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Highlights
e Fight surrogate modeling techniques were assessed over several datasets.
e MARS and GP models had the best performance overall for approximating a surface.
e RF, SVR, and GP gave the most robust performance for surrogate-based optimization.

e The results suggest surrogate model performance depends on data characteristics.

Abstract

Surrogate models are used to map input data to output data when the actual relationship between
the two is unknown or computationally expensive to evaluate for several applications, including
surface approximation and surrogate-based optimization. This work evaluates the performance of
eight surrogate modeling techniques for those two applications over a set of generated datasets
with known characteristics. With this work, we aim to provide general rules for selecting an
appropriate surrogate model form based solely on the characteristics of the data being modeled.
The computational experiments revealed that there is a dependence of the surrogate modeling
performance on the data characteristics. However, in general, multivariate adaptive regression
spline models and Gaussian process regression yielded the most accurate predictions for

approximating a surface. Random forests, support vector machine regression, and Gaussian



process regression models most reliably identified the optimum locations and values when used

for surrogate-based optimization.
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1. Introduction

Surrogate models, also known as response surfaces, black-box models, metamodels, or
emulators, are simplified approximations of more complex, higher-order models (Wang et al.,
2014). These models are used to map input data to output data when the actual relationship between
the two is unknown or when the relationship is computationally expensive to evaluate (Han and
Zhang, 2012). Surrogate models can also be constructed for use in surrogate-based optimization
when a closed analytical form of the connection between the inputs and outputs is not available or
is not conducive for use in conventional gradient-based optimization methods. Surrogate modeling
techniques are of particular interest where high-fidelity, thus expensive, simulations are used (Han
and Zhang, 2012), for example, in computational fluid dynamics (CFD) or computational
structural dynamics (CSD). Surrogates are also of interest when the fundamental relationship
between design variables and output variables is not well understood, such as in the design of cell
or tissue manufacturing processes (Du et al., 2016; Sokolov et al., 2017; Williams et al., 2020).

Surrogate modeling techniques have been receiving increasing attention in a wide range of
applications, for example, in the optimization of process design, scheduling, and control (Burnak
et al., 2019). They have successfully been used for both regression and classification tasks.
Surrogate models have been used in several recent applications in process systems engineering

and the manufacturing industry, including for optimization of a sulfur recovery unit (Rahman et



al., 2019), fault detection (Quiroz et al., 2018; Zhang et al., 2018), and surrogate-based
optimization of energy consumption in carbon fiber production line (Golkarnarenji et al., 2018).

Construction of a surrogate model is comprised of three steps: (1) selection of the sample
points, (2) optimization or "training" of the model parameters, and (3) evaluation of the accuracy
of the surrogate model (Wang et al., 2014). Although several machine learning and regression
techniques have been developed for surrogate model construction, there has been little work on
how to select the appropriate model for a particular application for either surface approximation
or surrogate-based optimization. Surface approximation refers to the application of using a
surrogate model to mimic the overall behavior or response of an underlying model. In surrogate-
based optimization, a surrogate model can be constructed to represent the objective function or
any constraints that may be computationally expensive to evaluate or are unavailable in analytical
form. The constructed surrogate can be used as a closed functional form in traditional gradient-
based optimization methods.

Numerous studies have been conducted to compare the performance of surrogate modeling
techniques (Bhosekar and Ierapetritou, 2018; Davis et al., 2017). Previous work on this topic has
shown that the performance for approximation is dependent on data characteristics such as the
input dimension and the underlying function shape (Davis et al., 2017; Williams and Cremaschi,
2019). The majority of these only compare a few models on a limited number of functions or for
specific applications (Ju et al., 2016; Luo and Lu, 2014; Villa-Vialaneix et al., 2012). Recent
developments in automatic selection of surrogate models primarily involve training multiple
surrogates and selecting the best surrogate based on some criteria using a trial-and-error approach
(Ben Salem and Tomaso, 2018; Mehmani et al., 2018). However, the trial-and-error selection

approach has the potential to become computationally expensive. With the large number of



techniques that have been developed for constructing surrogate models, there is a need for
systematic methods to select an appropriate model form for use in surface approximation and
surrogate-based optimization. Current common practices for selecting which surrogate model form
is appropriate rely on process-specific expertise.

Selection of an appropriate number of sample points and sampling method to generate
those samples is a critical step in the construction of a surrogate model. In general, a higher number
of sample points offers more information about the underlying model being approximated,
although with a higher computational expense. For low-order functions, after reaching a certain
sample size, increasing the number of sample points does not contribute much to the approximation
accuracy (Wang and Shan, 2007). Previous studies have investigated the effects of sample size
and sampling method on some of the surrogate modeling techniques being studied specifically,
including Gaussian process regression (Afzal et al., 2017; Burnaev and Zaytsev, 2015; looss et al.,
2010) and radial basis function networks (Afzal et al., 2017), as well as on surrogate modeling
accuracy in general (Davis et al., 2017). The results of these studies indicate that the accuracy of
a surrogate model is dependent upon the number and distribution of samples used in its
construction.

