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Abstract

Drainage network analysis is fundamental to understanding the characteristics of surface 1 

hydrology. Based on elevation data, drainage network analysis is often used to extract key 2 

hydrological features like drainage networks and streamlines. Limited by raster-based data 3 

models, conventional drainage network algorithms typically allow water to flow in 4 or 8 4 

directions (surrounding grids) from a raster grid. To resolve this limitation, this paper describes a 5 

new vector-based method for drainage network analysis that allows water to flow in any 6 

direction around each location. The method is enabled by rapid advances in Light Detection and 7 

Ranging (LiDAR) remote sensing and high-performance computing. The drainage network 8 

analysis is conducted using a high-density point cloud instead of Digital Elevation Models 9 

(DEMs) at coarse resolutions. Our computational experiments show that the vector-based 10 

method can better capture water flows without limiting the number of directions due to imprecise 11 

DEMs. Our case study applies the method to Rowan County watershed, North Carolina in the 12 

US. After comparing the drainage networks and streamlines detected with corresponding 13 

reference data from US Geological Survey generated from the Geonet software, we find that the 14 

new method performs well in capturing the characteristics of water flows on landscape surfaces 15 

in order to form an accurate drainage network. 16 

 17 

 18 

 19 

 20 

 21 
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1. Introduction 1 

 2 

Drainage network analysis is fundamental to understanding the characteristics of surface 3 

hydrology and can be conducted based on elevation data to derive both stream channels and 4 

drainage networks of the underlying landscape. Rapid advances of LiDAR remote sensing and 5 

high-performance computing have increasingly enabled cutting-edge landscape and hydrology 6 

research (Rahil et al., 2016; Xu et al., 2018; Lukač and Žalik, 2013; Salach et al., 2018). In order 7 

to take advantage of the fine-resolution and high-accuracy characteristics of LiDAR data, 8 

drainage network analysis that is typically based on Digital Elevation Models (DEMs) needs to 9 

be innovated. While raster-based DEMs have widely been used in drainage system analytics, 10 

such models pose a limitation on the accuracy of the geospatial analysis. This is because even a 11 

fine-resolution DEM dataset contains only one point per square meter and the elevation 12 

represented by each data point often has limited precision. Furthermore, such DEM data is 13 

constrained by its two-dimensional (2D) raster model and the fact that many grid-based values 14 

are interpolated using ground return points of LiDAR causing unnecessary errors.  15 

 16 

Another limitation of conventional drainage network analysis is that instead of allowing water to 17 

flow in any direction naturally, commonly used methods like D8 and D-infinity (Tarboton, 1997) 18 

constrain water only to flow from one grid to one or more adjacent grids, causing inevitable 19 

inaccuracies. Especially for large-scale DEM data, errors from these methods would accumulate 20 

as large spatial domains are treated.  21 

 22 
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This paper describes a novel vector-based approach to drainage network analysis based on 1 

discrete-return airborne LiDAR data. First, we represent an area using a collection of grid cells. 2 

For each grid cell, a vector is derived to represent its flow direction instead of having flow 3 

direction heading to one or more adjacent cells. At the end of the initially generated vectors, 4 

another set of vectors are constructed to represent the continuation of flows. This recursive 5 

process continues until reaching the boundary of a given area, and a flow direction map is 6 

generated as the final output. In this way, the flow direction of water is more accurately 7 

estimated by allowing water to flow in any direction. Finally, the streamlines are extracted by 8 

thresholding the number of vectors going through each grid cell.  9 

 10 

The proposed method improves the accuracy of drainage networks from two perspectives. First, 11 

the derived drainage network is no longer constrained by the rigid 2D raster format as the 12 

network is directly derived from LiDAR data with high accuracy. Second, the method is 13 

conducted based on individual points to consider the free-flowing characteristics of drainage 14 

channels. By allowing water to flow to any adjacent areas instead of flowing into a limited 15 

number of surrounding grids, the method frees the traditional drainage system analysis from the 16 

shackle of theoretical simplification of the flowing process of natural water. Since our approach 17 

is computationally intensive, it is necessary to employ high-performance computing based on 18 

cyberGIS capabilities (Wang et al., 2019; Lyu et al., 2019). We support computational 19 

reproducibility by having the code and related data available online as a CyberGIS-Jupyter 20 

notebook that can access high-performance computing resources (Yin et al., 2018). In addition, 21 
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the final outcome is in the form of a vector field, which better supports the visualization of 1 

drainage networks. 2 

 3 

2. Related Work 4 

 5 

Two widely used methods for drainage network analysis based on DEM are D8 and D-infinity 6 

