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a b s t r a c t

Parameter identifiability is a structural property of an ODE model for recovering the values of
parameters from the data (i.e., from the input and output variables). This property is a prerequisite for
meaningful parameter identification in practice. In the presence of nonidentifiability, it is important
to find all functions of the parameters that are identifiable. The existing algorithms check whether a
given function of parameters is identifiable or, under the solvability condition, find all identifiable
functions. However, this solvability condition is not always satisfied, which presents a challenge.
Our first main result is an algorithm that computes all identifiable functions without any additional
assumptions, which is the first such algorithm as far as we know. Our second main result concerns
the identifiability from multiple experiments (with generically different inputs and initial conditions
among the experiments). For this problem, we prove that the set of functions identifiable from multiple
experiments is what would actually be computed by input–output equation-based algorithms (whether
or not the solvability condition is fulfilled), which was not known before. We give an algorithm that
not only finds these functions but also provides an upper bound for the number of experiments to be
performed to identify these functions. We provide an implementation of the presented algorithms.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In this paper, we study structural parameter identifiability of
ational ODE systems. Roughly speaking, a parameter is struc-
urally identifiable if its value can be recovered from the ob-
ervations assuming continuous noise-free measurements and
ufficiently exciting inputs (also referred to as the persistence of
xcitation, see [1,2]). If not all of the parameters of a model are
dentifiable, the next question usually is what rational functions
(µ̄) ∈ C(µ̄) of the parameters µ̄ are identifiable. The knowledge
f identifiable functions can be used in these ways:

• If the functions of interest to the modeler are identifiable,
then the lack of identifiability of some parameters is not an
issue (sometimes, this is even an advantage [3]).
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• Identifiable functions can be used to find an identifiable
reparametrization of the model [4–6], which is a way of
improving the model.

• Knowledge of identifiable functions can be used to discover
parameter transformations that preserve the input–output
behavior and thus could provide additional insights to the
modeler (see Section 5.2).

To the best of our knowledge, all existing approaches to com-
puting identifiable functions extract them from the coefficients of
input–output equations (going back to [7]; for a concise summary,
we refer to [8, Introduction and Algorithm II.1]). To conclude that
the coefficients of an input–output equation are identifiable, one
can, for example, verify if the solvability condition [9, Remark 3]
holds for the equation. The condition can be checked by an
algorithm (see [10, Section 4.1] and [11, Section 3.4]) and holds
for some classes of models [8]. If the condition does not hold,
then this approach of finding identifiable functions of parame-
ters is not applicable but is still used by some of the existing
software packages, including DAISY and COMBOS. This is a reason
why these tools may miss the non-identifiability of some of the
parameters in such systems. For a simple example of a system for
which this condition does not hold, see [12, Example 2.14] (see
also Sections 5.2 and 5.3 ).
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Therefore, we are not aware of any prior algorithm that can
compute all identifiable functions (e.g., by computing generators
of the field of identifiable functions). Note that some existing
software can, for any fixed rational function of parameters, check
whether it is identifiable [13, Remark 1]. However, looking for all
identifiable functions, it is not known in advance what functions
of parameters to test for identifiability, so this approach cannot
be used as an algorithm.

The above issues motivate the following questions (which
remained unanswered as far as we know) we study in this paper:

(Q1) How to find the identifiable functions of a model even if
the solvability condition does not hold?

(Q2) If the solvability condition does not hold, what is the mean-
ing of the coefficients of the input–output equations?

Our main results are the following answers to these questions:

• We answer (Q1) by providing Algorithm 1 for computing
generators of the field of identifiable functions. This is the
first such algorithm and is based on our theory established
in Theorem 11.

• We show in Theorem 19 that the coefficients of the input–
output equations are generators of the field of functions
identifiable from multiple experiments (with generically dif-
ferent inputs and initial conditions among the experiments
[14]), thus answering (Q2). To the best of our knowledge,
this natural interpretation of the coefficients of the input–
output equations has not been known before despite the
popularity of this method. Furthermore, we use this to
derive the first upper bound for the number of such experi-
ments, which can be used further for experimental
design (e.g., for protocols such as [15, Section 7]). The
multi-experiment setup is natural, for example, for models
involving constant inputs [16].

The theoretical basis for this work uses differential algebra
and commutative algebra. We employ characteristic sets, a tool
from computational algebra. The key difference with the prior
algorithms based on characteristic sets is that we provide a math-
ematically sound way to treat a typically ignored case in which
the solvability condition is not satisfied. To achieve this, we
analyze the Wronskians of the monomials of characteristic sets
using methods from linear algebra. Our results are informed by
model theory in the sense of mathematical logic, though this does
not appear explicitly in our presentation. We elaborate on this
connection in a follow-up work [17]. Additional related results
on identifiability using input–output equations and differential
algebra include [9,18–26].

The rest of the paper is organized as follows. Section 2 contains
definitions and notation that we use. In Section 3, we give our
algorithm for computing the generators of the field of identifiable
functions, which is based on the theory we present in this section
as well. Section 4 is on theory for multi-experimental identifi-
ability. We illustrate our methods with examples in Section 5.
We prove our main results in Appendix A. In the other remaining
appendices, we present and prove correctness of two algorithms
that are used in our main algorithmic contributions and also
provide a mathematical discussion, illustrated with examples, on
our main theorems.

We have implemented Algorithm 1 and an algorithm for
computing the bound from Theorem 19 (as in Remark 23) in
Maple. A Maple implementation together with the examples
from Section 5 is available at https://github.com/pogudingleb/
AllIdentifiableFunctions. This implementation has recently been
incorporated into a freely available web app https://maple.cloud/
app/6509768948056064/.
2

2. Basic notions and notation

In this section, we will present the basic notions and notation
from differential algebra and parameter identifiability that are
essential for our main results.

2.1. Background and notation from differential algebra

Differential algebra has been a standard theory behind identi-
fiability, and we will simply fix the basic notation. General refer-
ences include [27,28]. For other presentations of these concepts
in the context of control theory, see [1,9,29,30].

Notation 1 (Differential Rings and Ideals).

(a) A differential ring (R, ′) is a commutative ring with a deriva-
tion ′

: R → R, that is, a map such that, for all a, b ∈ R,
(a+ b)′ = a′

+ b′ and (ab)′ = a′b+ ab′. A differential field is
a differential ring that is a field. For i > 0, a(i) denotes the
i-th order derivative of a ∈ R. Const(K ) denotes the field of
constants of a differential field K .

(b) The ring of differential polynomials in the variables z1, . . . , zn
over a differential field (K , ′) is the ring

K
[
z(i)j | i ⩾ 0, 1 ⩽ j ⩽ n

]
with a derivation defined on the ring by

(
z(i)j

)′
:= z(i+1)

j .
This differential ring is denoted by K {z1, . . . , zn}.

(c) For differential fields F ⊂ L and a1, . . . , an ∈ L, the smallest
differential subfield of L that contains F and a1, . . . , an is
denoted by F⟨a1, . . . , an⟩.

(d) For a commutative ring R and a subset F ⊂ R, the smallest
ideal containing F is denoted by (F ).

(e) An ideal I of a differential ring (R, ′) is called a differential
ideal if, for all a ∈ I , a′

∈ I . For F ⊂ R, the smallest
differential ideal containing F is denoted by [F ].

(f) For an ideal I and element a in a ring R, we denote I: a∞
=

{r ∈ R | ∃n: anr ∈ I}. This set is also an ideal in R.
This will be useful for dealing with ODE systems in which
(non-polynomial) rational functions appear.

(g) For a1, . . . , an in a differential ring R, we denote the n × n
matrix with (i, j)-entry a(i−1)

j by Wr(a1, . . . , an) and call it
the Wronskian of a1, . . . , an. For example,

Wr(a1, a2) =

(
a1 a2
a′

1 a′

2

)
.

The rest of the definitions in this section generalize Gaussian
elimination to systems of non-linear ODEs. Differential rank-
ings are analogous to ordering of variables in Gaussian elimina-
tion; characteristic sets and presentations are analogous to row
echelon form and reduced row echelon forms, respectively.

