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Abstract
In task-parallel code, a determinacy race occurs when two logi-
cally parallel instructions access the same memory location in a

conflicting way. A determinacy race tends to be a bug as it leads to

non-deterministic program behaviors.

Researchers have studied algorithms for detecting determinacy

races in task-parallel code, with most prior work focuses on compu-

tations with nice structural properties (e.g., fork-join or pipeline par-

allelism). For such computations, one can devise provably efficient

algorithms with constant overhead, leading to a asymptotically

optimal running time —O(T1/P +T∞) on P cores for a computation

with T1 work and T∞ span.

More recently, researchers have begun to address the problem of

race detecting computations with less structural properties, such as

ones that arise from the use of futures. Due to the lack of structural

properties, the race detection algorithm incurs higher overhead.

Given a computation with workT1 and spanT∞, the state-of-the-art

parallel algorithm for race detecting programs with futures runs

in time O((T1 lg ˆk + k2)/P +T∞(lgk + lg r lg ˆk)) on P cores (Xu et

al., 2020), where k is the total number of futures used,
ˆk is the

maximum number of future operations per “future task,” and r is
the maximum number of readers between two consecutive writes

to a given memory location.

Interestingly, it has been shown that when one imposes certain

restrictions on the use of futures, referred to as the structured fu-
tures, although the restrictions do not entirely eliminate arbitrary

dependences among subcomputations, one can race detect such pro-

grams more efficiently than that for programs with general futures

(i.e., no restrictions). The improved efficiency has only been demon-

strated for a sequential algorithm (Utterback et al., 2019) that race

detects while executing the computation sequentially, however. The
algorithm requires sequential execution, because the correctness

of the algorithm relies on updating the necessary data structures

while traversing the computation dag in a specific order. An inter-

esting question remains, whether a parallel algorithm exists for

race detecting programs with structured future that achieves better

execution time compared to that designed for general futures.
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This work attempts to answer this question. We propose a paral-

lel algorithm designed to race detect structured futures. By exploit-

ing the restrictions imposed by structured futures, the proposed

algorithm allows for a constant-time query while keeping fewer pre-

vious accessors around to provide the same correctness guarantees

as prior work. Our algorithm runs in timeO((T1 + k
2)/P +T∞ lgk)

on P cores.

We have also implemented and empirically evaluated the pro-

posed algorithm. When compared to the state-of-the-art sequential

algorithm designed for structured futures, although our algorithm

has a longer one-core execution time, its absolute running time

wins out when running on two cores or more. When compared to

the state-of-the-art parallel algorithm designed for general futures,

it indeed incurs lower overhead and performs better.
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1 Introduction
Task parallelism is designed to simplify the job of programming

multicore hardware — in this paradigm, the programmer expresses

the logical parallelism of the computation using high-level language

constructs. The underlying runtime scheduler is responsible for

automatically scheduling and load balancing the computation on

the parallel machine. Examples of task parallel platforms include

OpenMP [30], Intel’s TBB [21, 33], IBM’s X10 [8], various Cilk

dialects [11, 17, 22–24], and Habanero dialects [3, 7].

Even though task parallelism simplifies the parallel program-

ming, a common programming pitfall, called a determinacy
race [13],

1
remains. A determinacy race occurs when two logi-

cally parallel instructions access the same memory location in a

conflicting way (i.e., at least one is a write). In the absence of deter-

minacy race, task-parallel computations behave deterministically.

On the other hand, determinacy races can lead to nondeterministic

program behaviors and therefore they tend to be bugs. They are

1
The literature sometimes refers to a determinacy race as a general race [28].
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often challenging to detect and diagnose because they may not

manifest in every execution.

To address this challenge, researchers have designed algorithms

for automatic detection of determinacy races in task-parallel code [1,

4, 12–15, 26, 31, 32, 37, 39, 40, 42, 43]. This work focuses on on-the-
fly race detection, where the algorithm checks for races

2
while

the program executes on a particular input. These systems provide

strong correctness guarantees: the detector reports a race if and

only if the program has a race on that input.

Typically, an on-the-fly race detector consists of two main com-

ponents. The first component, the reachability analysis, answers
the query of whether two instructions are logically in parallel.

The second component, the access history, remembers what in-

structions accessed a given memory location previously. During

execution, whenever an instruction v accesses a memory location

l , the detector checks with the access history to find any prior con-

flicting accesses, say u, and queries the reachability component to

see if u and v are logically in parallel; if so, a race is reported.

Much of the prior work on race detection for task-parallel pro-

grams has focused on structured parallelism such fork-join paral-

lelism [4, 13, 15, 26, 29, 39] and pipeline parallelism [12, 42]. These

programs have structural properties that make both the reachabil-

ity analysis and access history efficient. In particular, it turns out

that two total orders are sufficient to perform reachability analy-

sis [29, 42], and the access history needs to contain only a constant

number of prior accessors per memory location [26, 42]. By ex-

ploiting the structural properties, the state-of-the-art race detection

algorithms for fork-join [39] and pipeline [42] parallelism can race

detect while executing the computation in parallel with constant

overhead. That is, given a computation withT1 work — its running

time on one core — andT∞ span — the longest dependences in the

computation, or its running time on infinitely many cores — these

parallel algorithms run in time O(T1/P +T∞) on P cores, which is

the best one can hope for.

There has also been recent work on race detection for less

structured programs [1, 37, 40, 43], such as those that contain

futures [18]. Futures allow for arbitrary dependences making

race detection more expensive. Most of these race detection algo-

rithms [1, 37, 40] are sequential; that is, the algorithm race detects

while execute the computation sequentially. The requirement of

a sequential execution is fundamental — the correctness of the

reachability analysis in these algorithms relies on traversing the

computation dag in a particular sequential (i.e., left-to-right depth-

first) traversal order. Furthermore, storing a constant number of

accessors no longer suffices for the access history. Instead, one may

store as many as r accessors per memory location to not miss a

race, where r is the maximum number of readers between a pair of

writes.

To the best of our knowledge, the only prior result that performs

race detection on programs with futures in parallel is by Xu et

al. [43]. Due to the lack of structural properties, the reachability

component in this parallel algorithm incurs O(k2) overhead for

construction andO(lg ˆk) for each query, where k is the total number

2
Henceforth, we refer to a determinacy race as simply a race.

of futures used in the computation,
3
and

ˆk is the maximum number

of future operations within a single “future task” (formally defined

in Section 2). They must still store r accessors, leading to the overall

running time ofO((T1 lg ˆk+k2)/P+T∞(lgk+lg r lg ˆk)) for a program
with work T1 and span T∞ running on P cores.

4

Interestingly, the work by Utterback et al. [40] explores a se-

quential algorithm for race detecting programs with structured
futures, which imposes certain restrictions on how futures can be

used (more details in Section 2). Even though structured futures still

allows for arbitrary dependences among subcomputations, these

programs still have more structural properties compared to an gen-
eral futures (i.e., no restrictions) that allow for more efficient race

detection. Utterback et al. gave a sequential algorithm for reachabil-

ity analysis with an almost constant amortized overhead giving a

total running time of approximatelyO(T1). However, this algorithm
is inherently sequential and heavily depends on the depth-first

left-to-right execution of the program.

