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Abstract 
Surrogate models are used to map input data to output data when the actual relationship 
between the two is unknown or computationally expensive to evaluate for several 
applications, including surface approximation and surrogate-based optimization. Many 
techniques have been developed for surrogate modeling; however, a systematic method 
for selecting suitable techniques for an application remains an open challenge. This 
work compares the performance of eight surrogate modeling techniques for 
approximating a surface over a set of simulated data. Using the comparison results, we 
constructed a Random Forest based tool to recommend the appropriate surrogate 
modeling technique for a given dataset using attributes calculated only from the 
available input and output values. The tool identifies the appropriate surrogate modeling 
techniques for surface approximation with an accuracy of 87% and a precision of 86%. 
Using the tool for surrogate model form selection enables computational time savings 
by avoiding expensive trial-and-error selection methods. 
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1. Introduction 
Surrogate models are simplified approximations of more complex, higher-order models. 
They are used to map input data to outputs when the actual relationship between the two 
is unknown or computationally expensive to evaluate. Surrogate models are of 
particular interest where expensive simulations are used or when the fundamental 
relationship between the design variables and output variables is not well understood, 
such as in the design of cell manufacturing processes (Williams et al., 2020). Surrogate 
models can also be constructed for surrogate-based optimization when a closed 
analytical form of the relationship between input data and output data is not available or 
is not conducive for use in conventional gradient-based optimization methods. Several 
techniques have been developed for surrogate modeling, requiring a systematic 
approach for selecting which technique may be appropriate for an application. 

Current standard practices for selecting which surrogate model form is appropriate rely 
on process-specific expertise. Numerous studies have been conducted to compare 
surrogate modeling techniques (Davis et al., 2017). However, most of these only 
evaluate a few models on a limited number of functions or applications. Recently, 
progress has been made in generalizing the process for selecting a surrogate model to 
approximate a surface by using meta-learning approaches to build selection frameworks 
(Cui et al., 2016; Garud et al., 2018). These frameworks provide “best” 
recommendations for surrogate modeling techniques based on the attributes calculated 
from the data being modeled and avoiding expensive trial-and-error methods. Few of 
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the developed meta-learning tools take model complexity into account, which can lead 
to overfitting, or consider that multiple models might perform similarly to the one 
identified as best.  

This work aims to comprehensively investigate the performance of several different 
surrogate modeling techniques for approximating smooth, continuous functional 
relationships and to link that performance to the characteristics of the data being 
modeled. The performance metric used for evaluating how well the surrogate modeling 
techniques approximate surfaces is the adjusted R2, which considers both model 
accuracy and complexity. Simulated data was generated using a suite of optimization 
test functions. Data attributes were calculated based only on input and output values for 
each dataset to represent its overall behavior. Attributes that have the most influential 
relationships for predicting the adjusted R2 were selected using feature reduction. These 
attributes were used as inputs to construct a Random Forest based tool to make 
predictions on the surrogate models’ performance and provide recommendations for 
which surrogate modeling technique(s) may be most accurate for the dataset.  

2. Computational Experiments 

2.1  Test Functions 

The test functions used to simulate data for constructing the surrogate models and the 
recommendation tool are from the Virtual Library of Simulation Experiments 
optimization test suite (Surjanovic & Bingham, 2013). The functions are divided by 
their shapes, which include the categories: multi-local minima (29 functions), bowl-
shaped (31 functions), plate-shaped (9 functions), valley-shaped (12 functions), and 
other-shaped (18 functions) that do not fit into the other four categories.  Functions with 
two (XX functions), four (XX functions), six (XX functions), eight (XX functions), and 
ten (XX functions) inputs were used.  

2.2   Surrogate Model Performance Comparison 

Input-output pairs were generated from each test function using three different space-
filling sampling methods: Halton Sequence Sampling, Sobol Sequence Sampling, and 
Latin Hypercube Sampling (LHS). Data was generated at seven different sample sizes 
sizes (50, 100, 400, 800, 1200, and 1600 samples), producing 693 total datasets. Eight 
surrogate modeling techniques were used for comparison: multivariate adaptive 
regression splines (MARS);(Friedman, 1991), random forests (RF);(Breiman, 2001) 
single hidden layer feed-forward artificial neural networks (ANN);(Haykin, 2009), 
extreme learning machines (ELM);(Haykin, 2009), Gaussian process regression 
(GP);(Rasmussen & Williams, 2005), support vector machines (SVM);(Drucker et al., 
2002), Automated Learning of Algebraic Models using Optimization (ALAMO);(Cozad 
et al., 2014) and radial basis function networks (RBFN);(Gomm & Yu, 2000). Surrogate 
models were trained using the input-output pairs with each of the surrogate modeling 
techniques for the test functions. This process yielded 16,632 trained models. When 
necessary, the hyperparameters of each surrogate modeling technique (such as the 
number of hidden neurons for the neural network-based models and the number of trees 
in RF models) were optimized before training the models using ten-fold cross-
validation. After the surrogate models were trained, the adjusted-R2 values were 
calculated for each modeling technique-dataset pair. 
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2.3  Recommendation Tool Construction 