Definition 2. A differential ranking is a total order > on Z :=

{z(i)j | i ⩾ 0, 1 ⩽ j ⩽ n} satisfying:

∀ x ∈ Z x′ > x and ∀ x, y ∈ Z (x > y H⇒ x′ > y′).

Notation 3. For f ∈ K {z1, . . . , zn}\K and a differential ranking,

• lead(f ) is the element of
{
z(i)j | i ⩾ 0, 1 ⩽ j ⩽ n

}
of the

highest rank appearing in f . This is partly analogous to the
leading variable in Gaussian elimination.

• The leading coefficient of f viewed as a polynomial in lead(f )
is called the initial of f . This is similar to the leading coeffi-
cient in Gaussian elimination.

• The separant of f is ∂ f
∂ lead(f ) . One can show that it is equal to

the leading coefficient of any derivative of f .

https://github.com/pogudingleb/AllIdentifiableFunctions
https://github.com/pogudingleb/AllIdentifiableFunctions
https://github.com/pogudingleb/AllIdentifiableFunctions
https://maple.cloud/app/6509768948056064/
https://maple.cloud/app/6509768948056064/
https://maple.cloud/app/6509768948056064/
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• The rank of f is rank(f ) = lead(f )deglead(f ) f . The ranks are
compared first by lead, and in the case of equality, by
deg. This is analogous to the leading variable in Gaussian
elimination/leading term in Gröbner bases.

• For S ⊂ K {z1, . . . , zn}\K , the product of initials and sepa-
rants of S is denoted by HS . This is used in handling division
with remainder algebraically.

efinition 4 (Characteristic Sets).

• For f , g ∈ K {z1, . . . , zn}\K , f is said to be reduced w.r.t. g if
no proper derivative of lead(g) appears in f and deglead(g) f <

deglead(g) g .
• A subset A ⊂ K {z1, . . . , zn}\K is called autoreduced if, for all

p ∈ A, p is reduced w.r.t. every element of A \ {p}. Every
autoreduced set is finite [27, Section I.9].

• Let A = A1 < · · · < Ar and B = B1 < · · · < Bs be
autoreduced sets ordered by their ranks (see Notation 3).
We say that A < B if

– r > s and rank(Ai) = rank(Bi), 1 ⩽ i ⩽ s, or
– there exists q such that rank(Aq) < rank(Bq) and, for all

i, 1 ⩽ i < q, rank(Ai) = rank(Bi).

• An autoreduced subset of the smallest rank of a differen-
tial ideal I ⊂ K {z1, . . . , zn} is called a characteristic set of
I . One can show that every non-zero differential ideal in
K {z1, . . . , zn} has a characteristic set.

efinition 5 (Characteristic Presentation). (cf. [31, Definition 3])
polynomial is said to be monic if at least one of its coefficients

s 1. This is how monic is typically used in identifiability analysis
nd not how it is used in [31]. A set of polynomials is said to be
onic if each polynomial in the set is monic.
Let C be a monic characteristic set of a prime differential

deal P ⊂ K {z1, . . . , zn}. Let N(C) denote the set of non-leading
ariables of C. Then C is called a characteristic presentation of P if
ll initials of C belong to K [N(C)] and none of the elements of C

has a factor in K [N(C)].

2.2. Parameter identifiability for ODE models

Consider an ODE system of the form

Σ =

{
x̄′

= f̄ (x̄, µ̄, ū),
ȳ = ḡ(x̄, µ̄, ū),

(1)

where x̄: a vector of state variables, ȳ: a vector of output variables,
µ̄: a vector of time-independent parameters, ū: a vector of input
variables, and f̄ and ḡ: tuples of elements of C(x̄, µ̄, ū).

Bringing f̄ and ḡ to the common denominator, write f̄ = F̄/Q
and ḡ = Ḡ/Q , for F1, . . . , Fn,G1, . . . ,Gm,Q ∈ C[x̄, µ̄, ū]. Consider
the (prime, see [12, Lemma 3.2]) differential ideal

IΣ := [Qx′

i − Fi,Qyj − Gj, 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m]:Q∞.

Note that every solution of (1) is a zero of every element of IΣ .

Definition 6 (Generic Solution, cf. [32,33]). The image of (x̄, ȳ, ū)
under the canonical homomorphism

C(µ̄){x̄, ȳ, ū} → C(µ̄){x̄, ȳ, ū}/IΣ

is called the generic solution of (1).

Rigorously written definitions of identifiability in analytic
terms can be found in [8, Definition 1] and [12, Definition 2.5].
[12, Proposition 3.4] implies that the following is an equivalent
definition of identifiability, which we will use.
3

Definition 7 (Identifiability). A function h ∈ C(µ̄) is said to be
(single-experiment, or SE-) identifiable for (1) if, for every generic
solution (x̄∗, ȳ∗, ū∗) of (1), we have h ∈ C⟨ȳ∗, ū∗

⟩.

Definition 8 (Input–Output Equations, Cf. [34, Definition 4.1]). For a
fixed differential ranking > on (ȳ, ū), the set of input–output equa-
tions (IO-equations) of the system Σ from (1) is the characteristic
presentation of IΣ ∩ C{ȳ, ū}.

It can be computed by computing the characteristic presen-
tation C of IΣ with respect to the differential ranking that is
compatible with > and in which any derivative from x̄ is greater
than any derivative from (ȳ, ū), and returning C ∩C{ȳ, ū} (e.g., by
the Rosenfeld–Gröbner algorithm [35]).

In Sections 3 and 4, we will present our two main results,
Theorems 11 and 19. The former is the main theoretical ingredi-
ent for our Algorithm 1 to find all single-experiment identifiable
functions of parameters. The latter is a key to calculating a bound
for a sufficient number of experiments to check identifiability of
multi-experiment identifiable functions of parameters. Both main
results are used in our software implementations referenced in
the introduction. We prove our main results in Appendix A.

3. Main result: Single-experiment identifiability

In this section, we give an algorithm to compute all functions
of the parameters that are identifiable from a single experiment
for system (1). We begin with a construction in Section 3.1,
which is a refinement of considering Wronskians of monomials
(cf. [8,10,11,33]). Using this, we give an algebraic characterization,
Theorem 11 (our first main result), of the identifiable functions,
which we turn into Algorithm 1. The proof of Theorem 11 can be
found in Appendix A.1.

3.1. Preparation for Theorem 11

To find the identifiable functions, we will begin with a new
construction. Let K be a differential field and k a constant subfield
such that C ⊂ k and let ā = (a1, . . . , an) ∈ K n. For p ∈ k{z̄}, where
z̄ = (z1, . . . , zn), such that p(ā) = 0, we construct a subfield
F (p) ⊂ K as follows:

1. Let Wp denote the Wronskian (see Notation 1(g)) of the
monomials of p evaluated at ā.

2. Define F (p) to be the field generated over C by (the non-
leading) entries in the reduced row echelon form of Wp.

Example 9. Let K = C(x), n = 2, ā = (x + 1, 2/(x + 1)), and
p = z ′

1 − 2z1z2 + 3. Then the monomials of p are z ′

1, z1z2, and 1,
their Wronskian and its evaluation at ā are⎛⎝ z ′

1 z1z2 1
z ′′

1 (z1z2)′ 0
z ′′′

1 (z1z2)′′ 0

⎞⎠ and Wp =

(1 2 1
0 0 0
0 0 0

)
,

which is already in reduced row echelon form, and so F (p) =

C(1, 2, 1) = C. For examples in which F (p) is strictly greater
than C, see Example 14 and Section 5.2. There, evaluation of the
Wronskian at a point is by differential ideal calculations.

For a tuple p̄ ⊂ k{z̄} of differential polynomials,

F (p̄) := C(F (p) | p ∈ p̄).

Lemma 10. For every p ∈ k{z̄} such that p(ā) = 0, we have
F (p) ⊂ C⟨ā⟩.

Proof. Follows from all entries of Wp being from C⟨ā⟩. □
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.2. Statement of main result

We will now show that the problem of finding the field of
dentifiable functions is reduced to computing the intersection of
ields of constants defined by their generators. This is a key step
n Algorithm 1 to find the field of all identifiable functions.

heorem 11 (Single-experiment Identifiability). For system (1), the
ield of identifiable functions is equal to

C(µ̄) ∩ F (p̄),

here p̄ is a set of input–output equations of (1) (Definition 8).