Beyond the race detection work by Utterback et al. [40], it has

also been shown that the structured futures allow one to achieve

better bounds on cache misses [19] and scheduling overhead [35]

compared to that for general futures. Such results are interesting be-

cause the set of programs generated by structured futures is larger

than the set generated by fork-join and pipeline parallelism and

contains them both. Moreover, the use of structured futures is not

purely of academic interests but useful in practice. The scheduling

work by Singer et al. [35] showed that one can implement dynamic

programming applications such as Smith-Waterman sequence align-

ment with lower span compared to the implementation with only

fork-join parallelism (albeit the improvement is constant and not

asymptotic) and thereby achieve better scalability in practice. Other

platforms that employ futures (e.g. [27, 34]) were also able to utilize

structured futures to implement interesting application features

that traditional fork-join parallelism could not achieve.

In this paper, we propose a parallel race detection algorithm for

programs with structured futures. By exploiting the restrictions

imposed by the structured use of futures, we are able to bring down

the reachability query overhead to be constant time (although the

construction overhead is still O(k2)), and we are able to bound

the number of readers to keep per memory location. Specifically,

one can retain the same correctness guarantees while storing at

most 2k readers per memory location. Combining these savings

in overhead, our algorithm runs in time O((T1 + k
2)/P +T∞ lgk)

on P cores, where k is the total number of futures used in the

computation. The interesting thing to note is that, unlike the prior

results for race detecting general futures [43], this bound does not

depend on r , the number of readers between a pair of writes. In

addition, compared to the bound by prior work, this running time

provides a saving of a lg
ˆk multiplicative factor on the work term

and a lg r lg ˆk additive factor on the overhead on the span term.

3
In the work by Xu et al. [43], k is used to refer to the total number of future operations.

However, since their work assume constant number of future operations per future

used, the bound remains the same even though we have changed what the term means.

4
The original bound stated in Xu et al.’s paper was O ((T1 lg ˆk + k2)/P + T∞(k +
lg r lg ˆk )). However, it turns out that one can tighten the bound slightly by applying

additional parallelism when maintaining the reachability data structured. Here, we

state the improved bound assuming this additional parallelism.
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We have implemented this algorithm in practice and empirically

compared it against the state-of-the-art algorithms [40, 43]. Em-

pirical results indicate that, when compared with the sequential

algorithm designed for structured futures, although our algorithm

has a slightly higher overhead, its absolute running time wins out

when running on two cores or more. When compared to the parallel

algorithm designed for general futures, our algorithm indeed incurs

lower overhead and performs better.

2 Preliminaries

Fork-Join and Future Parallelism
This work assumes that the target program can be written with

language constructs to express fork-join and future parallelism.
5

Most task-parallel platforms support fork-join parallelism (e.g., [3,

7, 8, 11, 17, 21–24, 30, 33]). Future parallelism, also supported in

many platforms (e.g., [7, 8, 16, 18, 20, 25, 35, 38]), allows one to

express parallelism in a more flexible manner compared to fork-

join parallelism. We discuss how the language constructs work

in Cilk dialects [17, 35]; other platforms may support them with

different syntactic form, but the concepts are similar.

Fork-join parallelism in our model is expressed using two key-

words: spawn and sync. A function F can spawn another function

G by prefixing the invocation with the spawn keyword, which indi-

cates the call to G may execute in parallel with the continuation of

F after the spawn statement. The sync keyword serves as its coun-

terpart, indicating the the control cannot pass the sync statement

until all previously spawned subroutines have returned.

Future parallelism can be expressed using two keywords, create
and get. The keyword create works similarly as spawn— when a

function F invokes another functionG with create, the invocation
to G may execute in parallel with the continuation of F . The key
distinction between create and spawn is that, create returns a

handle — an object in memory that represents the execution of

the created future task G — that can later be used to ensure the

completion of G and query its result. The keyword sync has no

effect on subroutines invoked with create. Rather, the termination

ofG is guaranteed by invoking a get on the handle associated with

G; the control cannot pass get untilG finisheswith get returning its
return value. Since the future handle can be stored in memory and

retrieved at a later program point, futures allow for more flexible

expression of parallelism.

The Computation Dag Model
The execution of a task-parallel program for a given input can be

modeled as a directed acyclic graph (or dag for short), where a

node represents a sequence of instructions containing no parallel

control constructs, and an edge represents a dependence. We say

that a node is ready to execute when all its immediate predecessors

have executed.

During execution, the spawn keyword creates a spawn node
with two outgoing edges, a spawn edge leading to the first node is

the spawned subroutine and a continuation edge leading to the

continuation of the caller. The sync keyword creates a sync node
5
One can easily extend the algorithm to also handle pipeline parallelism, as a race

detector can handles both fork-join and pipeline parallelism similarly, as storing two

total orderings of nodes suffice to perform reachability queries, but we omit pipeline

parallelism here for simplicity.

with multiple incoming edges, one from each spawned subroutine

that the sync keyword is joining, and the sync node itself represents
the continuation after the sync statement.

When only spawn and sync keywords are used, the execution

forms a series-parallel dag (or SP-dag for short) [41], with the

following properties. An SP-dag has a single source node which
precedes all other nodes in the corresponding SP-dag and single

sink node that comes after all nodes in the dag. Moreover, an

SP-dag can be constructed recursively using series and parallel

compositions. In a series composition of two SP-dags, we add an

edge from the sink of one SP-dag to the source of the other, creating

a new SP-dag. In the parallel composition, we create a new source

with edges to both sources and a new sink with edges from both

sinks.
6

Adding futures can create arbitrary dependences among sub-

computations. The execution of a create generates a create node
with two outgoing edges — a create edge leading to the first node

of the created future task and a continuation edge leading to the

continuation of the caller. The execution of a function instance

representing a future task terminates with a put node, which is the

last node to execute in the future task that deposits result into the

associated future handle. Finally, the execution of get terminates

the current node u and generates a get node with two incoming

edges — an ordinary edge from u and a get edge from the put node

of the corresponding gotten future task.

One can model the execution of a program with both fork-join

and future parallelism as a set of SP-dags with arbitrary depen-

dences between them. Each future task, an instance of a function

execution possibly containing spawn and sync keywords, can be

modeled as its own SP-dag, and the create and get edges form

arbitrary dependences among them. Henceforth, we refer to the

create and get edges as non-SP edges and all other types of edges

as ordinary SP edges.

By convention, we shall assume that whenever we have a spawn

or create node, the left branch leads to the spawned subroutine / cre-

ated future task, whereas the right branch leads to the continuation.

Thus, a serial one-core execution of the computation effectively

perform a left-to-right depth-first traversal of the computation dag.

Moreover, the serial one-core execution is one of the many legal

schedules that can arise from parallel executions.

Structured Future
In the literature, researchers have examined how by imposing cer-

tain restrictions on the use of futures can allow for better bounds

on cache misses [19], scheduling overhead [35], and race detection

overhead [40]. Specifically, researchers have examined the use of

structured futures which imposes the following restriction: a)

single-touch: get is invoked on a future handle h at most once;

b) no race on a future handle: there is a sequential dependence
from the program point where a future handle h is created (via

create) to the program point where a get is invoked on h without

going through the created future task associated withh. Put it differ-
ently, given a pair of create node to its corresponding get node (by

invoking get on the corresponding handle), there is a directed path

6
For simplicity, this construction described series-parallel dags with at most two

incoming and two outgoing edges for each node; but can be easily generalized.
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from the create node to the get node where the path starts from the

continuation edge. Note that, given this restriction, it follows that a

program that utilizes only spawn, sync, and structured futures can

execute sequentially on one core (which follows the left-to-right

depth-first traversal) without ever block on sync or get. Moreover,

such program generates a class of dags that we refer to as SF-dags.
As we will see in Section 3, these dags have particular structural

properties that can be exploited to perform race detection more

efficiently.

