
Requirements-Driven Configuration of
Emergency Response Missions with Small Aerial Vehicles
Jane Cleland-Huang

Ankit Agrawal, Md Nafee Al
Islam, Eric Tsai
JaneHuang@nd.edu

University of Notre Dame
South Bend, IN, USA

Maxime Van Speybroeck
maxime.vanspeybroeck@student.unamur.be

University of Namur
Namur, Belgium

Michael Vierhauser
michael.vierhauser@jku.at

Johannes Kepler University Linz
Linz, Austria

ABSTRACT
Unmanned Aerial Vehicles (UAVs) are increasingly used by emer-
gency responders to support search-and-rescue operations, medical
supplies delivery, fire surveillance, andmany other scenarios. At the
same time, researchers are investigating usage scenarios in which
UAVs are imbued with a greater level of autonomy to provide auto-
mated search, surveillance, and delivery capabilities that far exceed
current adoption practices. To address this emergent opportunity,
we are developing a configurable, multi-user, multi-UAV system for
supporting the use of semi-autonomous UAVs in diverse emergency
response missions. We present a requirements-driven approach
for creating a software product line (SPL) of highly configurable
scenarios based on different missions. We focus on the process for
eliciting and modeling a family of related use cases, constructing
individual feature models, and activity diagrams for each scenario,
and then merging them into an SPL. We show how the SPL will be
implemented through leveraging and augmenting existing features
in our DroneResponse system. We further present a configuration
tool, and demonstrate its ability to generate mission-specific con-
figurations for 20 different use case scenarios.

CCS CONCEPTS
• Software and its engineering→ Software product lines;Re-
quirements analysis.

KEYWORDS
Configuration, Product Line, UnmannedAerial Vehicles, Emergency
Response

ACM Reference Format:
Jane Cleland-Huang, Ankit Agrawal, Md Nafee Al Islam, Eric Tsai, Maxime
Van Speybroeck, and Michael Vierhauser. 2020. Requirements-Driven Con-
figuration of Emergency Response Missions with Small Aerial Vehicles. In
24th ACM International Systems and Software Product Line Conference (SPLC
’20), October 19–23, 2020, MONTREAL, QC, Canada. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3382025.3414950

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00
https://doi.org/10.1145/3382025.3414950

1 INTRODUCTION
Small Unmanned Aerial, Land, or Submersible Vehicles (commonly
known as drones) are increasingly deployed to support time-critical
emergency response missions. In current scenarios their use is
typically limited to manual operation by a remote pilot controlling
a single Unmanned Aerial Vehicle (UAV); however, UAVs could be
empowered to play a far more extensive role in amission. Cohorts of
semi-autonomous, self-coordinating, UAVs could collaborate closely
with human first responders to support diverse activities such as
search-and-rescue, surveillance, air and water sampling, medical
supply delivery, and far more. For example, when used to support
fire fighting efforts, a cohort of semi-autonomous UAVs could map
out a building in order to generate a 3D heat map of potentially
dangerous hotspots. Similarly, in an emergency search-and-rescue
operation for a child swept out to sea, the UAVs could dynamically
generate flight routes and use onboard image detection capabilities
to coordinate an autonomous search for the victim, deliver flotation
devices, and track and report the victim’s location until rescuers
arrive [6, 10, 32, 68].

Different missions share many common tasks but also exhibit
unique characteristics. Efficiently and effectively managing such
variabilities in Cyber-Physical Systems [45], such as our system of
collaborating UAVs, is a non-trivial challenge that must take into
consideration the context and sequencing of events, while simulta-
neously addressing safety-critical concerns. Tasks such as launching
UAVs, obstacle and collision avoidance, or planning search routes,
are common across many, or even all of the missions; while other
tasks, such as collecting water samples, or tracking a moving victim
in the river, are unique to a specific mission. The UAVs, including
the software controlling them and the interfaces for interacting
with them, must support these diverse scenarios throughout the
mission [2, 22]. Variability points can be managed through inclu-
sion or exclusion of specific capabilities, differences in the order
in which tasks are executed, and through different levels of UAV
autonomy and human interactions enabled across different mission
contexts [11, 14, 29]. Mission-specific products must be configured
and deployed quickly prior to launch and the concrete configuration
pushed onto central components, mobile units, and the UAVs.

The work we present in this paper is driven by an initial set of
seven community-inspired use cases for which variability points
included software features, hardware capabilities, differing degrees
of UAV autonomy versus human control, and alternate sequencing
of tasks for different missions. Our paper makes several contribu-
tions. First, it provides a dataset of seven detailed use cases describing

https://doi.org/10.1145/3382025.3414950
https://doi.org/10.1145/3382025.3414950

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Cleland-Huang, Van Speybroeck, Vierhauser et al.

emergency response scenarios and presents a requirements-driven
process for systematically constructing an SPL feature model and
activity diagram from these use cases. Second, it explores behavioral
aspects of the product line (PL) such as sequencing of events and con-
figurable and adaptable autonomy levels with differing degrees of
human-drone interaction. Third, it presents a practical configurator
which emergency responders can use to select predefined mission
plans or to configure new mission specifications. Our solution fo-
cuses on pre-launch configuration; however, the launched product
is able to adapt to changes in the environment or in response to
human interactions. Our solution represents a pragmatic approach
for configuring a non-trivial system which needs to execute imme-
diately following configuration without additional testing. While
all the examples in this paper have focused on the single-domain
of multi-UAV emergency missions, the process we present could be
useful in other CPS environments – for example, with factory floor
delivery robots.

The remainder of the paper is laid out as follows. In Section 2
we provide a brief overview of our DroneResponse application and
describe the use case scenarios that were foundational for develop-
ing our configurator. In Section 3 we describe the process used to
create feature hierarchies and activity diagrams for individual mis-
sion scenarios and to merge them into a PL model, while Section 4
describes the actual configuration process. In Section 5 we describe
our evaluation which included validation tests, a preliminary user
study, and a discussion of lessons learned. Finally, Sections 6 to 8
report threats to validity, related work, and conclusions.

2 ELICITING AND SPECIFYING USE CASES
Eliciting requirements for diverse usage scenarios is a key step
in creating individual feature and behavioral models from which
PL assets can be constructed. In general, a PL represents a set of
software-intensive systems that share a common, managed set of
features developed or composed from a common set of core as-
sets [17, 40, 51, 59, 65]. A product is typically derived by selecting
a set of alternative and optional features (variabilities) and com-
posing them on top of a set of common base features (common-
alities) [5, 25, 33, 39, 41]. In this paper we focus on requirements
aspects of the product line – notably the creation of the feature
model and an activity diagram which ultimately controls and con-
strains transitions across tasks and states. The approach described
in this paper is part of a longer-term project to fully implement
our DroneResponse system as a configurable product line [2, 16].
We therefore first provide a brief overview of DroneResponse, and
then describe the processes we have engaged in to elicit a diverse
set of requirements which form the basis for developing the PL.

2.1 Drone Response System
DroneResponse is a UAV management and control system extended
from our previous work on UAVs [16, 64]. Our aim in developing
DroneResponse is to support diverse emergency missions from
within a single application. The system will support two forms of
configuration. First, emergency responders will be able to configure
common missions in advance and then contextualize and parame-
terize them. Second, it will enable configurations of new, previously

Onboard Compute

Ground

Control

Station

Onboard
Vision

Mission

Communication
(Commands, Status)

Runtime
Diagnostics

Flight Planning &
Coordination

Autonomy

MOBILE UNITS

Image
Streaming

Central

System

Runtime
Monitoring

Edge
Coordinator

Physical
Sensors

Mission Planning

Visualizations,
Dashboards

Maps

Explainable
Autonomy

Mission Plans

Communication

Regulatory Compliance, NOTAMs
Preflight checks, Weather

Figure 1: DroneResponse high-level architecture overview.
The yellow components will be configured for eachmission.

unseen and unfolding scenarios prior to launch, based on allowed
combinations of features and sequences of behavior.

