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Highlights 

• Eight surrogate modeling techniques were assessed over several datasets. 

• MARS and GP models had the best performance overall for approximating a surface. 

• RF, SVR, and GP gave the most robust performance for surrogate-based optimization. 

• The results suggest surrogate model performance depends on data characteristics. 

Abstract 

Surrogate models are used to map input data to output data when the actual relationship between 

the two is unknown or computationally expensive to evaluate for several applications, including 

surface approximation and surrogate-based optimization. This work evaluates the performance of 

eight surrogate modeling techniques for those two applications over a set of generated datasets 

with known characteristics. With this work, we aim to provide general rules for selecting an 

appropriate surrogate model form based solely on the characteristics of the data being modeled. 

The computational experiments revealed that there is a dependence of the surrogate modeling 

performance on the data characteristics. However, in general, multivariate adaptive regression 

spline models and Gaussian process regression yielded the most accurate predictions for 

approximating a surface. Random forests, support vector machine regression, and Gaussian 



process regression models most reliably identified the optimum locations and values when used 

for surrogate-based optimization. 

Keywords: surrogate model, surface approximation, surrogate-based optimization, random 

forests, multivariate adaptive regression splines, Gaussian process regression 

1. Introduction 

Surrogate models, also known as response surfaces, black-box models, metamodels, or 

emulators, are simplified approximations of more complex, higher-order models (Wang et al., 

2014). These models are used to map input data to output data when the actual relationship between 

the two is unknown or when the relationship is computationally expensive to evaluate (Han and 

Zhang, 2012). Surrogate models can also be constructed for use in surrogate-based optimization 

when a closed analytical form of the connection between the inputs and outputs is not available or 

is not conducive for use in conventional gradient-based optimization methods. Surrogate modeling 

techniques are of particular interest where high-fidelity, thus expensive, simulations are used (Han 

and Zhang, 2012), for example, in computational fluid dynamics (CFD) or computational 

structural dynamics (CSD). Surrogates are also of interest when the fundamental relationship 

between design variables and output variables is not well understood, such as in the design of cell 

or tissue manufacturing processes (Du et al., 2016; Sokolov et al., 2017; Williams et al., 2020).  

Surrogate modeling techniques have been receiving increasing attention in a wide range of 

applications, for example, in the optimization of process design, scheduling, and control (Burnak 

et al., 2019). They have successfully been used for both regression and classification tasks. 

Surrogate models have been used in several recent applications in process systems engineering 

and the manufacturing industry, including for optimization of a sulfur recovery unit (Rahman et 



al., 2019), fault detection (Quiroz et al., 2018; Zhang et al., 2018), and surrogate-based 

optimization of energy consumption in carbon fiber production line (Golkarnarenji et al., 2018). 

Construction of a surrogate model is comprised of three steps: (1) selection of the sample 

points, (2) optimization or "training" of the model parameters, and (3) evaluation of the accuracy 

of the surrogate model (Wang et al., 2014). Although several machine learning and regression 

techniques have been developed for surrogate model construction, there has been little work on 

how to select the appropriate model for a particular application for either surface approximation 

or surrogate-based optimization. Surface approximation refers to the application of using a 

surrogate model to mimic the overall behavior or response of an underlying model. In surrogate-

based optimization, a surrogate model can be constructed to represent the objective function or 

any constraints that may be computationally expensive to evaluate or are unavailable in analytical 

form. The constructed surrogate can be used as a closed functional form in traditional gradient-

based optimization methods.  

Numerous studies have been conducted to compare the performance of surrogate modeling 

techniques (Bhosekar and Ierapetritou, 2018; Davis et al., 2017). Previous work on this topic has 

shown that the performance for approximation is dependent on data characteristics such as the 

input dimension and the underlying function shape (Davis et al., 2017; Williams and Cremaschi, 

2019). The majority of these only compare a few models on a limited number of functions or for 

specific applications (Ju et al., 2016; Luo and Lu, 2014; Villa-Vialaneix et al., 2012). Recent 

developments in automatic selection of surrogate models primarily involve training multiple 

surrogates and selecting the best surrogate based on some criteria using a trial-and-error approach 

(Ben Salem and Tomaso, 2018; Mehmani et al., 2018). However, the trial-and-error selection 

approach has the potential to become computationally expensive. With the large number of 



techniques that have been developed for constructing surrogate models, there is a need for 

systematic methods to select an appropriate model form for use in surface approximation and 

surrogate-based optimization. Current common practices for selecting which surrogate model form 

is appropriate rely on process-specific expertise.  

Selection of an appropriate number of sample points and sampling method to generate 

those samples is a critical step in the construction of a surrogate model. In general, a higher number 

of sample points offers more information about the underlying model being approximated, 

although with a higher computational expense. For low-order functions, after reaching a certain 

sample size, increasing the number of sample points does not contribute much to the approximation 

accuracy (Wang and Shan, 2007). Previous studies have investigated the effects of sample size 

and sampling method on some of the surrogate modeling techniques being studied specifically, 

including Gaussian process regression (Afzal et al., 2017; Burnaev and Zaytsev, 2015; Iooss et al., 

2010) and radial basis function networks (Afzal et al., 2017), as well as on surrogate modeling 

accuracy in general (Davis et al., 2017). The results of these studies indicate that the accuracy of 

a surrogate model is dependent upon the number and distribution of samples used in its 

construction. 

The objective of this work is to comprehensively investigate and compare the performance 

of several different surrogate modeling techniques for both approximating functional relationships 

and surrogate-based optimization, and to link that performance to the characteristics of the data 

involved in the application. The results of this analysis are used to develop general "rules of thumb" 

for selecting an appropriate surrogate modeling technique based on the characteristics of the data 

being modeled and the desired application. Data sets for training surrogate models are generated 

from a suite of optimization test functions with different features, such as function shape and 



number of inputs. The specific data characteristics being investigated in this study are the shape of 

the underlying function being modeled, the number of input dimensions, the sampling method 

used to select sample points to be used in the model training, and the number of sample points. 