The objective of this work is to comprehensively investigate and compare the performance
of several different surrogate modeling techniques for both approximating functional relationships
and surrogate-based optimization, and to link that performance to the characteristics of the data
involved in the application. The results of this analysis are used to develop general "rules of thumb"
for selecting an appropriate surrogate modeling technique based on the characteristics of the data
being modeled and the desired application. Data sets for training surrogate models are generated

from a suite of optimization test functions with different features, such as function shape and



number of inputs. The specific data characteristics being investigated in this study are the shape of
the underlying function being modeled, the number of input dimensions, the sampling method
used to select sample points to be used in the model training, and the number of sample points.
The surrogate modeling techniques considered include Automated Learning of Algebraic Models
using Optimization (ALAMO), Artificial Neural Networks (ANN), Extreme Learning Machines
(ELM), Gaussian Process Regression (GP), Multivariate Adaptive Regression Splines (MARS),
Radial Basis Function Networks (RBFN), Random Forests (RF), and Support Vector Machine
Regression (SVR). The following sections contain descriptions of the surrogate modeling
techniques used, the sampling methods used to select the training data sets, and the test function
sets. Then, the computational experiments and the results are presented, followed by conclusions

and future directions.

2. Surrogate Modeling Techniques

2.1 Automated Learning of Algebraic Models using Optimization (ALAMO)

Automated learning of algebraic models (ALAMO) uses a linear summation of nonlinear
transformations of the input data to predict output values. Possible nonlinear transformations
include polynomial, exponential, logarithmic, ratio, and trigonometric functions (Cozad et al.,
2014). The nonlinear transformations allowed for ALAMO models trained for this work were sine,
cosine, exponential, logarithmic, polynomial functions. Given a dataset, the approach begins by
building a low-complexity, linear model composed of explicit nonlinear transformations of the
input variables. Then, the method iteratively refines the model by solving an optimization problem
at each iteration to minimize (or maximize) a user-designated error metric. It should be noted that
the adaptive sampling scheme of ALAMO is not used in this study. ALAMO is one of the few

surrogate modeling techniques developed directly by the chemical engineering community.



2.2 Artificial Neural Networks

Artificial neural networks attempt to mimic the behavior of neurons in the brain. The
models consist of an input and an output layer that are connected by a number of hidden layers in
between. The artificial neurons have weights and biases that create a network between the layers,
with the activation function in the hidden layer determining whether or not a neuron will "fire" and
produce a signal (Haykin, 2009). Training of a neural network refers to the process that identifies
the values of the weights and biases. Three different types of artificial neural networks are
considered here, all with a single hidden layer: a feed-forward artificial neural network with a
hyperbolic tangent activation function (ANN), an extreme learning machine (ELM), and a radial
basis function network (RBFN). In an ELM, the weights between the input layer and hidden layer
are randomly assigned, and the weights between the hidden layer and the output layer are fit using
linear regression or other regression techniques (Huang et al., 2006). The activation function used
in both the ANN and ELM models is a hyperbolic tangent function. An RBFN is a neural network
with a radial basis function as the activation function in the hidden layer (Gomm and Yu, 2000).
First, the network calculates the Euclidean distance between the input weights and input values.
Then it passes those distances through the Gaussian radial basis activation function. The form of
the radial basis function is shown in Egs. (1) and (2),

r=|lx—x' (1)
o(r) = e~ (2)

where the Euclidean distance, r, between points x and x’, is used to calculate the radial basis

function, ¢ (r), with the shape tuning parameter &.



2.3 Gaussian Process Regression (GP)

Gaussian process regression (GP) is a method of interpolation for which the interpolated
values are modeled by a Gaussian process governed by prior covariances. Gaussian process
regression uses a linear combination of inputs to predict output values. It uses a kernel function as
a measure of similarity between points to predict the value for an unseen point from the training
data (Rasmussen and Williams, 2005). The radial basis function is used as the kernel function for

all GP models trained for this work.

2.4 Multivariate Adaptive Regression Splines (MARS)

Multivariate adaptive regression spline (MARS) models are made up of a linear summation
of basis functions. The three types of possible basis functions are a constant, a hinge function (or
"spline"), or a product of two or more hinge functions. The training of a MARS model starts with
an initial model that is a basis function equal to the mean of the data outputs. On the first pass, the
model overfits to the data, adding basis functions to reduce the sum of the squared errors (SSE)
between the given and predicted outputs. Then, a backward, pruning pass is performed to remove
terms that have little effect on the SSE until the best model is identified based on cross validation

criteria (Friedman, 1991).

2.5 Random Forests (RF)

Random forests are machine learning models that make output predictions by combining
outcomes from a sequence of regression decision trees, called forests. Each tree is constructed
independently and depends on a random vector sampled from the input data, with all the trees in
the forest having the same distribution. The predictions from the forests are averaged using

bootstrap aggregation and random feature selection (Breiman, 2001). The value that is output for



a tree for given inputs is the value of the final leaf node reached, and the output value for the entire

RF model is the average value of the outputs for every decision tree in the forest.

2.6 Support Vector Machine Regression (SVR)

Support vector machine regression transforms input data into m-dimensional space and
attempt to construct a set of hyperplanes so that the distance from it to the nearest data point on
each side of the plane is maximized using kernel functions (Drucker et al., 2002). The kernel
functions transform the data into a higher dimensional feature space to make it possible to perform

the linear separation.