(Tarboton, 1997). In order to find contributing and dispersal areas, digital elevation model 7 

network (DEMON) (Costa-Cabral and Burges, 1994) and multiple flow direction algorithms 8 

(Freeman, 1991) are used to simulate water flow on landscape. These methods were designed for 9 

the representation of flow direction and calculation of the upslope area. In a recent study, Wang 10 

and Ai (2018) explored drainage networks with an innovative hexagonal grid-based DEM 11 

representation instead of raster DEM. Their model was proved to have better performance 12 

compared to the D8 model. Chen et al. (2014) proposed a vector-based flow path tracking 13 

algorithm using a triangular irregular network (TIN) representation to simulate flow dynamics. 14 

As LiDAR data has become widely available during recent years, new opportunities for 15 

extracting drainage network from LiDAR data have been extensively studied. There are two 16 

types of methods involving drainage system analysis based on LiDAR data: 1) using LiDAR-17 

derived DEM; and 2) directly using LiDAR data. On the one hand, LiDAR-derived DEM 18 

outperforms traditional DEM for accurately delineating drainage network. Hopkinson et al. 19 

(2009) analyzed watershed attributes using three data sources (LiDAR, photogrammetry, public 20 

digital contour data) at two resolutions (5 m, 25 m) and found that a watershed area derived from 21 

the digital contour-derived DEM was overestimated by 15%, compared to a LiDAR-derived 22 
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DEM. A similar result was obtained by Murphy et al. (2008) after extracting drainage networks 1 

from 1-m resolution LiDAR-derived DEM and traditional photogrammetric DEM. Furthermore, 2 

Roelens et al. (2018) were able to extract a drainage network from 1-meter resolution LiDAR-3 

derived DEM and get positional accuracy of as small as 0.4 m. In particular, LiDAR-derived 4 

DEM outperforms in the landscape where elevation change is high. Goulden et al. (2014) 5 

compare landscapes where the elevation change is high, medium, and low, and they find that 6 

places, where the elevation change is high, can be more sensitive to LiDAR-derived DEM while 7 

in places where the elevation change is low, the drainage network results from traditional DEM 8 

and LiDAR-derived DEM are similar. At the same time, in a landscape scenario where the 9 

drainage network is dense, the spatial resolution of DEM plays an important role in the 10 

generation of drainage network (ArizaVillaverde, 2015). On the other hand, there are studies that 11 

attempt to extract drainage networks directly using LiDAR data to avoid the bias from the 12 

process of transforming LiDAR data into DEM. Anderson and Ames (2011) proposed a method 13 

for extracting stream channels with LiDAR data using the D8 method. The performance of their 14 

method for extracting stream channels demonstrates the potential of using LiDAR data directly 15 

for drainage network analysis. Our method described in this article also directly extracts drainage 16 

networks from LiDAR data.  17 

 18 

As drainage system analysis is important to understanding hydrological features of landscape, 19 

there are a variety of software implementations for drainage system analysis algorithms and 20 

models. For example, Jasiewicz and Metz (2011) developed a toolkit for Hortonian analysis of 21 

drainage network in GRASS GIS. To solve large-scale problems with fine-resolution data, high-22 
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performance parallel computing is adopted to improve the computational performance of large-1 

scale modelling of flow path networks (Mower, 1994; Zhang and Zhou, 2019; Wang et al., 2 

2012). Several parallel computing approaches have been proposed to speed up drainage network 3 

analysis, including multi-platform shared memory and multiprocessing programming (Burger et 4 

al., 2014; Liu et al., 2014), message passing interface (MPI) (Zhang et al., 2012), graphic 5 

processing units (GPU) (Qin and Zhan, 2012;  Steinbach and Hemmerling, 2012; Ortega and 6 

Rueda 2010; Sten et al., 2016), and cluster computing (Tesfa et al., 2011; Lu et al., 2012). Spatial 7 

data characteristics are often exploited to resolve the computational intensity of geospatial data 8 

analytics through parallel computing (Wang and Armstrong, 2009). While an essential pre-9 

processing step for parallel computing of LiDAR data analytics often uses regular grids, this 10 

approach does not consider neighbourhood features as a vector chain. This research designs a 11 

new algorithm for capturing neighbourhood features through a vector chain representation for 12 

drainage network analysis using parallel computing. 13 

 14 

3. Study area 15 

 16 

As shown in Figure 1 (left), our study area is a watershed in Rowan County located in North 17 