Fig. 1, depicts the high-level architecture of the DroneResponse
system and shows some of its variation points. All UAVs are imbued
with basic decision-making capabilities driven by the general mis-
sion goals (e.g., find and rescue a victim in the river), constrained by
UAV capabilities (e.g., thermal vs. visible light camera, or flotation
device delivery capabilities), and influenced by their assigned roles
and responsibilities. UAVs leverage their knowledge of the environ-
ment and the overall current state of the mission in order to make
decisions on enacting specific tasks. They share information with
other UAVs as well as centralized modules that assist with global
coordination and meta-reasoning tasks.

2.2 Requirements Discovery
We used three distinct sources of information to identify require-
ments for diverse mission scenarios. We started with the require-
ments, features, and architecture of our existing Dronology plat-
form [16] which was created and developed through close collabora-
tion with the South Bend Fire Department [2]. Next, we searched for
grey literature to find descriptions of emergency responders, fire-
fighters, coast guards, and other groups using UAVs in emergency
response scenarios. Here our goal was not to retrieve a complete
or exhaustive set of use cases, but to select a set of well-described
and diverse scenarios for driving the development of our PL. The
references we ultimately used are listed in Table 1. Each of the
described scenarios either involves UAVs being controlled manually
by a human operator or the use of an existing off-the-shelf solu-
tion such as MissionPlanner, QGroundControl, or DroneSense1,
to plot or generate sets of waypoints for the UAVs to follow. As
a final step, we performed an informal second literature search,
this time for academic papers describing the use of autonomous
and/or semi-autonomous UAVs for emergency response missions.
1URLs: ardupilot.org/planner, qgroundcontrol.com, www.dronesense.com

ardupilot.org/planner
qgroundcontrol.com

Configuring Multi-UAV Emergency Response Missions SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Use Case: Ice Search and Rescue
ID: SPLC-11

Description
UAV(s) dispatched with a flotation device for ice rescue
Primary Actor
Drone Commander
Trigger
The Drone Commander activates the delivery.
Main Success Scenario
1. Emergency responders plan_area_search [SPLC-1001]
2. The DroneResponse commander issues a command to start the mission.
3. The UAV(s) takeoff [SPLC-1007]
4. The UAVs perform_search [SPLC-1002]
5. The UAV requests_victim_confirmation [SPLC-1005] from the

human operator.
6. The UAV receives confirmation from the human operator that the victim

sighting is valid.
7. DroneResponse automatically sends the GPS coordinates to the

mobile_rescue system.
8. The UAV switches to flotation_device_delivery [SPLC-1006] mode.
9. Human responders reach the victim’s location and execute a rescue.
10. The Drone Commander ends_mission [SPLC-1007].

Specific Exceptions
1. In step 3, one of the UAVs fails to take-off.

1.1 If a replacement UAV is flight-ready, it is dispatched in place of the
failed UAV.

1.2 If no replacement is available DroneResponse re-executes generate-
search-plan [SPLC-1009] for the available UAVs and previously
defined search area.

General Exceptions
1. At any time, if communication is lost between the Ground Control

Station and a UAV, DroneResponse executes the Lost Drone-to-GCS
Communication (SPLC-2001) exception case.

2. At any time, a malfunction error is raised by a UAV in flight,
DroneResponse executes the Drone-in-flight Malfunction (SPLC-
2002) exception case.

Figure 2: A partial view of the “Ice search-and-rescue” use
case focusing on the main success scenario and examples of
general and specific exceptions. Requirements were derived
from news reports and video footage (e.g., [1, 56])

One researcher from our team conducted the preliminary search,
using the search term "UAV & Emergency Response", followed by
a snowballing process to retrieve papers referenced by the initial
search. Our goal for this second literature search was to identify
cutting-edge solutions for UAV autonomy and their applications
to emergency response. Relevant papers are again listed in Table 1
under the ‘Acad.’ (academic research papers) column2.

2.3 A Use Case Driven Approach
Textual use cases document requirements from the perspective of
their external actors by describing a primary sequence of actions,
as well as alternatives and exception cases [18]. They are there-
fore able to capture both mandatory and optional features [26].
Bertolino et al. [7] extended the standard use case notation to sup-
port product lines by using constraints to document legal versus
illegal combinations of variants; however, this approach leads to

2Use cases are available at https://github.com/SAREC-Lab/sUAS-UseCases and will be
updated and extended as part of our ongoing work.

Table 1: Scenarios were derived from real-life accounts,
stakeholders, and academic literature.

ID Use Cases Usage Acad. Contrib. Stakeholders

UC1 River Search & Rescue [2, 15] [61] South Bend Firefighters
UC2 Ice Rescue [1, 56] News reports
UC3 Defibrillator Delivery [13, 47] [28] DeLive, Cardiac Science
UC4 Traffic Accidents [48, 53] [42] South Bend Firefighters
UC5 Structural Fires [34] South Bend Firefighters
UC6 Water Sampling [46, 50] [43] Environmental Scientists
UC7 Air Sampling [12, 57] [3, 69] Environmental Scientists

early formalization of the product line which we found detrimen-
tal to the task of exploring and documenting stakeholders’ needs.
We therefore adopted a less formal and more flexible approach to
specifying use cases [18]. This enabled us to focus on eliciting and
understanding the requirements for individual mission scenarios
without prematurely focusing on the more complex challenge of
building a PL. As a result, we deferred the identification of common-
alities and variabilities across scenarios until later in the process.

An example use case for UAV deployment in an “Ice search-and-
rescue” scenario is depicted in Fig. 2. The use case starts by describ-
ing the actors and stakeholders and establishing pre-conditions
and post-conditions. It then describes the main success scenario, as
well as alternate sequences of events and exceptions that can occur at
any time of the mission. Steps that describe common tasks, shared
across multiple use cases, are defined as references to supporting
use cases, while steps that are specific to the ice-rescue use case
are described directly in the text. Due to space limitations the use
case shows only the main scenario steps, with a few examples of
specific- and general exceptions.

3 REQUIREMENTS-LEVEL PL MODEL
Our goal is to support two distinct types of configurations. In the
first case, the SPL should facilitate the configuration of known mis-
sion scenarios. Initially these will include river search-and-rescue,
ice rescue, defibrillator delivery, traffic accident monitoring, struc-
tural fire support, and water and air sampling (see Table 1). In the
second case, the SPL should configure previously unseen mission
scenarios through the reuse of existing features combined and se-
quenced in new ways. Our process involves the two primary steps
of modeling and configuration as illustrated in Fig. 3.

3.1 Modeling the PL
Product lines are characterized by their commonality and variability
points – all of which need to be concisely modeled. As our focus in
this paper is on the Requirements Engineering phase of a SPL, we
focus on generating a feature model that captures commonalities,
variability points, and feature constraints, and an activity diagram
that describes dynamic aspects of the system by modeling the flow
from one activity to another [4].

3.2 Requirements Modeling
Our requirements modeling process involves the following steps:

Step M1 – Specify Use Cases: The requirements elicitation pro-
cess was performed in an iterative fashion [31], starting with the

https://github.com/SAREC-Lab/sUAS-UseCases

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Cleland-Huang, Van Speybroeck, Vierhauser et al.

clone

pool

Clone & modify most
similar use case for

next scenario

Clone & modify most
similar feature model

for next scenario

Clone & modify most
similar activity diagram

for next scenario

Create an SPL
feature model

Create an SPL
activity
diagram

Elicit & specify
use case for initial

scenario.

Refine & align

merge

merge

Generate Prod.

C1

Specify Msn.Configure Msn.Select Msn. Launch

Configure

M3

M5

M6

C1
C2

C3
C4

clone

pool

clone

pool

Deploy preconfigured mission

Create individual
feature model

Create individual
activity diagram

M1

M2

M4

Figure 3: We followed an iterative approach to create indi-
vidual use cases, feature models, and activity diagrams, and
then merged them into PL-level models used with our prod-
uct configurator (See M1-M6). Individual missions are then
configured from the PL-level models (See C1-C4).

