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Abstract

Surrogate models are used to map input data to output data when the actual relationship
between the two is unknown or computationally expensive to evaluate for several
applications, including surface approximation and surrogate-based optimization. Many
techniques have been developed for surrogate modeling; however, a systematic method
for selecting suitable techniques for an application remains an open challenge. This
work compares the performance of eight surrogate modeling techniques for
approximating a surface over a set of simulated data. Using the comparison results, we
constructed a Random Forest based tool to recommend the appropriate surrogate
modeling technique for a given dataset using attributes calculated only from the
available input and output values. The tool identifies the appropriate surrogate modeling
techniques for surface approximation with an accuracy of 87% and a precision of 86%.
Using the tool for surrogate model form selection enables computational time savings
by avoiding expensive trial-and-error selection methods.
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1. Introduction

Surrogate models are simplified approximations of more complex, higher-order models.
They are used to map input data to outputs when the actual relationship between the two
is unknown or computationally expensive to evaluate. Surrogate models are of
particular interest where expensive simulations are used or when the fundamental
relationship between the design variables and output variables is not well understood,
such as in the design of cell manufacturing processes (Williams et al., 2020). Surrogate
models can also be constructed for surrogate-based optimization when a closed
analytical form of the relationship between input data and output data is not available or
is not conducive for use in conventional gradient-based optimization methods. Several
techniques have been developed for surrogate modeling, requiring a systematic
approach for selecting which technique may be appropriate for an application.

Current standard practices for selecting which surrogate model form is appropriate rely
on process-specific expertise. Numerous studies have been conducted to compare
surrogate modeling techniques (Davis et al., 2017). However, most of these only
evaluate a few models on a limited number of functions or applications. Recently,
progress has been made in generalizing the process for selecting a surrogate model to
approximate a surface by using meta-learning approaches to build selection frameworks
(Cui et al, 2016; Garud et al, 2018). These frameworks provide “best”
recommendations for surrogate modeling techniques based on the attributes calculated
from the data being modeled and avoiding expensive trial-and-error methods. Few of
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the developed meta-learning tools take model complexity into account, which can lead
to overfitting, or consider that multiple models might perform similarly to the one
identified as best.

This work aims to comprehensively investigate the performance of several different
surrogate modeling techniques for approximating smooth, continuous functional
relationships and to link that performance to the characteristics of the data being
modeled. The performance metric used for evaluating how well the surrogate modeling
techniques approximate surfaces is the adjusted R2 which considers both model
accuracy and complexity. Simulated data was generated using a suite of optimization
test functions. Data attributes were calculated based only on input and output values for
each dataset to represent its overall behavior. Attributes that have the most influential
relationships for predicting the adjusted R? were selected using feature reduction. These
attributes were used as inputs to construct a Random Forest based tool to make
predictions on the surrogate models’ performance and provide recommendations for
which surrogate modeling technique(s) may be most accurate for the dataset.

2. Computational Experiments

2.1 Test Functions

The test functions used to simulate data for constructing the surrogate models and the
recommendation tool are from the Virtual Library of Simulation Experiments
optimization test suite (Surjanovic & Bingham, 2013). The functions are divided by
their shapes, which include the categories: multi-local minima (29 functions), bowl-
shaped (31 functions), plate-shaped (9 functions), valley-shaped (12 functions), and
other-shaped (18 functions) that do not fit into the other four categories. Functions with
two (XX functions), four (XX functions), six (XX functions), eight (XX functions), and
ten (XX functions) inputs were used.

2.2 Surrogate Model Performance Comparison

Input-output pairs were generated from each test function using three different space-
filling sampling methods: Halton Sequence Sampling, Sobol Sequence Sampling, and
Latin Hypercube Sampling (LHS). Data was generated at seven different sample sizes
sizes (50, 100, 400, 800, 1200, and 1600 samples), producing 693 total datasets. Eight
surrogate modeling techniques were used for comparison: multivariate adaptive
regression splines (MARS);(Friedman, 1991), random forests (RF);(Breiman, 2001)
single hidden layer feed-forward artificial neural networks (ANN);(Haykin, 2009),
extreme learning machines (ELM);(Haykin, 2009), Gaussian process regression
(GP);(Rasmussen & Williams, 2005), support vector machines (SVM);(Drucker et al.,
2002), Automated Learning of Algebraic Models using Optimization (ALAMO);(Cozad
et al., 2014) and radial basis function networks (RBFN);(Gomm & Yu, 2000). Surrogate
models were trained using the input-output pairs with each of the surrogate modeling
techniques for the test functions. This process yielded 16,632 trained models. When
necessary, the hyperparameters of each surrogate modeling technique (such as the
number of hidden neurons for the neural network-based models and the number of trees
in RF models) were optimized before training the models using ten-fold cross-
validation. After the surrogate models were trained, the adjusted-R> values were
calculated for each modeling technique-dataset pair.
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2.3 Recommendation Tool Construction