3. Computational Experiments
3.1 Test Functions

The test functions used to generate data for constructing the surrogate models are from the
Virtual Library of Simulation Experiments optimization test suite (Surjanovic and Bingham,
2013). These test functions are benchmarking optimization problems presented in the form of
analytic functions (Hussain et al., 2017). Functions with two, four, six, eight, ten, fifteen, and
twenty input dimensions were used in evaluations, resulting in a total of 127 test functions. The
functions are divided by their shapes, which include the categories: multi-local minima with 39
functions, bowl-shaped with 41 functions, plate-shaped with 11 functions, valley-shaped with 16
functions, and other-shaped with 20 functions that do not fit into the other four categories. Example
functions from each shape category are provided in Fig. 1.

The shape categories are defined by multiple characteristics of the test functions,
including modality, basins, and valleys, which describe the resulting surface. Modality refers to
the number of peaks on the surface. Multimodal functions have many local solutions but one

global one, making the global solution difficult to identify as algorithms may become trapped in



local solutions. A basin is a relatively steep decline surrounding a large area. These basin regions
can severely obstruct optimization algorithms due to a lack of information to direct the search
towards the optimum (Jamil and Yang, 2013). A valley occurs when a narrow area of little
change is surrounded by regions of steep descent. The progress of an optimization algorithm may

be hampered significantly on the floor of the valley (Hussain et al., 2017).
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Figure 1. Shape categories for test functions.

The bowl-shaped functions are unimodal, convex surfaces that can represent applications
where changes in inputs produce smooth, regular changes in output values. The multi-local minima
functions are multimodal and nonconvex and more representative of real data applications with
significant noise in the output. The plate-shaped functions contain large basin regions. The plate-
shape function may be representative of processes where several values of the process inputs or a
large section of the design space give a constant value for outputs, creating difficulties with
optimization searches. Valley-shaped functions have valleys, which may be applicable to processes

where small changes in input values produce very large variations in output values. Both the plate-



and valley-shaped categories contain unimodal and multimodal functions. The other-shaped
functions contain combinations of the characteristics of the other categories and non-smooth
functional behavior, which could encompass several processes where the shape of the output

surface is not well-known.
3.2 Surrogate Model Comparison

3.2.1 Surrogate Model Construction

For evaluating the performances of surrogate modeling techniques, input-output pairs were
generated from each test function using three different sampling methods at seven different sample
sizes (50, 100, 400, 800, 1200, and 1600 samples). The sample sizes were chosen in order to give
a range of values for the ratio of sample size to input dimension for each input dimension being
studied. In general, a sample size to input dimension ratio of 10 is considered an adequate number
samples for most regression techniques (Harrell et al., 1984). Any ratio smaller than 10 can be
considered to be a small sample size, with large sample sizes being any ratio of sample size to
input dimension larger than 10. Surrogate models were trained using these pairs with each of the
surrogate modeling techniques for each generated dataset. This process resulted in a total of 18,984
trained models. Each of the techniques has unique hyperparameters that were optimized in training
the models for each dataset to construct the best possible surrogate without overfitting the model.
For the MARS models, the number of hinge functions that could be multiplied together was limited
to two to avoid overfitting with higher-order hinge functions. The numbers of ANN, ELM, and
RBFN nodes, as well as the number of trees in the RF models, were increased until the root mean
squared error of a validation dataset stopped improving. For these models, the validation error was

estimated using ten-fold cross-validation on the training set. The number of nodes (or trees) was



increased until the average value of the last five validation errors either began to increase or
changed by less than 1%.

All of the surrogate modeling techniques except ALAMO and RBFN were implemented
in Python with the Sci-Kit Learn library version 0.32.2 (Pedregosa et al., 2011). RBFN models
were implemented with MATLAB 2017b, and ALAMO has its own software for model
construction (Cozad et al., 2014). All of the training options except for the ones discussed were set
to the default values indicated by the implementation package. The specific implementation
package used for each technique is listed in the supplementary materials.

The three sampling methods used were Halton Sequence Sampling (Halton), Latin
Hypercube Sampling (LHS), and Sobol Sequence Sampling (Sobol). LHS partitions the domain
of each input variable into N subsets to be sampled from, where N is the number of sampling points
(Mckay, 1992). Both Halton and Sobol sequence sampling are quasi-random, low discrepancy
sequences that attempt to distribute the sampling points uniformly across the sample space (Halton
and Smith, 1964; Joe and Kuo, 2008). These sampling methods were chosen because they have
been shown to sample input space uniformly for functions up to ten dimensions (Diwekar, 2003;

Garud et al., 2017).

3.2.2 Evaluation of Surface Approximation and Surrogate-Based Optimization Performance
After the surrogate models were trained for each dataset, sample size, and sampling
method, a densely sampled set of 100,000 input-output pairs were generated as test dataset for
assessing the accuracy of the models. Because there was no significant difference between the
samples or results obtained from any of the sampling methods at this large size, only results for
the dense set produced using Sobol sequence sampling are presented here. The root mean squared

error, adjusted R? value, and the maximum percent error were calculated for each dataset-surrogate



model combination based on the difference between the outputs of the given function and the
outputs predicted by the surrogate model.