Remark 12. Similarly to Theorem 19, the statement of Theo-
em 11 remains true if, in the calculation of F (p̄), for each p, one
eplaces the Wronskian of the monomials evaluated at ā by the
ronskian of any q1, . . . , qn ∈ C{z} evaluated at ā such that
=
∑n

i=1 ciqi for some c1, . . . , cn ∈ k.

.3. An algorithm for computing all identifiable functions

In this section, we present an algorithm that computes gen-
rators of the field of all identifiable functions of system (1). We
lso give an example following the algorithm step by step.

Algorithm 1 Computing all identifiable functions

Input System Σ as in (1)

Output Generators of the field of identifiable functions of Σ

(Step 1) Compute a set p̄ of input–output equations of Σ (see
Definition 8).

(Step 2) For each p ∈ p̄, compute W̃p the Wronskian of the
monomials of p. Compute Wp by replacing each y(j)i in W̃p
with the jth Lie derivative of gi with respect to Σ (gi’s are
the same as in (1)).

(Step 3) For each p ∈ p̄, calculate the reduced row echelon form
of the matrix Wp and let F (p̄) be the field generated over
C by all non-leading coefficients of all matrices Wp. By [12,
Lemma 3.1] and Remark 25, the generators of F (p̄) belong
to C(µ̄, x̄).

(Step 4) Apply Algorithm 2 to find generators of C(µ̄) ∩ F (p̄).
Return these generators.

Remark 13. In practice, the runtime of the algorithm depends on
the chosen ranking, and it would be interesting to have a way to
choose the ranking based on the problem.

Example 14 (Computing Identifiable Functions – Illustration). To
illustrate, we will follow Algorithm 1 for the system:

Σ =

⎧⎨⎩
x′

1 = 0,
x′

2 = x1x2 + ax1u + bu,
y = x2

here x̄ = (x1, x2), ȳ = (y), µ̄ = (a, b), ū = (u). This system is a
ariant of the example from [17, Section 5].

Step 1) For the elimination differential ranking with x1 > x2 >

y > u, a calculation shows that

x1y − ax1u − y′
− bu, x2 − y,

yy′′
− auy′′

− y′2
+ au′y′

− buy′
+ bu′y
4

is a monic characteristic presentation for IΣ . Therefore, p̄ = (p),
where p = yy′′

− auy′′
− y′2

+ au′y′
− buy′

+ bu′y.
Step 2) The Wronskian W̃p = Wr(u′y, uy′, u′y′, y′2, uy′′, yy′′) is
computed (too large to be displayed here). Then, to compute
Wp, all derivatives of y are replaced with the corresponding Lie
derivatives of x2, for example:

y → x2, y′
→ x1x2 + ax1u + bu,

y′′
→ x1(x1x2 + ax1u + bu) + ax1u′

+ bu′.

Step 3) A calculation shows that the corresponding reduced row
echelon form is:⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 −x1 −ax1 − b
0 1 0 0 x1 ax1 + b
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ .

Therefore, F (p̄) = C(ax1 + b, x1).
Step 4) By Theorem 11, the field of identifiable functions is

C(a, b) ∩ C(ax1 + b, x1).

Applying Algorithm 2, we find that

C(a, b) ∩ C(ax1 + b, x1) = C, (2)

so there are no nontrivial identifiable functions in this model.

. Main result: Multi-experiment identifiability

In this section, we show that the coefficients input–output
quations generate the field of multi-experiment identifiable
unction and derive a generally tight upper bound for the number
f independent experiments for system (1) sufficient to recover
he field of multi-experiment identifiable functions of parame-
ers. These results are stated in Section 4.1 and proven in
ppendix A.2. We apply them to specific examples from the
iterature in Section 5. The tightness of the bound from the
athematical point of view is discussed in the Appendix.

.1. Preparation for Theorem 19

efinition 15 (Input–output Identifiable Functions). A function of
arameters h ∈ C(µ̄) in system (1) is said to be input–output
IO) identifiable if h can be expressed as a rational function of the
oefficients of the IO-equations of system (1) (see Definition 8),
ee also [8, Definition 2] and [13, Corollary 1].

As shown in [13, Section 4.1], every identifiable function is
nput–output identifiable but not every input–output identifiable
unction is necessarily identifiable.

efinition 16 (Multi-experiment Identifiability, cf. [14]). A function
f parameters h ∈ C(µ̄) in system (1) is said to be multi-
xperiment identifiable (ME-identifiable) if there exists N ⩾ 1 such
hat h is identifiable in the following ‘‘N-experiment’’ system

ΣN :=

{
x̄′

i = f (x̄i, µ̄, ūi),
ȳi = g(x̄i, µ̄, ūi),

1 ⩽ i ⩽ N. (3)

e also say that h is N-experiment identifiable in this case.

The intuition behind Definition 16 is that several independent
xperiments are conducted, each ‘‘copy’’ of (1) within (3) repre-
enting one of these experiments. This way, the parameter values
re the same across the experiments but, for each experiment,
ndependent initial conditions and inputs are chosen. Note that
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he multi-experiment setup provides at least the same amount
f information as the single-experiment. In particular,

E-identifiability H⇒ ME-identifiability,

hich also follows formally from Definitions 7 and 16.

xample 17 (Illustrating the Definition). Consider the system (in-
entionally simple to illustrate the definition)⎧⎨⎩

x′

1 = 0
y1 = x1
y2 = θx1 + θ2,

(4)

n which θ is the unknown parameter. Since (4) implies a
uadratic equation y2 = θy1 + θ2 in θ , so θ is locally identi-
iable. On the other hand, by [12, Example 2.14], θ is not glob-
lly identifiable. Consider now the corresponding 2-experiment
ystem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x′

1,1 = x′

2,1 = 0
y1,1 = x1,1
y1,2 = θx1,1 + θ2

y2,1 = x2,1
y2,2 = θx2,1 + θ2.

he extra experiment yields an extra equation y2,2 = θy2,1 + θ2

n addition to y1,2 = θy1,1 + θ2 we had from (4). Due to this, by
solving for θ , one obtains

θ =
y2,2 − y1,2
y2,1 − y1,1

∈ C(y1,1, y1,2, y2,1, y2,2) ⊂ C⟨y1,1, y1,2, y2,1, y2,2⟩,

nd so θ is multi-experiment identifiable according to Defini-
ions 7 and 16 by taking N = 2.

emark 18. SIAN [36] (see also [13, Remark 2.3]) is software
hat can check (SE-) global and local identifiability of any given
unction h ∈ C(µ̄) of parameters of an ODE model Σ . If h is glob-
lly ME-identifiable, then, running SIAN on models of the form
N (see (3)) for N = 1, 2, . . ., one will in principle eventually

ind this out. However, if h is not globally ME-identifiable, one
will not be able to conclude this from assessing SE-identifiability
of ΣN without a bound on the number of experiments (provided
by Theorem 19).

On the other hand, one could use SIAN to find the sufficient
number of experiments given a set of generators of the field of
ME-identifiable functions. Indeed, for each of these generators,
there is an N such that the generator is SE-identifiable in ΣN ,
o the sufficient number of experiments can be taken as the
aximum of these Ns. However, this approach works only if

generators of the field of ME-identifiable functions are known in
advance. Theorem 19 and an algorithm to compute IO-equations
(Definition 8) yield an algorithm to find such generators.

4.2. Statement of main result

Theorem 19 (Multi-experiment Identifiability). A function of param-
eters h ∈ C(µ̄) in system (1) is multi-experiment identifiable if and
only if it is input–output identifiable in system (1).