Carolina, USA. Situated in the Central Interior and Appalachian ecological division, the study 18 

area contains a set of tributaries that flows into the Second Creek, which is the streamline feature 19 

of 12-digit NHD watershed (030401020504) (Xu et al., 2021; Comer et al., 2003).  Figure 1 also 20 

shows a National Agriculture Imagery Program image (middle-left), Digital Elevation Model 21 

(middle-right), Reference Data For Streamline (right) for our study area in the Rowan County 22 
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watershed. The study area contains a watershed and there is a reference dataset of a real river 1 

network provided by US Geological Survey (USGS) for evaluating our method (Fig. 1). In this 2 

study, we focus on a portion of the river network as our study area. 3 

 4 

The dataset is obtained from USGS including 31 tiles of a LiDAR dataset (around 21.3GB) that 5 

were collected in the Rowan County watershed where the dominant land cover types of the area 6 

are forest, wetland, and agriculture. It has an area of 18.11 square kilometers with an abrupt 7 

elevation variation (222m) across the entire area, which is desirable for evaluating drainage 8 

system analysis. 9 

 10 

The point density of the LiDAR dataset is around 43 points per square meter, indicating the 11 

LiDAR dataset contains way more points than traditional DEM data per square meter. The 12 

projection system applied to the dataset is 2011 StatePlane North Carolina. Compared to 13 

traditional fine-resolution DEMs that contain one single point per grid cell, this LiDAR dataset 14 

contains much more detailed terrain feature information, which could make drainage network 15 

analysis more representative of the real-world situation (Fig. 2).  16 

 17 

Figure 2 visualizes a part of the dataset. Different from traditional remote sensing data, the 18 

LiDAR point cloud data consists of a set of points with each being represented with different 19 

attributes including types, longitude, latitude and elevation. The left part of Figure 2 shows the 20 

ground return points of LiDAR collected. As we can see in this visualization, the red areas 21 

represent places where the elevation is relatively high while the blue areas represent places 22 
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where the elevation is relatively low. Once we zoom in the image, as shown in the right part of 1 

Figure 2, the LiDAR data can be seen as a huge collection of points (LiDAR point cloud) with 2 

different colors representing different types; the white space indicates no LiDAR point collected. 3 

Apart from longitude, latitude and elevation values,  each one of the LiDAR data points contains 4 

a series of attributes such as intensity value, return number, scan angle, and GPS time stamp. In 5 

this study, since only the ground surface points are needed, non-ground points are filtered out.  6 

 7 

4. Method 8 

 9 

Our vector-based method analyzes drainage networks with the following five major steps: 1) 10 

construct a virtual extent and conduct spatial interpolation, 2) generate a vector to derive flow 11 

direction, 3) construct a chain of vectors, 4) track each chain of vectors, 5) threshold the dataset 12 

to extract the drainage network and major stream channels.  13 

 14 

4.1 Coordinate System and Interpolation 15 

 16 

First, a bounding box with the spatial extent of the landscape is generated. Since LiDAR points 17 

are irregularly distributed in 3D space, we create a bounding box with a virtual extent as a 18 

container for the LiDAR dataset to construct a 3D landscape. After creating the extent and 19 

transforming all the collected LiDAR ground return points onto the coordinate system, we 20 

further examine the elevation of all the points. The elevation value at any location can be 21 

obtained by spatial interpolation based on neighbouring LiDAR points. In this way, a ground 22 
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surface model can be constructed. In this paper, bilinear interpolation is adopted because it is 1 

commonly used to take advantage of existing neighbouring points (Polidori and Chorowicz 2 

1993).  3 

 4 

Different from traditional raster data based on DEM, LiDAR point cloud data consists of denser 5 

and more irregularly distributed data points. When spatial interpolation is performed to derive 6 

the elevation of a data point based on surrounding points, it is expected that there are enough 7 

existing data points near the data point of interest to obtain an accurate interpolation result. The 8 

density of the LiDAR point cloud in our dataset is around 43 points per square meter, which is 9 

supportive of achieving high accuracy of spatial interpolation. This is a key advantage of 10 

exploiting LiDAR data in our research. 11 

 12 

4.2 Vector for flow direction 13 

 14 

After coordinate system transformation and interpolation, each integer pair (a, b) representing a 15 

location point on the landscape has a vector representing its flow direction. Figure 3 shows the 16 

method to detect the flow direction at a specific point. Typically, the estimated flow direction at 17 

a given point is the direction with the steepest gradient descent.  18 

 19 

In order to compute the direction that water flows to from point (a, b) in Figure 3, a circle of 1m 20 

radius (smaller radius generates higher-resolution drainage network results but with higher 21 

computational intensity) is generated around the point (a, b) as it is shown with the circle in 22 



