoring to automatically generate
large parts of the monitoring framework and to reduce the
maintenance effort necessary when parts of the monitored system
change. We build a prototype and evaluate our approach against
a system for controlling the flights of unmanned aerial vehicles.

Index Terms—Runtime Monitoring, Cyber-Physical Systems,
Model-Driven Engineering, Evolution

I. INTRODUCTION

Software-intensive systems, including Cyber-Physical Sys-
tems (CPS), such as autonomous vehicles [1], self-adaptive
unmanned aerial vehicles (UAVs) [2]–[4], and factory floor
robots [5], are becoming increasingly ubiquitous in society.
They introduce safety concerns, which are typically addressed
through regulatory and safety requirements. For example,
UAVs must avoid no-fly zones, comply with speed limits,
and maintain sufficient battery power. The verification and
validation of a CPS thus heavily relies on support for runtime
monitoring of its behavior and properties [6].
However, establishing support for runtime monitoring is

a non-trivial task. Runtime information must be collected
via instrumentation, or by specifying respective data-buses,
and then, constraints need to be defined in order to detect
deviations at runtime. These deviations must be brought to
the attention of the user through alerts and/or visualizations
that depict the system status. This often requires customized
solutions, especially when off-the-shelf approaches only cover
a subset of properties that need to be monitored and checked.
The situation is exacerbated when the system evolves and

the instrumentations, monitors, and constraints become out-
dated. Thus, a monitoring infrastructure needs to co-evolve
with the system being monitored to ensure the validity and
correctness of the constraint checking results. Keeping the

monitoring environment synchronized with the evolving sys-
tem can be a tedious and time-consuming endeavor; however,
neglecting to do so can lead to decreasing effectiveness
as constraints start producing false-positive errors and other
important constraints are missing.
The Model-driven Engineering (MDE) paradigm [7], pro-

vides methods for addressing evolution and maintenance issues
related to software systems. In such a scenario, changes are
performed solely to the model and system code is generated
automatically, without the need to manually adapt and modify
different parts of the system. In this sense, it seems promising
to employ the same technique to model a monitoring frame-
work, define events, data that needs to be collected, and link
constraints to specific elements in the model [8], [9].
Therefore, the goal of this work is to apply MDE techniques

to automatically generate a monitoring environment without
the need for a complete model of the monitored system. In
this new and emerging results paper, we make the following
contributions: (1) we propose a conceptual framework for
event-based, model-integrated monitoring. ModIRMo provides
support for modeling relevant parts of the system, automati-
cally generating a Monitoring API to collect events and data
from the system, instantiating the model at runtime to create
a “minimal viable” Digital Twin, and defining and checking
constraints on the runtime model; (2) we provide a prototype
implementation of ModIRMo and perform an initial evaluation
with a CPS in the UAV domain; (3) we identify research areas
that will drive the development of our ongoing work.

II. MOTIVATING EXAMPLE & RELATED WORK

Runtime monitoring plays a crucial role in ensuring that
a system operates safely and adheres to its specified perfor-
mance, safety, and other types of constraints. For example, in
2017 a UAV was observed by a helicopter pilot flying far above
the UAV’s legal limits. The UAV’s failsafe mechanism had
activated the automated RTL (return to launch) [10], causing it
to ascend to over 700 feet above ground level. While the UAV
pilot had maintained legal flying altitudes during manual flight,
the failsafe RTL altitude had been set above the legal limits
for UAVs in the US. With proper runtime checks, this incident
may have been avoided either by issuing warnings when the
UAV approached the maximum legal altitude or during pre-
launch checks of the failsafe RTL altitude property.



Runtime monitoring represents an active area of research
as summarized in a recent survey by Rabiser et al. [11]. In
work on Models@Runtime [12], [13], models are instantiated
at runtime, used to check properties of the system, and support
self-adaption of the system. However, very few approaches
rely on model-based concepts. One major challenge for the
successful application of runtime monitoring stems from the
significant upfront investment in implementing, setting up, and
maintaining the monitoring infrastructure, and creating re-
spective system instrumentation to collect runtime data. While
some approaches provide partial support, for example via byte-
code instrumentation or predefined monitors [14], [15], there
is a lack of a more abstract and language-independent solution.