Moreover, if h is multi-experiment identifiable, then, for all

N ⩾ max
1⩽i⩽m

(si − ri + 1),

h is identifiable in the N-experiment system, where si and ri are
defined by the following:

• p̄ = p1, . . . , pm is a set of input–output equations of sys-
tem (1), and for all i, 1 ⩽ i ⩽ m,
5

– we write

pi = fi,si+1 +

si∑
j=1

ci,jfi,j, (5)

where fi,j ∈ C{ȳ, ū} and linearly independent over C (so,
si is the length of such a presentation of pi minus 1),

– ri := rankWr(fi,1(ȳ, ū), . . . , fi,si (ȳ, ū)) modulo IΣ .

xample 20 (Degenerate Wronskian). The goal of this intentionally
imple example is to demonstrate that the Wronskians in the
heorem can indeed be singular. Consider system (4) again. A
alculation shows that

p̄ =
{
y′

1, y2 − θy1 − θ2}
s a set of IO-equations for (4). Then m = 2, s1 = 0, and s2 = 2.
e have

Wr(y1, 1) =

(
y1 1
y′

1 0

)
mod IΣ =

(
x1 1
0 0

)
,

nd so r2 = 1. From [12, Example 2.14], θ is not (globally)
dentifiable (so, we cannot take N = 1). By Theorem 19, for all

N ⩾ 2 − 1 + 1 = 2,

he field of ME-identifiable functions C(θ, θ2) = C(θ ) is N-
xperiment identifiable.

emark 21. In some works (e.g., [37, Section 3.1]), it was sug-
ested that the Wronskians of monomials in a characteristic set
e always of corank one (ri = si in the notation of Theorem 19).
s Example 20 (see also Sections 5.2 and 5.3 ) shows, this is not
he case.

.3. Computational aspects

emark 22 (Dependence on Decomposition (5)). For fixed input–
utput equations p1, . . . , pm, the bound given by Theorem 19
ay depend on the choice of decomposition (5), see Example 31.

n Appendix D, we give an algorithm to compute a representation
ielding the best possible bound (compared to other representa-
ions). We use this algorithm in our implementation.

emark 23 (Computing the Bound). The rank of the Wronskian
atrix from Theorem 19 can be found by:

1. Calculating the Wronskian matrix in ȳ, ū,
2. For each matrix entry, computing its differential remain-

der [27, Section I.9] with respect to the characteristic set
defined by Σ , and

3. Applying a (symbolic) algorithm for rank computation.

he correctness follows from [12, Lemma 3.1]. Before computing
he rank, one can evaluate the Wronskian at a point. Since the
ank cannot increase after an evaluation, the resulting bound
ill always be correct although might be larger than the bound

rom Theorem 19.

emark 24. The bound for N from Theorem 19 can be im-
proved if some of the output variables are constant as discussed
in Section 5.3. Constant outputs arise, e.g., to encode the case
of constant inputs, which is common in some application do-
mains [16]. The general idea of the refinement is first to treat the
constant outputs as parameters, apply Theorem 19 to the rest of
the outputs, and then use simultaneous rational interpolation to
extract the coefficients with respect to the constant outputs.
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. Examples

We illustrate our results with 3 examples. In Section 5.1,
otka–Volterra model with control, we show that the SE-
dentifiable and ME-identifiable functions coincide, so one can
ind the generators of the field of identifiable functions from the
oefficients of the IO-equations. The second example (Section 5.2)
s a chemical reaction exhibiting the slow–fast ambiguity [38].
ere, the bound from Theorem 19 is exact, and yields that all

parameters are identifiable from 2 experiments. In Section 5.3, we
how another Lotka–Volterra model, for which some of the pa-
ameters become identifiable only after 2 experiments. For other
odels with more ME-identifiable functions than SE-identifiable
nes, we refer to [16, Section III]. Finally, in Section 5.4, we apply
ur results to the SEIR epidemiological model studied in [39].
All the computations for the examples in this section can be

erformed automatically using our implementation. The corre-
ponding files can be found in the examples folder in the repos-
tory https://github.com/pogudingleb/AllIdentifiableFunctions.

.1. Lotka–Volterra model with control

Consider the following system

Σ =

⎧⎨⎩
x′

1 = ax1 − bx1x2,
x′

2 = −cx2 + dx1x2 + eu,
y = x1,

in which a, b, c, d, e are the unknown parameters and u is the in-
put (control). With Theorem 19, we show that, for this model, the
fields of SE-identifiable and of ME-identifiable functions coincide.
A computation shows that the IO-equation is:

p̄ = (yy′′
− y′2

− dy2y′
+ cyy′

+ ady3 − beuy2 − acy2),

so, in the notation of Theorem 19, m = 1 and, for f1 = y2y′,
2 = yy′, f3 = y3, f4 = uy2, f5 = y2, and f6 = yy′′

− y′2, we have
1 = 5. A computation shows that

r1 := rank(Wr(f1, f2, f3, f4, f5) mod IΣ ) = 5.

y Theorem 19, for any

N ⩾ 5 − 5 + 1 = 1

he ME-identifiable functions are identifiable from N experiments
(cf. [8, Main Results 1 and 2]). In particular, 1 experiment is suffi-
cient. Hence, by Theorem 19, the field of SE-identifiable functions
is C(d, c, ad, be, ac) = C(a, be, c, d).

5.2. Slow–fast ambiguity in chemical reactions

In this example, we consider the system [36, Section A.1,
equation (3)]. This system originates from the following chemical
reaction network [38, equation (1.1)]:

A
k1
−→ B

k2
−→ C .

Then the quantities xA, xB, and xC of species satisfy the system:⎧⎨⎩
x′

A = −k1xA,
x′

B = k1xA − k2xB,
x′

C = k2xB.
(6)

The observed quantities will be

• y1 = xC , the concentration of C;
• y2 = εAxA + εBxB + εCxC , which may represent a property of
the mixture, e.g. absorbance or conductivity [38, p. 701].

6

As explained in [38, p. 701], in practice, xB might be hard to
isolate, so εB is also an unknown parameter, while the values εA
and εC can be assumed to be known but could depend on A, C ,
and the details of the experimental setup. The assumption that εA
and εC are known can be encoded into the ODE system by making
them state variables with zero derivatives and adding outputs to
make them observable. This will yield the following final ODE
model (the same as [36, Section A.1, equation (3)]):

Σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′

A = −k1xA,
x′

B = k1xA − k2xB,
x′

C = k2xB,
ε′

A = ε′

C = 0,
y1 = xC ,
y2 = εAxA + εBxB + εCxC ,
y3 = εA,

y4 = εC ,

(7)

where x̄ = (xA, xB, xC , εA, εC ), ȳ = (y1, y2, y3, y4), and µ̄ =

(k1, k2, εB). As noted in [38] (see also [36, Section A.1]), this
model has slow–fast ambiguity: it is possible to recover a pair of
numbers {k1, k2} from the observations but impossible to know
which one is k1 and which one is k2. A similar phenomenon
occurs in epidemiological models, see [39, Proposition 2].

We start with assessing the SE-identifiability of the model (7)
using Algorithm 1 to find the field of identifiable functions.
For (Step 1), a calculation in Maple shows that the following set
p̄ = {p1, p2, p3, p4} is a set of IO-equations of (7):

p1 = k1k2(y2 − y1y4) − εBk1y′

1 − k2y′

1y3 − y′′

1y3,
p2 = y′′′

1 + (k1 + k2)y′′

1 + k1k2y′

1, p3 = y′

3, p4 = y′

4.

In (Step 2) and (Step 3), we compute the reduced row ech-
elon forms of Wp1 = Wr(y2, y1y4, y′

1, y
′

1y3, y
′′

1y3) and Wp2 =

Wr(y′′

1, y
′

1, y
′′′

1 ) modulo the equations Σ and obtain the matrices⎛⎜⎜⎜⎝
1 0 0 0 k1k2
0 1 0 0 −k1k2
0 0 1 εA −(εAk2 + εBk1)
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎠ ,

(1 0 −k1k2
0 1 −(k1 + k2)
0 0 0

)
,

respectively. Wp3 and Wp4 are 1 × 1 matrices with the reduces
row echelon form (1). Therefore,

F (p̄) = C(k1 + k2, k1k2, εA, εAk2 + εBk1).

