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Abstract—The use of semi-autonomous Unmanned Aerial Ve-
hicles (UAVs or drones) to support emergency response scenarios,
such as fire surveillance and search-and-rescue, has the potential
for huge societal benefits. Onboard sensors and artificial intelli-
gence (AI) allow these UAVs to operate autonomously in the envi-
ronment. However, human intelligence and domain expertise are
crucial in planning and guiding UAVs to accomplish the mission.
Therefore, humans and multiple UAVs need to collaborate as a
team to conduct a time-critical mission successfully. We propose a
meta-model to describe interactions among the human operators
and the autonomous swarm of UAVs. The meta-model also
provides a language to describe the roles of UAVs and humans
and the autonomous decisions. We complement the meta-model
with a template of requirements elicitation questions to derive
models for specific missions. We also identify common scenarios
where humans should collaborate with UAVs to augment the
autonomy of the UAVs. We introduce the meta-model and the
requirements elicitation process with examples drawn from a
search-and-rescue mission in which multiple UAVs collaborate
with humans to respond to the emergency. We then apply it
to a second scenario in which UAVs support first responders
in fighting a structural fire. Our results show that the meta-
model and the template of questions support the modeling of
the human-on-the-loop human interactions for these complex
missions, suggesting that it is a useful tool for modeling the
human-on-the-loop interactions for multi-UAVs missions.

Index Terms—Human Multi-Agent Collaboration, Require-
ments Elicitation, Autonomous Agents

I. INTRODUCTION

The deployment of a swarm of Unmanned-Aerial Vehicles
(UAVs) to support human first responders in emergencies
such as river search-and-rescue, hazardous material sampling,
and fire surveillance has earned significant attention due to
advancements in the robotics and Artificial Intelligence (AI)
domains [1], [2]. Advanced AI models can assist UAVs in
performing tasks such as creating a 3D heat-map of a building,
finding a drowning person in a river, and delivering a medical
device, while robotics autonomy models enable UAVs to
automatically plan their actions in a dynamic environment to
achieve a task [3], [4]. However, despite these advances, the
deployment of such systems remains challenging due to uncer-
tainties in the outcome of the AI models [5], rapid changes in
environmental conditions, and emerging requirements for how
a swarm of autonomous UAVs can best support first responders
during a mission.

The UAVs of next-generation emergency response systems
will be capable of sensing, planning, reasoning, sharing, and
acting to accomplish their tasks [6]. These UAVs will not re-
quire humans-in-the-loop to make all key decisions, but rather
will make independent decisions with humans-on-the-loop
setting goals and supervising the mission [7]. For example, in
a multi-UAV river search-and-rescue mission, the autonomous
UAV can detect a drowning person in the river utilizing the
on-board AI vision models (sensing) and ask another UAV to
schedule delivery of a flotation device to the victim’s location
(planning and reasoning). These UAVs collaborate to share
(sharing) the victim’s location and subsequently deliver the
flotation device (acting). These intelligent UAVs also send
the victim’s location to emergency responders on the rescue-
boat so that they can perform the physical rescue operation.
Autonomous systems of such complexity demand humans and
intelligent agents to collaborate as a human-agent team [8], [9].

A well-known issue in designing a system comprising
humans and autonomous agents is to identify how they can
collaborate and work together to achieve a common goal [10].
The challenges in human multi-agents collaboration include
identifying when and how humans should adjust the autonomy
levels of agents, identifying how autonomous agents should
adapt and explain their current behavior to maintain humans’
trust in them, and finally, identifying different ways to maintain
situational awareness among humans and all autonomous
agents. In this paper we propose a humans-on-the-loop so-
lution in which humans maintain oversight while intelligent
agents are empowered to autonomously make planning and
enactment decisions. We first identify common interaction
patterns in which humans collaborate with autonomous agents,
and then leverage those patterns to construct a human inter-
action meta-model. In addition, we define a set of ‘probing’
questions which can be used to elicit, analyze, and ultimately
specify requirements for human multi-UAV interactions in
specific emergency response missions.

This paper makes three primary contributions. First it mo-
tivates the problem of human multi-agent interaction through
examples drawn from a concrete mission scenario. Second, it
provides a meta-model to describe human interactions with
multiple agents, and finally it presents a set of requirements-
related guiding questions for eliciting and then modeling
specific instances of these human multi-agent interactions.