The global minimum of each test function was estimated using the trained surrogate
models. The mathematical programs for estimating the minima were constructed in Pyomo
(version 5.6) (Hart et al., 2017; Hart et al., 2011), a Python-based optimization language. The
estimated minimum location and value are compared to the actual global minimum and value of
each function for accuracy to provide some insight into the effectiveness of each surrogate
modeling technique for surrogate-based optimization. Computations were carried out on the
Auburn University Hopper HPC Cluster (Lenovo System X HPC Cluster) using Intel E5-2650 V3,
2.3 GHz 20 core processors and implemented in Python 3.5 and MATLAB 2017b (for RBFN

surrogate models).

3.3 Performance Metrics

3.3.1 Surface Approximation Performance Metrics

Two performance metrics were used for evaluating the surface approximation ability of the
surrogate models: normalized root mean square error (nRMSE) and adjusted-R?. The adjusted-R?
(Miles, 2014) takes into account both the surrogate model accuracy and the size, or complexity, of
the model. Balancing the complexity of the model with the sample size is essential in ensuring that
the model is not overfit, as overfit models do not generalize well to new conditions. However,
adjusted-R? can unfairly penalize some of the surrogate models that are larger by nature of their
structure, for example, Random Forests, which need to grow larger because of their decision tree
framework. The nRMSE metric was chosen to assess how well the surrogates approximated the

test function without penalizing them for their size. The formula for (nRMSE) is given in Eq. (3).



The nRMSE value for each dataset-surrogate model combination is normalized by the range of

output values for easier comparison across datasets with a variety of ranges for output values.

Y1 Fn — yn)?
nRMSE:\/ =L 17\1[ = /(ymax_ymin)

3)

In Eq. (3), y,, is the output for point n for a dataset, 3, is the output predicted by a surrogate model
for point n, N is the total number of sample points in the dataset, and Y, and y,in are the
maximum and minimum output values in a dataset, respectively.

The formula for calculating adjusted-R? (R?) is shown in Eq. (4).

o N-1
B= 10 [y @

In Eq. (4), R? is the R-squared regression coefficient, N is the number of data points in the training
set, and k is the number of model parameters (or hyperparameters). R? values typically fall
between zero and one, with an R? of one indicating a perfect fit. However, with the adjustment for
model size, adjusted-R? values can become negative. The number of model hyperparameters, k,
was estimated as the number of nodes in the trained ANN, RBFN, and ELM models. For MARS
models, k was estimated as the total number of hinge functions. The k for the ALAMO models
was estimated as the number of nonlinear transformation terms in the final model. The k for SVR
models was estimated as the number of support vectors in the trained model. For GP models, k
was estimated as the number of input dimensions, which corresponds to the number of
hyperparameters that are fit for the length scale used in the radial basis function (the kernel function
used in the GP models). For RF models, k was estimated as the average number of decision
threshold values per tree in the forest.

The nRMSE and adjusted-R? metrics were calculated using the densely sampled 100,000

point test sets generated using Sobol Sequence sampling. One-way analysis of variance (ANOVA)



was applied to determine which dataset characteristics had a statistically significant effect on the

surrogate model performance metrics at a 95% confidence level.

3.3.2 Surrogate-Based Optimization Performance Metrics

We define D,,; as the Mahalanobis distance, Dy, (De Maesschalck et al., 2000) between
the location of the global minimum of a test function, x,,., and the location estimated using a
trained surrogate model, X,,;. This value is normalized by the maximum Mahalanobis distance

between any two points (x;, x;) in the dataset (Eq. 5),

DM(xopt' fopt)

max Dy (xi, %))

Dopt =

)

where x; and x; are points in the domain space of the dataset.
We define Gy, Eq. (6), as the normalized gap between the global minimum value and the

estimated one. This value is normalized by the range of output values in the dataset.

Ymax — Ymin (6)

In Eq. (6), Yop¢ is the actual global minimum value, J,,, is the one calculated by the surrogate

model, and ¥4, and y,,,;,, are the maximum and minimum output values in a dataset, respectively.

4. Results and Discussion

4.1 Effect of Sampling Method and Sample Size

The surface approximation performance for MARS models is shown in Fig. 2a as a
function of both sample size and sampling method. The average value of the performance metrics
for all 127 test functions is given as a function of the sample size for models trained with datasets
generated from each of the three sample methods tested. Similar to previous studies, the results

here show a general trend of improving performance with the addition of more sample points for



training the surrogate model. Surface approximation performance for all the surrogate modeling
techniques showed a comparable behavior to that of the MARS models. Plots of performance as a
function of sample size and sampling method for all surrogate modeling techniques and
performance metrics are available in the supplementary materials. The 90% confidence interval
error bars for the sampling methods have some overlap at all of the sample sizes. From this result,
there does not appear to be any significant difference in the surrogate modeling performance
among the three sampling methods investigated. ANOV A analysis did not indicate any statistically
significant difference in surface approximation performance for any of the surrogate model
techniques with changing sampling methods (p > 0.05). The selection of the space-filling sampling
method does not appear to have any effect on the approximation performance.