The surrogate modeling techniques considered include Automated Learning of Algebraic Models 

using Optimization (ALAMO), Artificial Neural Networks (ANN), Extreme Learning Machines 

(ELM), Gaussian Process Regression (GP), Multivariate Adaptive Regression Splines (MARS), 

Radial Basis Function Networks (RBFN), Random Forests (RF), and Support Vector Machine 

Regression (SVR). The following sections contain descriptions of the surrogate modeling 

techniques used, the sampling methods used to select the training data sets, and the test function 

sets. Then, the computational experiments and the results are presented, followed by conclusions 

and future directions. 

2. Surrogate Modeling Techniques 

2.1 Automated Learning of Algebraic Models using Optimization (ALAMO) 

Automated learning of algebraic models (ALAMO) uses a linear summation of nonlinear 

transformations of the input data to predict output values. Possible nonlinear transformations 

include polynomial, exponential, logarithmic, ratio, and trigonometric functions (Cozad et al., 

2014). The nonlinear transformations allowed for ALAMO models trained for this work were sine, 

cosine, exponential, logarithmic, polynomial functions. Given a dataset, the approach begins by 

building a low-complexity, linear model composed of explicit nonlinear transformations of the 

input variables. Then, the method iteratively refines the model by solving an optimization problem 

at each iteration to minimize (or maximize) a user-designated error metric. It should be noted that 

the adaptive sampling scheme of ALAMO is not used in this study. ALAMO is one of the few 

surrogate modeling techniques developed directly by the chemical engineering community. 



2.2 Artificial Neural Networks 

Artificial neural networks attempt to mimic the behavior of neurons in the brain. The 

models consist of an input and an output layer that are connected by a number of hidden layers in 

between. The artificial neurons have weights and biases that create a network between the layers, 

with the activation function in the hidden layer determining whether or not a neuron will "fire" and 

produce a signal (Haykin, 2009). Training of a neural network refers to the process that identifies 

the values of the weights and biases. Three different types of artificial neural networks are 

considered here, all with a single hidden layer: a feed-forward artificial neural network with a 

hyperbolic tangent activation function (ANN), an extreme learning machine (ELM), and a radial 

basis function network (RBFN). In an ELM, the weights between the input layer and hidden layer 

are randomly assigned, and the weights between the hidden layer and the output layer are fit using 

linear regression or other regression techniques (Huang et al., 2006). The activation function used 

in both the ANN and ELM models is a hyperbolic tangent function. An RBFN is a neural network 

with a radial basis function as the activation function in the hidden layer (Gomm and Yu, 2000). 

First, the network calculates the Euclidean distance between the input weights and input values. 

Then it passes those distances through the Gaussian radial basis activation function. The form of 

the radial basis function is shown in Eqs. (1) and (2), 

𝑟 = ‖𝑥 − 𝑥′‖ (1) 

𝜑(𝑟) = 𝑒−(𝜀𝑟)2 (2) 

where the Euclidean distance, 𝑟, between points 𝑥 and 𝑥′, is used to calculate the radial basis 

function, 𝜑(𝑟), with the shape tuning parameter 𝜀. 



2.3 Gaussian Process Regression (GP) 

Gaussian process regression (GP) is a method of interpolation for which the interpolated 

values are modeled by a Gaussian process governed by prior covariances. Gaussian process 

regression uses a linear combination of inputs to predict output values. It uses a kernel function as 

a measure of similarity between points to predict the value for an unseen point from the training 

data (Rasmussen and Williams, 2005). The radial basis function is used as the kernel function for 

all GP models trained for this work. 

2.4 Multivariate Adaptive Regression Splines (MARS) 

Multivariate adaptive regression spline (MARS) models are made up of a linear summation 

of basis functions. The three types of possible basis functions are a constant, a hinge function (or 

"spline"), or a product of two or more hinge functions. The training of a MARS model starts with 

an initial model that is a basis function equal to the mean of the data outputs. On the first pass, the 

model overfits to the data, adding basis functions to reduce the sum of the squared errors (SSE) 

between the given and predicted outputs. Then, a backward, pruning pass is performed to remove 

terms that have little effect on the SSE until the best model is identified based on cross validation 

criteria (Friedman, 1991). 

2.5 Random Forests (RF) 

Random forests are machine learning models that make output predictions by combining 

outcomes from a sequence of regression decision trees, called forests. Each tree is constructed 

independently and depends on a random vector sampled from the input data, with all the trees in 

the forest having the same distribution. The predictions from the forests are averaged using 

bootstrap aggregation and random feature selection (Breiman, 2001). The value that is output for 



a tree for given inputs is the value of the final leaf node reached, and the output value for the entire 

RF model is the average value of the outputs for every decision tree in the forest. 

2.6 Support Vector Machine Regression (SVR) 

 Support vector machine regression transforms input data into m-dimensional space and 

attempt to construct a set of hyperplanes so that the distance from it to the nearest data point on 

each side of the plane is maximized using kernel functions (Drucker et al., 2002). The kernel 

functions transform the data into a higher dimensional feature space to make it possible to perform 

the linear separation. 