The paper is organized as follows: Section II presents
examples of human multi-agent interactions drawn from the
river-rescue scenario and section III presents an analysis of
these interactions. Section IV introduces a human-on-the-loop
meta-model for describing human multi-agent interactions.
Section V then describe our process for eliciting requirements,
mapping them to elements of the meta-model, and then spec-
ifying requirements by deriving instances of the meta-model
for each identified human multi-agent interaction type. Section
VI discusses an application of our work and finally sections
VII, VIII, and IX discuss threats to validity, related work, and
draw conclusions.

II. HUMAN-MULTI-UAV COLLABORATIONS

Several research groups have explored the application of
UAVs for specific emergency scenarios such as surveying and
assessing damage following an earthquake [11] or volcanic
eruption [12], investigating maritime spills [13], delivering
defibrillators [14], and mapping wildfires [15]. These appli-
cations all involve human operators interacting with UAVs
in direct or indirect ways to plan routes, capture video, or
to supervise varying degrees of autonomous UAV behavior –
typically through the use of a graphical user interface (GUI).
Researchers have described other forms of interactions [16],
including haptic and voice interfaces [17], [18], but these are
infrequently used in emergency response applications.

A. DroneResponse: A Case Environment

In this paper, we primarily draw examples from our
DroneResponse system, which we are developing to enable
multiple collaborating, semi-autonomous UAVs to support
diverse emergency response missions such as fire surveillance,
search-and-rescue, and environmental sampling [19], [20],
[21]. Figure 1 depicts a river search-and-rescue use-case in
which multiple UAVs are deployed to find a victim on the
river and to potentially aid emergency responders in delivering
a flotation device.

DroneResponse represents a socio-technical cyber-physical
system (CPS) in which multiple humans and multiple semi-
autonomous UAVs engage in a shared emergency response
mission. UAVs are designed to make autonomous decisions
based on their current goals, capabilities, and current knowl-
edge. They build and maintain their knowledge of the mission
through directly observing the environment (e.g., through use
of their onboard sensors) and through receiving information
from other UAVs, central control, and human operators [22].
UAVs then work to achieve their goals through enacting a
series of tasks [23].

Humans interact with UAVs through various GUIs to create
and view mission plans, monitor mission progress, assign
permissions to UAVs, provide interactive guidance, and to
maintain situational awareness. Bidirectional communication
is crucial for enabling both humans and UAVs to complement
each other’s capabilities during the mission. An example of
human-UAV collaboration is depicted in Figure 2, which
shows a UI developed for the DroneResponse system. In this

Use Case: River Search-and-Rescue

Pre-Conditions
Multiple UAVs are equipped with cameras and activated
Firefighters have marked area of river to be searched
DroneResponse is running and UAVs are displayed on map
One victim is in the search area

Main Success Scenario
1. Drones takeoff and commence the search.
2. DroneResponse tracks and displays the location and state of each 

UAV
3. The UAVs takeoff and execute their assigned search patterns
4. Each UAV processes imagery from its camera using a trained 

computer vision model.
5. One UAV (U1) finds and detects the victim with confidence greater 

than a predefined threshold.
6. The UAV raises an alert and switches to `active_tracking’ mode. The 

Drone Commander (DC) views the imagery and confirms that the 
victim has been found.

7. The DC confirms `active tracking’
8. The DC notifies the Incident commander who confirms the sighting & 

directs human responders in their boat to rescue the victim.
9. The DC confirms that UAV (U1) has sufficient battery to continue 

active-tracking. He/she recalls all other drones to their home-base.
10. Human responders arrive at the scene.
11. The DC recalls all UAVs to their home base.

Fig. 1: A partial use case description of the DroneResponse
River search-and-rescue scenario.

Fig. 2: A human-UAV interaction point in which a UAV has
detected a candidate victim and requested human confirmation.

example, the UAV has detected a candidate victim in the
water, autonomously started tracking the victim, while simul-
taneously requesting confirmation from the human incident
commander that the detected object is actually the victim.

B. Human-UAV Interactions

DroneResponse is being developed in close collaboration
with emergency responders through engagement in a series
of brainstorming activities, interviews, participatory design
sessions, and early field-tests [19], [20], [24]. The following
concrete examples of human-UAV interactions, taken from the
river search-and-rescue example, were identified as part of this
collaborative design process. We use these examples through-
out the remainder of the paper to motivate and contextualize
our modeling activities.