WSP-Order
We briefly summarize how WSP-Order, the state-of-the-art race

detection algorithm for SP dags [39] works here, as we utilize a sim-

ilar strategy to maintain series-parallel relationship among nodes

in SF-dags.

WSP-Order uses a pair of order-maintenance (OM) data struc-
tures to perform reachability analysis of the SP-dag. By storing

executed nodes in two different total orderings and comparing the

relative ordering of nodes in the two orders, one can tell if the

two nodes are logically in parallel. Since OM data structures need

to be rebalanced from time to time in order to provide constant

query time, WSP-Order incorporates additional runtime support to

enable parallel rebalancing with coordinated concurrent accesses

to the OM data structures such that queries can be achieved with

amortized constant overhead. Given an SP-dag with work T1 and
span T∞, WSP-Order runs in time O(T1/P + T∞) on P cores. The

runtime support is crucial in achieving this optimal running time.

3 The SF-Order and its Correctness
This section presents the full detail of SF-Order and its correctness

proof. Recall that a race detector consists of two components —

reachability analysis and access history. The access history remem-

bers the necessary previous accessors per memory location. Upon

a memory access v , the detector checks with the access history

to find any conflicting previous access, say u. Then, the detector
performs reachability query to see if there is a path from node u to

v .
In this section, we will start by building some intuition about

what data structures can help us answer the reachability queries,

describe the full query algorithm, prove its correctness, and finally

discuss why for race detecting structured futures, storing only 2k
number of previous readers per memory location in access history

suffice to perform race detection correctly, where k is the total

number of futures used in the computation.

Notation
We begin with some notations. An SF-dag is generated by a set of

futures which can call create to create a new future and call get
on future handles in a structured manner. Each future in itself is

a series-parallel (SP) dag. Therefore, an SF-dag D can be decom-

posed as a set of SP-dags connected via non-SP edges. We call each

individual SP-dag F ∈ D a future dag or a future. We assume

that each future has a unique identifier. In addition, we say that

a node u ∈ F if u is in the SP-dag that F denotes — in this case,

the instructions associated with u are part of the execution of that

future. Since each future is an SP-dag, it has a unique first node
which precedes all other nodes and a unique last node that all other

Figure 1: An example of an SF-dag.

nodes in the SP-dag precede.
7
We say that the first node of a future

F is first(F ) and the last node of F is last(F ). An example SF-dag

is shown in Figure 1.

We say that a future F is a parent for future G (denoted by

F = fparent(G) if some node u ∈ F created the future G. In
our example, A is the parent of B,C and D while D is E’s and F ’s
parent. Similarly, we say F ∈ f-ancs(G) if F is either G’s parent or
parent of its parent and so on recursively, and G ∈ f-descs(F ) if
F ∈ f-ancs(G).

We can classify edges in 3 categories: create edges go from the

strand u ∈ fparent(G) that called д = create(G) to first(G) (all
red edges in Figure 1); get edges go from last(G) to the the (unique)
strand that calls get(д)where д is the future handle associated with
G (all blue edges in Figure 1); and SP edges are all other edges. The

create and get edges are also collectively called non-SP or NSP

edges. Broadly, SP edges are edges between two nodes of the same

future while NSP edges are between two nodes of different futures.

Given two nodes u and v , we use u → v to denote that there

is an edge from u to v and we will sometimes use subscripts such

as u →дet v to denote that the corresponding edge is a get edge,

for example. We use u ; v to denote the presence of a directed

path from u to v . We use u ;SP v if at least one path from u to v
contains only SP edges andu ;NSP if all paths fromu tov contain

at least one NSP edge. Note that if there are multiple paths from

u to v and any one of them contains only SP edges, we say that

u ;SP v . We say u ≺ v iff u ; v , and u ⪯ v iff either u ≺ v or

u = v .

3.1 Intuition behind the Query Algorithm
We will start by building some intuition on how the algorithm

works. Recall that race detection depends on a reachability query —

given two nodes u and v , we want to answer the question: is there

a path from u to v . We will consider three cases:

7
For future tasks, we call these nodes first and last as opposed to source and sink (for

ordinary SP-dags) because a future task invoking create can have an escaping edge

leaving the dag.
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(1) If u,v ∈ F — meaning both u and v belong to the same

future dag: In this case, (as we will argue in Lemma 3.3) it

is sufficient to check if u ;SP v since u ≺ v iff u ;SP v .
Note that there may also be non-SP paths between them, but

at least one path will contain only SP edges. For instance, in

our example dag, even though there are non-SP paths from

e to u, there is also an SP path.

(2) If u ∈ F and v ∈ G where F , G, but F ∈ f-ancs(G): In this

case, it is sufficient to check if there is a path from u to v
that contains only create edges and SP edges. That is, (as we

will argue in Lemma 3.5) if there is no such path, then u ⊀ v .
Again, there may be paths from u to v that go through get

edges, but at least one path will not contain any get edges.

In our example, consider nodes i and q for instance.

(3) If u ∈ F and v ∈ G where F < f-ancs(G): In this case, (as

we will argue in Lemma 3.4) it is sufficient to check if there

is a path from last(F ) to v . There is a path from last(F ) to
another node u iff, for all nodes u ∈ F , we have u ≺ v .

In our query algorithm, we separately consider these three cases.

For Case 1, we can rely on asymptotically optimal race detection

algorithms for series-parallel dags (such as WSP-Order [39]) since

we are concerned with series-parallel dependences. For Case 3, we

will rely on the idea from Xu et al.’s [43] work on race detecting

general futures. In their work, for every node v , they maintain

a hash table that contains all the nodes u such that u ;NSP v .
However, as mentioned above, structured futures have the special

property that if u ∈ F , v ∈ G, and F < f-ancs(G), then u ;NSP v
iff last(F ) ; v . Therefore, unlike for general futures, we need not
keep all such nodes u which have non-SP paths to v . Instead, for
every node v , we maintain a hash table, denoted by дp(v), of future
IDs for all futures F where last(F ) ;NSP v . In our example, for

instance, дp(o) contains B and E.
It turns out that Case 2 is the trickiest. It only applies when

F ∈ f-ancs(G). Therefore, for all futures G, we maintain a hash

table, denoted by cp(G), which contains all its ancestor futures.

When checking whether u ≺ v , we first find F and G where u ∈ F
and v ∈ G. If F < cp(G), then this case doesn’t apply. However, if

F ∈ cp(G), we have a further check. In particular, not all nodes in

an ancestor future precede v — for instance, in our example, even

though A is C’s ancestor, i ⊀ f .
For this case, we will use an additional “conceptual” structure

called pseudo-SP-dag. A pseudo-SP-dag for an SF-dag D, denoted

by PSP(D), is a series-parallel approximation of D which is the

dag generated if we convert all create calls with spawn calls and
remove all get calls but include an implicit sync at the end of

a future task. Clearly, it is a series-parallel dag, since the only

parallel constructs are spawns and syncs. The pseudo-SP-dag for

our example is shown in Figure 2. We will say u ↠ v iff there is

a path from u to v in PSP(D). Since PSP(D) is a series-parallel

dag, we can check if there is a path from u to v in parallel using

WSP-Order [39].