For surrogate-based optimization, only RF and RBFN models showed any statistically
significant differences for the surrogate model performance among the three sampling methods.
The other six surrogate modeling techniques’ performance was not significantly affected by choice
of the sampling method. The average D, value for RF and RBFN models as a function of the
training set sample size is shown in Fig. 2b and Fig. 2¢ for Sobol, Halton, and LHS sampling. For
RF models (Fig. 2b), the D,,,; values for models trained with Sobol sequence sampling data tend
to be in general lower than those of models trained with data generated from the other two sampling
methods, meaning that the optimum locations predicted by RF models trained with Sobol samples
are on average closer than those given by other sampling methods. ANOVA analysis further
confirmed that the models trained using Sobol sequence samples had statistically significantly
lower values for D,,, at each of the sample sizes investigated. The models trained using Sobol
sequence samples also had statistically lower values of D, for RBFN models (Fig. 2¢) at a sample

size of 50 (p = 0.002). These results indicate that while sampling method does not affect surface



approximation performance, for some surrogate modeling techniques, the choice of sampling
method can have a substantial impact on the performance for the model for surrogate-based

optimization, especially at lower sample sizes
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Figure 2. (a) MARS performance for different sampling methods as a function of sample
size for average nRMSE on all 127 test functions. (b) Average D, vs. sample size for RF

models. (c) Average D, vs. sample size for RBFN models. Error bars represent 90%

confidence intervals on the averages.



4.2 Comparison of surrogate modeling technique performance for surface approximation

There was no significant difference in the surface approximation performance of the
surrogate models trained using the sample points generated using Sobol and Halton sequences and
LHS. Therefore, results presented in this section only include surrogate models trained with
datasets generated via Sobol sequence sampling. Results are presented in this section for three
selected sample sizes. However, results for all sample sizes are available in the supplementary
material. The surface approximation performance metric results are presented in violin plot format.
The shape of each violin represents the probability density distribution of the data values. The top
and bottom of the violin represent minimum and maximum values, with the black bar within each
violin representing the interquartile range of the values. Median values are indicated on each violin

by a white circle.

4.2.1 Selection of Surrogate Modeling Technique for Surface Approximation by Adjusted-R?
Results obtained based on the adjusted-R? are summarized in Fig. 3. The adjusted-R? was
used to take into account the model size and complexity in addition to its accuracy (Miles, 2014).
This metric can be used to select a “best” model to use for approximation while controlling for
overfitting by selecting the technique that provides the highest value of adjusted-R?. Adjusted-R?
values were calculated for all the trained surrogate models for each dataset. For each dataset
category (either input dimension or shape), the number of times each surrogate modeling technique
was selected as best (had the highest adjusted-R?) was tabulated for the datasets in that category.
These tabulated values were divided by the total number of datasets in the category to calculate
the fraction of datasets for which each surrogate modeling technique was selected as best

performing. The number of datasets included in each category is given below the x-axis for Fig. 3.



Figure 3 shows which surrogate modeling techniques are selected most frequently when
the datasets are grouped by their input dimension and by their function shape. Although at the
smallest sample size tested, RBFN models give the highest adjusted-R? more frequently at the
higher input dimensions, ALAMO provides the highest adjusted-R?, and thus the closest
approximation, the highest percentage of the time at low input dimension. The superior
approximation performance of RBFN models is not observed at higher sample sizes when
considering selecting the “best” model by the adjusted-R?. In general, ALAMO provides the most
robust performance for yielding the highest adjusted-R?. However, as the dimension and sample

size increase, GP and MARS models begin to perform as well or better than ALAMO models.

At the largest sample size (Fig. 3b), GP and MARS models demonstrate opposite trends
with increasing input dimension until eight inputs. The selection frequency of GP models as having
the highest adjusted-R? (Fig. 5b) deteriorates while that of MARS improves. At input dimensions
higher than eight, both GP and MARS models have decreasing selection frequencies. GP models
use interpolation between the given training points to estimate outputs at new input conditions. As
the number of input dimensions increases, GP models require a higher number of training points
to more accurately capture a surface’s behavior in a region for interpolating to new conditions.
This may explain why MARS models begin to outperform GP models at higher dimensions, as the

hinge functions of the MARS models are not dependent on interpolation.

Figs. 3c and 3d show which surrogate modeling techniques are selected most frequently
when the datasets are grouped by function shape. When the datasets are grouped by the function
shape, different techniques yield the best adjusted-R? values at different sample sizes. For bow!
and multi-local minima shaped functions, MARS and ALAMO models give the highest values for

the largest percentage of the datasets at smaller sample sizes. The hinge functions of the MARS



models and the several available nonlinear transformations of ALAMO models may make them
particularly suitable for mimicking the convex behavior of the howl-shaped functions and for
approximating the somewhat “noisy” surface of the multi-local minima functions. When the
sample size grows, GP models also begin to perform well for multi-local minima functions as they
gain more information for more accurate interpolations. When the sample size grows, GP models
also begin to perform well for multi-local minima functions. Also, GP models are selected the most
frequently at all sample sizes for the other functions, which do not fit into any of the other four
defined shape categories. ANN models provide the best models for plate-shaped functions with
smaller samples but are outperformed as sample size increases. The model selection for valley
functions is spread fairly evenly among a few modeling techniques, which may suggest that
additional characteristics should be considered when selecting a surrogate model for a similar

dataset.