Scenario S1 – Planning a rescue strategy: When a UAV
identifies a potential victim in the river, the victim’s coordi-
nates are sent to the mobile rescue unit. However, the UAV
must also decide whether to request delivery of a flotation
device by a suitably equipped UAV or whether it is sufficient to
simply continue streaming imagery of the victim until human
rescuers arrive. The UAV makes this decision by estimating
the arrival time of the rescue boat versus the time to deliver
a flotation device. However, humans can contribute additional
information to the decision – for example, by modifying the
expected arrival time of the rescue boat, or by inspecting the
streamed imagery and determining whether the victim would
be able to receive the flotation device if it were delivered
(e.g., the victim is conscious and not obscured by overhead
branches) and is in need of the device (e.g., not having a safe
waiting position on a rock or tree branch). This is an example
of a bidirectional exchange of knowledge between multiple
humans and multiple UAVs, where the first UAV shares the
victim’s coordinates and streams imagery, humans on the boat
estimate their ETA and if necessary update the UAV’s situ-
ational awareness, the incident commander decides whether
a flotation device could be used effectively if delivered on
time, and if needed, a second UAV performs the delivery. The
scenario illustrates many aspects of human-agent collaboration
including knowledge sharing and human intervention.

Scenario S2 – Sharing environmental information: In
river search-and-rescue missions, victims tend to get trapped
in ‘strainers’ (i.e., obstruction points) or tangled in tree
roots on outer banks. These areas require closer inspection.
While UAVs have onboard vision and will attempt to identify
‘hotspots’, human responders can directly provide this infor-
mation to multiple UAVs based on their observation of the
scene. This enables UAVs to collaboratively adapt their flight
plan so that they prioritize specific search areas, or adjust their
flight patterns to reduce speed or fly at lower altitudes in order
to render higher-resolution images of priority search areas.
This interaction scenario is similar to the previous one, except
that it is primarily uni-directional with information passed
from humans to UAVs.

Scenario S3 – Victim confirmation: The UAV’s AI model
uses its onboard computer vision to detect potential victims.
When the confidence level surpasses a given threshold, the
UAV will autonomously switch to tracking mode and broad-
cast this information to all other UAVs. If the UAV autonomy
level is low, it requests human confirmation of the victim
sighting before it starts tracking. Human feedback is sent to the
UAV and propagated across all other UAVs. In this scenario
the UAV elicits help from the human and the human responds
by confirming or refuting the UAV’s belief that it has sighted
a victim or by suggesting additional actions. For example, if
the detected object is partially obscured, the human might ask
the UAV to collect additional imagery from multiple altitudes
and angles.

Scenario S4 – Support for UAV coordination: In an
extension to the previous scenario, multiple UAVs might

simultaneously detect a victim. They must then use onboard
computer vision and their own estimated coordinates of the
detected object to determine whether they have detected the
same object and to plan a coordinated response. However,
this determination may be more complicated in poor visibility
environments with weak satellite signals and low geolocation
accuracy (e.g., in canyons). Human responders may need to
intervene in the UAV’s planning process by helping determine
whether the sighted objects are valid and unique, and if
necessary selecting the most appropriate UAV for the tracking
task. This is an example in which the human intervenes in the
UAV’s autonomy and potentially provides direct commands,
assigning a specific UAV to the task.

Scenario S5 – Prohibiting normal behavior: Most UAVs
come with built-in safety features so that they autonomously
land-in-place or return to launch (RTL) when their battery
becomes low or a malfunction is detected. In the case of
a low battery, the DroneResponse system initially raises a
low-battery alert in the UI, and eventually initiates the RTL
command. A human responder might modify the UAV’s per-
missions and prohibit the UAV from transitioning to RTL if
the UAV is conducting a critical task. An example, that arose
from discussions with the Navy, was the use of floating drones
for man-overboard scenarios. If a UAV found a victim, and no
other UAV or human rescue unit were in the vicinity, the RTL
feature would be deactivated automatically. This meant that
when batteries lost power, the UAV would land in the water
and serve as a search beacon. However, for many reasons, a
human might wish to override the default deactivation of the
RTL, thereby reactivating the UAV’s RTL autonomy.

These motivating examples provide the foundation for our
discussion of human-on-the-loop collaboration patterns.

III. ANALYSIS OF COLLABORATION ACTIONS

Agents within a human-on-the-loop (HotL) system are em-
powered to execute tasks independently with humans serving
in a purely supervisory role [25]. However, as our previous
examples have shown, humans and agents continually share in-
formation in order to maintain bidirectional situational aware-
ness and to work collaboratively towards achieving mission
goals. Agents report on their status (e.g., remaining battery
levels, GPS coordinates, and altitude), and they explain their
current plans, actions, and autonomous decisions whenever
requested by humans. Humans can directly intervene in the
agents’ behavior by providing additional information about the
environment, and agents can then leverage this information
to make more informed decisions. Humans also respond to
direct requests for feedback – for example, to confirm a
victim sighting as previously discussed. They can also provide
direct commands (e.g., RTL or stop tracking), or can explicitly
modify an agent’s permissions in order to enhance or constrain
the agent’s autonomous behavior. These types of interactions
are depicted in Figure 3.