In the MDE and industrial CPS domain, the term “Digital
Twin” has become synonymous with a model of the system
instantiated at runtime [16], [17]. However, approaches still
lack support for system instrumentation or efficient application
of model-driven techniques, such as model transformation,
or automated code generation. Another aspect that is often
neglected is system evolution. Systems in general and CPS in
particular are subject to constant change at both the software
and hardware levels. Such changes often affect the monitoring
infrastructure, as existing instrumentation is rendered incom-
patible or constraints defined on events and data become stale.
Few approaches provide support for automatically updating
or modifying monitors or constraints [18]. However, in order
for runtime monitoring to be used efficiently throughout the
lifetime of a system, changes in the system need to be reflected
in the runtime monitoring infrastructure, and the monitoring
infrastructure needs to co-evolve with the system.

Model-driven Engineering can play a pivotal role in sup-
porting and improving monitoring solutions as it provides
concepts that address the needs for monitoring CPS, deals with
diverse types of artifacts and constraints, and evolves monitors
as the CPS evolves. In the following section, we present
ModIRMo, our model-integrated framework for supporting
runtime monitoring of CPS.

III. APPROACH

ModIRMo has four major components that facilitate the au-
tomated generation of monitors, APIs, and the runtime model.
These components provide coverage of the main elements of
our previously derived reference architecture for monitoring
systems [11]. The four parts cover (1) the Monitoring Meta-
Model and the Domain Model; (2) collecting events and data
from the monitored system; (3) data aggregation and distribu-
tion; and finally (4) the runtime monitoring infrastructure with
support for constraint evaluation.
Monitoring Meta-Model & Domain Model:ModIRMo relies
on MDE concepts to generate monitoring components but does
not require a complete model of the monitored system. The
Monitoring Meta-Model, depicted in Fig. 2, provides the foun-
dation for our model-integrated runtime monitoring approach.
The four main elements are: the MoSystem describing the
system that is monitored and which in turn contains a number
of MoAgents. MoAgents can be dynamically instantiated at
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Fig. 1: Overview of ModIRMo’s main components. The high-
lighted components are generated based on the aDM.

runtime. They can represent system components, machinery,
or individual robots in a CPS. MoAgents in turn exhibit
certain monitorable properties (MoProperties) describing
complex elements such as the current state of a UAV, the
operational status of a machine (consisting of several values),
or simple values MoValue that can be monitored at runtime.
A new monitoring system is created by instantiating this

Monitoring Meta-Model and creating a Domain Model Frag-
ment. This model only needs to describe parts of the system
that will be monitored (i.e., agents and their properties),
and not the entire system. UML stereotypes are then used
to augment the Domain Model with monitoring informa-
tion (i.e., describing which parts represent MoAgents and
MoProperties) in order to link the Monitoring Meta-Model
to the Domain Model Fragment. The Augmented Domain
Model (aDM) provides all the information needed to instru-
ment the system and to synthesize a monitoring environment
using Model to Code Transformation. Fig. 3 shows a partial
version of the aDM for monitoring a UAV system with further
details provided in Section IV.
Runtime Data Collection: Various approaches have been
proposed to instrument systems with probes for collecting
runtime information [19]. Examples include byte-code instru-
mentation, aspect-orientation, and information retrieval from
existing service buses.ModIRMo generates a customizedMon-
itoringAPI, similar to a logging component, based on the aDM.
In contrast to generic logging APIs, containing methods such
as LOGGER.info(), LOGGER.error(), it provides dedicated
methods for each MonitorableProperty. The ability to directly
call the respective MonitoringAPI method, eases the task
of retrieving correct information; however, alternate types
of MonitoringAPIs and automated instrumentation, will be
explored in future work as discussed in our roadmap.
Message Broker: The Transportation Layer [11], which is
responsible for sending messages from the instrumented sys-
tem to the component that analyzes the data, is realized
as an MQTT Message Broker. MQTT uses hierarchically
structured topics to distinguish between different types of
information and to reduce the amount of information sent to
the Runtime Monitoring Component. Only those properties of
a specific MoAgent that have changed are sent to the respective
topic (e.g., uav1/dronestate) to update the State of UAV1.
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Fig. 2: The Monitoring Meta-Model used in ModIRMo for
specifying parts of the monitored system.