3. Computational Experiments 

3.1 Test Functions 

The test functions used to generate data for constructing the surrogate models are from the 

Virtual Library of Simulation Experiments optimization test suite (Surjanovic and Bingham, 

2013). These test functions are benchmarking optimization problems presented in the form of 

analytic functions (Hussain et al., 2017). Functions with two, four, six, eight, ten, fifteen, and 

twenty input dimensions were used in evaluations, resulting in a total of 127 test functions. The 

functions are divided by their shapes, which include the categories: multi-local minima with 39 

functions, bowl-shaped with 41 functions, plate-shaped with 11 functions, valley-shaped with 16 

functions, and other-shaped with 20 functions that do not fit into the other four categories. Example 

functions from each shape category are provided in Fig. 1.  

The shape categories are defined by multiple characteristics of the test functions, 

including modality, basins, and valleys, which describe the resulting surface. Modality refers to 

the number of peaks on the surface. Multimodal functions have many local solutions but one 

global one, making the global solution difficult to identify as algorithms may become trapped in 



local solutions. A basin is a relatively steep decline surrounding a large area. These basin regions 

can severely obstruct optimization algorithms due to a lack of information to direct the search 

towards the optimum (Jamil and Yang, 2013).  A valley occurs when a narrow area of little 

change is surrounded by regions of steep descent. The progress of an optimization algorithm may 

be hampered significantly on the floor of the valley (Hussain et al., 2017).  

 

Figure 1. Shape categories for test functions. 

The bowl-shaped functions are unimodal, convex surfaces that can represent applications 

where changes in inputs produce smooth, regular changes in output values. The multi-local minima 

functions are multimodal and nonconvex and more representative of real data applications with 

significant noise in the output. The plate-shaped functions contain large basin regions. The plate-

shape function may be representative of processes where several values of the process inputs or a 

large section of the design space give a constant value for outputs, creating difficulties with 

optimization searches. Valley-shaped functions have valleys, which may be applicable to processes 

where small changes in input values produce very large variations in output values. Both the plate- 
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and valley-shaped categories contain unimodal and multimodal functions. The other-shaped 

functions contain combinations of the characteristics of the other categories and non-smooth 

functional behavior, which could encompass several processes where the shape of the output 

surface is not well-known. 

3.2 Surrogate Model Comparison 

3.2.1 Surrogate Model Construction 

For evaluating the performances of surrogate modeling techniques, input-output pairs were 

generated from each test function using three different sampling methods at seven different sample 

sizes (50, 100, 400, 800, 1200, and 1600 samples). The sample sizes were chosen in order to give 

a range of values for the ratio of sample size to input dimension for each input dimension being 

studied. In general, a sample size to input dimension ratio of 10 is considered an adequate number 

samples for most regression techniques (Harrell et al., 1984). Any ratio smaller than 10 can be 

considered to be a small sample size, with large sample sizes being any ratio of sample size to 

input dimension larger than 10. Surrogate models were trained using these pairs with each of the 

surrogate modeling techniques for each generated dataset. This process resulted in a total of 18,984 

trained models. Each of the techniques has unique hyperparameters that were optimized in training 

the models for each dataset to construct the best possible surrogate without overfitting the model. 

For the MARS models, the number of hinge functions that could be multiplied together was limited 

to two to avoid overfitting with higher-order hinge functions. The numbers of ANN, ELM, and 

RBFN nodes, as well as the number of trees in the RF models, were increased until the root mean 

squared error of a validation dataset stopped improving. For these models, the validation error was 

estimated using ten-fold cross-validation on the training set. The number of nodes (or trees) was 



increased until the average value of the last five validation errors either began to increase or 

changed by less than 1%. 

All of the surrogate modeling techniques except ALAMO and RBFN were implemented 

in Python with the Sci-Kit Learn library version 0.32.2 (Pedregosa et al., 2011). RBFN models 

were implemented with MATLAB 2017b, and ALAMO has its own software for model 

construction (Cozad et al., 2014). All of the training options except for the ones discussed were set 

to the default values indicated by the implementation package. The specific implementation 

package used for each technique is listed in the supplementary materials. 

The three sampling methods used were Halton Sequence Sampling (Halton), Latin 

Hypercube Sampling (LHS), and Sobol Sequence Sampling (Sobol). LHS partitions the domain 

of each input variable into N subsets to be sampled from, where N is the number of sampling points 

(Mckay, 1992). Both Halton and Sobol sequence sampling are quasi-random, low discrepancy 

sequences that attempt to distribute the sampling points uniformly across the sample space (Halton 

and Smith, 1964; Joe and Kuo, 2008). These sampling methods were chosen because they have 

been shown to sample input space uniformly for functions up to ten dimensions (Diwekar, 2003; 

Garud et al., 2017). 

3.2.2 Evaluation of Surface Approximation and Surrogate-Based Optimization Performance 

After the surrogate models were trained for each dataset, sample size, and sampling 

method, a densely sampled set of 100,000 input-output pairs were generated as test dataset for 

assessing the accuracy of the models. Because there was no significant difference between the 

samples or results obtained from any of the sampling methods at this large size, only results for 

the dense set produced using Sobol sequence sampling are presented here. The root mean squared 

error, adjusted R2 value, and the maximum percent error were calculated for each dataset-surrogate 



model combination based on the difference between the outputs of the given function and the 

outputs predicted by the surrogate model.  

The global minimum of each test function was estimated using the trained surrogate 

models. The mathematical programs for estimating the minima were constructed in Pyomo 

(version 5.6) (Hart et al., 2017; Hart et al., 2011), a Python-based optimization language. The 

estimated minimum location and value are compared to the actual global minimum and value of 

each function for accuracy to provide some insight into the effectiveness of each surrogate 

modeling technique for surrogate-based optimization. Computations were carried out on the 

Auburn University Hopper HPC Cluster (Lenovo System X HPC Cluster) using Intel E5-2650 V3, 

2.3 GHz 20 core processors and implemented in Python 3.5 and MATLAB 2017b (for RBFN 

surrogate models). 