“River search-and-rescue” use case from our existing system specifi-
cations [2, 15]. We cloned this original use case and derived a use
case for a second mission scenario (Ice Rescue) by adding, removing,
and modifying use case steps [27]. While this type of “clone-and-
own” approach is commonly used in industry to design and develop
complete products including their requirements, architecture, code,
and tests; we applied it only to the upfront requirements elicitation
and analysis phase. The clone-and-own approach of writing use
cases for each scenario, has the advantage that semantically similar
use case steps and sequences of activities are shared across use
cases, enabling semi-automated support for the SPL construction
process. We followed this process to create a use case for each of the
mission scenarios shown in Table 1. For each use case we identified
and cloned the most similar existing use case as the starting point.

Step M2 – Construct Mission-Specific FM: For each mission
scenario we then created an individual FM. Starting with the “River
search-and-rescue” (UC1) scenario, we manually identified the fea-
tures needed to support the use case. We composed them into a hier-
archy of mandatory, optional, and alternative features. Where nec-
essary we added additional cross-tree constraints; however, these
were rare within each of the individual mission models. The re-
sulting FM was added to an FM pool. For each subsequent mission,
we selected the most similar FM from the pool, cloned it, and then
manually adapted it for the new mission by adding, removing, and
modifying features, associations, and constraints. The feature hi-
erarchy for Ice Rescue is depicted in Fig. 4. Each FM was specified
in a JSON format; however other formats such as XML would also
have been suitable. Each node was assigned a NodeName and a
descriptive label. Associations between features were specified as
parent-child relationships between nodes, and constraints were
structured as tuples (NodeName, NodeName,[requires|excludes]).

Figure 4: A mission-specific FM for the Ice rescue scenario
in which UAVs support emergency responders in rescuing a
person who has fallen through the ice.

Step M3 – Semi-automated Merge of Individual FMs: In the
next step of the process, we merged all of the individual FMs into a
single PL-level FM. We followed an incremental approach as this
limited the complexity of reconciling differences at each individual
step. We started with the River search-and-rescue FM, treating it as
the initial baseline, and used a simple automated name matching
algorithm to automatically merge the “next” individual FM into
the current baseline. Given the clone-and-own approach in which
many NodeNames were shared across individual FMs, the majority
of nodes were automatically matched using a simple NodeName
matching algorithm. After each merge, we manually inspected and
refined the resulting model to correct any problems through (1)
merging nodes that served a similar purpose but had failed to merge
due to having different node names, (2) reconciling different hier-
archical organizations of the same features, and (3) standardizing
the level of refinement across FMs by refining leaf features that
were at higher levels of abstraction than defined by other FMs. On
average each merge required approximately 5-15 minutes of effort
depending upon the delta between the two models. The philosophy
for selecting the “next” model to merge, was diametrically opposite
to the philosophy of selecting a use case or model to clone. Instead
of selecting the most similar model, here we selected the most dis-
similar FM to the currently merged baseline. This meant that we
were able to address major structural differences in earlier stages of
the merging process before the model grew in size and complexity.
The merged feature model is depicted in Fig. 5.

StepM4–ConstructMission-SpecificActivityDiagrams: Each
of our missions is characterized by a carefully choreographed set
of human activities and semi-autonomous UAV tasks. For example,
during a search-and-rescue mission, humans and UAVs first plan
the mission, then engage in a search activity, and when the victim
is found, they transition to activities such as tracking or delivering
a flotation device. In some missions, a special UAV equipped with a
flotation device might be waiting on the sidelines for the victim to

Configuring Multi-UAV Emergency Response Missions SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Examples of Cross-tree constraints

[water sampler] requires [Water Trained object detection model]
[3D HeatMap] requires [Thermal Imagery]
[Deliver Physical Supplies] requires [Carry Mechanism]
[Waterline perimeter flight] requires [Water Trained object detection model]
[Labeled Scene] requires [Camera]

Figure 5: The merged Feature Model includes features from river and ice rescue (blue), delivery (yellow), structural fires (red),
environmental sampling (green), and traffic surveillance. Features used in multiple scenarios are shown in gray. Cross-tree
constraints are primarily “requires” dependencies.

Start Ice
Rescue Mission

Establish search plan
: PlannedFlightRoutes

Connect & Launch Drones

Search for victims

StreamVideo Victim Found

Successful
Search

End Mission

Failed
Search

Track Victim
: VictimTracker

Request Human Aid Deliver Flotation Device

Rescue Victim

Figure 6: Activity diagram showing the sequencing of tasks
for the Ice Rescue scenario. By default, transitions occur
when the current task is complete. Some transitions (e.g.,
“Failed Search”) are explicitly labeled.

be found, while in another mission (perhaps search-and-rescue at
sea), all UAVs might be equipped and dispatched with life-saving
devices from the start of the mission. The sequencing of activities
is therefore different for each mission, and is documented in the

form of an activity diagram. An example for Ice-Rescue is shown
in Fig. 6. Activity diagrams not only document activities and their
transitions, but are used for two additional purposes. First, they
are used during the product configuration process to communicate
the emerging mission steps to users. Second, (although not yet
implemented) we plan to use them to dynamically visualize the
current state of the mission by showing the current task that each
UAV is performing at any time.

Constructing a mission-specific activity diagram is again per-
formed manually for each use case using the same cloning approach
used to create the individual FMs. We experimented with differ-
ent levels of model granularity, and found that visualizing detailed
activities obscured the main purpose of the mission, while overly
high-level abstractions hid important information about the config-
uration. To balance these competing needs, we modeled variability
points (e.g., track victim, deliver flotation device) that had a major
impact on the sequencing of the mission, whilst hiding internal con-
figuration points such as computer vision models or route planning
algorithms used for specific activities within specific contexts. We
also hid sequencing variations which impacted a single higher-level
task. For example, the track-victim task involved a variant that was
driven by the autonomy level of the UAV. A UAV awarded high
levels of autonomy would switch automatically into tracking mode
when it detected a potential victim, while a UAV with lower levels
of autonomy would seek human permission before transitioning
modes. This is also an example of a runtime configuration point as
a user can modify the UAV’s autonomy levels.

Step M5 – Semi-automated merge of individual activity di-
agrams: Given a set of individual activity diagrams, we merged
them into a single SPL-level activity diagram following a similar
process used for creating the SPL FM from individual FMs. Once
again, we incrementally merged the “next” activity diagram into
the baseline using a strict 𝑁𝑜𝑑𝑒𝑁𝑎𝑚𝑒 matching approach, and then

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Cleland-Huang, Van Speybroeck, Vierhauser et al.

Start Mission

Define target waypoints
:WaypointTargetPlanner

Sampling or Delivery

Define area and plan flight routes
:AreaRouteGenerator

Search,Mapping,or surveillance

Connect and Launch Drones
:GroundControlStation
:SynchronizedTakeOff

Fly to target waypoint
:BasicFlight

:TerrainManager+ObstacleAvoidance

Scene reconstruction activated
:Image Model (Water,Land,Fire,Traffic)

Position drone for accurate sampling
:AirSamplingCoordinator

:WaterSamplingCoordinator

Water|Air Sampling

Identify delivery drop location
:LandingImageModel

:SafeLanding

Supplies delivery

Search and Rescue
:MissionCoordinator(e.g.,RiverSearch,IceSearch)

Search activity

Dynamically plan
surveillance strategies
:SurveillanceCoordinator
(Structural fire, Accident)

Survey|Monitor

Victim or Target Found
:ObjectDetectionModel

:HumanVictimConfirmation

Successful
Search

Return home
:RTLCoordinator

Failed
Search

Request
flotation
device

Track Victim
:VictimTracker

Request human aid
:MobileUnit

Victim rescued by emergency responders

End Mission

Collect sample
:AirSamplingCoordinator

:WaterSamplingCoordinator

More
waypoints.
no dynamic

analysis

Onboard analysis performed
:GasAnalyzer

:WaterAnalyzer

Onboard Analysis
capabilities

Collection complete

No more
collection points

Dynamically update
sampling plan

:AdaptiveRoutePlanner

More
waypoints

No more
collection points

Collection
finished

Perform surveillance
activity

:SurveillanceCoordinator

Generate Model of Scene
:SceneRestoration(3D,2D;RGB,Thermal)

Continue
surveillance

Drones Recalled by
Incident Commander

:RTLCoordinator

End of
surveillance

Update
surveillance

strategy

Deliver supplies
:DeliveryCoordinator

Confirmed

Select home-base withinin flying range
:RTLCoordinator

Cancelled

Figure 7: Merged activity flow diagram for the seven initial DroneResponse missions. Mappings to features are shown for key
activities. For illustrative purposes, all activities relevant to the “Ice Rescue” scenario are highlighted in blue.

systematically refined the resulting diagram to create a new base-
line. The merging process involved (1) combining activity nodes
that served a similar purpose but had different node names, (2)
analyzing different sequences between tasks and either reconcil-
ing them into a common sequence or establishing conditions on
each transition to control the order of execution, (3) standardizing
the level of refinement across diagrams by combining low-level
activities into more abstract ones, and (4) where alternate flows of
specific activities were identified for different missions, abstracting
the activity to a higher level and making that activity node config-
urable according to the mission context.