RF models did not perform the best for any of the datasets considered. SVR performed best
for very few, indicating that if adjusted-R? is the performance metric of interest, these models may
not be suitable choices. These results indicate that there is some dependence of the surrogate model
surface approximation performance on the overall shape of the function the dataset was generated
from, the input dimension, and the sample size, especially when all these factors are considered

together.
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4.2.2 Effect of Underlying Function Input Dimension and Function Shape on Surface
Approximation Performance

Results obtained for the effect of input dimension of the test function (and resulting training
dataset) on the nRMSE and adjusted-R? for each surrogate modeling technique at a sample size of
50 are summarized in Fig. 4. RBFN and MARS models have better performance than the other
techniques at the smaller sample sizes tested. Although many of the techniques appear to perform
comparably for approximation based on their nRMSE’s, the performance metric values deteriorate
when adjusted for the model size with the adjusted-R?. This indicates that while many of the
techniques can capture the general surface of the test functions at small sample sizes, they do so at
the expense of overfitting. This overfitting trend is particularly apparent for ELM and ANN
models, for example. With increasing sample sizes, the adjusted-R? values and nRMSE follow
similar trends, as increased sample sizes allow for larger models that can still avoid overfitting.

The results for adjusted-R? are summarized for sample sizes of 400 and 1600 in Fig. 5. In
general, at these larger sample sizes, MARS models perform the most robustly with respect to the
input dimensions. ANOVA analysis confirms this robust behavior with respect to dimensions for
MARS models, revealing no significant difference between the nRMSE values of each dimension
(p = 0.43). MARS and GP models at lower input dimensions yield higher values, close to one, of
adjusted-R%. However, the GP model performance worsens as the dimension increases, which
matches the trend from the results for model selection (Fig. 3b), illustrating the dependence of
model performance on dimension. The robust performance of MARS models may be due to their
effective partitioning of the design space with the hinge functions and the accurate modeling of
nonlinearities in these partitions by the products of hinge functions. Input dimension has different

levels of effects on the surrogate modeling technique performance at larger sample sizes. RF and



RBFN model performance becomes progressively worse with increasing dimensions, while
ALAMO model performance does not change much at different input dimensions. ALAMO’s
robust approximation performance with respect to input dimension may be due to its ability to
perform multiple nonlinear transformations for each input dimension separately.

While the selection of a modeling form by adjusted-R? can be useful, selecting a single
surrogate model as the best for a dataset may be misleading, as multiple models may perform
almost identically for the same dataset. For example, although ALAMO models are selected most
frequently as best for bowl-shaped test functions (Fig. 3¢ and Fig. 3d), MARS and GP models are
selected most frequently as second-best when ALAMO models are the best performing. However,
statistical analysis revealed that, on average, MARS models give higher adjusted-R? values than
ALAMO for bowl-shaped functions, and GP model performance was not significantly different
from that of ALAMO (at a significant level of 0.05). Furthermore, ANN models were selected as
best (with the highest adjusted-R?) for plate-shaped functions most frequently (Fig. 3b and Fig.
3c), but their adjusted-R? values (Fig. 5b) were only significantly different from RF, SVR, and
ELM models for that shape category. Based on these results, multiple surrogate modeling
techniques can be successfully applied to a dataset to produce similarly accurate approximations,

and one may not need to rely on a single best choice.
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Results for the effects of the underlying function shape on the performance of the surrogate
models for surface approximation are summarized in Fig. 6. All of the surrogate models had poor
approximation performance and a high level of overfitting, indicated by negative adjusted-R?
values, with respect to the function shape at sample sizes less than 200. Therefore, adjusted-R?
results for sample sizes of 400 and 1600 are presented. GP and MARS models provide the most
robust performance when considering the test function shape, though none of the techniques
perform well overall for the test functions with multi-local minima shape.

The function shape does have an impact on the surrogate models’ performance for some of
the other techniques. Although overall GP and MARS models give significantly lower values of
nRMSE than the other techniques (p < 0.05), when considering only bow/-shaped functions,
ALAMO models provided the lowest nRMSE values and best performance (p < 0.05). In addition,
while ELM’s have poor performance in general for how! and valley-shaped functions, they perform
very well in approximating plate-shaped functions, with adjusted-R? values close to one. Both
ANN and ELM models demonstrate improved performance for plate-shaped functions in
comparison to the other shape categories. The on-or-off nature of the nodes and activation
functions in these model types may make them especially suitable to approximate the flat or nearly
so portions of the plate-shaped surfaces. results for surface approximation suggest that for datasets
where specific characteristics are not available, a MARS or GP model would be appropriate to
select as a general guideline. However, if characteristics are available, other models might provide

a better approximation.
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4.3 Comparison of surrogate modeling technique performance for surrogate-based optimization

The computational experiments for surrogate-based optimization were executed by using
each surrogate model to estimate the minimum of each function and the location of the minimum.
Then, these results were compared to the global minimum and its true location using two metrics,
Dype (Eq. 5) and G,y (Eq. 6). Results are summarized in Figs. 7, 8 and 9, where we define a model
as having located the optimum when it obtains a Dy, or G,y value less than a threshold. The
thresholds for D,,; and G,y are 5% and 0.01%, respectively. Threshold for D,,, was selected in
terms of how close the estimate needed to be to still get a reasonable estimate of the optimum value
with the predicted location (within 1% error of the output range) and to also yield a reasonable
separation in the performance of models. The G, threshold was selected using 1% of the output
range as a measure of a good model fit.