3.3 Performance Metrics 

3.3.1 Surface Approximation Performance Metrics 

Two performance metrics were used for evaluating the surface approximation ability of the 

surrogate models: normalized root mean square error (nRMSE) and adjusted-R2. The adjusted-R2 

(Miles, 2014) takes into account both the surrogate model accuracy and the size, or complexity, of 

the model. Balancing the complexity of the model with the sample size is essential in ensuring that 

the model is not overfit, as overfit models do not generalize well to new conditions.  However, 

adjusted-R2 can unfairly penalize some of the surrogate models that are larger by nature of their 

structure, for example, Random Forests, which need to grow larger because of their decision tree 

framework. The nRMSE metric was chosen to assess how well the surrogates approximated the 

test function without penalizing them for their size. The formula for (nRMSE) is given in Eq. (3). 



The nRMSE value for each dataset-surrogate model combination is normalized by the range of 

output values for easier comparison across datasets with a variety of ranges for output values. 

𝑛𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂𝑛 − 𝑦𝑛)2𝑁

𝑛=1

𝑁
(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)⁄  

(3) 

In Eq. (3), 𝑦𝑛 is the output for point 𝑛 for a dataset, 𝑦̂𝑛 is the output predicted by a surrogate model 

for point 𝑛, 𝑁 is the total number of sample points in the dataset, and 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are the 

maximum and minimum output values in a dataset, respectively.  

The formula for calculating adjusted-R2 (𝑅̂2) is shown in Eq. (4). 

𝑅̂2 = 1 − (1 − 𝑅2) [
𝑁 − 1

𝑁 − (𝑘 + 1)
] (4) 

In Eq. (4), 𝑅2 is the R-squared regression coefficient, 𝑁 is the number of data points in the training 

set, and 𝑘 is the number of model parameters (or hyperparameters). 𝑅2 values typically fall 

between zero and one, with an 𝑅2 of one indicating a perfect fit. However, with the adjustment for 

model size, adjusted-R2 values can become negative.  The number of model hyperparameters, 𝑘, 

was estimated as the number of nodes in the trained ANN, RBFN, and ELM models. For MARS 

models, 𝑘 was estimated as the total number of hinge functions. The 𝑘 for the ALAMO models 

was estimated as the number of nonlinear transformation terms in the final model. The 𝑘 for SVR 

models was estimated as the number of support vectors in the trained model. For GP models,  𝑘 

was estimated as the number of input dimensions, which corresponds to the number of 

hyperparameters that are fit for the length scale used in the radial basis function (the kernel function 

used in the GP models). For RF models, 𝑘 was estimated as the average number of decision 

threshold values per tree in the forest.  

The nRMSE and adjusted-R2 metrics were calculated using the densely sampled 100,000 

point test sets generated using Sobol Sequence sampling. One-way analysis of variance (ANOVA) 



was applied to determine which dataset characteristics had a statistically significant effect on the 

surrogate model performance metrics at a 95% confidence level. 

3.3.2 Surrogate-Based Optimization Performance Metrics 

We define 𝐷𝑜𝑝𝑡 as the Mahalanobis distance, 𝐷𝑀, (De Maesschalck et al., 2000) between 

the location of the global minimum of a test function, 𝑥𝑜𝑝𝑡, and the location estimated using a 

trained surrogate model, 𝑥̂𝑜𝑝𝑡. This value is normalized by the maximum Mahalanobis distance 

between any two points (𝑥𝑖 , 𝑥𝑗)  in the dataset (Eq. 5), 

𝐷𝑜𝑝𝑡 =
𝐷𝑀(𝑥𝑜𝑝𝑡 , 𝑥̂𝑜𝑝𝑡)

𝑚𝑎𝑥
𝑖,𝑗

𝐷𝑀(𝑥𝑖 , 𝑥𝑗)
 

(5) 

where 𝑥𝑖 and 𝑥𝑗 are points in the domain space of the dataset. 

We define 𝐺𝑜𝑝𝑡, Eq. (6), as the normalized gap between the global minimum value and the 

estimated one. This value is normalized by the range of output values in the dataset. 

𝐺𝑜𝑝𝑡 =
𝑦𝑜𝑝𝑡 − 𝑦̂𝑜𝑝𝑡

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 

(6) 

In Eq. (6), 𝑦𝑜𝑝𝑡 is the actual global minimum value, 𝑦̂𝑜𝑝𝑡 is the one calculated by the surrogate 

model, and 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are the maximum and minimum output values in a dataset, respectively. 

4. Results and Discussion 

4.1 Effect of Sampling Method and Sample Size 

 The surface approximation performance for MARS models is shown in Fig. 2a as a 

function of both sample size and sampling method. The average value of the performance metrics 

for all 127 test functions is given as a function of the sample size for models trained with datasets 

generated from each of the three sample methods tested. Similar to previous studies, the results 

here show a general trend of improving performance with the addition of more sample points for 



training the surrogate model. Surface approximation performance for all the surrogate modeling 

techniques showed a comparable behavior to that of the MARS models. Plots of performance as a 

function of sample size and sampling method for all surrogate modeling techniques and 

performance metrics are available in the supplementary materials. The 90% confidence interval 

error bars for the sampling methods have some overlap at all of the sample sizes. From this result, 

there does not appear to be any significant difference in the surrogate modeling performance 

among the three sampling methods investigated. ANOVA analysis did not indicate any statistically 

significant difference in surface approximation performance for any of the surrogate model 

techniques with changing sampling methods (p > 0.05). The selection of the space-filling sampling 

method does not appear to have any effect on the approximation performance.  

 For surrogate-based optimization, only RF and RBFN models showed any statistically 

significant differences for the surrogate model performance among the three sampling methods. 