Human Agent
Interaction Types

Shared
Knowledge Human Intervention

Rationales  Feedback and
Commands

Raise or Lower
Autonomy LevelsInformation

Fig. 3: Humans and agents collaborate through shared knowl-
edge and through human interventions in the agents’ auton-
omy.

A. Situational Awareness

Situational Awareness (SA) is the ability of the user to
perceive the environment (Level-1 SA), to understand the
reasoning behind the current state of the environment (Level-
2 SA), and finally, to project how the situation could evolve
in the future (Level-3 SA) [26]. Humans acquire knowledge
of the situation from diverse sources such as their physical
interactions with the agents (e.g., visual observations and
sounds), observations of the current weather, radio commu-
nication with on-scene first responders, and finally through
information shared through the systems’ GUI. Humans com-
bine knowledge from all of these sources to create a mental
model of the current status of the mission. At the same
time, autonomous agents, such as UAVs, develop their own
situational awareness using their onboard sensors and through
collating information shared by other autonomous agents and
by humans. Both humans and autonomous agents then use
their shared knowledge of the environment to formulate and
enact plans to collaboratively achieve their mission goals.

In a HotL environment, agents make many autonomous
decisions; however, in order for humans to supervise the
mission and to maintain full situational awareness, the agents
must explain their behavior when requested by a human. The
explanation should include key information (i.e., the agent’s
situational awareness at the time the decision was made), the
autonomous decision (e.g., switch modes, change altitude etc),
and a human understandable rationale for the decision. Pro-
viding rationales for all decisions and subsequent behavior
is therefore critical in order for humans to achieve situational
awareness. If the human were to disagree with the decision and
the logic of the supporting rationale, then they could monitor
the agents more closely, temporarily lower their autonomy
levels, or make longer-term adjustments (e.g., retraining a
computer vision model) for future missions.

B. Human Intervention

At times, humans may need to intervene in the autonomy
of an agent in order to influence and improve the outcome of
the joint mission. They can do so in several different ways.
Previous studies[27], [28] demonstrate that a feedback loop
can help agents to improve their future performance by fine-
tuning algorithmic parameters that drive the agent’s autonomy.

For example, feedback on a candidate victim detected by the
computer vision model, could be used to retrain the model
or refine its configuration parameters, thereby potentially re-
ducing false positives or false negatives. In addition, users
can initiate commands to immediately enact changes in the
behavior of the UAV. For example, a human could directly
command a UAV to fly to a specific waypoint to checkout a
report received on social media.

Finally, the human may choose to raise or lower autonomy
levels of the agent. Autonomy levels, defined as the extent
of an agent’s independence while acting autonomously in the
environment, can be expressed through role assignments or
through specific permissions within a role. For example, a
UAV that is permitted to track a victim without first obtaining
human confirmation has a higher autonomy level than one
which needs explicit human confirmation before tracking.
Humans tend to establish autonomy levels based on their trust
in the agent’s capabilities. For example, a UAV exhibiting high
degrees of accuracy in the way it classifies an object increases
human trust, and as a result, the human might grant the UAV
additional permissions. On the other hand, the human operator
might revoke permissions, thereby lowing autonomy levels, if
the UAV were operating in weather conditions for which the
computer vision model had not been appropriately trained and
for which accuracy was expected to be lower than normal.

IV. META-MODEL FOR HUMAN-UAV INTERACTIONS

We constructed a meta-model to define the vocabulary of the
domain of human multi-agent interactions. The meta-model
includes domain-specific concepts and establishes rules for
how those types of concepts are associated with one another.
This allows us to express specific instances of human multi-
agent interaction in conceptual models and reuse the concepts
we identified to express how humans and multiple agents will
interact with each other in specific scenarios.

TABLE I: Additional Use-Cases from which human multi-
UAV interaction patterns were identified and analyzed

ID Use Cases Engaged Stakeholders
UC1 River Search & Rescue South Bend Firefighters
UC2 Defibrillator Delivery DeLive, Cardiac Science
UC3 Traffic Accident surveillance South Bend Firefighters
UC4 Water Sampling Environmental Scientists
UC5 Man overboard US Navy

The elements of the meta-model were (cf. Fig. 4) de-
rived from our analysis of human multi-UAV interactions in
the river-rescue scenarios and also from additional scenarios
summarized in Table I. The meta-model depicts frequently
occurring concept types and their associations, and was de-
signed iteratively through multiple refinements in which we
recursively validate the model against the specific scenarios
described in Section II. Our meta-model includes the following
elements:

A Role defines the complex behaviors that agents perform
autonomously. Complex behaviors of a UAV include takeoff,
search, track, deliver, and RTL.