Step M6 – Reconciling Models and Mapping Tasks to Fea-
tures: In this final modeling step, we first manually created a map-
ping from each feature in the FM to concrete components (either
existing or planned) in our current implementation. We were able
to create mappings to approximately 25% of the variability points
and almost 75% of the core flight control mechanisms and runtime
monitoring components. Where components did not yet exist, we
mapped to components that are planned. Second, we mapped the
activity nodes to features. As 𝑁𝑜𝑑𝑒𝑁𝑎𝑚𝑒𝑠 in the FM and activity

diagrams did not tend to match, we also performed this step man-
ually. We show the most important components in the lower half
of each activity node in our PL activity diagram (see Fig. 7). These
mappings will be used to physically configure the product for a
defined mission. This step is critical for reconciling the FM and
activity models, and for connecting them to the concrete system
architecture.

4 MISSION CONFIGURATION
We used the PL-level FM, activity diagram, and their mappings to
the concrete implementation to develop a product configurator for
deriving new missions. Deelstra et al. [20] highlighted several prod-
uct derivation challenges experienced in industry, including high
reliance upon experts, incompatible component interactions, and
erroneous parameter settings. Each of these represents a non-trivial
problem which must be effectively addressed in the DroneResponse
environment where the goal is to configure and immediately ex-
ecute the mission. Improper configurations could cause serious
failures in the mission, such as failure to dispatch a UAV with a
flotation device when needed, failure to identify a victim due to

Configuring Multi-UAV Emergency Response Missions SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Table 2: Questions asked during the configuration process

ID Question Variants

Q1 What type of mission? Fire, Environmental sampling,
Search, Delivery, Surveillance

Q2 How will you define flight paths? Region, Waypoints
Q3 Are you fighting a structural fire

or a ground fire?
Structural, Ground

Q4 What type of environment are you
working in?

Water, Land, Ice, Snow

Q5 What are you surveying? Traffic, Flood, Other
Q6 Are there independent rescue teams? Mobile rescue unit
Q7 Should drones track the victim? Victim tracking
Q8 Will your mission deliver rescue

equipment to the victim?
Rescue equipment

Q9 Do drones have onboard sample
analysis capabilities?

Onboard analysis

Q10What are you sampling? Water, Air

incorrect vision settings or models, or a communication failure that
results in a mid-air collision. Furthermore, our configurator will be
operated by emergency responders under time-pressure to respond
to the emergency situation, hence there will be no opportunity to
inspect, review, or validate new configurations before flight.

All of our missions share the same architecture, populated with
mission-relevant components such as computer vision models, an-
alytics, UIs, and autonomy models onboard the UAVs. While the
FM offers a great deal of flexibility in the way components can be
combined into a new product, we currently limit configurations to
those explicitly supported by our PL activity diagram. This reduces
risks of unexpected, unsafe, previously untested feature interac-
tions inherent to our configure-and-launch environment, while still
allowing a significant degree of flexibility due to internal config-
urations of each activity node. We will relax these constraints in
future phases of our project.

4.1 The DroneResponse Configuration Process
DroneResponse missions are derived through a series of four config-
uration steps (C1-C4), highlighted in Fig. 3, that impact the central
server, ground control stations, onboard compute, and intercon-
nected mobile devices. The configuration process dynamically gen-
erates a visualization of the configured mission (cf. Fig. 8) which is
primarily used for communicating with the user and for support-
ing interactive configuration of activity nodes. It also outputs a
machine-readable mission specification in a JSON format which is
passed to the back-end server and used to manage product configu-
ration and deployment.

Step C1 – Assembly/Configuration Choice: The user either se-
lects an existing mission to configure, or chooses to assemble a
new mission. If the user selects an existing mission, they can either
launch the mission as-is (bypassing all remaining configuration
steps) or configure the existing mission (bypassing step C2).

Step C2 – High-Level Mission Assembly: DroneResponse pro-
vides a wizard to guide the user through the process of assembling
a novel mission. We identified 10 initial questions, shown in Ta-
ble 2, which were needed to differentiate the primary goals and

contexts of the seven use cases listed in Table 1. Some questions
have several candidate answers, listed as variants in the table, while
others required yes/no answers to specify whether a feature was
present or absent. The questions are organized into a decision tree
so that pertinent follow-up questions can be asked in response to
previous answers. For example, if a user responds "SEARCH" to
question Q1, then they are asked questions Q4, Q6, Q7, and Q8 in
order to determine planning, context, rescue, and tracking capa-
bilities. The maximum number of questions per configuration is
currently five, and the least number is two. Once these questions
are answered, DroneResponse generates a mission-specific activity
diagram in Graphviz format which is dynamically rendered on the
screen. Fig. 8 shows the activity diagram rendered for an environ-
mental air sampling scenario.

StepC3 –Component Configuration:We annotate configurable
nodes with representative icons as depicted in Fig. 8, which shows
five configurable nodes. For example, area definition and flight
route generation features can be configured with different mapping
options (terrain, map) and with different techniques for generat-
ing flight routes. Similarly sample collection and onboard analy-
sis activities are configurable by available collection mechanisms
and onboard analysis techniques, and software for connecting to
mechanical controls (sensors and actuators) and for performing
onboard analysis needs to be correctly loaded onto the UAVs prior
to the mission.
Step C4 – Runtime Configuration: Finally, we support a limited
number of runtime configuration options. Some of these are ex-
posed to users while others are not. For example, the synchronized
launch mechanism is automatically activated at runtime if more
than one drone is scheduled for simultaneous launch, and we do
not allow the user to turn off this feature. However, other cases are
exposed to the users – for example, allowing them to raise or lower
the autonomy permissions of the UAVs with respect to specific
actions. A specific example, was discussed earlier with respect to
victim tracking, as a user could reduce the UAV’s autonomy and
require that it seeks permission to track a candidate victim.

4.2 Deployable Configuration
This multi-step configuration process produces a mission specifica-
tion in JSON which serves as a machine-interpretable description
of the mission and its configuration points. Configuration decisions
impact the system in several key ways including the following:

• Central Control Mechanisms: Some parts of DroneResponse
are centrally coordinated. Examples include the route_planning al-
gorithms that generate search routes for 𝑁 UAVs within a region
defined by the user. Core Dronology components are configured
dynamically through a parameterization mechanism.

• Onboard Autonomy: DroneResponse UAVs are imbued with
decision-making capabilities using the BDI (Belief-Desire-Intent)
model [55] of autonomous agents. UAVs build their beliefs through
directly observing the environment (e.g., use of their onboard sen-
sors) and through receiving information from other UAVs, central
control, and human operators [67]. Mechanisms for supporting
communication and enabling UAVs to reason about achieving
their goals (desires) through enacting specific tasks (intents) are

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Cleland-Huang, Van Speybroeck, Vierhauser et al.

Start Environmental
Sampling Mission

Define area and generate flight routes

Connect and launch drones

End mission

Fly to target waypoint

Position drone for
accurate AIR sampling

AIR
sampling

Collect Sample

More waypoints

Collection complete

No more
collection points

Perform onboard analysis

Onboard
analysis

capabilities

Return Home

Dynamically update sampling plan

Waypoints
modified

No more
collection points

Figure 8: Themission is configured and visualized according
to user responses. Icons represent configurable nodes.

included in the mandatory architectural components [52] on
board each UAV. Onboard configuration requires configuration
of several BDI components, including its knowledge manage-
ment capabilities, goals, permitted tasks, and mode transitions.
Onboard configuration also involves context-specific computer
vision models, logic for interacting with mechanical devices, and
software analytics for dealing with specialized data (e.g., onboard
water sampling).