The other six surrogate modeling techniques’ performance was not significantly affected by choice 

of the sampling method. The average 𝐷𝑜𝑝𝑡 value for RF and RBFN models as a function of the 

training set sample size is shown in Fig. 2b and Fig. 2c for Sobol, Halton, and LHS sampling. For 

RF models (Fig. 2b), the 𝐷𝑜𝑝𝑡 values for models trained with Sobol sequence sampling data tend 

to be in general lower than those of models trained with data generated from the other two sampling 

methods, meaning that the optimum locations predicted by RF models trained with Sobol samples 

are on average closer than those given by other sampling methods. ANOVA analysis further 

confirmed that the models trained using Sobol sequence samples had statistically significantly 

lower values for 𝐷𝑜𝑝𝑡 at each of the sample sizes investigated. The models trained using Sobol 

sequence samples also had statistically lower values of 𝐷𝑜𝑝𝑡 for RBFN models (Fig. 2c) at a sample 

size of 50 (p = 0.002). These results indicate that while sampling method does not affect surface 



approximation performance, for some surrogate modeling techniques, the choice of sampling 

method can have a substantial impact on the performance for the model for surrogate-based 

optimization, especially at lower sample sizes



 

 

 

 

 

 
 

(a) 

(c) 

(b) 

Figure 2. (a) MARS performance for different sampling methods as a function of sample 
size for average nRMSE on all 127 test functions. (b) Average 𝐷𝑜𝑝𝑡vs. sample size for RF 

models. (c) Average 𝐷𝑜𝑝𝑡vs. sample size for RBFN models. Error bars represent 90% 
confidence intervals on the averages. 

 



4.2 Comparison of surrogate modeling technique performance for surface approximation 

 There was no significant difference in the surface approximation performance of the 

surrogate models trained using the sample points generated using Sobol and Halton sequences and 

LHS. Therefore, results presented in this section only include surrogate models trained with 

datasets generated via Sobol sequence sampling. Results are presented in this section for three 

selected sample sizes. However, results for all sample sizes are available in the supplementary 

material. The surface approximation performance metric results are presented in violin plot format. 

The shape of each violin represents the probability density distribution of the data values. The top 

and bottom of the violin represent minimum and maximum values, with the black bar within each 

violin representing the interquartile range of the values. Median values are indicated on each violin 

by a white circle. 

4.2.1 Selection of Surrogate Modeling Technique for Surface Approximation by Adjusted-R2 

Results obtained based on the adjusted-R2 are summarized in Fig. 3. The adjusted-R2 was 

used to take into account the model size and complexity in addition to its accuracy (Miles, 2014). 

This metric can be used to select a “best” model to use for approximation while controlling for 

overfitting by selecting the technique that provides the highest value of adjusted-R2. Adjusted-R2 

values were calculated for all the trained surrogate models for each dataset. For each dataset 

category (either input dimension or shape), the number of times each surrogate modeling technique 

was selected as best (had the highest adjusted-R2) was tabulated for the datasets in that category. 

These tabulated values were divided by the total number of datasets in the category to calculate 

the fraction of datasets for which each surrogate modeling technique was selected as best 

performing. The number of datasets included in each category is given below the x-axis for Fig. 3. 



Figure 3 shows which surrogate modeling techniques are selected most frequently when 

the datasets are grouped by their input dimension and by their function shape. Although at the 

smallest sample size tested, RBFN models give the highest adjusted-R2 more frequently at the 

higher input dimensions, ALAMO provides the highest adjusted-R2, and thus the closest 

approximation, the highest percentage of the time at low input dimension. The superior 

approximation performance of RBFN models is not observed at higher sample sizes when 

considering selecting the “best” model by the adjusted-R2. In general, ALAMO provides the most 

robust performance for yielding the highest adjusted-R2. However, as the dimension and sample 

size increase, GP and MARS models begin to perform as well or better than ALAMO models.  

At the largest sample size (Fig. 3b), GP and MARS models demonstrate opposite trends 

with increasing input dimension until eight inputs. The selection frequency of GP models as having 

the highest adjusted-R2 (Fig. 5b) deteriorates while that of MARS improves. At input dimensions 

higher than eight, both GP and MARS models have decreasing selection frequencies. GP models 

use interpolation between the given training points to estimate outputs at new input conditions. As 

the number of input dimensions increases, GP models require a higher number of training points 

to more accurately capture a surface’s behavior in a region for interpolating to new conditions. 

This may explain why MARS models begin to outperform GP models at higher dimensions, as the 

hinge functions of the MARS models are not dependent on interpolation. 

Figs. 3c and 3d show which surrogate modeling techniques are selected most frequently 

when the datasets are grouped by function shape. When the datasets are grouped by the function 

shape, different techniques yield the best adjusted-R2 values at different sample sizes. For bowl 

and multi-local minima shaped functions, MARS and ALAMO models give the highest values for 

the largest percentage of the datasets at smaller sample sizes. The hinge functions of the MARS 



models and the several available nonlinear transformations of ALAMO models may make them 

particularly suitable for mimicking the convex behavior of the bowl-shaped functions and for 

approximating the somewhat “noisy” surface of the multi-local minima functions. When the 

sample size grows, GP models also begin to perform well for multi-local minima functions as they 

gain more information for more accurate interpolations. When the sample size grows, GP models 

also begin to perform well for multi-local minima functions. Also, GP models are selected the most 

frequently at all sample sizes for the other functions, which do not fit into any of the other four 

defined shape categories. ANN models provide the best models for plate-shaped functions with 

smaller samples but are outperformed as sample size increases. The model selection for valley 

functions is spread fairly evenly among a few modeling techniques, which may suggest that 

additional characteristics should be considered when selecting a surrogate model for a similar 

dataset. 