Leveraging the aDM and the topic information encoded in
the model, the entire communication process, including topics,
subscriptions, and messages, can be generated automatically.
Runtime Monitoring Infrastructure: At runtime, the aDM
can be instantiated to act as a model@runtime or a Digital
Twin of the system. Information retrieved from the Message
Broker is used to update the runtime instance of the model.
The final vital part of a runtime monitoring infrastructure are
constraints that need to be evaluated at runtime in order to
inspect the system behavior. The MDE community has devel-
oped several different constraint languages that can be used at
design time or runtime. Constraints can be directly attached
to the aDM, at different levels of granularity. System-wide
constraints can be applied at the MoSystem level, constraints
on individual or multiple agents are applied at the MoAgent
level, and constraints regarding specific properties are applied
at the MoProperty level. Additionally, components for runtime
visualization and for persisting events and runtime data can
be connected to the Message Broker by subscribing to the
respective topics.

IV. PRELIMINARY EVALUATION

To demonstrate feasibility of our monitoring framework and
the automated generation of the different components based
on the aDM, we developed a prototype and conducted an
experimental evaluation. We created a Domain Model for the
UAV control system of Dronology [2], defined constraints, and
performed simulations with multiple UAVs sending data to the
monitoring framework and checking constraints at runtime.
Prototype Implementation: Our ModIRMo prototype was
based on the Eclipse Modeling Framework (EMF) [20] using
Ecore models for the Monitoring Meta-model, the Domain
Model Fragment, and the aDM. EMF allowed us to auto-
matically generate Java classes based on the Ecore model,
hence the Digital Twin (i.e., the runtime model) was generated
automatically. We used Xtend [21], integrated in Eclipse, to
support model-to-code transformation to generate Dronology-
specific Monitoring API code, the Connector code for retriev-
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Fig. 3: A partial overview of the Augmented Domain Model
(aDM) for the Dronology UAV System.

ing information from the Message Broker and for updating
the runtime model, and the glue code, directly from the
Ecore model. Finally, we used the VIATRA Validation Frame-
work [22] to define and evaluate constraints. VIATRA provides
support to incrementally and reactively perform queries on
models, which is beneficial in terms of performance [23].
As a MQTT Broker we used the Mosquitto Message Broker.
Runtime visualization support is not currently supported in our
prototype but will be added in the future.
Construction of the Domain Model: In the first part of
our evaluation we investigated whether the approach would
support the modeling and monitoring of critical constraints
and the effort required to create the different system specific
components (the aDM, Monitoring API, and Connector). For
this purpose we used Dronology, a UAV management and
control system that supports the flights of multiple physical
or simulated drones [2]. Dronology is available as a research
environment and we analyzed the source code and pub-
lished descriptions (e.g., [24]–[26]), to identify components
that provided useful runtime monitoring information. The
first evaluation focused on modeling the main elements, i.e.,
UAVs representing MoAgents, modeled as Drones, and the
DroneState and DroneCommands sent to the individual
UAVs representing MoProperties. The DroneState contains
runtime information about the UAV (e.g., its location, speed,
battery status) and is constantly updated at runtime. We ex-
tended this initial model for the runtime constraint evaluation
(cf. below) by adding additional fields representing attributes
of the UAV’s flight controller for startup checks. The (partial)
Dronology aDM is depicted in Fig. 3.

pattern startupCheckGPS(d : Drone, sat :java Integer)
Drone.startupchecks.num_satellites(d, sat);
check(sat < 10);

Listing 1: Example of a VIATRA constraint for checking the
number of satellites (It is violated if check evaluates to true)



While this only represents a fraction of the entire Dronology
system, it allowed us to generate relevant components for
monitoring UAVs at runtime and check associated constraints.

Based on the aDM we were able to generate the Moni-
toringAPI code (in Java), the runtime model, as well as code
necessary for initiating constraint checks. After updating the
initial model, the code was regenerated without the need to
manually update the data collection, serialization, or message
broker code, and the additional methods in the MonitoringAPI
were easily deployed to the Dronology system.
Constraint Definition & Evaluation: In the second part
of the evaluation we explored the runtime aspects of our
approach by investigating the ability of the prototype to define
and check constraints. We performed a series of simulations
with Dronology with the previously created aDM. Based on
potential drone incidents reported in the literature, we derived
nine different constraints (cf. Table I) related to different
aspects of operating UAVs. All constraints were written in the
VIATRA, supported by an editor that allowed direct access
to the elements of the adM. All constraints took 1-2 lines of
code (cf. Lst. 1), with the exception of the geofence constraint
which required Java code to calculate distances. It took only
a few minutes of effort to add each new constraint.