   Page 11 of 31 

Figure 3. The elevations of  points on that circle can be calculated by interpolating the elevations 1 

of nearby existing points in the LiDAR dataset. The number of directions water can flow to, 2 

represented in angle, is specified as an input variable for this algorithm. That is to say, the 3 

number of directions that water can flow to equal 360 degrees over the angle parameter. In 4 

Figure 3, for the simplicity of illustration, we have the angle differentiated by 45 degrees, which 5 

implies 8 directions that water can flow to. After interpolating the elevations of these 8 points 6 

((a1,b1) to (a8,b8)) based on the LiDAR dataset, we can identify the one point among the eight, 7 

say (a4,b4), having the lowest elevation. After comparing with the elevation at point (a, b), if the 8 

elevation at (a4,b4) is higher than the elevation at point (a, b), then, water should not flow 9 

anywhere since all the surround points have higher elevations than the initial point and point (a, 10 

b) should be a pit. However, if the elevation at (a4,b4) is lower than the elevation at point (a, b), 11 

then, water should flow from  point (a, b) to point (a4,b4). In this way, our algorithm captures the 12 

water flow process and can derive the flow direction from a given point to generate a vector 13 

representing the flow direction from the point. After balancing the trade-off between accuracy 14 

and available computational resources, the angle parameter is set as 15 degrees in this study, 15 

meaning water could flow to 24 different directions at any point.  16 

 17 

4.3 Chain of vectors 18 

 19 

In order to derive the drainage network, the continuation of the flow directions needs to be 20 

determined. Figure 4 shows the chain of vectors created for this purpose. At the end of the vector 21 

created as described in section 4.2, we further construct another vector representing the 22 



   Page 12 of 31 

continuation of the flow using the same idea described in section 4.2. Before the vector (water 1 

flow) reaches the pit point or boundary, we apply the same method described in section 4.2 and 2 

find the continuation of the flow recursively to construct a chain of vectors representing the flow 3 

direction starting from one initial point. In this case, starting from point (a, b), the water flows 4 

sequentially to (c, d), (e, f), and (g, h) as the end. This chain of vectors is recorded to represent 5 

the flow direction starting from point (a, b). To extract drainage features from LiDAR data for 6 

the entire study area, we apply this process to create a chain of vectors for each integer pair (x, y) 7 

that lies within the area (Fig. 4). Inspired by the A* search algorithm (Ehlschlaeger, 1989; Metz 8 

et al. 2010), our method creates a vector chain to represent water flow from each grid point. 9 

Although the process of creating a vector to represent water flow direction appears to be similar, 10 

our method does not need to go to another point for each step of the vector creation process, 11 

making the method efficient and flexible for representing flow directions. 12 

 13 

4.4 Tracking vector chains 14 

 15 

By tracking the chains of vectors, we can identify the drainage areas where water flow rarely 16 

passes through the landscape. First, many 1m*1m bounding boxes in the coordinate system are 17 

created to fully cover the landscape. For each chain of vectors, we track down all bounding 18 

boxes it passes through. After tracking all the chains of vectors, each bounding box is assigned a 19 

value indicating the number of times it has been passed through by chains of vectors. The larger 20 

the number, the more times a bounding box would be passed through, indicting more water 21 
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flowing through the 1m*1m grid. After integrating the results from all the grids, a drainage 1 

network can be constructed. 2 

 3 

4.5 Threshold 4 

 5 

Thresholding is the final step, which separates those major stream channels from minor water 6 

flows. The drainage network we have generated through the process described in section 4.4 7 

contains both major streamlines and minor flows. In order to separate those major stream 8 

channels from minor flows, we do thresholding using a high percentile for all of the grids to 9 

construct the drainage network and extract major streamlines. 10 

 11 

5. Computational Intensity Analysis and Parallelization 12 

 13 

Our method is computationally intensive. Therefore CyberGIS-Jupyter (Yin et al., 2018) 14 

deployed on a geospatial supercomputer called Virtual ROGER (Resourcing Open Geospatial 15 