Cui et al. (2016) and Garud et al. (2018) extract information from the datasets for use in
their recommendation frameworks in the form of attributes. The attributes include
common statistical measures, such as mean and standard deviation, gradient-based
attributes, and attributes related to the extrema of the output values. We have defined
additional attributes, including the first four statistical moments of the determinants of
the estimated Hessian matrices of the datasets, and as the number of data points in the
dataset, to use as potential inputs for predicting the model performance with the
recommendation tool, resulting in a total of 40 attributes. The attributes aim to capture
the overall behavior of the underlying model that generated the dataset. They were
calculated for the datasets generated from the 99 test functions and used to construct the
surrogate model recommendation tool.

A RF model was trained for each surrogate modeling technique to predict its adjusted-
R? value using the identified attributes as inputs. Random forests are decision tree-based
machine learning models, where the final output of the model is the average of the value
predicted by every decision tree in the forest. Feature reduction was performed to
determine which attributes had the most influence on the predicted output value for each
modeling technique. Feature reduction techniques included linear and rank correlations
(Zou et al., 2003) between the adjusted-R? value and the attributes, and the built-in
feature selection method in RF models. In RFs, features are selected based on how well
they improve the data separation at each decision node in each decision tree in the RF
(Brieman, 2001). For each dataset, based on the adjusted-R?> values, each of the
surrogate modeling techniques was classified as either being recommended or not
recommended for both the predicted and actual metric values. These classifications
were compared and used to evaluate the quality of the selection recommendations.

3. Performance Metrics

The adjusted-R? value is used to assess the surrogate models’ performance for surface
approximation. The formula for calculating adjusted-R? (A7) is shown in Eq. (1).

. —1
R=1-(1-F) [n—n(k+1)] M

In Eq. (1), R?is the R-squared regression coefficient, n is the number of data points in
the training set, and & is the number of model parameters (or hyperparameters). The
adjusted-R? takes into account both the surrogate model accuracy and complexity
(Miles, 2005). Taking complexity into account is essential in ensuring that the model is
not overfit as overfit models do not generalize well to new data. R* values typically fall
between zero and one, with an B* of one indicating a perfect fit. However, with the
adjustment for model size, adjusted-R? values can become negative.

The metrics used to evaluate the performance of the recommendation tool (i.e., the
classification of surrogate modeling techniques given a dataset) are accuracy, precision
(Sokolova & Lapalme, 2009), and the hit ratio (Cui et al., 2016). The accuracy is the
percentage of recommendations that are correct. Precision is the probability that a
model classified as recommended should actually be recommended. The hit ratio is the
percentage of the time the model with the highest calculated adjusted-R? is included in
the set of recommended models. All three performance metrics range from 0 to 100%.
Monte Carlo cross-validation was used to evaluate the performance of the
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recommendation tool with 100 Monte Carlo trials. Each trial had a test set size of 75,
which was about 11% of the total simulated data.

4. Results and Discussion

4.1 Surrogate Model Performance

The surrogate modeling technique that yielded the model with the highest adjusted-R?
value was selected as the “best” one. For each shape category, the number of times a
technique was selected as best was tabulated. These tabulated values were divided by
the total number of datasets in the category to calculate the fraction of datasets for
which each surrogate modeling technique was selected as the best performing (Fig. 1).
There was no significant difference in the adjusted-R? values among the three sampling
methods. Therefore, only results for Sobol sequence sampling are shown here. For
valley, bowl, and other-shaped functions, GP models provide the highest adjusted-R>.
However, ALAMO and MARS models produce the highest adjusted-R? most frequently
for bowl and multi-local minima-shaped functions, respectively. These results indicate
that the underlying function shape has an effect on which surrogate modeling technique
may be most appropriate for approximating a dataset. While in general, GP models may
provide the most accurate approximation, specific shape characteristics may lead to
another technique’s being more appropriate. It should be noted that although these
results only reflect a single technique being selected with the highest adjusted-R2, in
many cases, there were multiple techniques with values that were not significantly
different than that of the highest adjusted R? value.
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Figure 1- Percentage of datasets grouped by function shape for which each surrogate
modeling technique had the highest adjusted-R?