• Mobile Units: The DroneResponse system represents a complex
socio-technical environment that includes mobile units which
also may need to be configured or activated. For example, our
current River Rescue system includes a mobile application for
communicating with rescuers on a boat.

• User Interface: Missions can be configured to support different
degrees of human-drone interactions [14] within mission-specific
contexts. Therefore UIs need to be activated and configured ac-
cording to the specific mission. An example of a mission-specific
UI is shown in Fig. 9.
The mission coordinator component on the central DroneRe-

sponse system is responsible for interpreting the mission specifi-
cation, configuring each part of the system, and using the mission
specification to track and monitor the state of the unfolding mis-
sion. However, in this phase of the project we have focused on
the upfront requirements elicitation and the mission specification
phase of the configuration process. Using the resulting mission
specification to configure DroneResponse is therefore outside the
scope of this paper.

Figure 9: The DroneResponse UI allows an operator to re-
view and evaluate video footage of a potential victim.

Table 3: Additional use case scenarios used for validation
tests and for the user study. Participants (P1-P5) were as-
signed two use cases, and selected a third one of their choice.

ID Use Case Name ID Use Case Name

UC8 Chemical spill P1 UC15 Flood support P4
UC9 Avalanche rescue P1 UC16 Earthquake damage P5
UC10 Suspect tracking P2,P3 UC17 Rip current rescue P5
UC11 School shooting P2,P4 UC18 Lost kayaker P2
UC12 Radiation detection P3 UC19 Volcanic eruption P5
UC13 Man overboard P3 UC20 Utility inspection
UC14 Crowd control P1,P4

4.3 Implementation
DroneResponse’s UI is designed specifically to support emergency
response missions [2] and is developed using the Angular Frame-
work. We have implemented and integrated the configurator into
the DroneResponse UI so that users can interactively answer the
configuration questions. The resulting mission specification is dy-
namically visualized as an activity diagram using the services of
the d3-graphviz library. In addition a machine-readable JSON file is
generated depicting the mission configuration.

5 EVALUATION AND ANALYSIS
We evaluated the modeling and configuration process and the re-
sulting configurator by addressing the following research questions:

• RQ1: Is the configurator able to generate a valid mission specifi-
cation for the seven primary use cases that were used in the SPL
design and also for a set of previously unseen use cases?

• RQ2: Are users able to use the configurator to generate a valid
mission specification for a diverse set of use cases? If not, what
challenges exist?

• RQ3: What challenges were identified when using the proposed
process to create an PL FM and activity diagram?

Configuring Multi-UAV Emergency Response Missions SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

RQ1: Validating the configurator
To address RQ1, three researchers on our team conducted a series
of validation tests using the configurator to generate products for
each of the original seven use case scenarios (see Fig. 1). We then
performed walk-throughs of the visualized missions (e.g., Fig. 8) to
evaluate them against their original use cases. Following minor cor-
rections and adaptations (e.g., a missing link), all scenarios passed
their test cases and produced the intended mission specification.

Next, we repeated the validation using the additional set of use
cases shown in Table 3. These use cases were specified less formally
than those used to build our PL, and were written by our team
based on additional examples we found for UAV deployment in
emergency response scenarios. The tests revealed a few issues.
For example, in UC11 (School shooting), available configuration
options for search-and-rescue adequately covered the basic use
case of finding the suspect except for terminology mismatches such
as the use of “victims” in place of “suspects”. The problem could
be solved by inserting an additional question (e.g., “Is this a law
enforcement activity?”) to establish the correct terminology, or by
choosing a more generic term (e.g., target). We adopted the former
option for our user study.

RQ2: User Study of the Configurator
To address RQ2 we recruited five participants, as that is the number
recommended by Nielsen for effective and efficient early-phase de-
sign evaluations [49]. All of our participants had experience flying
UAVs (twowith FAA Part 107 remote pilot licenses, and three as hob-
byists). Three had experience working in scenarios with multiple
physical UAVs, and one in a simulated environment with multiple
UAVs. One of the certified pilots had no experience in multi-UAV en-
vironments. The other certified pilot had previously worked directly
with the Fire Department in a UAV training exercise. Each session
was supervised by two of the authors and conducted over Zoom. It
took approximately 30 minutes. For training purposes, all partici-
pants viewed a short video describing the DroneResponse project
3. The researchers then demonstrated the use of the configurator
for UC1 (River search-and-rescue), thereby simulating the training
we would expect users to have prior to using the configurator.

The participants were each asked to configure three missions.
Two of the missions were preassigned as depicted in Table 3, while
they were allowed to choose the third scenario from the complete
list. We recorded their actions and audio using Zoom. Furthermore,
we asked participants to follow a “think-aloud” protocol [23] as
they configured the mission. At the end of each session we asked
the users three questions: Q1: “Did the configuration wizard ask
the right questions to help you configure the mission?’‘, Q2: “Does
the visualization help you understand the current mission con-
figuration?”, and finally Q3: “Do you have any suggestions for
improvements?’.

We transcribed the recordings, analyzed the responses, and used
an inductive coding approach [62] to tag each comment. We then
grouped similar tags in order to identify recurring themes associ-
ated with terminology, question flows, appearance of the visualized
mission, and configuration techniques. In response to Q1, two re-
spondents stated that the wizard asked the correct questions with
3https://youtu.be/x1pl8alCEeM

comments such as “The workflow is very helpful.” and it “Gets an
idea what the mission can be”, while three made suggestions to add
more detailed questions such as asking for information about what
the UAV would be carrying. All five participants agreed that the
visualized workflow was very helpful (Q2). The participants also
suggested improvements (Q3). One observed that it would be very
important to translate all terminology into the first-responders’
language (e.g., replacing “scene reconstruction” with “visualize the
scene”). One suggested coloring the nodes that were generated each
time they answered a question, so that it was easier to follow new
parts of the mission as they were visualized. Two participants asked
whether they could immediately configure the search area. As the
search area will be defined after the product is configured for a
mission, we have removed it from the configurator.

In general, the user study provided important confirmation that
our approach for configuring the mission dynamically was well
received.We plan to integrate feedback from this study into the next
design iteration, which will be used in a field-study with firefighters
and physical UAVs in our outdoor testing environment.

RQ3: Analysis and Lessons Learned
To address RQ3, we reflected on the lessons we learned from apply-
ing our process to the UAV-Emergency response domain and made
the following observations.

• Reliance on informal use cases? Most automated, or semi-
automated techniques that aim to extract FMs require some
degree of formalization – for example using formal use cases
[7, 30] or formally specified feature models. We opted to directly
construct a feature hierarchy for each use case scenario as this
provided a visual and intuitive environment for exploring manda-
tory and optional features as well as any constraints that existed.
Our use of clone-and-own resulted in a significant number of
common node names across individual FMs, which allowed for a
high-degree of automation during the model merging without
sacrificing details of each scenario. Keeping use cases less formal
further allowed us to leverage their inherent strengths during
the requirements elicitation process.

• Constraining the Feature Model by the Activity Diagram?
Our choice to constrain the product configuration to the prede-
fined sequences allowed by our activity diagram was a pragmatic
one given the configure-and-fly nature of our product. While
unwanted feature interactions can still be introduced through
untested combinations of configurations across activities, we can
reduce this risk through activity-level testing. All permitted tran-
sitions will be tested prior to mission execution. In ongoing work
we are investigating an alternate approach that allows greater
freedom in the configuration process, but utilizes temporal logic
to constrain and check for valid execution sequences [44, 58].

• Incremental vs. Big Bang Merging? Initially we planned to
merge all of the individual FMs together at the same time; how-
ever, we found the complexity of dealing with inconsistencies
in node names and structure from multiple FMs was difficult to
handle. The incremental approach of merging FMs and Activity
diagrams one at a time into the PL models reduced this com-
plexity significantly. Furthermore, selecting the most dissimilar
model to merge into the baseline, allowed us to address any major

https://youtu.be/x1pl8alCEeM

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Cleland-Huang, Van Speybroeck, Vierhauser et al.

discrepancies earlier in the process while the models were still
relatively simple.