An AutonomousDecision entity uses algorithms that
leverage Information in the KnowledgeBase to make deci-
sions. The complex behaviour of a Role is defined through
one or several such decisions. For example, there are many
cases in which a single agent must serve as a leader, responsi-
ble for coordinating behavior of its followers. During a leader
election, an AutonomousDecision entity could select a
new leader from the set of followers, thereby enabling the
system to switch leaders without the need for human interven-
tion. Upon making a decision, an AutonomousDecision
entity generates output Information including a rationale
for its decision, which could later be used to generate a human-
readable explanation.

Entities of type Permission are used by
AutonomousDecisions to decide if the agents are
allowed to make a specific decision. For example, an
AutonomousDecision entity checks whether the human
responders have allowed the system to automatically select
a replacement if needed during a victim tracking activity.
Roles are associated with a set of permissions defining the
allowed behaviors of the agent which can be modified at
run-time.

A KnowledgeBase entity contains current environmental
information as well as information about the state of a single
agent or multiple agents. An AutonomousDecision entity
uses the Information stored in the KnowledgeBase in
decision making. A human can use the information in the
KnowledgeBase entity to gain situational awareness of the
mission.

Entities of type HumanInteraction allow humans to
intervene in the autonomy of the agents or to share their
explicit knowledge of the environment. The three entity
types ProvidedInformation, ChangedPermission,
and IssuedCommand provide different ways for humans
to interact with the system. The ProvidedInformation
entity adds Information to the KnowledgeBase of
the system to maintain the consistent knowledge among
multiple agents. Humans can use interventions of type
ChangedPermission to raise or lower the autonomy of an
agent, or agents, based on their trust in the ability of the agents
to make correct decisions within the current environment.
Finally, an IssuedCommand entity allows humans to gain
control over the autonomous behavior of the agents. For
example, if a UAV loses communication with other UAVs in
the mission and fails to deliver the flotation device when it
is needed, a human can send a direct command that sets the
current Role of the UAV to deliver flotation device.

It is noteworthy that neither humans nor agents are repre-
sented explicitly in our meta-model. The underlying implicit
assumption is that roles are assigned to agents according to
the capabilities of each UAV, that UAVs can assume new
roles according to the state of the environment, constrained
by permissions associated with their capabilities. Furthermore,
humans and agents have access to one or several instances of
the distributed KnowledgeBase which stores information
acquired from the environment, multiple UAVs, and from

output
input

1

possibleDecisions

requiredPermissions

actualPermissions

modifiedRole
1..*

modifiedPermissions

providedInformation

HumanInteraction

Information

+ Rationale: Object

+ Source: UAV

+ Status: Object

Permission

KnowledgeBase

+ Environment: Object

Role

AutonomousDecision

+ Algorithm: Object
IssuedCommand ChangedPermission ProvidedInformation

Fig. 4: Meta-model for human-on-the-loop interaction in a
multi-agent mission.

humans. The reason for leaving these aspects implicit are that
the domain of our model is human multi-UAV interaction and
it is not relevant to the meta-model to specify which concrete
UAV has assumed each specific role.

V. REQUIREMENTS MODELING

Human multi-agent interactions in the domain of emergency
missions are impacted by factors such as uncertainty of the
agents’ knowledge, the degree of human trust in the agent’s
ability to reason over its knowledge and behavior correctly,
and the criticality of the task at hand. Autonomy levels and
human interactions should therefore not be applied at the same
level for all tasks, in all contexts, and across all phases of
the mission, but instead need to be customized according to
actions, context, phase, and even human preferences. This
introduces the need for a systematic requirements elicitation
process to explore the knowledge needs of humans and agents,
and identify points at which humans can interact with the
agents’ autonomous behavior.

To support the elicitation, analysis, and specification of
human multi-agent interactions, we developed a set of prob-
ing questions [29], [30]. These questions can be used to
elicit requirements for each human multi-agent interaction
point from system stakeholders. Probing questions are not
necessarily easy to answer especially as human multi-agent
interactions represent an emergent area of study with unknown
unknowns [31]. Answering the questions therefore requires a
rigorous and systematic requirements engineering elicitation
and analysis process that includes brainstorming, interviews,
immersive prototyping, and even field-studies in order to fully
discover the requirements [32], [33].