4.2 Attribute Selection for Adjusted-R? Prediction

From the comparison results, we can conclude that there is a relationship between the
underlying shape of the surface being modeled and the performance of each of the
surrogate modeling techniques. The minimum Mahalanobis distance (De Maesschalck
et al., 2000) between any two points in the simulated dataset was moderately correlated
to the calculated adjusted-R? of RF models, with a linear correlation coefficient of -0.58
and a rank correlation coefficient of -0.71. The position of the data points in the dataset
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and how close they are to each other may be correlated to the approximation of RF
models due to the need for the models to partition the design space of the surface when
determining the decision nodes in each tree in the RF model. Data points that are closer
together lead to smaller partitions and more accurate predictions.

For the feature selection by RF models, each technique had a different set of selected
attributes for prediction. For ALAMO, ANN, RBFN, and SVM models, 18 different
attributes were selected as important. Random forest models selected 19, 11, 20, and 17
attributes as important for ELM, GP, MARS and RF models, respectively. The attribute
most commonly selected as being important for predicting the adjusted-R?> was the
minimum Mahalanobis distance between training points. Other commonly selected
features include those related to the distributions of output values, specifically the
relative size of the output distribution tails and the output distribution skewness, and the
ratios of the average estimated gradient to the minimum and maximum estimated
gradients for all of the data points in the dataset. These results suggest that the
distribution and location of the sample points and the relative steepness and smoothness
of the surface have a high level of influence on how well each of the surrogate models is
able to approximate that surface.

For all of the neural network-based models (ANN, ELM, and RBFN) and RF models,
the attribute selected with the highest importance was the percentage of the simulated
data points that were located in the upper tail of the output distribution. The closely
related attributes of the ratio of the upper and lower tail sizes and the skewness of the
output value distribution were selected as most important for GP and MARS models,
respectively. These attributes may have an effect on the accuracies of all these
techniques as having data unevenly concentrated (or sparse) at the extreme values may
skew models to predict more accurately in areas of data concentration and less so for
other areas of the design space. For example, in the case of RF models, uneven tails
could cause decision nodes in the model trees to split more frequently at the extremes of
the output values while more finely split partitions are really needed elsewhere, such as
where the gradients are steeper. For the neural network-based models, the on-off nature
of the hidden layer nodes may make them more suitable for making accurate predictions
for surfaces where large areas of the design space have similar output values, creating
flat or nearly flat areas. The coefficient of variation (COV) was selected as the most
important feature for the prediction of the performance of SVM models. The COV is
inversely related to the signal-to-noise ratio of a surface (Wang et al., 2013). This
attribute may be important for SVM model performance as the support vectors fitted in
the model construction can easily become sensitive to noise as they are only dependent
on a small set of the data used to train the model (Sabzekar et al., 2011). For ALAMO
models, all of the selected attributes had roughly equal amounts of importance.

4.3 Recommendation Tool Performance

The selected attributes were used as inputs to train a RF model for the eight techniques
to predict the adjusted-R? for a given dataset. Based on the predicted adjusted-R? value,
the recommendation tool then classifies each of the surrogate models as being
recommended or not for that dataset. This recommendation scheme allows for multiple
similarly performing surrogate modeling techniques to be suggested for use in surface
approximation. The selection tool identified which techniques should be recommended
for the simulated datasets with an accuracy of 87%. The precision, or the probability
that a recommended technique should actually be recommended, was 86%. The hit
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ratio, the percentage of time techniques that had the highest adjusted-R? for a dataset
were included in its set of recommended models, was 80%.

5. Conclusions

Selecting an appropriate surrogate modeling technique depends on the characteristics of
the dataset being modeled. We identified attributes of datasets that are appropriate for
use in predicting the adjusted-R? value. Using these attributes, we have constructed a
tool that can recommend surrogate modeling techniques for approximating a dataset
with 87% accuracy and 86% precision. Future work on the tool will include expanding
it to surrogate-based optimization recommendations and investigation of additional
attributes and machine learning techniques to improve recommendation quality.
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