Education and Research) (Wang, 2017) is exploited. The implementation of this method uses the 16 

Python programming language and CyberGIS-Jupyter. The core algorithm for the method is 17 

shown in the pseudocode in Figure 5. (Fig. 5) 18 

 19 

The vector-based and point-level calculations of this algorithm lead to high computational 20 

intensity. In the following section, we will first analyse the time complexity of the algorithm. 21 

Then, a parallelization strategy, as well as the impact of the parallelization, will be analyzed. 22 
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 1 

5.1. Time Complexity 2 

 3 

In order to assess the time complexity of the algorithm for a study area of m*n grid cells, several 4 

key parts need to be analysed: 1) create a data structure to hold the LiDAR data points, 2) find 5 

the elevation for any data point (a, b) based on the LiDAR point cloud, 3) create a vector chain 6 

for every data point, and 4) integrate all vector chains for post-processing. 7 

 8 

5.1.1 Data Structure 9 

 10 

Finding the elevation of any given point (x, y) based on the LiDAR point cloud is one of the key 11 

components in the algorithm. Combining with the non-raster-based characteristics of LiDAR 12 

data point, a straightforward method by directly obtaining the elevation of any point (x, y) based 13 

on the interpolation of three closest points was adopted. Instead of interpolating the original data 14 

point (LiDAR point cloud in this research) into a raster-based DEM and then doing another 15 

interpolation to capture the elevation of a data point as done by conventional methods, our 16 

method directly interpolates at the level of LiDAR point to avoid doing the interpolation twice 17 

for improving analysis accuracy.  18 

 19 

To minimize the time complexity of computing the elevation of a given point (a, b), a data 20 

structure of hash table is created. A central goal for using this hash table data structure is to 21 

resolve the computational complexity for searching, which is used in the bilinear interpolation 22 
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for finding the data points that lie within each 1*1 grid. When calculating the elevation at a 1 

specific point during the process of creating a vector chain, a search function is called to find the 2 

existing LiDAR points that lie close to the target point that needs to be interpolated. Thus, we are 3 

using the hash table data structure to store the LiDAR points to reduce the computational 4 

complexity for searching. For an m*n dataset, we create a hash table with its hash function set to 5 

floor(lx)*n+floor(ly). In this case, as shown in Figure 6, for any point (x, y) in the LiDAR 6 

dataset, where x is the longitude measured in meters, y is the latitude measured in meters, this 7 

LiDAR point is stored in the hash table bucket where the key is floor(lx)*n+floor(ly). In this 8 

case, for all the LiDAR data points in the dataset, we can map them to a hash table data structure 9 

where the time complexity for searching is O(1) (Fig. 6). 10 

 11 

5.1.2 Find the elevation for any data point 12 

 13 

In order to compute the elevation for any point (a, b), the data points in the surrounding nine 14 

blocks are captured. Within these 9 blocks, once there are more than 3 points, we use the 15 

Euclidean distance to find the 3 closing points near point (a, b). Otherwise, if there are less than 16 

3 points in these 9 blocks, we extend the search range to the surrounding 25 (5*5) blocks, (7*7) 17 

blocks, and so on until we successfully find three LiDAR points near the initial point. However, 18 

due to the fact that there are on average 43 LiDAR points within one square meter, in most cases, 19 

there is at least one LiDAR point corresponding to one hash key value. The situation where there 20 

are fewer than 3 points in the surrounding 9 blocks rarely happens. With the 3 closest LiDAR 21 

points near point (a, b), we use bilinear interpolation to calculate the elevation of the data point 22 
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at (a, b). Consequently, the time complexity for computing the elevation for any data point is 1 

O(1). 2 

 3 

5.1.3 Create a vector chain for each data point 4 

 5 

In order to assess the time complexity of creating a vector chain, first, we create a circle around 6 

the initial point (a, b), and then we find the elevation of the points in a circle around the initial 7 

point. Since the time complexity of calculating the elevation given any point is O(1), and the 8 

number of points is fixed based on the angle parameter (see section 4.2), the process of creating a 9 

vector is O(1) as well. Second, the time complexity of computing the continuation of vectors is 10 