We performed three simulation runs, each approximately
60 minutes, with five UAVs, each assigned five random
routes with multiple waypoints. We collected the number of
constraint evaluations performed (71,400), the time required
from setting a value to the model (excluding network delay
from the system to ModIRMo) (1.58ms), and the time required
for performing constraint checks after an element in the model
changed (0.56ms). The reported values show the average of the
simulation runs. Based on these initial results we can conclude
that ModIRMo is capable of dealing with a high number of
events and constraint checks. In addition to the simulation
runs, to validate the constraints, we simulated a number of
misuse cases [27] where we intentionally violated the defined
constraints in order to confirm the occurrence of constraint
violations. For example, we set the waypoint altitude of a
UAV above its maximum value as specified in the constraint,
performed longer simulations to trigger battery level violations
and sent UAVs to waypoints outside the specified geofence
radius. For all nine constraints, we were able to observe
violations when the misuse case was executed.

V. RESEARCH ROADMAP & OUTLOOK

The current ModIRMo approach requires a human to man-
ually maintain the domain model from which the monitoring
environment is generated and regenerated. In future work we
plan to explore the use of code annotations that tag classes
and constituent properties with Agent or Property tags to
match elements in the Meta-Model. These annotations could
be parsed to create the Ecore model.
Constraint Evaluation: The constraints used in the evalua-
tion were related to checking properties of the UAV at runtime
but did not include more complex or temporal properties.
Numerous constraint languages and evaluation engines have

Constraint Description

Altitude
restriction

The UAV must adhere to altitude limits defined for a
certain airspace

Safe RTL The UAV must maintain sufficient battery level to ensure
safe return/landing

Flight Mode The UAV must be in FlightMode “AUTO” mode when
flown within the simulation system

Speed Limit The UAV must not exceed the maximum groundspeed
of 10m/s

Geofence
Limitation

The UAV must not exceed a maximum distance from its
takeoff location

Pre-Checks
finished

The UAV system must have finished its pre-checks and
calibrations and enter “STANDBY” before take-off

GPS Signal The UAV must have a fix on a minimum number of 10
GPS satellites

UAV Take-
off Mode

The UAV must be in FlightMode “STABILIZE” mode
before takeoff while on the ground

Safety
Checks

The UAV must have completed all its internal safety
checks and have set its state to “armed” before takeoff.

TABLE I: UAV Constraints used with Dronology simulations

been proposed for performing runtime checks. While VIATRA
performed well in our initial evaluation, we will investi-
gate other constraint definition approaches such as Temporal
EMF [28], Epsilon, or Complex Event Processing [29] to
deal with more diverse constraints. For example, detecting
faster than expected battery drain, or fluctuating pitch and
roll, could only be achieved with temporal constraints which
are not directly supported by VIATRA. Additionally, we will
investigate decentralized constraint evaluation [30], [31] where
certain constraints can be locally checked on the UAV or an
edge device, with the benefits of faster reaction times.
Automated Deployment & Configuration: We will provide
better integration with the DevOps process, for example,
by supporting automated configuration and deployment of
the message broker and runtime configuration of the Mon-
itoringAPI according to constraints required in the current
environment. Furthermore, by modeling variabilities of the
monitoring environment as a feature model ModIRMo could
adapt to the different system configurations.
Self-Adaptation Capabilities: Finally, we plan to provide
self-adaptation capabilities for CPS. In its current version
ModIRMo can provide runtime in formation about the sys-
tem; however, we will leverage this information to allow
the system to adapt when certain conditions are met or
constraints violated. This form of goal-driven adaptability has
been demonstrated by several researchers [32], [33].
In conclusion, the evaluation, supported by our prototype, has
shown that ModIRMo is capable of handling a large number
of events from multiple agents in a CPS. However, additional
work is required to refine the Monitoring Meta-Model and
to apply ModIRMo to a broader range of systems and more
diverse programming languages.
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