This PSP(D) itself is not sufficient to check races. Pseudo-SP-

dags are inaccurate for detecting races in two ways. First, they miss

some paths. First, it can be the case that u ;NSP v while u ̸↠ v;
for example, even though j ≺ u in D in Figure 1, it is not the case

in the pseudo-SP-dag in Figure 2. Second, and more insidiously,

Figure 2: The corresponding pseudo-SP-dag for the SF-dag
shown in Figure 1.

PSP(D) can have phantom paths — paths that do not exist inD. It

can be the case that u ↠ v even though u ̸; v in D. For instance,

in our example, PSP(D) has a path from f to t even though such a

path does not exist in D. However, we do not use pseudo-SP-dags

to check all races. Recall that we only need to use PSP(D) to check

reachability from u ∈ F to v ∈ G if F ∈ f-ancs(G). As we will

argue in Lemma 3.9, if F ∈ f-ancs(G), then for all u ∈ F and v ∈ G ,
we have u ↠ v iff u ; v .

3.2 Reachability Queries in SF-Order
We can now describe the complete query algorithm. As mentioned

above, in order to perform reachability queries between nodesu ∈ F
and v ∈ G, SF-Order keeps three structures.

• Order-maintenance (OM) data structures for keeping track of

series-parallel relations of PSP(D) (similar to that in WSP-

Order [39] as discussed in Section 2). This is used when

F ∈ f-ancs(G), both when F = G (Case 1) and when F is

a strict ancestor (Case 2). Intuitively, this data structure is

used to check the existence of paths that either (1) contain

only SP edges when F = G; or (2) contain only create edges

and SP edges when F ∈ f-ancs(G).
• For each futureG , cp(G) is a hash table that contains the IDs

of all future ancestors of G to check if F ∈ f-ancs(G) so we

can use PSP(D) for Case 2.

• For each node v ∈ G, дp(v) is a hash table that contains the

IDs of all futures F such that last(F ) ;NSP v to answer

queries for Case 3.

Using these data structures, the code for a query is shown in

Algorithm 1. Line 2 indicates the complete query when u and v are

in the same future dag. In Lemma 3.3 and Lemma 3.7 we will argue

that, in this case, it is sufficient to check if there is a path from

u to v in the pseudo-SP-dag. Next, Lines 4 shows the case when

F ∈ f-ancs(G). In this case, we check ifu ↠ v and return true if so,

which is proven to be correct in Lemma 3.9. At this point, we have

already answered the query correctly if F ∈ f-ancs(G). Finally, in
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Lines 6, we check if F ∈ дp(v). If so, we know that last(F ) ; v ,
which we prove in Lemma 3.4.

Algorithm 1: Reachability Query

1 Function Precedes(u, v)
2 if u, v ∈ F AND u ↠ v then
3 return TRUE

4 else if u ∈ F ;v ∈ G AND F ∈ cp(G) AND u ↠ v then
5 return TRUE

6 else if u ∈ F ;v ∈ G AND F ∈ дp(v) then
7 return TRUE

8 else
9 return FALSE

10 end

3.3 Correctness Proof of the Query Algorithm
Wewill now prove the correctness of this algorithm based on the in-

tuition described above. First we start by some important structural

properties of SF-dags.

Structural Properties of SF-dags
We start by stating some straightforward properties of SF-dags

(really for any dags with futures) — these just say that paths from

one future to another must go through create and/or get edges and

that the only incoming create edge is into first(F ) and the only

outgoing get edge is from last(F ).

Property 1. If u ∈ F and v ∈ G where F and G are distinct, then
any path from u to v must contain at least one non-SP edge.

Property 2. Among all the nodes in F , only first(F ) has an
incoming create edge (other nodes may have outgoing create edges)
and only last(F ) has an outgoing get edge (other nodes may have
incoming get edges).

We now restate a couple of results shown by Utterback et al. [40].

In particular, these structural properties (unlike the ones stated

above) are not true for general futures. They are properties that

depend on the fact that SF-dags are generated by a structured use

of futures. The following lemma is implicit in Utterback et al.’s

paper [40], though not stated explicitly. In particular, in their paper,

they perform race detection sequentially using a left-to-right depth-

first execution and this execution satisfies the following property.

Their algorithm and analysis crucially depends on this property of

SF-dags.

Lemma 3.1. There is some valid execution of an SF-dag such that
all future descendents of F (that is, all G ∈ f-descs(F )) complete
execution before F completes execution.

While the model and terminology in that paper is slightly differ-

ent, the following result is a straightforward restatement of Lemma

1 in Utterback et al.’s paper [40].

Lemma 3.2. If u ;NSP v , then there exists at least one path
from u to v that contains two sections: The first path (possibly empty)
contains only get edges and SP edges and the second part (possibly
empty) contains only create edges and SP edges. In other words there
is never a create edge followed by a get edge on this path.

We will consider any such path from u to v to be a canonical
path. In Utterback et al. [40]’s model, there is a unique canoni-

cal path because they assume that the computation utilizes only

structured futures but no spawns and syncs. In our model, there

can be many canonical paths due to the use of spawns and syncs.
For instance, in Figure 1, if we look at nodes c and q, there are

multiple paths. There is a non-canonical path c →дet д → h →

i →create j →create k →дet m → o → p →create q. How-
ever, we can choose not to go through future E and get the path

c →дet д → h → i →create j → l → m → o → p →create q
There is also another canonical path that goes through n instead of

m.
8

Case 1: u,v ∈ F .We first consider the (easy) case when u,v ∈ F
for some future F . The following lemma says that it is sufficient to

check for SP paths. Note that this is distinct from general futures

where u ;NSP v even when u and v are in the same future.

Lemma 3.3. If u ≺ v where u,v ∈ F , then u ;SP v .

Proof. This property is a direct consequence of Lemma 3.2.

Consider any path from u to v . If this path only contains SP edges,

then we are done. Say this path does contain non-SP edges. Wlog,

this path π = u ;SP w ;NSP x ;SP v where the outgoing edge

fromw ∈ F is the first non-SP edge on the path and the incoming

edge to x ∈ F is the last non-SP edge. Since last(F ) is the last

node of F to execute in any execution,w is not last(F ). Therefore,
the outgoing edge from w must be a create edge, since only the

last(F ) has an outgoing get edge (Property 2). Similarly, x is not

first(F ) — therefore, the incoming edge to F must be a get edge.

Therefore, all paths fromu tov that contain non-SP edges have a get

edge after a create edge. Therefore, by the converse of Lemma 3.2,

u ;SP v . □

Case 3: u ∈ F ;v ∈ G; F < f-ancs(G).We now consider the case

where F < f-ancs(G) and argue that дp(v) — the hash table that

contains future F iff last(F ) ≺ v is sufficient to check reachability

in this case.

Lemma 3.4. If u ;NSP v where u ∈ F and v ∈ G and F <
f-ancs(G), then last(F ) ; v .

Proof. First, we argue that if F < f-ancs(G), then all paths from
u to v contain at least one get edge. This is easy to see from the

structure of SF-dags. SP edges only connect nodes within the same

future and create edges only connect futures to descendent futures.

Therefore, any path from u to v where v is not in a descendent of

the future containing u must go through at least one get edge.

Now consider any canonical path p fromu tov — it must contain

at least one get edge.We decomposep intou ;SP w →NSP x ; v
where the edge from w to x is the first non-SP edge on this path.