RF models did not perform the best for any of the datasets considered. SVR performed best 

for very few, indicating that if adjusted-R2 is the performance metric of interest, these models may 

not be suitable choices. These results indicate that there is some dependence of the surrogate model 

surface approximation performance on the overall shape of the function the dataset was generated 

from, the input dimension, and the sample size, especially when all these factors are considered 

together.  



 

Figure 3. Percentage of datasets grouped by input dimension for which each surrogate modeling technique had the highest adjusted-
R2 for sample sizes: (a) 50 and (b) 1600. Percentage of datasets grouped function shape for which each surrogate modeling technique 

had the highest adjusted-R2 for sample sizes: (c) 50 and (d) 1600. 
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4.2.2 Effect of Underlying Function Input Dimension and Function Shape on Surface 

Approximation Performance 

Results obtained for the effect of input dimension of the test function (and resulting training 

dataset) on the nRMSE and adjusted-R2 for each surrogate modeling technique at a sample size of 

50 are summarized in Fig. 4. RBFN and MARS models have better performance than the other 

techniques at the smaller sample sizes tested. Although many of the techniques appear to perform 

comparably for approximation based on their nRMSE’s, the performance metric values deteriorate 

when adjusted for the model size with the adjusted-R2. This indicates that while many of the 

techniques can capture the general surface of the test functions at small sample sizes, they do so at 

the expense of overfitting. This overfitting trend is particularly apparent for ELM and ANN 

models, for example. With increasing sample sizes, the adjusted-R2 values and nRMSE follow 

similar trends, as increased sample sizes allow for larger models that can still avoid overfitting.  

The results for adjusted-R2 are summarized for sample sizes of 400 and 1600 in Fig. 5. In 

general, at these larger sample sizes, MARS models perform the most robustly with respect to the 

input dimensions. ANOVA analysis confirms this robust behavior with respect to dimensions for 

MARS models, revealing no significant difference between the nRMSE values of each dimension 

(p = 0.43). MARS and GP models at lower input dimensions yield higher values, close to one, of 

adjusted-R2. However, the GP model performance worsens as the dimension increases, which 

matches the trend from the results for model selection (Fig. 3b), illustrating the dependence of 

model performance on dimension. The robust performance of MARS models may be due to their 

effective partitioning of the design space with the hinge functions and the accurate modeling of 

nonlinearities in these partitions by the products of hinge functions. Input dimension has different 

levels of effects on the surrogate modeling technique performance at larger sample sizes. RF and 



RBFN model performance becomes progressively worse with increasing dimensions, while 

ALAMO model performance does not change much at different input dimensions. ALAMO’s 

robust approximation performance with respect to input dimension may be due to its ability to 

perform multiple nonlinear transformations for each input dimension separately. 

While the selection of a modeling form by adjusted-R2 can be useful, selecting a single 

surrogate model as the best for a dataset may be misleading, as multiple models may perform 

almost identically for the same dataset. For example, although ALAMO models are selected most 

frequently as best for bowl-shaped test functions (Fig. 3c and Fig. 3d), MARS and GP models are 

selected most frequently as second-best when ALAMO models are the best performing. However, 

statistical analysis revealed that, on average, MARS models give higher adjusted-R2 values than 

ALAMO for bowl-shaped functions, and GP model performance was not significantly different 

from that of ALAMO (at a significant level of 0.05). Furthermore, ANN models were selected as 

best (with the highest adjusted-R2) for plate-shaped functions most frequently (Fig. 3b and Fig. 

3c), but their adjusted-R2 values (Fig. 5b) were only significantly different from RF, SVR, and 

ELM models for that shape category. Based on these results, multiple surrogate modeling 

techniques can be successfully applied to a dataset to produce similarly accurate approximations, 

and one may not need to rely on a single best choice.



 

 

Figure 4. (a) nRMSE and (b) adjusted-R2 for datasets grouped by underlying function dimension.  
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Figure 5. Adjusted-R2 for models trained with sample sizes of (a) 400 and (b) 1600.  
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 Results for the effects of the underlying function shape on the performance of the surrogate 

models for surface approximation are summarized in Fig. 6. All of the surrogate models had poor 

approximation performance and a high level of overfitting, indicated by negative adjusted-R2 

values, with respect to the function shape at sample sizes less than 200. Therefore, adjusted-R2 

results for sample sizes of 400 and 1600 are presented. GP and MARS models provide the most 

robust performance when considering the test function shape, though none of the techniques 

perform well overall for the test functions with multi-local minima shape.  

The function shape does have an impact on the surrogate models’ performance for some of 

the other techniques. Although overall GP and MARS models give significantly lower values of 

nRMSE than the other techniques (p < 0.05), when considering only bowl-shaped functions, 

ALAMO models provided the lowest nRMSE values and best performance (p < 0.05). In addition, 

while ELM’s have poor performance in general for bowl and valley-shaped functions, they perform 

very well in approximating plate-shaped functions, with adjusted-R2 values close to one. Both 

ANN and ELM models demonstrate improved performance for plate-shaped functions in 

comparison to the other shape categories. The on-or-off nature of the nodes and activation 

functions in these model types may make them especially suitable to approximate the flat or nearly 

so portions of the plate-shaped surfaces. results for surface approximation suggest that for datasets 

where specific characteristics are not available, a MARS or GP model would be appropriate to 

select as a general guideline. However, if characteristics are available, other models might provide 

a better approximation. 

  



 
 

Figure 6. Adjusted R2 for models trained with sample sizes of (a) 400 and (b) 1600 group by 
underlying function shape. N values below the function dimensions indicate the number of test 

functions used for each shape category. 
  