O(1). In most cases, a vector chain does not reach the boundary of the study area before it gets 11 

stopped when hitting a pit. Consequently, the time complexity for creating a vector chain for 12 

each cell is O(1). Last, for a study area with the length of m pixels and width of n pixels, 13 

combing with the previous analysis showing that creating a vector chain for each point is O(1) 14 

time complexity, the time complexity for creating a vector chain for all data points in the study 15 

area is O(m*n).  16 

 17 

5.1.4 Integrating the vector chains on the m*n pixel map and post-processing 18 

 19 

All the vector chains need to be integrated to generate the final drainage network. As is shown in 20 

section 4.4, we track all the vector chains for each cell. Since the number of vectors in each chain 21 

does not correspond to the size of the study area, the time complexity of integrating the vector 22 
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chains is O(m*n). At the same time, the time complexity of post-processing is analogous to 1 

applying a kernel to the drainage system network, and thus is also O(m*n). However, if we are 2 

investigating a large study area, the computational intensity can be challenging as each chain of 3 

vectors requires the calculation of the elevation of multiple data points. 4 

 5 

In aggregate, the time complexity of the entire algorithm is O(m*n). The time complexity of our 6 

algorithm is at the same level as the conventional methods of D8 and D-infinity, even though the 7 

algorithm has a higher computational intensity due to the free flow characteristics and the large 8 

volume of LiDAR data. Therefore, we study how to take advantage of high-performance parallel 9 

computing to resolve the computational intensity of the algorithm.  10 

 11 

5.2. Parallelization 12 

 13 

As assessed in section 5.1, the process of creating a chain of vectors for each point is the most 14 

time-consuming part of the algorithm. Figure 7 illustrates an example of using parallel 15 

computing to speed up this part. Suppose we have a study area of m*n pixels. First, we can 16 

divide the entire area into 4 sub-areas of size (m/2)*(n/2) pixels. For each sub-area, directly 17 

applying the algorithm as it is shown in the previous section will yield the exact same result 18 

since, for all the points in the study area, the process of creating a vector chain for each point is 19 

independent of each other as long as the pre-defined boundary is the same. In this way, we can 20 

divide the original computation job into 4 sub-jobs with each job running much faster than the 21 

original job. Each sub-job does computation for (m/2)*(n/2) pixels to derive m*n/4 chains of 22 
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vectors. For each chain of vectors generated, we treat every vector equally and keep track of the 1 

pixels that vectors pass through in the entire study area of m*n pixels to get the final output. In 2 

theory, the running time of 4 sub-jobs in total equals the running time of applying the algorithm 3 

onto the entire study area. Using parallel computing, in this case, will speed up the computing 4 

process of creating a chain of vectors. As a result, given sufficient computing resources, we can 5 

speed up the algorithm by applying the techniques of parallel computing (Fig. 7). 6 

 7 

5.3. Impact of Parallelization 8 

 9 

Based on Amdahl’s law, the speedup of the job depends on the proportion of the task that can be 10 

faster due to the adoption of parallel computing (p in the formula below) and the speedup of the 11 

part that can be used for parallel computing (s in the formula below). In this research, p 12 

represents the process of creating a chain of vectors in this algorithm which roughly equals the 13 

number of nodes available multiplied by the amount of processors we are using on each node.  14 

(Equation 1). For example, our algorithm achieved a speedup of 16.2 using 25 threads. 15 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑠) =  
1

(1 −  𝑝) +
𝑝
𝑠

 16 

 17 

6. Result 18 

 19 

This section describes the validation of the model and assesses the impact of the angle parameter. 20 

First, the outputs of the model, which are the chains of the vectors, will be integrated to generate 21 

a map of the study area regarding those locations where water flows to and other locations where 22 
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water unlikely to reach. Also, based on the original map derived from the integration, we 1 

threshold the amount of the chains of vectors flowing through each grid. Then, we extract the 2 

main streamline from the result of the model and compare the result with the reference data 3 

provided by USGS. Section 6.2 discusses the impact of the angle parameter on the final result. 4 

As we have suggested in section 4.2, the smaller the angle parameter is, the more directions 5 

water can flow, which in theory makes the model more accurate. Section 6.2 also addresses the 6 

extent of model improvement and assesses the trade-off between model accuracy and running 7 

time. 8 

 9 

6.1 Validation 10 

After integrating the chains of vectors for each grid and tracking the amount of chains of vectors 11 

flowing through each grid, our method generates intermediate results for the drainage system 12 

network depicted by the top left side of Figure 8. These results capture the number of times each 13 

pixel has been passed through by vector chains. For a given pixel, the more times the pixel is 14 

passed through by vector chains, the more likely the pixel represents a part of a pit or drainage 15 

network. For the purpose of illustrative visualization, the result after thresholding is shown (Fig. 16 