We structure our probing questions around the four types
of human multi-agent interactions defined in Figure 3. These
include (1) information sharing, (2) direct feedback and com-
mands, (3) raising or lowering of autonomy levels, and (4)
providing behavior rationales and explanations. We map each
question to the entities of the meta-model, and then use
the answers to specify the requirements for each interaction
point as a conceptual model. In each case, the first question
is designed to identify specific interaction points, while all
subsequent questions are used to explore the details of each
interaction.



A. Sharing Information

At the most basic level, humans and agents must share
information with each other in order to create a common
understanding of the state of the mission and its environment.
We therefore start by posing two key questions concerning the
exchange of information.
PQ1: What information do agents or humans need to know

about the state of the mission and the environment
in which they operate individually or collaboratively?
[Knowledge, Role, AutonomousDecisions]

PQ2: When and how will these agents or humans share
or acquire information? [Knowledge, Information,

Role]
By default, the system must be designed such that informa-

tion is shared freely across humans and agents. For example,
agents acquire knowledge about the environment and the state
of the mission through their sensors (e.g., victim detected
or wind velocity 20 mph) and through decisions they make
(e.g., UAV-1 is tracking a detected victim). They share this
information with other active agents and with humans on the
ground. However, above and beyond this general exchange of
information, we must explore additional explicit interaction
points between humans and agents in order to understand the
system’s requirements.

B. Feedback and Commands

All five of the scenarios in Section II-B introduce the possi-
bility of a human offering feedback or even direct commands.
To elicit a more complete list of interaction points, we ask the
following question:
PQ3: When should a human intervene by providing

direct feedback or commands to multiple agents?
[IssuedCommand, AutonomousDecision,

ProvidedInformation]
We then ask additional probing questions to explore each of
the identified intervention points:
PQ4: What triggers the feedback or command? (e.g., solicited

by UAV, triggered by a specific event, or offered by
the human operator based on his/her general awareness)
[AutonomousDecision, Information]

PQ5: What information should be provided in the feedback
or command? (e.g., knowledge of the scene, permission
to perform a specific task, a hint) [Information]

PQ6: How should the agent respond to the feedback? (e.g.,
update its situational awareness, obey the command re-
gardless of its current environmental knowledge) [Role,
AutonomousDecisions]

C. Providing behavioral rationales

Scenarios S4 and S5 provided clear examples in which a
UAV needed to explain its behavior. To identify other such
interaction points we pose the following question:
PQ7: In what concrete situations would humans require agents

to explain themselves? [AutonomousDecision]

The following questions are then posed for each situation in
which the agent is expected to explain its behavior.

PQ8: Why does the agent need to explain itself at this
collaboration point? (e.g., unexpected behavior) [Role]

PQ9: What information needs to be included in the expla-
nation? (e.g., current task, goals, actions, rationales)
[Information]

PQ10: Under what circumstances might the human choose to
override the agent’s decision based on its explanation?
If so, what would those overrides look like? (e.g.,
feedback/command, or lowering of autonomy levels.)
[HumanInteraction, ProvidedInformation,

IssuedCommand, ChangedPermission]

D. Raising or Lowering of Autonomy Levels
Scenarios S4 and S5 also provide examples where a human

operator may wish to raise or lower autonomy levels. To iden-
tify such intervention points we pose the following question:
PQ11: When and where do the agents exhibit autonomous

decision-making behavior? [Role, Autonomous

Decision ]
Each identified intervention point is then explored through the
following questions:
PQ12: What information do the agents need in order to exhibit

the autonomous behavior? [Information]
PQ13: Under normal operating conditions, what decisions

should the agent be able to make autonomously?
[AutonomousDecision]

PQ14: What constraints on the agent’s autonomy are intro-
duced by issues related to safety, ethics, regulatory
requirements, or human trust? (e.g., FAA Part 107
regulations prohibit night-time flight without an explicit
waiver) [Permission]

PQ15: How is the autonomy suppressed or increased at
this interaction point? (e.g., modifying the confidence
threshold for automatically tracking a potential victim,
disabling/enabling the ability to track without permis-
sion, disabling/enabling the ability for a UAV to de-
termine its ideal altitude and velocity during a search
– or altering the range of allowed values.) [Role,
ChangedPermission]

PQ16: Are there circumstances in which the human needs
to make run-time decisions about suppressing or rais-
ing autonomy (i.e., human interaction is required) vs.
clearly defined rules by which the autonomy levels can
be automatically raised and lowered? [Permission,
ChangedPermission]