Figure 7 shows the results for how well the surrogate models locate the global minimum
of each test function when they are grouped by the function dimension for sample sizes of 50 (Fig.
7a) and 400 (Fig. 7b). Surrogate-based optimization performance with respect to underlying
function shape did not differ significantly with sample size, so only results for 1600 samples are
presented here (Figs. 8 and 9). RF and SVR models, in general, locate the minima for the highest
fraction of the datasets when datasets are grouped by both shape (Fig. 9a) and input dimension
(Fig. 8a). ANOVA analysis on the mean D,,,; of those two techniques versus that of the others
indicates that the locations given SVR and RF values are significantly lower (p < 0.05).
Contrastingly, both techniques had some of the worst performances for approximating the design
space, with higher values for nRMSE and lower values of adjusted-R>.

While the RF models perform well in capturing the overall curvature of the underlying

function in each dataset, they perform poorly for predicting the actual output values. This may be



due to their utilization of decision trees. The “rules” of the decision trees that determine movement
between nodes provide less accurate, more noisy predictions for outputs but may be effective in
dividing the domain of the dataset in a way that allows the solver to pinpoint the location of the
minimum accurately. The support vectors in SVR models may serve a similar function to the
decision tree rules in RF models. GP models perform most robustly in estimating the actual global
minima values, in general, with respect to both shape and dimension, which may be related to their
ability to approximate the surfaces for the datasets accurately.

Both function input dimension and function shape impacted the surrogate models’
estimation of optimum values. While ANN models only identify the optimum value for about 25%
of the bowl-shaped test functions (Fig. 9b), they can identify close to 80% of the optimum values
for the plate-shaped functions. On the other hand, ALAMO models can identify optimum values
much more accurately for bowl-shaped functions than for plate-shaped ones. The optimum value
estimation seems to be more closely linked to the approximation performance than is the
estimation of the optimum location, as ALAMO models were more accurate in approximating
bowl-shaped functions and ANN models were more accurate for plate-shaped ones. At the higher
input dimensions of 10 and 15, the optimization problems of the many surrogate models were not
solved to 0.001% optimality gap within 48 hours (wall time). Specifically, none of the optimization
problems for GP, ELM or RBFN models, and very few of the SVR and ANN could be solved
within the allotted computational time. In contrast, the optimization problems constructed using
RF, MARS, and ALAMO models were solved to optimality within 72 hours (wall time) for all test
functions at high input dimension. Therefore, our computational test results recommend using only

those three techniques for surrogate-based optimization at input dimensions higher than 10. A



summary of these findings for surrogate-based optimization, as well as those for surface

approximation is provided in Table 1.



Table 1. Summary of findings for surrogate modeling technique performance

Model Advantages Disadvantages
ALAMO -Accurate for approximation and optimization of convex
(“bowl”-shaped functions)
-Relatively short optimization solution times
ANN -Accurate approximation and optimization of plate- -Requires a relatively large number of samples for
shaped functions approximating several function types accurately
-High computational time for optimization solutions,
particularly at high input dimension
ELM -Accurate approximation of plate-shaped functions -Requires a relatively large number of samples for
-Relatively short model training times approximating several function types accurately
-High computational time for optimization solutions,
particularly at high input dimension
GP -Accurate approximation of several function types -High computational time for optimization solutions,
particularly at high input dimension
-High model training times
MARS -Accurate approximation of several function types -Not as accurate for optimization of test functions
-Optimization problems remain tractable, even at high
input dimension
RBFN -More accurate than other techniques for optimization at | -High computational time for optimization solutions,
smaller sample sizes particularly at high input dimension
RF -MILP structure of optimization problem provides -Less accurate than other techniques for approximation
accurate optimization solutions with relatively low surfaces in general
solution times
SVR -Relatively short model training times -Less accurate than other techniques for approximation

-Accurate optimization of several function types,
particularly at small sample sizes

surfaces in general
-High computational time for optimization solutions,
particularly at high input dimension




4.3.1 Computational Efficiency of Solving the Resulting Optimization Problems

The solvers used for optimization are provided in Table 2. For each modeling technique,
the selected solver was the most appropriate for the resulting optimization model (Table 2). The
average computational times required for solving the optimization problems to estimate the global
minima of the test functions for each surrogate modeling technique are also included in Table 2.
The average solution times reported in Table 2 are for the optimization problems that were solved
to optimality within 48 hours. The solution time is dependent on final model size and structure,
with larger, more complex models taking a much longer time to solve than linear models or models
with fewer parameters.

GP models have the highest average solution times because the radial basis kernel function
used and the interpolation of the model based on the training data points result in a large, highly
nonlinear optimization model. The high degree of nonlinearity and number of parameters in the
optimization problems of ANN, ELM, RBFN, and SVR models also presented difficulties, with a
large proportion of the problems not being solved within 48 hours (wall time). The range of
optimality gaps for the models that did not reach a gap of 0.001% within the set time limit were
1% - 10% for ANN, 0.5% - 14% for ELM, 0.009% - 1x107 % for GP, 4% - 1x10° % for RBFN,
and 0.14% to 195% for SVR.

Although they are some of the more accurate models for locating optima and the resulting
optimization models do not, in general, become computationally intractable, the optimization
problems of RF models have the highest average value for the solution time. The solution time for
RF-based optimization problems may be reduced by developing specialized algorithms that exploit

the special structure of RF model MILPs as RF models were successful in pinpointing the location



of the minimum. While MARS models had relatively low optimization solution times, the

solutions given by MARS models were less accurate than those of other methods.

Table 2. Solvers and solution times for surrogate-based optimization (NLP = Non-linear
program, MINLP = Mixed integer non-linear program, MILP = Mixed integer linear program).