8). As we can see on the top left figure, the grids from the left middle of the study area to the 17 

right middle are lighter than the other grids, indicating that those areas are places where abundant 18 

water flow through. Consequently, we may assume from the drainage system network that the 19 

main streamline lies in the middle of the study area from the left middle area to the right middle 20 

area. We have also noticed that many of those lighter areas with abundant water flowing through 21 

are perpendicular to our imagery main streamline, showing that the water from two sides where 22 
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the elevation is higher is flowing to the main streamline. Generally speaking, the closer a grid to 1 

the main streamline in the middle, the lighter the grid becomes, indicating more water flowing 2 

through.  3 

 4 

Apart from deriving the original drainage system network, we have also done thresholding to 5 

make the map more straightforward and easy to understand. Specifically, the thresholding is 6 

applied over the amount of water chains flowing through each grid. For example, if the threshold 7 

is 20, then only those grids with more than 20 chains of vectors having passed through are shown 8 

in white color while the other grids where the amount of chains do not reach the threshold 9 

remain black (Figure 8). As the threshold is reduced, there are more grids colored in white as the 10 

water distribution and drainage system network become more visible in the study area. 11 

 12 

To validate our results, we compare the drainage network from our vector-based algorithm with 13 

the drainage network generated using D8 and D∞ with fine-resolution (1-ft)  LiDAR-based 14 

DEM, as shown in Figure 8g and Figure 8h. The computation of D8 and D∞ is conducted via 15 

LAS Dataset To Raster function and FlowDirection function in ArcGIS. Compared with the 16 

drainage network generated with our vector-based algorithm, the results generated using D8 and 17 

D∞ with high-resolution LiDAR-based DEM lack granularity as a majority of the area is 18 

regarded as streamlines. As a consequence, it is difficult to extract major streamlines especially 19 

for places where streamlines are wide based on high-resolution data. Moreover, compared with 20 

our vector-based method, the drainage networks generated from existing raster-based methods 21 
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are more drifted from the reference data, indicating a larger bias in the corresponding algorithmic 1 

processes (Fig. 8). 2 

 3 

After generating the drainage system network and applying the threshold, we aim to identify the 4 

main streamline based on the original drainage system network. According to Figure 8, it is 5 

difficult to find the main streamline since there are some bumps in the river bed in real-world 6 

scenarios causing discontinuity of the water flow as shown in Figure 9. These bump locations in 7 

the river bed are colored in black; but in the streamline detection, that might be regarded as part 8 

of the main streamline. As a result, in order to find the main streamline from the drainage system 9 

network, we apply a Kernel Density Estimation (KDE) method by firstly regarding each 10 

endpoint in the chain of vectors we got from the previous step as an event. Then, we do the data 11 

cleaning by filtering some noisy points. Figure 9 compares the reference data with the result 12 

from KDE and the drainage system network with the left part representing the reference data of 13 

the real river network in the study area; the middle part represents the bump locations derived 14 

using our method; and the right part combines the reference data and the origin graph in Figure 15 

8. It is worth noting that the top left corner and the bottom right corner in the middle part reflect 16 

noisy data and that the final KDE result is similar to the reference data (Fig. 9). 17 

 18 

Figure 10 shows the streamline derived from the drainage system network and the reference data. 19 

In order to extract the streamline from the drainage system network, we first find the point in the 20 

study area where the most amount of water flowing through as the starting point. Then we find 21 

all the nearby grids around it and determine the grid with the most amount of water flowing 22 
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through among all the grids that are close to the initial point. After running this process 1 

iteratively, we can find a list of grids being highlighted as the representation of the main 2 

streamline. Figure 9 shows the result of streamline detection and reference data. As we can see, 3 

the result is similar to the reference data (Fig. 10). 4 

 5 

Figure 11 illustrates the difference between the reference data and the result from our method. In 6 

order to measure the accuracy of the result, we use the distance between the reference data and 7 

the detected main streamline as the measurement. For each grid point in the result data, we 8 

measure the distance between the reference data and that exact point. The result is shown in the 9 

figure, the mean value of the distance between the result data point and reference data is 1.64 10 

meters, the variance is 1.53 while the maximum value of the distance is 5.39 meters. This 11 

indicates that the result of the main streamline is as far as 5.39 meters from the reference data 12 

and the average distance between the reference data and the result is 1.64 meters. Given the fact 13 

that the main streamline in the reference data only covers the center of the main streamline and 14 

there is potentially a water channel with a width larger than 1 meter, our result is desirable and 15 

the main streamline detection using the proposed algorithm is accurate in this study area (Fig. 16 