Cui et al. (2016) and Garud et al. (2018) extract information from the datasets for use in 
their recommendation frameworks in the form of attributes. The attributes include 
common statistical measures, such as mean and standard deviation, gradient-based 
attributes, and attributes related to the extrema of the output values. We have defined 
additional attributes, including the first four statistical moments of the determinants of 
the estimated Hessian matrices of the datasets, and as the number of data points in the 
dataset, to use as potential inputs for predicting the model performance with the 
recommendation tool, resulting in a total of 40 attributes. The attributes aim to capture 
the overall behavior of the underlying model that generated the dataset. They were 
calculated for the datasets generated from the 99 test functions and used to construct the 
surrogate model recommendation tool. 

A RF model was trained for each surrogate modeling technique to predict its adjusted-
R2 value using the identified attributes as inputs. Random forests are decision tree-based 
machine learning models, where the final output of the model is the average of the value 
predicted by every decision tree in the forest. Feature reduction was performed to 
determine which attributes had the most influence on the predicted output value for each 
modeling technique. Feature reduction techniques included linear and rank correlations 
(Zou et al., 2003) between the adjusted-R2 value and the attributes, and the built-in 
feature selection method in RF models. In RFs, features are selected based on how well 
they improve the data separation at each decision node in each decision tree in the RF 
(Brieman, 2001). For each dataset, based on the adjusted-R2 values, each of the 
surrogate modeling techniques was classified as either being recommended or not 
recommended for both the predicted and actual metric values. These classifications 
were compared and used to evaluate the quality of the selection recommendations. 

3. Performance Metrics 
The adjusted-R2 value is used to assess the surrogate models’ performance for surface 
approximation. The formula for calculating adjusted-R2 ( ) is shown in Eq. (1). 

𝑅𝑅�2 = 1 − (1 − 𝑅𝑅2) �
𝑛𝑛 − 1

𝑛𝑛 − (𝑘𝑘 + 1)�  
(1) 

In Eq. (1), R2 is the R-squared regression coefficient, n is the number of data points in 
the training set, and k is the number of model parameters (or hyperparameters). The 
adjusted-R2 takes into account both the surrogate model accuracy and complexity 
(Miles, 2005). Taking complexity into account is essential in ensuring that the model is 
not overfit as overfit models do not generalize well to new data.  values typically fall 
between zero and one, with an  of one indicating a perfect fit. However, with the 
adjustment for model size, adjusted-R2 values can become negative.  

The metrics used to evaluate the performance of the recommendation tool (i.e., the 
classification of surrogate modeling techniques given a dataset) are accuracy, precision 
(Sokolova & Lapalme, 2009), and the hit ratio (Cui et al., 2016). The accuracy is the 
percentage of recommendations that are correct. Precision is the probability that a 
model classified as recommended should actually be recommended. The hit ratio is the 
percentage of the time the model with the highest calculated adjusted-R2 is included in 
the set of recommended models. All three performance metrics range from 0 to 100%. 
Monte Carlo cross-validation was used to evaluate the performance of the 
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recommendation tool with 100 Monte Carlo trials. Each trial had a test set size of 75, 
which was about 11% of the total simulated data.  

4. Results and Discussion 

4.1  Surrogate Model Performance 

The surrogate modeling technique that yielded the model with the highest adjusted-R2 
value was selected as the “best” one. For each shape category, the number of times a 
technique was selected as best was tabulated. These tabulated values were divided by 
the total number of datasets in the category to calculate the fraction of datasets for 
which each surrogate modeling technique was selected as the best performing (Fig. 1). 
There was no significant difference in the adjusted-R2 values among the three sampling 
methods. Therefore, only results for Sobol sequence sampling are shown here. For 
valley, bowl, and other-shaped functions, GP models provide the highest adjusted-R2. 
However, ALAMO and MARS models produce the highest adjusted-R2 most frequently 
for bowl and multi-local minima-shaped functions, respectively. These results indicate 
that the underlying function shape has an effect on which surrogate modeling technique 
may be most appropriate for approximating a dataset. While in general, GP models may 
provide the most accurate approximation, specific shape characteristics may lead to 
another technique’s being more appropriate. It should be noted that although these 
results only reflect a single technique being selected with the highest adjusted-R2, in 
many cases, there were multiple techniques with values that were not significantly 
different than that of the highest adjusted R2 value. 