PQ17: When autonomy is suppressed or increased what extra
support structures would be needed, if any, for the
emergency responders? (e.g., the operator manually
pilots multiple UAVs and additional 360o views are
needed).[Role]

E. Constructing Requirements Models
For each identified human multi-agent interaction point we

specify requirements for the interaction by constructing a
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Fig. 5: The conceptual model of human intervention in the
automatic selection of a UAV to replace another UAV. A
human operator issues commands to modify the role of a UAV,
thereby overriding autonomous decision of the system.
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Fig. 6: The sequence of events when the human operator
intervenes to override an autonomous decision. UAV-1 begins
the process of selecting a replacement. However, the human
operator overrides the decision by assigning a tracking role to
UAV-2 and at the same time suspending UAV-1’s search for a
replacement.

conceptual model showing named instances of each entity and
the relationships between them. We use the tags assigned to
each probing question to identify entities to include in the
diagram. We also use the relationships depicted in the meta-
model to guide the addition of appropriate relations among the
entities.

We illustrate the construction of the concept models follow-
ing the template of probing questions with an example from
the river search-and-rescue scenario. The constructed model is
shown in Fig 5. Probing question PQ11 identifies an example
of autonomous behavior that occurs when the battery level of
a UAV performing a critical task (e.g., tracking) falls below a
predefined level. By default, the UAV will automatically RTL;

however, it first requests a replacement from other UAVs in the
mission. Therefore, PQ11 identifies the FindReplacement role
of a UAV. The other UAVs in the mission must autonomously
and collaboratively select a replacement for the tracking task.
PQ12 identifies the required information (location of all UAVs),
while PQ14 and PQ15 identify the permission levels a UAV
needs in order to serve as a replacement for the tracking task.
PQ3 also reveals that human responders reserve the right to
override the choice of UAV for any reason, identifying a new
command to replace UAV. Consequently, PQ6 clarifies that the
targeted UAV must perform the tracking task after receiving
the replacement command from a human responder. In this
way, the probing questions help to identify entities from the
meta-model that are required to model this specific human
interaction. We then leverage the relationships between entity
types defined in the meta-model to construct a conceptual
model of the human multi-UAV interaction in the river search-
and-rescue scenario as shown in Figure 5. Finally, we leverage
the conceptual model to explore and specify the sequence
of events for the human interactions. This entire scenario is
depicted in the Sequence Diagram of Figure 6.

VI. APPLICATION: STRUCTURAL FIRE SUPPORT

As previously described, we constructed our meta-model
based on examples from river-rescue and other scenarios
shown in Table I. In this section we briefly illustrate that
the proposed meta-model and the probing questions can be
used to specify requirements for other human multi-agent
use-cases such as structural fire support. We collected an
initial set of requirements for this scenario during a series of
brainstorming sessions with the South Bend firefighters in the
spring of 2019. The firefighters had already used manually-
flown UAVs to support their firefighting efforts; and our
brainstorming session focused on how they would extend their
current use-case to leverage semi-autonomous UAVs as part of
our DroneResponse system.

For the purposes of this paper, we leverage the feedback
we acquired during the previous brainstorming sessions to
retroactively answer the probing questions and to provide
an additional example of modeling human interaction re-
quirements. Figure 7 shows a visionary mockup used in our
original brainstorming session to encourage discussion about
the use of UAVs in firefighting. The firefighters identified
two primary use cases. First, they wanted to use UAVs to
create thermal maps of the building – focusing especially on
detecting hotspots on roofs as many firefighters have been
injured when a roof has collapsed without warning due to
an undetected internal fire. They even suggested that UAVs
could mark hotspots with lasers. Second, they proposed using
UAVs to search for victims through windows and smoke using
thermal cameras.

To demonstrate that our meta-model can be applied to this
very different scenario we focus on a specific fire-fighting sce-
nario in which multiple UAVs work collaboratively to create a
3D model of the building. At the start of the mission, the UAVs
collaboratively create a plan for surveying the building. For
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Fig. 7: A visionary prototype that we used during brainstorm-
ing meetings with Fire Fighters to trigger ideas about the use
of DroneResponse in fighting structural fires.

example, depending upon the size and layout of the building,
weather conditions, and the number of available UAVs, they
could work independently on different parts (sides, roof) of
the building, they could prioritize specific areas, fly around the
building in either direction, or even work together on a single
section at distinct altitudes. In the scenario that we model, the
UAVs devise a specific mapping plan; however, firefighters
observe smoke coming from a different area of the building,
update the knowledge base, and this leads to the UAVs
redesigning their strategy. In this example, the firefighters do
not issue a direct command, but instead provide additional
information and allow the UAVs to autonomously adapt their
plans. In this example, one of the UAVs assumes a new role of
using thermal imagery to search for victims through windows
in the area at which smoke has been detected.