11). 17 

 18 

6.2 Impact of the angle parameter 19 

 20 

As illustrated in Section 4.2, given different values of the angle parameter, the accuracy of the 21 

model varies due to the number of directions the water can flow to. Generally speaking, given a 22 
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smaller angle, the model will be more accurate because for each vector, there will be more 1 

directions available. However, the trade-off is that more computing resources are needed in order 2 

to support the input of smaller angles. 3 

 4 

To assess this trade-off, we use a dataset with 30 degrees compared against 15 degrees for 25 5 

100*100 pixels subarea. The mean value of the difference using two different degrees ranges 6 

from 0 to 4 meters and the average mean value is around 2 meters while the largest variance 7 

reaches 50. As a result, the angle parameter does have a noticeable impact on the performance of 8 

the method. The angle parameter selection requires a balance between the availability of 9 

computing resources and desirable accuracy. 10 

 11 

7. Conclusion 12 

 13 

This research has developed a new method for analyzing drainage networks based on LiDAR 14 

data. Enabled by cyberGIS and high-performance computing, this method is designed to 15 

accurately delineate drainage networks using LiDAR point cloud. There are three major 16 

advantages of this new method compared to conventional methods. First, the method allows 17 

water to freely flow in any direction instead of limiting the flows to 4 or 8 directions as done by 18 

conventional methods. Second, this model is constructed based on LiDAR point cloud instead of 19 

DEMs. Lastly, the method can be parallelized to take advantage of high-performance computing 20 

for resolving computational intensity. After comparing our result with the reference data 21 
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provided by USGS, we find that the resulting drainage system network is valid and that 1 

streamlines can be accurately detected. 2 

 3 

Our method does not remove pit holes from the original dataset, which is different from what we 4 

did for the DEM dataset. Although there are algorithms developed to generate a pit-free Canopy 5 

Height Model (CHM) with LiDAR data (Marcu et al., 2017; Khosravipour et al., 2013), there 6 

lacks a well-recognized pit-removal model for ground surface LiDAR data, unlike the case of 7 

DEM data (Wang et al., 2019). Another reason for not treating pit holes in this research is that 8 

our method is powerful in terms of finding a drainage system network and finding the main 9 

streamline even without doing pit removal. Furthermore, our method can remove pits by utilizing 10 

a proper threshold. Locations, where abundant water flows to but not within the main streamline, 11 

are the areas where the elevation is lower than the areas around them. Above all, our method is 12 

capable of achieving accurate and valid results with pits removed directly. 13 

 14 

Future work needs to concentrate on using other interpolation methods such as bicubic 15 

interpolation for measuring the elevation of every data point. Investigation on parameter 16 

selection, including the angle and the length of the circle radius specified in the algorithm, can be 17 

another direction for further improving the accuracy of the method. Additional efforts should 18 

also be devoted to increasing computational scalability for handling massive LiDAR data. We 19 

plan to evaluate our method in other study areas through extensive comparison with DEM-based 20 

algorithms to gain further understanding of the generalizability and performance of the method.  21 
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Figures 1 

Fig. 1. From left to right: location of the study area, National Agriculture Imagery Program 2 

image, Digital Elevation Model, streamline reference data 3 

Fig. 2 (Color Figure). Dataset overview 4 

Fig. 3. Generate a vector for flow direction 5 

Fig. 4. Chain of water flow vectors 6 

Fig. 5. Pseudocode for the algorithm 7 

Fig. 6. Hash table for the LiDAR data point 8 

Fig. 7. Illustrative example of parallel computing 9 

Fig. 8. a) – f) Drainage system network generated with the vector-based algorithm under 10 

different thresholds; g) – h) Drainage system networks generated with D8 and D ∞ algorithms 11 

using LiDAR-based DEM 12 

Fig. 9. Reference data, KDE result, and reference data & drainage system network 13 

Fig. 10. Streamline detection 14 

Fig. 11. Error for streamline detection 15 
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