By Lemma 3.2, this first non-SP edge must be a get edge. From

Property 1, we know that w ∈ F since the path from u to w only

contains SP edges. Therefore, due to Property 2,w = last(F ), since
last(F ) is the only node in F with an outgoing get edge. Therefore,

last(F ) ; v . □

8
It turns out that the sequence of get and create edges on all canonical paths is the

same. However, this property is not crucial for our proof.
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Therefore, when checking reachability from u ∈ F to v ∈ G
when F < f-ancs(G), it is sufficient to check if last(F ) has a path
to v , which is exactly the information stored in дp(v).

Case 2: u ∈ F ; v ∈ G; F ∈ f-ancs(G). We now consider two

nodes u ∈ F ,v ∈ G and argue the assertion stated in Case 2 —

namely, if u ; v and F ∈ f-ancs(G), there is a path from u to v
which contains only create and SP edges.

Lemma 3.5. If u ;NSP v where u ∈ F and v ∈ G and F ∈

f-ancs(G), then there is at least one path from u tov containing only
create and SP edges.

Proof. Assume, for contradiction, that when F ∈ G , there is no
path fromu tov containing only create and SP edges — that is, there

is at least one get edge on every path. By Lemma 3.2, there must be

at least one path p that has all the get edges before all the create

edges; and in particular, the first non-SP edge on this path must

be get edge. Decompose this path into u ;SP w →дet x ; v .
From Property 1, x is the first node on this path that is not in F and

from Property 2,w = last(F ) since that is the only node in F that

has an outgoing get edge.

From Lemma 3.1, there is some execution S where G finishes

executing before F finishes execution. Therefore, there cannot be a

path fromw = last(F ) to v ∈ G. Hence a contradiction. □

Therefore, when F ∈ f-ancs(G), we must somehow check for

the existence of a path that contains only create and SP edges.

This is where the pseudo-SP-dag PSP(D) comes in. Recall that we

simply convert all creates into spawns, remove all get statements,

and include implicit syncs to generate PSP(D). We say u ↠ v if

there is a path from u to v in the pseudo-SP-dag. We now argue

that PSP(D) precisely answers queries between u ∈ F and v ∈ G if

F ∈ f-ancs(G).
For convenience, we will define PSP(F ) for all futures F in a

similar manner — the entire SP-subdag generated by F which has

first(F ) as the first node and last(F ) as the last node is called
PSP(F ). The following lemma is true due to the construction since

all create edges are converted to spawn edges.

Lemma 3.6. For any node v ∈ G, v ∈ PSP(F ) iff G ∈ f-descs(F )
(including F )

In our example, all nodes are part of PSP(A) while nodes from E
and F are part of PSP(D) since they are both D’s descendents.

Let us consider some relationships between paths in SF-dags and

the corresponding pseudo-SP-dags. The following lemma considers

u,v ∈ F and says that PSP(F ) precisely denotes the relationship

between such nodes. This justifies our decision in Line 2 to simply

check the pseudo-SP-dag when checking if u ≺ v when u and v are

in the same future F .

Lemma 3.7. If u,v ∈ F , then u ↠ v iff u ≺ v

Proof. From Lemma 3.3, we know that if u ≺ v then there

is an SP path between u and v . We do not remove any SP paths

in the pseudo-SP-dags. Therefore, this path cannot be removed.

Conversely, if there is no path between u and v , then they are in

two separate SP-subdags of F . More precisely, there is node s such
that u is in the left subdag of s and v is in the right subdag (or vice-

versa). Therefore, in the pseudo-SP-dag, this relationship between

u and v will still hold. Since pseudo-SP-dag is an SP-dag, there can

be no paths between a node in the left subdag and a node in the

right subdag of s just due to the properties of SP-dags. □

The next lemma states that pseudo-SP-dags are also good at

finding paths that contain only create and SP edges, since the only

edges removed are get edges.

Lemma 3.8. If u ∈ F , v ∈ G where F ∈ f-ancs(G) and u ≺ v ,
then u ↠ v .

Proof. From Lemma 3.5, at least one path from u to v has no

get edges and consists of only SP edges and create edges. Since

the pseudo-SP-dag construction does not remove any SP or create

edges, this path would still exist in PSP(D). □

However, this in itself is not sufficient to precisely detect races

since it is not obviously an if and only if statement. In particular,

we might worry that u ↠ v even if u ̸; v . For instance, in our

example, PSP(D) has a path from f to t even though such a path

does not exist in the original dag D. These phantom paths are due

to fake edges, denoted by →f ake . In particular, pseudo-SP-dags

have additional sync edges that are not in the original SP-dag —

these are the get edges from the last node of a child future G to a

sync node in the parent future F . In our example, the offending fake

edge is from f to h. We will say a path from u to v is fake (denoted

by u ↠f ake v) if u ↠ v , but u ̸; v . Clearly, a fake path must have

one or more fake edges.

The following lemma says that, even though there can be fake

paths in pseudo-SP-dags, they do not occur between u ∈ F , v ∈ G
if F ∈ f-ancs(G).

Lemma 3.9. Ifu ∈ F ;v ∈ G such that F ∈ f-ancs(G), thenu ↠ v
implies u ; v .

Proof. Assume for contradiction that u ↠f ake v — that is, all

paths from u to v contain at least one fake edge. Consider the path

p with the smallest number of these fake edges.

Due to the way the pseudo-SP-dag is constructed, a fake edge

always goes from last(H ) for some future H to some sync node in

fparent(H ).

Say X = {F1 = F , F2, F3, ..., Fk = G} be the set of all the futures

which are ancestors of G but not ancestors of F in order of depth

in the create-tree. That is, if we look at the create-tree, these are

the futures on the path from F to G.
Case 1: Some fake edge on p goes from last(H ) to some node

y ∈ fparent(H )whereH < X . In this case, the pathp can be decom-

posed to u ↠ x →create first(H ) ↠ last(H ) →f ake y ↠ v
where x ,y ∈ fparent(H ) since both PSP(H ) and PSP(fparent(H )

are series-parallel dags. In particular, all paths to last(H ) must go

through first(H ) (unless they originate in this subdag). In addi-

tion, there must be a path directly from x to y that uses only edges

within fparent(H ) since there is always a path from the create

(spawn) node to the corresponding sync node. Therefore, we can

replace the subpath with fake edge with a subpath without fake

edge, contradicting the minimality assumption.

Case 2:All fake edges on the pathp go from last(Fi+1) toy ∈ Fi .
Therefore, there is a pathu ↠ last(Fi+1) →f ake y ↠ v . However,
by Lemma 3.6, G ∈ PSP(Fi+1). Therefore, there is a path from v to
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last(Fi+1) since all nodes within a series-parallel (sub)dag have

a path to the last of that series-parallel (sub)dag. However, we

cannot have last(Fi+1) ↠ v ↠ last(Fi+1) since PSP(Fi+1) is a
dag. □

3.4 Maintaining the Reachability Data
Structures On-the-fly

Asmentioned in Section 3.2, SF-Order maintains three separate data

structures: (1) A reachability data structure for the pseudo-SP-dag.