The probing questions enable us to explore this type
of scenario. PQ11, PQ12, and PQ13 identify the required
AutonomousDecisions and the required Information
to create the 3D model of the building autonomously. PQ3
and PQ4 elicit human multi-UAV interaction points such as
fire smoke detection by humans while UAVs are engaged in
mapping the building. PQ6 identifies potential flight adaptation
patterns and roles assumed by the UAVs after receiving
updated information about the smoke. Answers to the probing
questions lead us to construct the conceptual model and
sequence diagram depicted in Figure 8.

VII. THREATS TO VALIDITY

There are several threats to validity for our approach.
First, we have applied the probing questions retrospectively
to construct the M1 models described in the fire-surveillance
example; however, we answered the questions based on in-
formation gathered through a series of brainstorm meetings
with firefighters. In the next phase of our work, we will
further evaluate the questions in live requirements elicitation
sessions. Second, we developed our meta-model based on five
use-cases primarily developed by our own research group in
collaboration with our local fire fighters. We then demon-
strated its generalizability using an additional use case that
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a: Conceptual model showing entities involved in the human
multi-agent interaction.
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b: Sequence diagram showing human-agent collaborations.

Fig. 8: Multiple UAVs collaborate to create the 3D model
of the building. When the human operator shares information
about smoke observed at one end of the building, UAV-1 starts
capturing thermal images to search for victims through the
smoke.

we developed. Our approach needs to be evaluated on use-
cases elicited from diverse groups of emergency responders.
Finally, our approach currently ends at the modeling stage. To
fully evaluated the usefulness of the model and the probing
questions, we need to implement and integrate the modeled
interactions within our deployed system. We are currently
working towards developing the required infrastructure such as
AI vision models, on-board analysis and reasoning framework
to support autonomous capabilities of the UAVs, and will then
evaluate the extent to which our approach produces a viable
design for use with physical UAVs.



VIII. RELATED WORK

The effectiveness of the HotL is highly dependent upon
the human multi-agent interaction mechanisms built into the
system as well as the flexibility of the autonomy models.
To this end, several researchers have explored techniques for
exposing the intent, actions, plans and associated rationales
of an autonomous agent [34], while other researchers have
explored ways to improve overall performance by dynamically
adapting agents’ autonomy levels based on the estimated cog-
nitive workload of the human participants; however, they also
observed that frequent changes in autonomy levels reduced
situational awareness and forced operators to continually
reevaluate the agents’ behavior [35].

Furthermore, systems that use AI techniques to support
autonomy often lack adequate explanations of the autonomous
behavior which can negatively impact achievement of mission
goals [36] and reduce trust in the system. Therefore, several
of our PQs are specifically designed to explore the explainable
aspects of a HotL system. Guizzardi argues that RE techniques
can be applied in the design of AI systems, such as driverless
cars and autonomous weapons, to ensure that they comply to
ethical principles and codes [37]. Gamification is a popular
technique for gathering and validating the requirements of
a cyber-physical system [38]. Wiesner et al. [39] engaged
stakeholders in a simulated game under different operational
conditions to discover the limitations of the existing require-
ments and to support the ideation of possible new services.
Fischer also uses a multi-player mixed-reality game to gener-
ate requirements for interaction and coordination within rich
and ‘messy’ real-world socio-technical settings [40]. However,
Hyrynsalmi discusses limitations of gamification techniques
[41], for example, users focusing on winning the ‘game’
instead of the challenges of interacting with the system [42].
The gamification approach also requires a significant upfront
development effort and proves insufficient to explore the
unknown unknowns of the system. Our work takes a more
formal approach to elicit requirements using a concrete meta-
model and PQs that focus on the human interaction aspects of
the multi-agent HotL systems.

IX. CONCLUSION

This paper describes the model-driven analysis and speci-
fication of human multi-agent interaction requirements for a
human-on-the-loop system. The human multi-agent interaction
types, the proposed meta-model, and the structured probing
questions assist in modeling and formally specifying the
complex human multi-agent interactions. We have demon-
strated its use through formally specifying human interaction
and intervention points for two distinct scenarios in which
multiple semi-autonomous UAVs are deployed in emergency
response missions. Our future work will involve implementing
and evaluating our models with first-responders with physical
UAVs in outdoor field-tests.
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