 

 
 

 
Figure 1- Percentage of datasets grouped by function shape for which each surrogate 

modeling technique had the highest adjusted-R2 
4.2  Attribute Selection for Adjusted-R2 Prediction 

From the comparison results, we can conclude that there is a relationship between the 
underlying shape of the surface being modeled and the performance of each of the 
surrogate modeling techniques. The minimum Mahalanobis distance (De Maesschalck 
et al., 2000) between any two points in the simulated dataset was moderately correlated 
to the calculated adjusted-R2 of RF models, with a linear correlation coefficient of -0.58 
and a rank correlation coefficient of -0.71. The position of the data points in the dataset 
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and how close they are to each other may be correlated to the approximation of RF 
models due to the need for the models to partition the design space of the surface when 
determining the decision nodes in each tree in the RF model. Data points that are closer 
together lead to smaller partitions and more accurate predictions.  

For the feature selection by RF models, each technique had a different set of selected 
attributes for prediction. For ALAMO, ANN, RBFN, and SVM models, 18 different 
attributes were selected as important. Random forest models selected 19, 11, 20, and 17 
attributes as important for ELM, GP, MARS and RF models, respectively. The attribute 
most commonly selected as being important for predicting the adjusted-R2 was the 
minimum Mahalanobis distance between training points. Other commonly selected 
features include those related to the distributions of output values, specifically the 
relative size of the output distribution tails and the output distribution skewness, and the 
ratios of the average estimated gradient to the minimum and maximum estimated 
gradients for all of the data points in the dataset. These results suggest that the 
distribution and location of the sample points and the relative steepness and smoothness 
of the surface have a high level of influence on how well each of the surrogate models is 
able to approximate that surface. 

For all of the neural network-based models (ANN, ELM, and RBFN) and RF models, 
the attribute selected with the highest importance was the percentage of the simulated 
data points that were located in the upper tail of the output distribution. The closely 
related attributes of the ratio of the upper and lower tail sizes and the skewness of the 
output value distribution were selected as most important for GP and MARS models, 
respectively. These attributes may have an effect on the accuracies of all these 
techniques as having data unevenly concentrated (or sparse) at the extreme values may 
skew models to predict more accurately in areas of data concentration and less so for 
other areas of the design space. For example, in the case of RF models, uneven tails 
could cause decision nodes in the model trees to split more frequently at the extremes of 
the output values while more finely split partitions are really needed elsewhere, such as 
where the gradients are steeper. For the neural network-based models, the on-off nature 
of the hidden layer nodes may make them more suitable for making accurate predictions 
for surfaces where large areas of the design space have similar output values, creating 
flat or nearly flat areas. The coefficient of variation (COV) was selected as the most 
important feature for the prediction of the performance of SVM models. The COV is 
inversely related to the signal-to-noise ratio of a surface (Wang et al., 2013). This 
attribute may be important for SVM model performance as the support vectors fitted in 
the model construction can easily become sensitive to noise as they are only dependent 
on a small set of the data used to train the model (Sabzekar et al., 2011). For ALAMO 
models, all of the selected attributes had roughly equal amounts of importance. 

4.3  Recommendation Tool Performance 
The selected attributes were used as inputs to train a RF model for the eight techniques 
to predict the adjusted-R2 for a given dataset. Based on the predicted adjusted-R2 value, 
the recommendation tool then classifies each of the surrogate models as being 
recommended or not for that dataset. This recommendation scheme allows for multiple 
similarly performing surrogate modeling techniques to be suggested for use in surface 
approximation. The selection tool identified which techniques should be recommended 
for the simulated datasets with an accuracy of 87%. The precision, or the probability 
that a recommended technique should actually be recommended, was 86%. The hit 
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ratio, the percentage of time techniques that had the highest adjusted-R2 for a dataset 
were included in its set of recommended models, was 80%. 

5. Conclusions 
Selecting an appropriate surrogate modeling technique depends on the characteristics of 
the dataset being modeled. We identified attributes of datasets that are appropriate for 
use in predicting the adjusted-R2 value. Using these attributes, we have constructed a 
tool that can recommend surrogate modeling techniques for approximating a dataset 
with 87% accuracy and 86% precision. Future work on the tool will include expanding 
it to surrogate-based optimization recommendations and investigation of additional 
attributes and machine learning techniques to improve recommendation quality.  
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