Before going to (Step 4), we show that this intermediate result of
computation can provide additional insights, for example, recover
the parameter transformation corresponding to the slow–fast
ambiguity [38, equation (1.3)]. From the proof of Theorem 11,
F (p̄) consists of identifiable constants. So, any parameter trans-
formation induces an automorphism α of the constants over F (p̄).
Since k1 + k2 and k1k2 are identifiable, α(k1) = k1 and α(k2) = k2
or α(k1) = k2 and α(k2) = k1. Consider the latter case. Since
εA ∈ F (p̄), we have α(εA) = εA. Hence,

εAk2 + εBk1 = α(εAk2 + εBk1) = εAk1 + k2α(εB),

so α(εB) = εA +
k1(εB−εA)

k2
, giving the transformation [38, (1.3)]:

k1 → k2, k2 → k1, εA → εA, εB → εA +
k1(εB − εA)

k2
. (8)

Finally, in (Step 4), we compute

C(k1, k2, εB) ∩ F (p̄) = C(k1k2, k1 + k2).

Now we will consider model (7) in the multi-experiment
setup in which one is allowed to perform several experiments

https://github.com/pogudingleb/AllIdentifiableFunctions
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ith the same k1, k2, εB but different initial concentrations and
εA, εC . We will show that, in this setup, the ambiguity can be
resolved by one extra experiment. The first part of Theorem 19
implies that the field of ME-identifiable functions is generated by
the coefficients of p̄, so it equals

C(k1k2, εBk1, k2, k1 + k2) = C(k1, k2, εB).

Therefore, all the parameters can be identified from several ex-
periments. Now we use the bound from Theorem 19 to find
he number of experiments sufficient to make all the parameter
dentifiable. In the notation of the theorem, for i = 1, we take

f1,1 = y2 − y1y4, f1,2 = y′

1, f1,3 = y′

1y3, f1,4 = y′′

1y3,

nd so s1 = 3. A calculation in Maple shows that

r1 = rankWr(f1,1, f1,2, f1,3) mod IΣ = 2.

o the Wronskian does not always have full rank in practical
xamples either. For i = 2, f2,1 = y′′

1 , f2,2 = y′

1, so s2 = 2, and

r2 = rankWr(f2,1, f2,2) mod IΣ = 2.

inally, f3,1 = y′

3 and f4,1 = y′

4, and so s3 = s4 = 0. Thus, all
arameters are N-identifiable for all

N ⩾ max(3 − 2 + 1, 2 − 2 + 1, 0 − 0 + 1, 0 − 0 + 1) = 2.

his bound is tight because, as we demonstrated earlier, neither
f the parameter is identifiable from a single experiment.

.3. Lotka–Volterra model with ‘‘mixed’’ output

In this example, we will illustrate the refinement of the bound
n the number of experiments mentioned in Remark 24 on the
ollowing variant of the Lotka–Volterra model:

Σ =

⎧⎨⎩
x′

1 = ax1 − x1bx2,
x′

2 = −cx2 + dx1x2,
y = ex1 + fx2,

here we assume that a, b, c, d, e are unknown parameters and
is a known parameter that takes different values if multiple
xperiments are conducted. In the context of our differential
lgebra setup, this can be encoded as follows:

Σ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x′

1 = ax1 − bx1x2,
x′

2 = −cx2 + dx1x2,
f ′

= 0,
y1 = ex1 + fx2,
y2 = f

(9)

ur implementation shows that the field of ME-identifiable func-
ions is

C(a, b, c, d/e). (10)

n particular, a, b, c are ME-identifiable, d and e are not but their
atio is.

We now discuss the number of experiments for globally iden-
ifying the functions (10). A straightforward application of The-
rem 19 yields a bound 35 (Wronskian of dimension 51 and
ank 17). 35 could be viewed as a rather high number of experi-
ents and is far from the actual number (2, as shown below).
We can get a better bound equal to 4 using the same Theo-

em 19 as follows. Observe that, since y2 is constant, then there
ill be the following input–output equations for the model: y′

2 =

and p = 0, where p is a differential polynomial y1 and y2

ver C(µ̄) of zero order in y2. We observe that, if one replaces

7

2 in p = 0 with f , the resulting equations will be the input–
utput equations for the following simplified model, in which f
s considered as a scalar parameter:

Σ =

⎧⎨⎩
x′

1 = ax1 − bx1x2,
x′

2 = −cx2 + dx1x2,
y = ex1 + fx2,

(11)

ur implementation shows that the bound for this model is one,
o SE-identifiable and ME-identifiable functions for this model
re the same. In particular the coefficients of the monic input–
utput equation of (11) are identifiable from a single experiment.
hese coefficients are rational function in f over C(a, b, c, d, e).
e write them as C1/C, . . . , Cs/C , where C, C1, . . . , Cs are poly-
omials in f over C(a, b, c, d, e), and C is monic. We denote
he number coefficients not belonging to C in C, C1, . . . , Cs by
, n1, . . . , ns, respectively. Then these coefficients can be deter-
ined uniquely from

max
(
n + min

1⩽i⩽s
ni,max

1⩽i⩽s
ni

)
.

valuations for different values of f . To show this, assume that
1 = min1⩽i⩽s ni. Then n + n1 evaluations are sufficient to recon-
truct coefficients of C1/C as a rational function in f . Then, once
he coefficients of C are known, evaluations of C2/C, . . . , Cs/C
an be used to find the coefficients of C2, . . . , Cs via polynomial
nterpolation. In this example, n = 2, min1⩽i⩽s ni = 2, and
ax1⩽i⩽s ni = 4, so four evaluations (that is, four experiments
ith different known values of f will be enough).
The obtained bound 4 is close to the exact bound 2, which can

e obtained using Theorem 19 and SIAN as follows. Using SIAN,
e obtain that a, b, c, d/e are only locally identifiable (from one
xperiment), so N > 1. Running SIAN for 2 experiments shows
hat the functions (10) are 2-experiment globally identifiable.
ince from Theorem 19 we know that these functions generate all
E-identifiable functions, we conclude that N = 2. Replication of

he system makes it substantially more challenging for SIAN, so
his approach might be impractical if N is large, while computing
he bound above may be feasible.

.4. SEIR epidemiological model

Structural identifiability of the following epidemiological
odel has been considered in [39, Equation 2.2]⎧⎪⎪⎨⎪⎪⎩

S ′
= −β SI

N ,

E ′
= β SI

N − ηE,

I ′ = ηE − αI,
R′

= αI,

(12)

here N is the total population which is constant and known. The
ollowing two setups are considered in [39]:

• Prevalence observation. In this case, these is an output y1 = I .
We also add y2 = N to account for the fact that N is known.
Our implementation shows that the bound from Theorem 19
is equal to one, so the fields of ME-identifiable and SE-
identifiable functions coincide. It also finds that these fields
are equal to C(αη, α + η, β,N).

• Cumulative incidence observation. In this case, the observed
quantity is

∫
ηE dt. This can be encoded by introducing a

new state variable C with C ′
= ηE and the outputs y1 = C

and y2 = N . Our algorithm again shows that the fields of
ME-identifiable and SE-identifiable functions coincide and
that they equal C(α, β, η,N), so all of the parameters are
globally identifiable.

hese results confirm the findings of [39] obtained from analysis
f input–output equations (that is, for ME-identifiability) and
how that they are valid for SE-identifiability as well.
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ppendix A. Proofs of the main results

.1. Single-experiment identifiability

In this section, we will prove our first main result, Theorem 11.

emark 25 (F (p) is Generated by First Integrals). Lemma 26 im-
lies that F (p̄) consists of constants (that is, first integrals). [8,
emma 2] implies that F (p̄) ⊂ C(µ̄, x̄).

emma 26. In the setup of Section 3.1, F (p) ⊂ Const(K ).