 

 

 
 



4.3 Comparison of surrogate modeling technique performance for surrogate-based optimization 

The computational experiments for surrogate-based optimization were executed by using 

each surrogate model to estimate the minimum of each function and the location of the minimum. 

Then, these results were compared to the global minimum and its true location using two metrics, 

𝐷𝑜𝑝𝑡 (Eq. 5) and 𝐺𝑜𝑝𝑡 (Eq. 6). Results are summarized in Figs. 7, 8 and 9, where we define a model 

as having located the optimum when it obtains a 𝐷𝑜𝑝𝑡 or 𝐺𝑜𝑝𝑡 value less than a threshold. The 

thresholds for 𝐷𝑜𝑝𝑡 and 𝐺𝑜𝑝𝑡 are 5% and 0.01%, respectively. Threshold for 𝐷𝑜𝑝𝑡 was selected in 

terms of how close the estimate needed to be to still get a reasonable estimate of the optimum value 

with the predicted location (within 1% error of the output range) and to also yield a reasonable 

separation in the performance of models. The 𝐺𝑜𝑝𝑡 threshold was selected using 1% of the output 

range as a measure of a good model fit.  

Figure 7 shows the results for how well the surrogate models locate the global minimum 

of each test function when they are grouped by the function dimension for sample sizes of 50 (Fig. 

7a) and 400 (Fig. 7b). Surrogate-based optimization performance with respect to underlying 

function shape did not differ significantly with sample size, so only results for 1600 samples are 

presented here (Figs. 8 and 9). RF and SVR models, in general, locate the minima for the highest 

fraction of the datasets when datasets are grouped by both shape (Fig. 9a) and input dimension 

(Fig. 8a). ANOVA analysis on the mean 𝐷𝑜𝑝𝑡 of those two techniques versus that of the others 

indicates that the locations given SVR and RF values are significantly lower (p < 0.05). 

Contrastingly, both techniques had some of the worst performances for approximating the design 

space, with higher values for nRMSE and lower values of adjusted-R2.  

While the RF models perform well in capturing the overall curvature of the underlying 

function in each dataset, they perform poorly for predicting the actual output values. This may be 



due to their utilization of decision trees. The “rules” of the decision trees that determine movement 

between nodes provide less accurate, more noisy predictions for outputs but may be effective in 

dividing the domain of the dataset in a way that allows the solver to pinpoint the location of the 

minimum accurately. The support vectors in SVR models may serve a similar function to the 

decision tree rules in RF models. GP models perform most robustly in estimating the actual global 

minima values, in general, with respect to both shape and dimension, which may be related to their 

ability to approximate the surfaces for the datasets accurately.  

Both function input dimension and function shape impacted the surrogate models’ 

estimation of optimum values. While ANN models only identify the optimum value for about 25% 

of the bowl-shaped test functions (Fig. 9b), they can identify close to 80% of the optimum values 

for the plate-shaped functions. On the other hand, ALAMO models can identify optimum values 

much more accurately for bowl-shaped functions than for plate-shaped ones.  The optimum value 

estimation seems to be more closely linked to the approximation performance than is the 

estimation of the optimum location, as ALAMO models were more accurate in approximating 

bowl-shaped functions and ANN models were more accurate for plate-shaped ones. At the higher 

input dimensions of 10 and 15, the optimization problems of the many surrogate models were not 

solved to 0.001% optimality gap within 48 hours (wall time). Specifically, none of the optimization 

problems for GP, ELM or RBFN models, and very few of the SVR and ANN could be solved 

within the allotted computational time. In contrast, the optimization problems constructed using 

RF, MARS, and ALAMO models were solved to optimality within 72 hours (wall time) for all test 

functions at high input dimension. Therefore, our computational test results recommend using only 

those three techniques for surrogate-based optimization at input dimensions higher than 10. A 



summary of these findings for surrogate-based optimization, as well as those for surface 

approximation is provided in Table 1.



Table 1.   Summary of findings for surrogate modeling technique performance 

Model Advantages Disadvantages 
ALAMO -Accurate for approximation and optimization of convex 

(“bowl”-shaped functions) 
-Relatively short optimization solution times 

 

ANN -Accurate approximation and optimization of plate-
shaped functions 

-Requires a relatively large number of samples for 
approximating several function types accurately 
-High computational time for optimization solutions, 
particularly at high input dimension 

ELM -Accurate approximation of plate-shaped functions 
-Relatively short model training times 

-Requires a relatively large number of samples for 
approximating several function types accurately 
-High computational time for optimization solutions, 
particularly at high input dimension 

GP -Accurate approximation of several function types -High computational time for optimization solutions, 
particularly at high input dimension 
-High model training times 

MARS -Accurate approximation of several function types 
-Optimization problems remain tractable, even at high 
input dimension 

-Not as accurate for optimization of test functions 

RBFN -More accurate than other techniques for optimization at 
smaller sample sizes 

-High computational time for optimization solutions, 
particularly at high input dimension 

RF -MILP structure of optimization problem provides 
accurate optimization solutions with relatively low 
solution times 

-Less accurate than other techniques for approximation 
surfaces in general 

SVR -Relatively short model training times 
-Accurate optimization of several function types, 
particularly at small sample sizes 

-Less accurate than other techniques for approximation 
surfaces in general 
-High computational time for optimization solutions, 
particularly at high input dimension 



4.3.1 Computational Efficiency of Solving the Resulting Optimization Problems 

The solvers used for optimization are provided in Table 2. For each modeling technique, 

the selected solver was the most appropriate for the resulting optimization model (Table 2). The 

average computational times required for solving the optimization problems to estimate the global 

minima of the test functions for each surrogate modeling technique are also included in Table 2. 