(2) The дp(v) hash table — for every node v , this table has the IDs
off all futures F such that last(F ) ≺ v . (3) The cp(G) hash table —

for every future G, it stores the IDs of all future ancestors of G.
We now briefly explain how these data structures are maintained

during a parallel execution. To check reachability within the pseudo-

SP-dag, we use WSP-Order described by Utterback et al. [39]. The

cp(G) data structures is also easy to maintain. When a future G is

created by future H , it simply copies over its parent’s hash table

(cp(H )) and adds its own ID to it. Maintaining дp(v) is slightly more

complicated, but not by much — the argument is identical to the

one given by Xu et al. [43]. Conceptually, a node simply gets the

union of its parent’s tables — дp(v) = ∪u→vдp(u). Since we cannot
afford to copy hash tables at every new node — we use pointers

most of the time. If a node has a single parent, it need simply keep

a pointer to its parents hash table and refer to it directly. We need

only create new hash tables when a node has multiple parents and

their tables must be merged — that is, at sync nodes and at get

nodes. Naively merging at every sync and get is also too expensive
— while there are only k get nodes in the computation (one for

each future), there could be many more sync nodes. We can be

cleverer about the implementation however, and only perform a

merge if among the hash tables associated with the two parents

of a node, each contain some item that the other does not contain.

Xu et al. [43] argue that this can occur at most k times during the

computation and that argument holds here as well.

3.5 The Access History Component
In a race detection algorithm, the access history stores the readers

and writers that previously accessed a given memory location. For

programs with only fork-join parallelism (i.e., SP-dags), given a

memory location l , Mellor-Crummey [26] has shown that it suffices

to store one previous writer — called last writer , that is simply the

last writer that wrote to l , and two readers — the rightmost reader
rreader(l) and the leftmost reader lreader(l). For programswith

general futures, however, the race detector must store an arbitrarily

large number of previous readers for each memory location [1].

By exploiting the restrictions imposed by structured futures,

we show that one can store only 2k readers per memory location,

where k is the total number of futures used in the computation,

without breaking the correctness guarantees. In particular, given

a memory location l and a future dag F in an SF-dag D, SF-Order

stores only the rightmost reader rreader(l , F ) and leftmost reader

lreader(l , F ) of l with respect to F (that is, the leftmost and right-

most readers of l in F compared to all other readers of l in F ). Recall
from Lemma 3.3, if two nodes u and v are in the same future dag

and u ≺ v , then there must exist an SP path between them. Thus

the following lemma straightforwardly follows from prior work by

Mellor-Crummey [26].

Lemma 3.10. At any point during the execution of an SF-dag, let
R(l,F ) be the set of nodes in future dag F that have read memory
location l and w be any other node in F . We have r ≺ w for all
r ∈ R(l,F ) iff rreader(l , F ) ≺ w and lreader(l , F ) ≺ w .

Lemma 3.10 says that given a memory location l and a future

F , storing its rightmost and leftmost readers suffice to detect intra-

future races. Now we prove these readers also suffice to detect

inter-future races.

Lemma 3.11. At any point during the execution of an SF-dag, let
R(l,F ) be the set of nodes in a future dag F that have read memory
location l and w be any other node in some future G distinct from
F . We have r ≺ w for all r ∈ R(l,F ) iff rreader(l , F ) ≺ w and
lreader(l , F ) ≺ w .

Proof. If all r ∈ R(l,F ) precede w then rreader(l , F ) and

lreader(l , F ) must also precedew since they are in the set R(l,F ).
Now we show the other direction — assuming that

rreader(l , F ) ≺ w and lreader(l , F ) ≺ w , we need to show that all

r ∈ R(l,F ) precedew . Sincew < F , we have rreader(l , F ) ;NSP w
and lreader(l , F ) ;NSP w (Property 1). Let’s first consider the

case where F < f-ancs(G). Then by Lemma 3.4, last(F ) ; w ,

and thus all nodes in F precedew .

Next we consider the case that F ∈ f-ancs(G). Since both

rreader(l , F ) and lreader(l , F ) are in F , w ∈ G, and F ∈

f-ancs(G), by Lemma 3.5, there is at least one path from

rreader(l , F ) to w containing only create and SP edges. We can

decompose this path into rreader(l , F ) ;sp x →create y ;

z →create first(G) ;sp w (where y ; z can be empty if F
is the immediate future parent of G). Similarly with the same ar-

gument we can decompose the path from lreader(l , F ) tow into

lreader(l , F ) ;sp x ′ →create y′ ; z′ →create first(G) ;sp
w (where y′ ; z′ can be empty if F is the immediate future parent

ofG). Since each future has exactly one parent, we have z = z′ and
x = x ′ inductively. Therefore, we have rreader(l , F ) ;sp x and

lreader(l , F ) ;sp x . Then based on Lemma 3.10, we know for any

other reader r in R(l,F ), r must precede x as well, which leads to

r ≺ w . □

3.6 Performance Analysis of SF-Order
Now we can analyze the performance bound for SF-Order. First,

we can state the following bound for the reachability component

based on the construction discussed in Section 3.4:

Lemma 3.12. Given a computation with work T1, span T∞, and k
futures, constructing the reachability data structure has total work of
O(T1 +k

2) and total span ofO(T∞ +min{T∞,k} lgk). Therefore, the
running time on P processors is ((T1 +k2)/P +T∞ +min{T∞,k} lgk).

Proof. Maintaining WSP-Order to answer reachability queries

between PSP(D) has no asymptotic overhead [39]. cp(G) for each
future is constructed when the future is created and takes at most

k extra work, for a total of k2 overhead for k futures. As for дp(v),
we argued that new hash tables are created at most O(k) times —

once for each of the k get node and at k sync nodes at the most.
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Each of these merges takes O(k) time since no hash table can be

larger than k . Therefore, the total work is O(T1 + k
2).

Every copy and merge can be done in parallel for the span of

O(lgk). Since there are at most k such merges, this overhead on

the span can not be larger than O(k lgk). In addition, at most T∞
of these merges fall along the critical path — hence the result. □

We can also show easily that queries are cheap. Utterback et

al. [39] show that WSP-Order answers queries in O(1) time amor-

tized. In addition to that, we only check дp(v) and cp(G) once for
each query, which each take O(1) time in expectation.

Lemma 3.13. Checking if u ≺ v using the query algorithm takes
O(1) time amortized and in expectation.

Now we can state the final performance bound for SF-Order:

Theorem 3.14. Given a computation with work T1 and span T∞,
SF-Order executes in time O((T1 + k2)/P +T∞ lgk) on P processing
cores, where k is the total number of futures used in the computation.

Proof. On a read, the the race detector has to check races against

at most one previous writer and each query takes O(1) time. On

a write, the race detector may check races against at most 2k pre-

vious readers. Therefore, each write may cause up to O(k) work
and O(lgk) span (since all these checks can be done in parallel).

However, these reads can then be removed from the access history;

therefore, this O(k) work can be amortized against the cost of per-

forming them in the first place. By Lemma 3.12, the reachability

structure construction costs O(k2) asymptotic overhead giving us

the work term. For the span, the O(lgk) overhead is multiplicative

on the span; therefore, the additive overhead of construction is

absorbed by it, leaving us with the total span of O(T∞ lgk). The P
processor bound follows from standard scheduling theorems. □

4 Implementation and Empirical Evaluation of
SF-Order

We have implemented SF-Order and empirically evaluated it by

comparing it against MultiBags [40],
9
the state-of-the-art sequential

race detector designed for structured futures, and F-Order [43],
10

the state-of-the-art parallel race detector designed for general fu-

tures. Experimental evaluation indicates that, although our algo-

rithm incurs a higher overhead for one-core executions compared

to MultiBags, its absolute running time wins out when running on

two cores or more as MultiBags can only run the program sequen-

tially. On the other hand, when compared F-Order, our algorithm

incurs lower overheads in general, due to the lower reachability

construction and query overheads.