• Granularity of Activities? We explored various granularity
levels for activity diagrams, but ultimately adopted a relatively
coarse-grained approach that matched the variability points of
different missions. Our decision was strongly motivated by the
rationale that activity diagrams will be used to communicate the
mission specification to emergency responders on the scene of an
emergency response and need to be quick and simple to under-
stand. We complemented this decision by allowing configuration
within individual nodes.

6 THREATS TO VALIDITY
There are several threats to validity for our approach. First and
foremost, we have focused on the upfront process of eliciting re-
quirements, engaging domain experts in the configuration process,
and ultimately generating the mission specification. In our analysis
we have focused on specific functional and non-functional require-
ments relevant for the “main success scenario” of the different use
cases. Further investigation is required on how other types of re-
quirements such as relaxable [66] or awareness [60] requirements
can be included and represented in the feature model. We have
provided only a high-level explanation of how our DroneResponse
architecture will use the specification to execute diverse missions.
This specification is the input to our next-phase task of refactoring
DroneResponse as a PL; however, the engineering process may
reveal changes needed in the specification as a result of a typical
design process. Second, our study participants were UAV-flyers but
not emergency-responders, and our planned (post covid-19) study
with emergency responders [2] will inevitably introduce additional
feedback requiring further evolution of our configurator and the un-
derlying architecture. Finally, while we have applied our approach
to the domain of UAVs, we envision that the process could be used
across a broader range of multi-agent systems, for example in de-
veloping product lines of factory-floor robots; however, we have
not yet validated this supposition. Our future work will therefore
explore more diverse applications.

7 RELATEDWORK
Related work includes multi-agent task specification, use cases
for variability management, mapping of their variability points to
components or features in PLs, and product derivation.

Multi-AgentTask Specification:Recentwork byGarcia et al. [30]
presented PROMISE, a domain-specific language for specifying mis-
sions and high-level goals for autonomous robots. Similar work has
used task specification trees [21] and UML statecharts [63]. These
approaches provide a strong formal foundation, which could be
applied as an underlying layer in our project. However, we focused
on use cases and their corresponding activity diagrams as they are
conceptually easy to understand for emergency responders who
will use and configure DroneResponse in the field.

Use Cases and Variability: Halmans and Pohl [38, 51] presented
a requirements-driven approach for describing the variability of an
SPL. They employed use case diagrams to capture requirements and
communicate essential product family variability to the customers.

Bühne et al. [9] also described a scenario-based approach based on
an orthogonal variability model to support requirements engineers
across all phases of the requirements engineering process for an SPL.
In contrast, we use a textual description of use cases and ultimately
merge these in a step-wise process to create a variability model that
serves as the basis for deriving and configuring a specific scenario at
runtime. The PLUSS approach [24] by Eriksson et al. leveraged use
case scenarios and use case realizations. Unlike our approach, they
maintained a single use case model for the entire product line by
relating one or more scenarios with a feature in the FM. While this
supports the definition of variants within the use case specification
it provides inadequate support for other forms of variability such
as computer vision models or algorithmic solutions that are needed
to configure a mission.

Feature Model Mappings: Braganca and Machado [8] introduced
an automated mapping between use case diagrams and FMs using a
model-driven approach to explore relationships between UML use
case diagrams and SPL FMs. Similarly, Griss et al. [35] integrated
FMs with the reuse-driven Software Engineering process using a
model-driven approach. They also aimed to construct a feature
model based on requirements elicited from domain experts. While
we use similar concepts in our approach, we also include derivation
of the product, provide a mission configurator in addition to support
for runtime configuration. Hajri et al. proposed PUMConf [36, 37],
which provides tool-support for engineers configuring products
from product line models. It guides the analyst through a series
of configuration decision and automatically generates a use case
and domain models based on the specified product. In contrast,
we start from use case descriptions created in conjunction with
stakeholders, transform them into mission-specific FMs and activ-
ity diagrams, which we then merge into PL-level models. Finally,
Czarnecki et al. [19] maps features to a design model annotated
with logic expressions associated with the features.

ProductDerivation andConfigurators: Finally, many researchers
have presented solutions for deriving products from a defined PL.
Deelstra et al. [20] presented a product derivation framework in-
spired by problems identified from an industrial case study. Rabiser
and Dhungana [54] developed DOPLER using a decision-oriented
variability modelling approach, which also used a series of prede-
fined questions to configure a product.

8 CONCLUSIONS
Thework described in this paper represents a pragmatic approach to
developing a configurator that is well-suited for use by emergency
responders on the field. We have described the process that we
followed to collect and assimilate diverse use case scenarios into PL
assets that were then used to develop and test our configurator. We
have performed an initial user evaluation, and will take the lessons
learned to improve the configurator and conduct field tests with
firefighters and physical UAVs.

ACKNOWLEDGMENTS
The work was partially funded by the US National Science Founda-
tion Grant CPS:1931962 and CCF:1513730.

Configuring Multi-UAV Emergency Response Missions SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

REFERENCES
[1] 2018. Council Bluffs firefighters use drones in ice water rescue training,KETC

Newswatch 7, https://www.youtube.com/watch?v=p2MdbrTgmso. (2018).
[2] A. Agrawal, S. Abraham, B. Burger, C. Christine, L. Fraser, J. Hoeksema, S. Hwang,

E. Travnik, S. Kumar, W. Scheirer, J. Cleland-Huang, M. Vierhauser, R. Bauer, and
S. Cox. 2020. The Next Generation of Human-Drone Partnerships: Co-Designing
an Emergency Response System. In Proc. of the 2020 Conf. on Human Factors in
Computing Systems.

[3] Oscar Alvear, Carlos T Calafate, Enrique Hernández, Juan-Carlos Cano, and
Pietro Manzoni. 2015. Mobile pollution data sensing using UAVs. In Proc. of the
13th Int’l Conf. on Advances in Mobile Computing and Multimedia. 393–397.

[4] Luciano Baresi. 2018. Activity Diagrams. In Encyclopedia of Database Systems,
Second Edition. https://doi.org/10.1007/978-1-4614-8265-9_9

[5] Don Batory, David Benavides, andAntonio Ruiz-Cortes. 2006. Automated analysis
of feature models: challenges ahead. Commun. ACM 49, 12 (2006), 45–47.

[6] Abdurrahman Beg, Abdul Rahman Qureshi, Tarek Sheltami, and Ansar Yasar.
2020. UAV-enabled intelligent traffic policing and emergency response handling
system for the smart city. Personal and Ubiquitous Computing (2020), 1–18.

[7] Antonia Bertolino, Alessandro Fantechi, Stefania Gnesi, and Giuseppe Lami. 2006.
Product Line Use Cases: Scenario-Based Specification and Testing of Requirements.
Springer Berlin Heidelberg, Berlin, Heidelberg, 425–445. https://doi.org/10.1007/
978-3-540-33253-4_11

[8] Alexandre Braganca and Ricardo JMachado. 2007. Automatingmappings between
use case diagrams and feature models for software product lines. In Proc. of the
11th Int’l Software Product Line Conf. IEEE, 3–12.

[9] Stan Bühne, Günter Halmans, Kim Lauenroth, and Klaus Pohl. 2006. Scenario-
based application requirements engineering. In Software Product Lines. Springer,
161–194.

[10] Gabriella Caroti, Andrea Piemonte, and Yari Pieracci. 2017. UAV-borne pho-
togrammetric survey as USAR firefighter teams support. In Proc. of the Int’l Conf.
on Computational Science and Its Applications. Springer, 3–15.

[11] Jessica R. Cauchard, Jane L. E, Kevin Y. Zhai, and James A. Landay. 2015. Drone
& Me: An Exploration into Natural Human-Drone Interaction. In Proc. of the 2015
ACM Int’l Joint Conf. on Pervasive and Ubiquitous Computing. ACM, New York,
361–365.