The average solution times reported in Table 2 are for the optimization problems that were solved 

to optimality within 48 hours. The solution time is dependent on final model size and structure, 

with larger, more complex models taking a much longer time to solve than linear models or models 

with fewer parameters.  

GP models have the highest average solution times because the radial basis kernel function 

used and the interpolation of the model based on the training data points result in a large, highly 

nonlinear optimization model. The high degree of nonlinearity and number of parameters in the 

optimization problems of ANN, ELM, RBFN, and SVR models also presented difficulties, with a 

large proportion of the problems not being solved within 48 hours (wall time).  The range of 

optimality gaps for the models that did not reach a gap of 0.001% within the set time limit were 

1% - 10% for ANN, 0.5% - 14% for ELM, 0.009% - 1x107 % for GP, 4% - 1x103 % for RBFN, 

and  0.14% to 195% for SVR. 

Although they are some of the more accurate models for locating optima and the resulting 

optimization models do not, in general, become computationally intractable, the optimization 

problems of RF models have the highest average value for the solution time. The solution time for 

RF-based optimization problems may be reduced by developing specialized algorithms that exploit 

the special structure of RF model MILPs as RF models were successful in pinpointing the location 



of the minimum. While MARS models had relatively low optimization solution times, the 

solutions given by MARS models were less accurate than those of other methods. 

 

 

Table 2. Solvers and solution times for surrogate-based optimization (NLP = Non-linear 
program, MINLP = Mixed integer non-linear program, MILP = Mixed integer linear program). 

 

Surrogate 
Model 

Resulting 
Optimization 

Model 
Solver 

Average Solution 
Time (min) 

ALAMO NLP BARON 4.4 
ANN NLP BARON 664 
ELM NLP BARON 9.4 
GP NLP BARON 2169 

MARS MINLP ANTIGONE 7.9 
RBFN NLP BARON 33 

RF MILP CPLEX 27 
SVR NLP BARON 288 

 



 

 
Figure 7. Fraction of datasets with 𝐷𝑜𝑝𝑡 less than 5% grouped by input dimension for sample size (a) 50 and (b) 400.  
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Figure 8. Fraction of datasets with (a) 𝐷𝑜𝑝𝑡 and (b) 𝐺𝑜𝑝𝑡 less than threshold grouped by input dimension for sample size of 1600. 
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Figure 9. Fraction of datasets with (a) 𝐷𝑜𝑝𝑡 and (b) 𝐺𝑜𝑝𝑡 less than threshold grouped by function 
shape for sample size of 1600. N values below the function dimensions indicate the number of 

test functions used for that input dimension. 
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4.4 Functions for Which None of the Surrogate Modeling Techniques were Accurate 

 For both the surface approximation and surrogate-based optimization applications, there 

were some test functions for which none of the surrogate modeling techniques investigated were 

able to achieve accurate estimates, even at the largest sample size. The two-dimensional 

projections of the three functions that none of the surrogate modeling techniques were able to fit 

with an adjusted-R2 of at least 0.90 are shown in Fig. 10(a) – (c). These functions all come from 

the multi-local minima shape category. The frequency of these functions’ peaks may make the 

surfaces too noisy for approximating with any of the techniques, and other modeling approaches 

may be necessary to get an accurate approximation.  

The two-dimensional projections of a selection of the functions that none of the surrogate 

modeling techniques located the optimum within a 𝐷𝑜𝑝𝑡 value of 5% are shown in Fig. 10(d) – (f). 

There were seven of these functions. When compared to the rest of the test functions, these seven 

had a range of output values that were several orders of magnitude higher, which may have given 

the solvers used difficulty in locating the optimum point. Most came from the plate and valley-

shaped function categories. The large flat segments of these surfaces could have caused difficulty 

in locating the optimums, causing the solvers to get trapped in them. There was no overlap between 

the functions that were not modeled accurately for approximation and the functions whose 

optimum locations could not be found, further indicating that selection of a surrogate model for 

the two different applications may be unrelated. Although there were some common characteristics 

for the functions that could not be adequately modeled using these approaches, further work is 

needed on the specific characteristics of a dataset that may make it an inappropriate candidate for 

these traditional surrogate modeling methods. 



 

Figure 10. Functions that could not be approximated by any of the surrogate models (a) – (c) or 
for which the optimum could not be located (d) – (f). (a) Eggholder function (multi local 

minima-shaped) (b) Rastrigin Function (multi local minima-shaped) (c) Ackley function (multi 
local minima-shaped) (d) Perm function (bowl-shaped) (e) Rosenbrock function (valley-shaped) 

(f) Zakharov function (plate-shaped) 

5. Conclusions and Future Directions 

The selection of the appropriate surrogate modeling technique depends on both the desired 

application of the surrogate model and the characteristics of the dataset being modeled. Although 

surface approximation using surrogate models is not significantly impacted by the choice of space-

filling sampling method, the quality of solutions obtained from surrogate-based optimization can 

be dependent upon the sampling method, particularly at small sample sizes. For general selection 

rules, MARS and GP models give the most accurate predictions for design space approximation, 

and RF, SVR and GP models give the most accurate estimations for surrogate-based optimization. 
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The main limitation of this study is that the analysis was carried out only on relatively 

smooth functions (with the exception of a few) with only continuous outputs. The results may not 

be applicable to more noisy data or to data that has binary or integer inputs and/or outputs. In 

addition, the “shape” data characteristic is not one that can readily be applied to other data in 

determining which surrogate might be the most appropriate. Future work will focus on developing 

specific, quantifiable data characteristics related to the shape that can be calculated based only on 

available inputs and outputs and capture the overall data behavior to make the recommendations 

for surrogate modeling selection more generalizable to other data. 
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