Implementation Overview
Here we briefly describe the implementation of SF-Order. As dis-

cussed in Section 3, the reachability component of SF-Order requires

three different types of data structured. The first one is the SP-Order

data structure from the WSP-Order algorithm [39] to maintain the

series-parallel ordering of pseudo-SP-dags. The WSP-Order algo-

rithm requires a specialized runtime system support in order to

obtain the amortized constant time query overhead on SP-Order.

9
The codebase of MultiBags can be obtained at https://github.com/wustl-pctg/futurerd.

10
The codebase of F-Order can be obtained at https://github.com/wustl-pctg/f-order.

Such runtime system support is similarly required by F-Order [43],

and thus in their framework, they provided an extended Cilk-F

runtime system [35], a work-stealing runtime system that supports

the use of futures and the specialized runtime system support for

WSP-Order. We have taken this extended Cilk-F runtime and incor-

porated into our software that implements SF-Order.

For дp, recall that it is simply a hash table per node v in the

SF-dag that keeps track of the IDs of all futures F such that the

last node of F is an ancestor of v . One bit suffices to store such

information per unique future in the execution. Thus, instead of

utilizing an actual hash table hashing the unique IDs of such futures

F , we utilized an array of 64-bit integers to indicate membership

of дp(v) — a bit in position i indicates whether the last node of a
future F with ID i is an ancestor of v .

Similarly for cp, it is again a hash table containing the IDs of

all future ancestors F of a given future G. Again, one bit suffices

to store such information per unique future F . Thus, we similarly

utilized an array of 64-bit integers to indicate membership of cp(G)
instead of an actual hash table.

Finally, for the access history component, we utilized the same

access history construction as in F-Order — a two-level hash table

that acts like a direct-mapped cache, hashing the address of a mem-

ory location to its metadata. Even though SF-Order can bound the

number of readers per memory location in the access history, doing

so required that we utilize yet another hash table in the metadata

for a given memory location, which hashes from a future ID to its

leftmost and rightmost reader. Since the overall space, hashing, and

additional query overhead (to check if some reader is the leftmost

or right most compared to existing readers) likely outweigh the

saving in the number of readers we can omit, we simply store all

the readers in the hash table between writes like what was done in

F-Order.

Experimental Setup

All experiments were conducted on a machine with two 20-core In-

tel Xeon Gold 6148 cores, clocked at 2.40 GHz. Hyperthreading and

dynamic frequency scaling are disabled. Each core has a separate

private L1 data cache and L1 instruction cache, with 32KB capacity

each. Each core also has a 1MB private L2 cache. Each socket has a

27.5 MB L3 cache shared among 20 cores. The machine has 768 GB

of main memory. We have used only one socket for the experiments

to avoid variance due to NUMA effect. All software is compiled

with LLVM/Clang 3.4.1 with -O3 optimization level, running on

Linux kernel version 4.15. Each data point is the average of five

runs with standard deviation less than 5.5%.

We have used five benchmarks to evaluate performance, includ-

ing divide-and-conquer matrix multiplication (mm), parallel merge-

sort (sort), Smith-Waterman sequence alignment (sw), the Heart
Wall application (hw) from the Rodinia benchmark suite [9] that

tracks the movement of a mouse heart over a sequence of ultra-

sound images, and the Ferret application (ferret) adapted from the

PARSEC benchmark suite [5] that implements a content-based sim-

ilarity search on images. The inputs and execution characteristics

of the benchmarks are shown in Figure 3.
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bench N B # reads # writes # queries # futures # nodes
mm 2048 64 1.72 × 10

10
1.43 × 10

8
1.32 × 10

8
18724 79577

sort 10
7

8192 2.75 × 10
8

2.22 × 10
8

1.21 × 10
7

14463 60030

sw 2048 64 8.59 × 10
9

4.20 × 10
6

8.58 × 10
9

1024 2054

hw 10 (images) - 1.73 × 10
10

1.64 × 10
8

1.75 × 10
10

3672 9914

ferret simlarge - 5.40 × 10
9

6.23 × 10
8

7.40 × 10
9

256 1280

Figure 3: The input size (N ), basecase size (B), and execution characteristics of the benchmarks, including the total numbers of
reads, writes, reachability queries performed throughout the execution, the number of futures used, and the number of nodes
in the computation dag.

bench base (T1) base (T20) config MultiBags (T1) F-Order (T1) SF-Order (T1) F-Order (T20) SF-Order (T20)

mm 8.02 0.42 [19.10×]
reach 8.14 (1.01×) 11.36 (1.42×) 8.38 (1.04×) 0.64 [17.75×] 0.43 [19.49×]

full 305.73 (37.84×) 468.59 (58.43×) 447.28 (55.77×) 23.62 [19.84×] 22.51 [19.87×]

sort 1.30 0.07 [18.57×]
reach 1.27 (0.99×) 3.90 (3.00×) 1.35 (1.04×) 0.33 [11.82×] 0.07 [19.29×]

full 17.56 (13.72×) 28.44 (21.88×) 26.20 (20.15×) 2.10 [13.54×] 1.86 [14.09×]

sw 20.92 2.14 [9.78×]
reach 20.90 (1.00×) 24.94 (1.19×) 24.25 (1.16×) 2.15 [11.60×] 2.14 [11.33×]

full 583.78 (27.85×) 676.39 (32.33×) 555.39 (26.55×) 73.87 [ 9.16×] 64.75 [ 8.58×]

hw 14.87 0.95 [15.65×]
reach 14.77 (1.00×) 15.90 (1.06×) 15.22 (1.02×) 0.99 [15.91×] 0.95 [16.02×]

full 333.35 (22.62×) 887.59 (59.69×) 676.25 (45.58×) 62.78 [14.14×] 51.77 [13.05×]

ferret 6.84 0.73 [9.73×]
reach 6.70 (1.01×) 7.10 (1.04×) 6.95 (1.02×) 0.75 [ 9.47×] 0.71 [ 9.79×]

full 278.5 (42.07×) 308.14 (45.05×) 270.70 (39.58×) 29.88 [10.31×] 25.52 [10.61×]

Figure 4: Execution times of the benchmarks shown in seconds for the baseline executions (i.e., with no race detection, shown
as base) andwhen runningwithMultiBags, F-Order, and SF-Order for race detectionwith two different configurations. Thefirst
configuration shown as reach runs each algorithmwith only the reachability construction overhead. The second configuration
shown as full runs the full race detetion algorithm. Columns with T1 show the execution times running on one core, and
columns T20 show the execution times running on 20 cores. Numbers in the parentheses show the overhead compared to the
baseline executions. Numbers in the brackets show the scalability relative to the T1 time of the same configuration.
Empirical Evaluation of SF-Order

We have compared the performance of SF-Order against MultiBags

and F-Order using five benchmarks described above, with the re-

sults shown in Figure 4. Specifically, we evaluated each algorithm

with two different configurations — the reach configuration runs

the applications with only the reachability maintenance without

actually performing race detections on memory accesses, and the

full configuration that runs the full race detection. The reach
configuration incurs overhead only upon the execution of a paral-

lel construct, and thus shows only the construction overhead for

the reachability component. The full configuration incurs the full

overhead, including the constructing the reachability, updating the

access history, and performing the necessary queries into both the

reachability and access history upon a memory access.