roof. We will show that the space of linear relations between
olumns of Wp is defined over Const(K ). This will imply that all
he entries in the reduced row echelon form of Wp are constants.
et X be a maximal set of linearly independent columns of Wp,
nd let Y denote the rest of the columns. The monomials cor-
esponding to X are linearly independent over Const(K ) because
ny such dependence would yield a dependence of X . For each
∈ Y , there exists a column dependence of X ∪{v}, unique up to
caling. These dependencies span the space of column dependen-
ies of Wp. [27, Chapter II, Section 1, Theorem 1] implies that the
onomials corresponding to X∪{v} are dependent over Const(K ).
herefore, the corresponding column dependence can be chosen
o be over Const(K ) as well. □

roof of Theorem 11. To prove the theorem, we will show that,
or all differential fields k ⊂ K with C ⊂ k ⊂ Const(K ) and k
eing algebraically closed in K , every n, and every tuple ā ∈ K n,

k ∩ F (p̄) = k ∩ C⟨ā⟩,

here p̄ := {p1, . . . , pm} ⊂ k{z1, . . . , zn} is a characteristic set
f the prime ideal of all differential polynomials vanishing at ā.
his is then applied to k = C(µ̄) and the differential field K
enerated over k by the (ȳ, ū)-components (denoted by ā) of a
eneric solution of (1).
Lemma 10 implies that k ∩ F (p̄) ⊂ k ∩ C⟨ā⟩. Assume that

k ∩ C⟨ā⟩ ⊋ k ∩ F (p̄)

nd let b ∈ k ∩ C⟨ā⟩ \ k ∩ F (p̄).
Recall (see [40, Section 2]) that a differential field K is differ-

ntially closed if: for all m and finite G ⊂ K {w1, . . . , wm}, if there
xists L ⊃ K such that G = 0 has a solution in L, then G = 0
as a solution in K . Let K diff be a differential closure of K , that
s, a differentially closed field containing K that embeds into any
ther differentially closed field containing K .
8

We have K diff
⊃ kacl, the algebraic closure of k, and kacl∩K = k.

ince b ̸∈ F (p̄), there exists an automorphism α: Const(K diff) →

onst(K diff) such that α|F (p̄)= id and α(b) ̸= b. We pick such an α

and extend it to a differential automorphism of K diff and denote
the extension by α as well.

For a vector K -subspace V of K n with C ⊂ K , we denote the
field of definition of the subspace over C by FD(V ). Recall that V
has a K -basis e1, . . . , eℓ of V such that e1, . . . , eℓ ∈ FD(V )n.

Fix 1 ⩽ i ⩽ m. Let Vpi denote the right kernel of Wpi .
Note that Vpi is defined over Const(K ). Since pi(ā) = 0, the
vector of coefficients of pi belongs to Vpi . Note that FD(Vpi ) =

F (pi). By the preceding paragraph, there exist ri,1, . . . , ri,Ni ∈

FD(Vpi ){z1, . . . , zn} such that

• for every 1 ⩽ j ⩽ Ni, the vector of the coefficients of ri,j
belongs to Vpi (in particular, ri,j(ā) = 0);

• pi is a K -linear combination of ri,1, . . . , ri,Ni .

Since b ∈ C⟨ā⟩, there exist differential polynomials R1, R2 ∈

C{z̄} such that b =
R1(ā)
R2(ā)

. We write H = S1 · . . . · Sm · I1 · . . . · Im,

where Ii and Si are the initial and separant of pi. Since b ∈ k,
bR2 − R1 ∈ k{x̄}. Since additionally bR2(ā) − R1(ā) = 0,

H(bR2 − R1) ∈

√
[p̄].

Since, for every 1 ⩽ i ⩽ ℓ, pi ∈ [ri,1, . . . , ri,Ni ], we have

H(bR2 − R1) ∈
√

[r1,1, . . . , rm,Nm ]. (A.1)

We apply α to (A.1) and use that ri,j’s are invariant under α:

α(H)(α(b)R2 − R1) ∈
√

[r1,1, . . . , rm,Nm ]. (A.2)

We multiply (A.1) by α(H) and (A.2) by H , and subtract. We obtain

Hα(H)R2(α(b) − b) ∈
√

[r1,1, . . . , rm,Nm ].

Every element of
√

[r1,1, . . . , rm,Nm ] vanishes at ā since every ri,j
vanishes at ā. Since H(ā) ̸= 0 and R2(ā)(α(b) − b) ̸= 0, it is
sufficient to show that α(H)(ā) ̸= 0 to arrive at contradiction.

Assume there are 1 ⩽ i ⩽ m and h ∈ {Si, Ii} such that
α(h)(ā) = 0. Consider the sets M0 and M1 of monomials of α(h)(ā)
(or, equivalently, of h(ā)) and pi(ā), respectively. Observe that
there is a monomial A in ā with AM0 ⊂ M1 because

• if h = Si, take A to be lead pi(ā);
• if h = Ii, take A to be the appropriate power of lead pi(ā).

As AM0 ⊂ M1, we have F (AM0) ⊂ F (pi). Kernels of Wronskians
are defined over the constants by Lemma 26, so the kernel of the
Wronskian of a tuple does not change if the tuple is multiplied
by a nonzero element. Hence, F (AM0) = F (M0) = F (α(h)), and
so F (α(h)) ⊂ F (pi). Since α(h)(ā) = 0, there are r1, . . . , rs ∈

F (α(h)){z̄} = F (h){z̄} ⊂ K {z̄} and λ1, . . . , λs ∈ K such that

α(h) = λ1r1 + · · · + λsrs and r1(ā) = · · · = rs(ā) = 0.

Applying α−1, we get

h = α−1(λ1)r1 + · · · + α−1(λs)rs,

so h(ā) = 0, which is impossible, hence the contradiction. □

A.2. Multi-experiment identifiability

Proof of Theorem 19. For simplicity of notation, we denote the
tuple of variables ȳ, ū by w̄. Note that, for every N ⩾ 1, the set

p̄(w̄1), . . . , p̄(w̄N ) ⊂ k{w̄1, . . . , w̄N}

is a set of IO-equations of ΣN . The coefficients of p̄(w̄1), . . . , p̄(w̄N )
are also c1,1, . . . , cm,sm . Hence, as in [13, Corollary 1 and Theo-
rem 1], the field of N-experiment identifiable functions is con-
tained in C(c , . . . , c ).
1,1 m,sm
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For the reverse inclusion, let p ∈ p̄,

p =

s∑
i=1

bifi + fs+1,

where, for each i, fi ∈ C{w̄} and f1, . . . , fs are linearly independent
over C. By dividing p by an element of k, we may assume that
eg fs+1 = deg p. Let

A :=

⎛⎜⎝f1(ā1) . . . fs(ā1)
...

. . .
...

f1(ās) . . . fs(ās)

⎞⎟⎠ ,

where, for each i, āi is the image of w̄i modulo IΣN . We will first
show that det A ̸= 0. For this, let M be a minimal (by size)
zero minor of A. Let, for some i and ℓ, fi(āℓ) appear in M and
q ∈ k{w̄} be the differential polynomial obtained from M by
replacing fj(āℓ) with fj(w̄), 1 ⩽ j ⩽ s. By the minimality of M and
inear independence of f1, . . . , fs, q(w̄) ̸= 0. Since q(āℓ) = 0, there
xist qi,j ∈ k{w̄j} such that

∀i qi,1(w̄) ∈ IΣ or . . . or qi,s(w̄) ∈ IΣ and

q =

∑
i

qi,ℓ(w̄) ·

s∏
j=1
j̸=ℓ

qi,j(āj).

ence, there exist α, and q1, . . . , qα ∈ IΣ , and b1, . . . , bα ∈

⟨ā1, . . . , āℓ−1, āℓ+1, . . . , ās⟩ such that q =
∑α

i=1 biqi and, for
ach i, every monomial that appears in qi also appears in q (and,
herefore, in p). Let q̃ be the primitive part of q1 considered as
polynomial in its leader. Since IΣ is prime, q̃ ∈ IΣ . Since p̄ is

autoreduced and q̃ divides a linear combination of the monomials
of p, the characteristic set ˜̄p of p̄\{p}∪{q̃} satisfies rank ˜̄p ⩽ rank p̄.
Hence, ˜̄p is a characteristic set of J , and so

˜̄p = p̄ \ {p} ∪ {q̃}.

Thus, ˜̄p is a characteristic presentation of IΣ . If q̃ ̸= q, then
deg q̃ < deg q. If q̃ = q, then q̃ has fewer monomials than p does.
Thus, in either case, p/q̃ /∈ k. However, [31, Theorem 3] implies
that p/q̃ ∈ k, which is a contradiction. This shows that det A ̸= 0.
Thus, the rows of A are linearly independent.