Resulting Average Solution
Surrogate . . .
Optimization Solver Time (min)
Model
Model
ALAMO NLP BARON 4.4
ANN NLP BARON 664
ELM NLP BARON 9.4
GP NLP BARON 2169
MARS MINLP ANTIGONE 7.9
RBFN NLP BARON 33
RF MILP CPLEX 27

SVR NLP BARON 288




B ALAMO B ANN B ELM Em GP 3 MARS 1 RBFN — 1 RF 1 SVR

10- (a)

1.0- Functlon DlmenS|on

0.8- -
0.6-

o
~

0.2-

Fraction of Dypt Values Below 0.05

0.8-
0.6-

Values Below 0.05

50.4-
0.2-

Ll 1

4D 6D 8D 10D 15D
Function Dimension

Fraction of D

0.0

2D

Figure 7. Fraction of datasets with D, less than 5% grouped by input dimension for sample size (a) 50 and (b) 400.



B ALAMO @l ANN s ElM =m GP =@ MARS [ RBFN 1 RF [ SVR

_ (a)

| | b

6D 8D 10D 15D
Function Dimension

0.8-

0.6-

0.4-

0.2-

0.0

(b)

Function Dimension

0.8-
0.6-

o
~

0.2-

Fraction of Gopt Values Below 0.01  Fraction of Dopt Values Below 0.05

0.0

Figure 8. Fraction of datasets with (a) Dy, and (b) G,y less than threshold grouped by input dimension for sample size of 1600.



E ALAMO

Fraction of Dgpt Values Below Threshold
=] o o o = o =)
- N w E-N ()] (o)) ~

o
o

o o o =
» o (o) o

Fraction of Gopt Values Below Threshold

o
()

0.0

BN ANN

B ELM

= GP

3 MARS

7 RBFN

Bowl
N=41

Valley
N=16

Bowl
N=41

Plate
N=11

Multi Local Minima
N=39

Function Shape

Plate
N=11
Function Shape

Multi Local Minima
N=39

1 RF

Other
N=20

SVR

(a)

(b)

Other
N=20

Figure 9. Fraction of datasets with (a) Dy, and (b) G,y less than threshold grouped by function

shape for sample size of 1600. N values below the function dimensions indicate the number of
test functions used for that input dimension.



4.4 Functions for Which None of the Surrogate Modeling Techniques were Accurate

For both the surface approximation and surrogate-based optimization applications, there
were some test functions for which none of the surrogate modeling techniques investigated were
able to achieve accurate estimates, even at the largest sample size. The two-dimensional
projections of the three functions that none of the surrogate modeling techniques were able to fit
with an adjusted-R? of at least 0.90 are shown in Fig. 10(a) — (c). These functions all come from
the multi-local minima shape category. The frequency of these functions’ peaks may make the
surfaces too noisy for approximating with any of the techniques, and other modeling approaches

may be necessary to get an accurate approximation.

The two-dimensional projections of a selection of the functions that none of the surrogate
modeling techniques located the optimum within a D, value of 5% are shown in Fig. 10(d) — (f).
There were seven of these functions. When compared to the rest of the test functions, these seven
had a range of output values that were several orders of magnitude higher, which may have given
the solvers used difficulty in locating the optimum point. Most came from the plate and valley-
shaped function categories. The large flat segments of these surfaces could have caused difficulty
in locating the optimums, causing the solvers to get trapped in them. There was no overlap between
the functions that were not modeled accurately for approximation and the functions whose
optimum locations could not be found, further indicating that selection of a surrogate model for
the two different applications may be unrelated. Although there were some common characteristics
for the functions that could not be adequately modeled using these approaches, further work is
needed on the specific characteristics of a dataset that may make it an inappropriate candidate for

these traditional surrogate modeling methods.
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Figure 10. Functions that could not be approximated by any of the surrogate models (a) — (¢) or
for which the optimum could not be located (d) — (f). (a) Eggholder function (multi local
minima-shaped) (b) Rastrigin Function (multi local minima-shaped) (¢) Ackley function (multi
local minima-shaped) (d) Perm function (bowl-shaped) (e) Rosenbrock function (valley-shaped)
(f) Zakharov function (plate-shaped)

5. Conclusions and Future Directions

The selection of the appropriate surrogate modeling technique depends on both the desired
application of the surrogate model and the characteristics of the dataset being modeled. Although
surface approximation using surrogate models is not significantly impacted by the choice of space-
filling sampling method, the quality of solutions obtained from surrogate-based optimization can
be dependent upon the sampling method, particularly at small sample sizes. For general selection
rules, MARS and GP models give the most accurate predictions for design space approximation,

and RF, SVR and GP models give the most accurate estimations for surrogate-based optimization.



The main limitation of this study is that the analysis was carried out only on relatively
smooth functions (with the exception of a few) with only continuous outputs. The results may not
be applicable to more noisy data or to data that has binary or integer inputs and/or outputs. In
addition, the “shape” data characteristic is not one that can readily be applied to other data in
determining which surrogate might be the most appropriate. Future work will focus on developing
specific, quantifiable data characteristics related to the shape that can be calculated based only on
available inputs and outputs and capture the overall data behavior to make the recommendations

for surrogate modeling selection more generalizable to other data.
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