In theory , MultiBags incurs the least amount of overhead asymp-

totically (amultiplicative overhead in the inverse Ackermann’s func-

tion, which is upper bounded by 4 for all practical purposes [10]),

whereas for F-Order and SF-Order, there is an additionalO(k2) over-
head for the reachability construction. In practice, the reachability

construction incurs rather negligible overhead for both MultiBags

and SF-Order, whereas the overhead for F-Order is higher.

The reason behind SF-Order’s lower overhead than F-Order in

practice (despite having the same asymptotic overhead) is as fol-

lows. Like SF-Order, F-Order needs to maintain some type of hash

table per node during execution (which is akin to the дp and cp data

structures needed by SF-Order). However, due to the properties of

SF-dags, it suffices for SF-Order to maintain a дp (or a cp) as an
array of bitmaps as opposed to using an actual hash table, whereas

F-Order needs to employ a full-fledged hash table per node, which

incurs higher space and time overheads. We additionally measured

and compared the space overhead between F-Order and SF-Order.

As shown in Figure 5, SF-Order incurs significantly less space over-

head, only 1.29% of the memory usage of F-Order on average, for

five benchmarks.

bench F-Order SF-Order
mm 9.1 0.07

sort 7.64 0.05

sw 0.14 2 × 10
−4

hw 1.7 6 × 10
−3

ferret 6 × 10
−3

6.50 × 10
−5

Figure 5: Memory usage of the benchmarks when running
with F-Order and SF-Order for reachability maintenance,
shown in gigabytes.

The full race detection is expensive across all algorithms. This is

especially evident in the T1 running times with the full configura-

tion. Both parallel algorithms F-Order and SF-Order incur higher

overheads than MultiBags, with SF-Order incurs less overhead than

F-Order. This is actually in large part due to the fact that, queries

into the access history needs to be synchronized with locks in the

parallel algorithms. Since MultiBags executes sequentially, it does
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not incur such an overhead. In particular, for both F-Order and SF-

Order, every time a read or a write occurs, one must acquire lock

on the access history. The access history does utilize fine-grained

locking (each lock represents a subset of the access history con-

taining 16-byte memory locations), so contention is not really the

issue. Rather, the high overhead stem from the sheer volume of

locking operations necessary (which tracks the number of reads

and writes shown in Figure 3). Compared to F-Order, SF-Order

incurs lower overhead in the full configuration due to its lower

reachability query overhead. In particular, SF-Order tends to have

higher savings in overhead compared to F-Order on applications

with large number of queries (e.g., sw and hw). However, the savings
are dwarfed by the locking overhead. We have separately measured

T1 for F-Order and SF-Order without using locks in access history

and confirmed that the locking overhead is indeed significant and

dominates the additional overheads seem in full.
Even though F-Order and SF-Order incur higher overhead than

MultiBags, they both exhibit scalability that closely tracks that of

the baseline executions. Xu et al. documented that when compared

with MultiBags, F-Order wins out in absolute running times as long

as four or more cores are used. Since SF-Order incurs lower over-

heads, when compared to MultiBags, SF-Order’s absolute running

time wins out when two or more cores are used.

5 Related Work

History of Determinacy Race Detections
There is a long history to the problem of detecting determinacy

races in task-parallel code. Prior to the work by Dimitrov et al. [12],

which is the first to examine the problem for two-dimensional dags,

most work has focused on race detecting series-parallel dags. The

work by Nudler and Rudolph [29] was the first one to observe that

storing two total ordering of nodes suffice for SP-dags — one or-

dering, called the English ordering, traverse the dag in the left-to-

right depth-first manner, and the other ordering, called the Hebrew
ordering, traverse the dag in the (opposite) right-to-left depth-first

manner. By comparing the relative positions of two nodes in these

two orderings, one can tell if the two nodes are logically in parallel

with each other. Later, Mellor-Crummey [26] proposed a parallel

algorithm for race detecting SP-dags and showed that storing a

constant number of accessors per memory location suffices. Both

of these works were not concerned about the resource bounds of

the race detection algorithm, however.

Feng and Leiserson [13, 14] proposed the first provably efficient

sequential algorithm for race detecting SP-dags. Their construction

utilizes a union-find data structure to maintain reachability, which

can be shown to incur little overhead (inverse Ackermann’s func-

tion, which is upper bounded by 4 for all practical purposes [10]).

However, the algorithm cannot be parallelized, as the construc-

tion depends on updating the union-find data structures with the

left-to-right depth-first traversal of the computation dag.

Later, multiple provably efficient parallel algorithms for race

detecting SP dags were proposed [4, 15, 39]. Generally, these works

utilize the strategy of storing the executed nodes with the two

total orderings proposed originally by [29] to perform reachability

queries. In order to maintain and query the orderings efficiently,

order-maintenance data structures are used. The distinctions among

these works are how they handle the management of these OM data

structures to enable efficient queries during parallel executions. In

particular, as discussed in Section 2, the state-of-the-art algorithm

WSP-Order [39] utilizes a specialized runtime scheduler in order to

manage the rebalancing of OM data structures to achieve amortized

constant-time queries.

Beyond SP-dags, the two-dimensional dags also have nice struc-

tural properties. The first algorithm, proposed byDimitrov et al. [12]

again utilizes union-find data structures to maintain reachability

and therefore is fundamentally sequential. Later Xu et al. [42] pro-

posed a parallel algorithm for race detecting two-dimensional dags

using a similar strategy of storing two total orderings designed for

two-dimensional dags. The way the two total orderings are main-

tained is similar to that in WSP-Order using OM data structures

with specialized runtime system support.

More recently, the use of futures has drawn interests, and a

few algorithms have been proposed to race detect programs with

futures [1, 37, 40, 43]. However, since the use of futures generates

arbitrary dependences, the strategy of storing two total orderings

is no longer applicable. Thus, the state-of-the-art parallel algorithm

by Xu et al. [43] takes a new approach of keeping track of non-SP

(i.e., create and put nodes) ancestors in order to perform reachability

queries. Our algorithm is similar in spirit, but our algorithm is able

to exploit the additional properties enforced by structured futures

to obtain lower overhead.

Bounds on Programs with Futures
Beyond bounds for race detecting programs with futures, re-

searchers have examined other resource usage bounds on com-

putations with futures. Spoonhower et al. [36] examined bounds on

the number of cache misses and scheduling overhead incurred by

a classic work stealing scheduler [2, 6] during parallel executions

when the computation utilizes general futures. Later, Herlihy and

Liu [19] showed that, better bounds on cache misses and schedul-

ing overhead with work stealing can be achieved when the com-

putation utilizes only structured futures. Later, Singer et al. [35]

proposed proactive work stealing that diverges from classic work

stealing [2, 6] and showed that proactive work stealing achieves

better bounds on cache misses and scheduling overhead, albeit with

slightly worse execution time bound.

6 Conclusion
This work examines whether one can race detect programs with

structured futures more efficiently than what was known for gen-

eral futures. To that end, we propose a parallel race detection al-

gorithm that is asymptotically more efficient than the prior work

designed for general futures and show that it incurs lower over-

head than the prior work in practice. The experiments indicate

that, however, much of the overhead stems from the need to syn-

chronize on access history. An interesting future direction is to

examine whether one can reduce the synchronization overhead by

redesigning the access history.
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