[12] Chih-Chung Chang, Jia-Lin Wang, Chih-Yuan Chang, M. Liang, and Ming-Ren
Lin. 2015. Development of a multicopter-carried whole air sampling apparatus
and its applications in environmental studies. Chemosphere 144 (09 2015), 484–
492.

[13] Andreas Claesson, Anders Bäckman, Mattias Ringh, Leif Svensson, Per Nordberg,
Therese Djärv, and Jacob Hollenberg. 2017. Time to Delivery of an Automated
External Defibrillator Using a Drone for Simulated Out-of-Hospital Cardiac
Arrests vs Emergency Medical Services. JAMA 317, 22 (06 2017), 2332–2334.

[14] Jane Cleland-Huang and Ankit Agrawal. 2020. Human-Drone Interactions with
Semi-Autonomous Cohorts of Collaborating Drones. In Interdisciplinary Work-
shop on Human-Drone Interaction (iHDI 2020), CHI ’20 Extended Abstracts, 26 April
2020, Honolulu, HI, US.

[15] Jane Cleland-Huang and Michael Vierhauser. 2018. Discovering, Analyzing,
and Managing Safety Stories in Agile Projects. In Proc. of the 26th IEEE Int’l
Requirements Engineering Conf. 262–273. https://doi.org/10.1109/RE.2018.00034

[16] Jane Cleland-Huang, Michael Vierhauser, and Sean Bayley. 2018. Dronology:
an Incubator for Cyber-Physical Systems Research. In Proc. of the 40th Int’l
Cong. on Software Engineering: New Ideas and Emerging Results. 109–112. https:
//doi.org/10.1145/3183399.3183408

[17] Paul C. Clements and Linda Northrop. 2001. Software Product Lines: Practices and
Patterns. Addison-Wesley.

[18] Alistair Cockburn. 2000. Writing Effective Use Cases (1st ed.). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[19] Krzysztof Czarnecki and Michał Antkiewicz. 2005. Mapping features to models:
A template approach based on superimposed variants. In Proc. of the Int’l Conf.
on Generative Programming and Component Engineering. Springer, 422–437.

[20] Sybren Deelstra, Marco Sinnema, and Jan Bosch. 2005. Product derivation in
software product families: a case study. Journal of Systems and Software 74, 2
(2005), 173 – 194. https://doi.org/10.1016/j.jss.2003.11.012

[21] Patrick Doherty, Fredrik Heintz, and David Landén. 2010. A distributed task
specification language for mixed-initiative delegation. In Proc. of the Int’l Conf.
on Principles and Practice of Multi-Agent Systems. Springer, 42–57.

[22] Mica R. Endsley. 2011. Designing for Situation Awareness: An Approach to User-
Centered Design, Second Edition (2nd ed.). CRC Press, Inc., Boca Raton, FL, USA.

[23] K Anders Ericsson and Herbert A Simon. 1980. Verbal reports as data. Psycholog-
ical Review 87, 3 (1980), 215.

[24] Magnus Eriksson, Jürgen Börstler, and Kjell Borg. 2005. The PLUSS approach–
domain modeling with features, use cases and use case realizations. In Proc. of
the 9th Int’l Software Product Line Conf. Springer, 33–44.

[25] Alessandro Fantechi and Stefania Gnesi. 2007. A behavioural model for product
families. In ESEC-FSE ’07: Proc. of the the 6th Joint Meeting of the European Software
Engineering Conf. and the ACM SIGSOFT Symp. on the Foundations of Software
Engineering. ACM, New York, NY, USA, 521–524.

[26] Alessandro Fantechi, Stefania Gnesi, Isabel John, Giuseppe Lami, and Jörg Dörr.
2004. Elicitation of Use Cases for Product Lines. In Software Product-Family
Engineering, Frank J. van der Linden (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 152–167.

[27] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Developing
Software Variants. Proc. of the 2014 IEEE Int’l Conf. on Software Maintenance and
Evolution (2014), 391–400.

[28] Mathias Fleck. 2016. Usability of lightweight defibrillators for uav delivery. In
Proc. of the 2016 CHI Conf. Extended Abstracts on Human Factors in Computing
Systems. 3056–3061.

[29] Markus Funk. 2018. Human-drone interaction: Let’s get ready for flying user
interfaces! Interactions 25, 3 (2018), 78–81. https://doi.org/10.1145/3194317

[30] Sergio García, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger, and Tomas
Bures. 2019. High-level mission specification for multiple robots. In Proc. of the
12th ACM SIGPLAN Int’l Conf on Software Language Engineering. 127–140.

[31] Eddy Ghabach, Mireille Blay-Fornarino, Franjieh El Khoury, and Badih Baz. 2018.
Guiding Clone-and-Own When Creating Unplanned Products from a Software
Product Line. In New Opportunities for Software Reuse, Rafael Capilla, Barbara
Gallina, and Carlos Cetina (Eds.). Springer International Publishing, Cham, 139–
147.

[32] Khaled A Ghamry, Mohamed A Kamel, and Youmin Zhang. 2017. Multiple UAVs
in forest fire fighting mission using particle swarm optimization. In Proc. of the
2017 Int’l Conf. on Unmanned Aircraft Systems (ICUAS). IEEE, 1404–1409.

[33] Hassan Gomaa. 2004. Designing Software Product Lines with UML: From Use Cases
to Pattern-Based Software Architectures. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA.

[34] John C. Griffith and Ronald T. Wakeham. 2015. Unmanned Aerial Systems in the
Fire Service: Concepts and Issues.

[35] Martin L Griss, John Favaro, and Massimo d’Alessandro. 1998. Integrating feature
modeling with the RSEB. In Proc. of the 5th Int’l Conf. on Software Reuse. IEEE,
76–85.

[36] Ines Hajri, Arda Goknil, Lionel C Briand, and Thierry Stephany. 2016. PUMConf:
a tool to configure product specific use case and domain models in a product
line. In Proc. of the 24th ACM SIGSOFT Int’l Symp. on Foundations of Software
Engineering. 1008–1012.

[37] Ines Hajri, Arda Goknil, Lionel C Briand, and Thierry Stephany. 2018. Configuring
use case models in product families. Software & Systems Modeling 17, 3 (2018),
939–971.

[38] Günter Halmans and Klaus Pohl. 2003. Communicating the variability of a
software-product family to customers. Software and Systems Modeling 2, 1 (2003),
15–36.

[39] Ivar Jacobson, Martin L. Griss, and Patrik Jonsson. 1997. Software reuse - architec-
ture, process and organization for business. Addison-Wesley-Longman. I–XXVIII,
1–497 pages.

[40] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report.
Carnegie-Mellon University Software Engineering Institute.

[41] Kyo C. Kang, Jaejoon Lee, and Patrick Donohoe. 2002. Feature-Oriented Product
Line Engineering. IEEE Software 19, 4 (2002), 58–65. https://doi.org/10.1109/MS.
2002.1020288

[42] Hyunbum Kim, Lynda Mokdad, and Jalel Ben-Othman. 2018. Designing UAV
Surveillance Frameworks for Smart City and Extensive Ocean with Differential
Perspectives. IEEE Communications Magazine 56, 4 (2018), 98–104. https://doi.
org/10.1109/MCOM.2018.1700444

[43] Cengiz Koparan, Ali Bulent Koc, Charles V Privette, Calvin B Sawyer, and Julia L
Sharp. 2018. Evaluation of a UAV-assisted autonomous water sampling. Water
10, 5 (2018), 655.

[44] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. 2009. Temporal-Logic-Based
Reactive Mission and Motion Planning. IEEE Transactions on Robotics 25, 6 (2009),
1370–1381.

[45] Jacob Krüger, Sebastian Nielebock, Sebastian Krieter, Christian Diedrich, Thomas
Leich, Gunter Saake, Sebastian Zug, and Frank Ortmeier. 2017. Beyond Software
Product Lines: Variability Modeling in Cyber-Physical Systems. In Proc. of the
21st Int’l Systems and Software Product Line Conf. 237–241.