Let r = rankWr(f1(ā), . . . , fs(ā)) and the rows i1 = 0, i2, . . . , ir
of the Wronskian be linearly independent. Since the rows of A
form a basis of C⟨ā1, . . . , ās⟩s, there exist rows j1, . . . , js−r of A
such that they together with the rows i1, . . . , ir of the Wronskian
form a basis of C⟨ā1, . . . , ās⟩s as well. Hence,

B :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(ā1) . . . fs(ā1)

f (i2)1 (ā1) . . . f (i2)s (ā1)
...

. . .
...

f (ir )1 (ā1) . . . f (ir )s (ā1)
f1(āj1 ) . . . fs(āj1 )

...
. . .

...

f1(ājs−r ) . . . fs(ājs−r )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

is invertible. Replacing ā1, āj1 , . . . , ājs−r in det B by the indetermi-
nates w̄1, . . . , w̄s−r+1, we obtain a differential polynomial with
coefficients in C that does not belong to he vanishing ideal of
ā , ā , . . . , ā . Since this ideal is the same as the vanishing ideal
1 j1 js−r

9

of ā1, ā2, . . . , ās−r+1, we conclude that the matrix

C :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(ā1) . . . fs(ā1)

f (i2)1 (ā1) . . . f (i2)s (ā1)
...

. . .
...

f (ir )1 (ā1) . . . f (ir )s (ā1)
f1(ā2) . . . fs(ā2)

...
. . .

...

f1(ās−r+1) . . . fs(ās−r+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is invertible. Thus,

⎛⎜⎝b1
...

bs

⎞⎟⎠ = C−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fs+1(ā1)

f (i2)s+1(ā1)
...

f (ir )s+1(ā1)
fs+1(ā2)

...

fs+1(ās)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is in C⟨ā1, . . . , ās−r+1⟩
s and so is (s − r + 1)-experiment

identifiable. Thus, the field of IO-identifiable functions is N-
experiment identifiable. □

Appendix B. Intersection for rational function fields

In this section, we will describe how [41, Algorithm 2.38] can
be used to compute the intersection L1∩L2, where L1 = C(µ̄) and
L2 = F (p̄), as required by Algorithm 1.

Algorithm 2 is a version of [41, Algorithm 2.38]. It was shown [4
p. 37–38] that the output of the algorithm is correct if the
algorithm terminates. Termination was proved only if both input
fields are algebraically closed in the ambient rational function
field. To use the algorithm in our applications, we relax this
condition to requiring only one of the fields to be algebraically
closed (C(µ̄) in C(µ̄, x̄)) in Proposition 27.

Algorithm 2 Intersection of fields (a version of [41, Algo-
rithm 2.38])

Input Tuples f̄ := (f1, . . . , fs) and ḡ := (g1, . . . , gℓ) such that
f1, . . . , fs, g1, . . . , gℓ ∈ K (x̄), where x̄ := (x1, . . . , xn);

utput If terminates, returns generators of K (f̄ ) ∩ K (ḡ).

otation: Introduce new variables X := (X1, . . . , Xn). In the algo-
rithm, for a set S ⊂ K (x̄)[X], ⟨S⟩ will denote the ideal generated
by S in K (x̄)[X].

(Step 1) For every 1 ⩽ i ⩽ s, write fi(x̄) =
ni(x̄)
di(x̄)

so that ni, di ∈

K [x̄], and set D(x̄) := d1 · . . . · ds;
(Step 2) Set i := 1, I1 := ⟨1⟩ and

J1 :=
⟨
n1(X) − f1(x̄)d1(X), . . . , ns(X) − fs(x̄)ds(X)

⟩
:D(X)∞;

(Step 3) While Ii ̸= Ji do

(a) Ii+1 := ⟨Ji ∩ K (ḡ)[X]⟩;
(b) Ji+1 := ⟨Ii+1 ∩ K (f̄ )[X]⟩;
(c) i := i + 1;

Step 4) Compute any reduced Gröbner basis of Ji and return its
coefficients.
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roposition 27 (Termination of Algorithm 2). In the notation of
lgorithm 2, if K (f̄ ) is algebraically closed in K (x̄) or K (ḡ) is alge-

braically closed in K (x̄), then Algorithm 2 terminates.

Lemma 28. Let I0, I1, . . . , Is ⊂ K [x̄], where x̄ = (x1, . . . , xn), be
deals such that I0 = I1 ∩ · · · ∩ Is, and let L ⊂ K be a subfield. For
⩽ j ⩽ s, we define Jj to be the ideal in K [x̄] generated by Ij ∩ L[x̄].
hen J0 = J1 ∩ · · · ∩ Js.

roof. Since I0 ∩ L[x̄] = (I1 ∩ L[x̄]) ∩ · · · ∩ (Is ∩ L[x̄]), we have
0 ⊂ J1 ∩ · · · ∩ Js.

Now we prove the reverse inclusion. Let {aλ}λ∈Λ be an L-basis
f K . Consider b ∈ J1 ∩ · · · ∩ Js. We write b =

∑
λ∈Λ bλaλ, where

λ ∈ L[x̄] for every λ ∈ Λ and only finitely many of them are
ot zeroes. Consider any 1 ⩽ j ⩽ s. Since Jj has a set of generators
ith coefficients in L, the inclusion b ∈ Jj implies that bλ ∈ Ij∩L[x̄]

or every λ ∈ Λ. Therefore, bλ ∈ I0 ∩ L[x̄] for every λ ∈ Λ. Thus,
∈ J0. □

roof of Proposition 27. We will assume that K (f̄ ) is alge-
raically closed in K (x̄). The proof for the case of K (ḡ) being
lgebraically closed in K (x̄) is analogous. Assume that the algo-
ithm does not terminate. By the construction, Ij ⊃ Jj for every
⩾ 1. The ideals I1 and J1 are radical (the latter is due to [41,
efinition 2.16 and Proposition 2.21] and since the intersection
f a radical ideal with a subring is radical and the extension of
radical ideal is radical). It follows then that all Ii’s and Ji’s are

adical. For every i ⩾ 1, we define di to be the minimum of the
imensions of the prime components P of Ji such that P ̸⊃ Ii. We
ill show that the sequence di is strictly increasing thus arriving
t a contradiction.
Fix i ⩾ 1. Let P1, . . . , Pm be the prime components of Ji so

hat P1, . . . , Pr are the components of the dimension < di and
r+1, . . . , Pm are the components of the dimension ⩾ di. By the
onstruction, Ji is defined over K (f̄ ). [41, Proposition 2.37] implies
hat P1, . . . , Pm are also defined over K (f̄ ).

Since Ii ⊃ Ji, and P1, . . . , Pr contain Ii, P1, . . . , Pr are exactly the
rime components of Ii of dimension < d, so Q := P1 ∩ · · · ∩ Pr
s the intersection of the equidimensional components of Ii of
imensions < d. Therefore, since Ii is defined over K (ḡ), Q is

defined over K (ḡ). Hence,

Q = ⟨Q ∩ K (ḡ)[X]⟩ = ⟨Q ∩ K (f̄ )[X]⟩ ⊃ Ii+1. (B.1)

onsider

C := {C | C is a prime component of ⟨Pj ∩ K (ḡ)[X]⟩ for j > r}

[42] implies that, for every j > r , all prime components of ⟨Pj ∩
K (ḡ)[X]⟩ are of the same dimension, so, for all C ∈ C, dim C ⩾ di.
or every C ∈ C, denote C ′

:= ⟨C∩K (f̄ )[X]⟩. [41, Proposition 2.37]
mplies that C ′ is prime. If C ̸= C ′, then dim C ′ > di. Otherwise,
′
= C ⊃ Ii+1. Therefore, due to Lemma 28, we have:

Ji+1 = ⟨Ii+i ∩ K (f̄ )[X]⟩

=

⎛⎝⟨Q ∩ K (f̄ )[X]⟩ ∩

⋂
C∈C,C=C ′

C ′

⎞⎠
  

=:A

∩

⎛⎝ ⋂
C∈C,C ̸=C ′

C ′

⎞⎠
  

=:B

Since ⟨Q ∩ K (f̄ )[X]⟩ ⊃ Ii+1 (see (B.1)), we have A ⊃ Ii+1. Since
every component of B has dimension at least di + 1, we deduce
hat d > d . □
i+1 i

10
Appendix C. Mathematical discussion for Theorems 11 and 19

Example 29 (Ranking Dependency of F (p̄) in Theorem 11).We show
that the field F (p̄) from Theorem 11 can depend on the ranking
although C(µ̄)∩F (p̄) cannot. Consider the following input–output
equations

p1 := y21 + y22 + y3, p2 := y′

2 − 1, p3 := y′

3 − 1.