[46] H.T. Lally, I. O’Connor, O.P. Jensen, and C.T. Graham. 2019. Can drones be used to
conduct water sampling in aquatic environments? A review. Science of The Total
Environment 670 (2019), 569 – 575. https://doi.org/10.1016/j.scitotenv.2019.03.252

[47] Tomaz Mesar, Aaron Lessig, and David R King. 2019. Use of Drone Technology
for Delivery of Medical Supplies During Prolonged Field Care. Journal of special
operations medicine : a peer reviewed journal for SOF medical professionals 18 4
(2019), 34–35.

[48] Andrea Molino, Daniele Brevi, Guido Gavilanes, Riccardo Scopigno, Anooq
Sheikh, and Enea Bagalini. 2016. Using drones for automatic monitoring of
vehicular accident. In Proc. of the 2016 AEIT Int’l Annual Conf.

[49] Jakob Nielsen and Thomas K. Landauer. 1993. A Mathematical Model of the
Finding of Usability Problems. In Proc. of the INTERCHI ’93 Conf. on Human
Factors in Computing Systems (INTERCHI ’93). IOS Press, NLD, 206–213.

 https://www.youtube.com/watch?v=p2MdbrTgmso
https://doi.org/10.1007/978-1-4614-8265-9_9
https://doi.org/10.1007/978-3-540-33253-4_11
https://doi.org/10.1007/978-3-540-33253-4_11
https://doi.org/10.1109/RE.2018.00034
https://doi.org/10.1145/3183399.3183408
https://doi.org/10.1145/3183399.3183408
https://doi.org/10.1016/j.jss.2003.11.012
https://doi.org/10.1145/3194317
https://doi.org/10.1109/MS.2002.1020288
https://doi.org/10.1109/MS.2002.1020288
https://doi.org/10.1109/MCOM.2018.1700444
https://doi.org/10.1109/MCOM.2018.1700444
https://doi.org/10.1016/j.scitotenv.2019.03.252

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Cleland-Huang, Van Speybroeck, Vierhauser et al.

[50] John-Paul Ore, Sebastian Elbaum, Amy Burgin, and Carrick De-
tweiler. 2015. Autonomous Aerial Water Sampling. Journal of Field
Robotics 32, 8 (2015), 1095–1113. https://doi.org/10.1002/rob.21591
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21591

[51] Klaus Pohl, Günter Böckle, and Frank van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-Verlag New
York, Inc., Secaucus, NJ, USA.

[52] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. 2005. Jadex: A BDI
reasoning engine. In Multi-agent programming. Springer, 149–174.

[53] Luís Pádua, José Sousa, Jakub Vanko, Jonáš Hruška, Telmo Adão, Emanuel
Peres, António Sousa, and Joaquim J. Sousa. 2020. Digital Reconstitution of
Road Traffic Accidents: A Flexible Methodology Relying on UAV Surveying
and Complementary Strategies to Support Multiple Scenarios. International
Journal of Environmental Research and Public Health 17, 6 (Mar 2020), 1868.
https://doi.org/10.3390/ijerph17061868

[54] Rick Rabiser, Paul Grunbacher, and Deepak Dhungana. 2007. Supporting product
derivation by adapting and augmenting variability models. In Proc. of the 11th
Int’l Software Product Line Conf. IEEE, 141–150.

[55] Anand S Rao, Michael P Georgeff, et al. 1995. BDI agents: from theory to practice..
In ICMAS, Vol. 95. 312–319.

[56] Jennifer Rios. 2019. Firefighters practice using drones to assist ice rescues
, URL: https://www.broomfieldenterprise.com/2019/01/11/firefighters-practice-
using-drones-to-assist-ice-rescues/,Last referenced (2020-05-14). (2019).

[57] Jose Ruiz-Jimenez, Nicola Zanca, Hangzhen Lan, Matti Jussila, Kari Hartonen,
and Marja-Liisa Riekkola. 2019. Aerial drone as a carrier for miniaturized air
sampling systems. Journal of Chromatography A 1597 (04 2019). https://doi.org/
10.1016/j.chroma.2019.04.009

[58] Philipp Schillinger, Mathias Bürger, and Dimos V. Dimarogonas. 2018. Si-
multaneous task allocation and planning for temporal logic goals in het-
erogeneous multi-robot systems. The International Journal of Robotics
Research 37, 7 (2018), 818–838. https://doi.org/10.1177/0278364918774135
arXiv:https://doi.org/10.1177/0278364918774135

[59] SEI, Software Engineering Institute. 2020. Software Product Lines. http://www.
sei.cmu.edu/productlines. (2020).

[60] Vítor E Silva Souza, Alexei Lapouchnian, William N Robinson, and John My-
lopoulos. 2011. Awareness requirements for adaptive systems. In Proc. of the 6th
Int’l Symposium on Software Engineering for Adaptive and Self-managing Systems.
60–69.

[61] Mario Silvagni, Andrea Tonoli, Enrico Zenerino, and Marcello Chiaberge. 2017.
Multipurpose UAV for search and rescue operations in mountain avalanche
events. Geomatics, Natural Hazards and Risk 8, 1 (2017), 18–33. https://doi.org/10.
1080/19475705.2016.1238852 arXiv:https://doi.org/10.1080/19475705.2016.1238852

[62] David R Thomas. 2006. A general inductive approach for analyzing qualitative
evaluation data. American journal of evaluation 27, 2 (2006), 237–246.

[63] Ulrike Thomas, GerdHirzinger, Bernhard Rumpe, Christoph Schulze, andAndreas
Wortmann. 2013. A new skill based robot programming language using uml/p
statecharts. In Proc. of the 2013 IEEE Int’l Conf. on Robotics and Automation. IEEE,
461–466.

[64] Michael Vierhauser, Jane Cleland-Huang, Sean Bayley, Thomas Krismayer, Rick
Rabiser, and Paul Grünbacher. 2018. Monitoring CPS at Runtime - A Case Study
in the UAV Domain. In Proc. of the 44th Euromicro Conf. on Software Engineering
and Advanced Applications, SEAA 2018, Prague, Czech Republic, August 29-31, 2018.
73–80. https://doi.org/10.1109/SEAA.2018.00022

[65] D.M. Weiss and C.T.R. Lai. 1999. Software product-line engineering: a family-based
software development process. Addison-Wesley.

[66] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty HC Cheng, and Jean-Michel
Bruel. 2010. RELAX: a language to address uncertainty in self-adaptive systems
requirement. Requirements Engineering 15, 2 (2010), 177–196.

[67] Michael Wooldridge. 1997. Agent-based software engineering. IEE Proceedings-
software 144, 1 (1997), 26–37.

[68] Nan Zhao, Weidang Lu, Min Sheng, Yunfei Chen, Jie Tang, F Richard Yu, and
Kai-Kit Wong. 2019. UAV-assisted emergency networks in disasters. IEEEWireless
Communications 26, 1 (2019), 45–51.

[69] SD Zhi, YB Wei, and ZH Yu. 2017. Air quality monitoring platform based on
remote unmanned aerial vehicle with wireless communication. In Proc. of the
Int’l Conf. on Future Networks and Distributed Systems. 1–7.

https://doi.org/10.1002/rob.21591
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21591
https://doi.org/10.3390/ijerph17061868
https://doi.org/10.1016/j.chroma.2019.04.009
https://doi.org/10.1016/j.chroma.2019.04.009
https://doi.org/10.1177/0278364918774135
https://arxiv.org/abs/https://doi.org/10.1177/0278364918774135
http://www.sei.cmu.edu/productlines
http://www.sei.cmu.edu/productlines
https://doi.org/10.1080/19475705.2016.1238852
https://doi.org/10.1080/19475705.2016.1238852
https://arxiv.org/abs/https://doi.org/10.1080/19475705.2016.1238852
https://doi.org/10.1109/SEAA.2018.00022

	Abstract
	1 Introduction
	2 Eliciting and Specifying Use Cases
	2.1 Drone Response System
	2.2 Requirements Discovery
	2.3 A Use Case Driven Approach

	3 Requirements-Level PL Model
	3.1 Modeling the PL
	3.2 Requirements Modeling

	4 Mission Configuration
	4.1 The DroneResponse Configuration Process
	4.2 Deployable Configuration
	4.3 Implementation

	5 Evaluation and Analysis
	6 Threats to Validity
	7 Related Work
	8 Conclusions
	References