For the elimination differential ranking y1 > y2 > y3, p1, p2, p3
s the characteristic presentation of the prime differential ideal

:=
√

[p1, p2, p3]. A calculation in Maple shows that F (p1) =

F (p2) = F (p3) = C, and so F (p̄) = C. However, a calculation in
Maple shows that q̄ := {q1, q2, q3},

q1 := 2y2 + 2y1y′

1 + 1,

q2 := 4y21y
′2
1 + 4y1y′

1 + 4y21 + 4y3 + 1,
q3 := y′

3 − 1,

is the characteristic presentation of P with respect to the elim-
ination differential ranking y2 > y1 > y3 and that F (q2) =

C(y1y′

1 + y3) and F (q1) = F (q3) = C, and so F (q̄) ⊋ F (p̄).

Example 30 (Achieving the Bound in Theorem 19). A natural math-
ematical question about a bound is whether it is tight in the
sense that the equality can be reached for all the values of the
parameters appearing in the bound. We will give an indication
of the tightness of the bound from Theorem 19 by providing, for
very positive integers h ⩽ n, a model with n + 1 monomials in
he IO-equations and the corresponding Wronskian having rank
so that every element of the field of IO-identifiable functions is

n−h+1)-identifiable but not necessarily (n−h)-identifiable. Fix
⩽ n and consider the system

Σ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x′

1 = c1 +

n∑
i=2

cixi,

x(h)i = 0, 2 ⩽ i ⩽ h
x′

i = 0, h + 1 ⩽ i ⩽ n
yi = xi, 1 ⩽ i ⩽ n

(C.1)

ith unknown parameters {ci, 1 ⩽ i ⩽ n}. By a calculation,

p̄ =

{
y′

1 − c1 −

n∑
i=2

ciyi, y(h)i , 2 ⩽ i ⩽ h, y′

i, h + 1 ⩽ i ⩽ n
}

s a set of IO-equations of (C.1). We have modulo IΣ :

Wr(y2, . . . , yn, 1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y2 . . . yh yh+1 . . . yn 1
y′

2 . . . y′

h 0 . . . 0 0
...

. . .
...

...
. . .

...
...

y(h−1)
2 . . . y(h−1)

h 0 . . . 0 0
0 . . . 0 0 . . . 0 0
...

. . .
...

...
. . .

...
...

0 . . . 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

hose rank is r1. On the one hand r1 ⩽ h because the matrix has
nly h non-zero rows. On the other hand, detWr(y2, . . . , yh, 1) /∈

Σ since Wr(y2, . . . , yh, 1) is not reducible (to zero) by p̄. Thus,
1 = h. Also, s1 = n and, for all i ⩾ 2, si = 0. So, by Theorem 19,
or all

N ⩾ s1 − r1 + 1 = n − h + 1,

he field of IO-identifiable functions C(c1, . . . , cn) is N-experiment
dentifiable. We will show that it is not (n − h)-experiment
dentifiable, thus showing the desired tightness of the bound in
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heorem 19. For this, consider the following set of IO-equations
or the (n − h)-experiment system Σn−h:
n−h⋃
j=1

{
y′

j,1 − c1 −

n∑
i=2

ciyj,i,
y(h)j,i , 2 ⩽ i ⩽ h

y′

j,i, h + 1 ⩽ i ⩽ n

}
et aj,i denote the image of yj,i modulo IΣn−h . Since, for all i and
, h + 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ n − h, aj,i is constant, we can define
differential field automorphism ϕ of C⟨ā1, . . . , ān−h⟩(c1, . . . , cn)
ver C⟨ā1, . . . , ān−h⟩ by

ϕ(c1, c2, . . . , ch, ch+1, . . . , cn) :=

(c1 + bn−h+1, c2 . . . , ch, ch+1 + b1, . . . , cn + bn−h),

where (b1, . . . , bn−h+1) ∈ C⟨aj,i | 1 ⩽ j ⩽ n − h, h + 1 ⩽ i ⩽
⟩ is a non-zero linear dependence among the columns of the
n − h) × (n − h + 1) matrix⎛⎜⎝ a1,h+1 . . . a1,n 1

...
. . .

...
...

an−h,h+1 . . . an−h,n 1

⎞⎟⎠ .

Thus, there exists i ∈ {1, h + 1, . . . , n} such that ci /∈ C⟨ā1, . . . ,
¯n−h⟩, and so the IO-identifiable parameter ci is not (n − h)-
xperiment identifiable.

ppendix D. Computing an optimal representation (5) in The-
rem 19

In this section, we prove Lemma 32 providing a sufficient
ondition for a decomposition (5) to yield the optimal (compared
o other decompositions) bound in Theorem 19. Then we give
lgorithm 3 to compute such a decomposition, which basically
omputes an LU-decomposition of a matrix in the language of
olynomials (see the proof of Lemma 32).

xample 31 (Dependence on Decomposition). We begin with a
imple example showing that the bound from Theorem 19 can
hange depending on the choice of decomposition (5). Consider

p1 = 1 + ay1 + ay2, p2 = y′

1.

n the one hand, for i = 1, we can choose

f1,1 = y1 + y2, c1,1 = a, f1,2 = 1.

n this case, s1 = 1, r1 = rank
((
y1 + y2

)
mod IΣ

)
= 1, and so

1 − r1 + 1 = 1. Since s2 = 0, r2 = 0, and so s2 − r2 + 1 = 1 and
⩾ max{1, 1} = 1. On the other hand, we can also choose

f1,1 = y1, f1,2 = y2, f1,3 = 1, c1,1 = c1,2 = a.

n this case, s1 = 2 and

r1 = rank
((

y1 y2
y′

1 y′

2

)
mod IΣ

)
= rank

((
y1 y2
0 0

)
mod IΣ

)
.

ence, s1−r1+1 = 2, and so, with this choice, N ⩾ max{2, 1} = 2.

emma 32. Let p(z̄) ∈ C(µ̄){z̄} be a differential polynomial over
constant field C(µ̄) in z̄ = (z1, . . . , zn), where µ̄ = (µ1, . . . , µm)
re transcendental constants. Let I ⊂ C(µ̄){z̄} be a prime differential
deal containing p. Consider two representations of p

p = fs+1 +

s∑
j=1

cjfj and p = f̃s̃+1 +

s̃∑
j=1

c̃j f̃j

uch that f1, . . . , fs+1, f̃1, . . . , f̃s̃+1 ∈ C{z̄}, c1, . . . , cs, c̃1, . . . , c̃s̃ ∈

(µ̄), f , . . . , f are C-linearly independent, and 1, c , . . . , c are
1 s+1 1 s

11
-linearly independent. We define r and r̃ to be the ranks of
r(f1, . . . , fs) and Wr(f̃1, . . . , f̃s̃) modulo I, respectively. Then

s − r ⩽ s̃ − r̃ and s ⩽ s̃.

roof. Viewing C(µ̄){z̄} as a tensor product of C-vector spaces
(µ̄) ⊗C C{z̄}, we can consider p as an element of this tensor
roduct. Then the linear independence of 1, c1, . . . , cs and of
1, . . . , fs+1 implies that

1 ⊗ fs+1 + c1 ⊗ f1 + · · · + cs ⊗ fs

s a full-rank factorization of p [43, Theorem 3.13]. Since 1⊗ f̃s̃+1+

˜1 ⊗ f̃1 +· · ·+ c̃s̃ ⊗ f̃s̃ is another rank-one factorization of the same
ensor, the proof of [43, Theorem 3.13] implies that 1, c1, . . . , cs
elong to the C-span of 1, c̃1, . . . , c̃s̃ and f1, . . . , fs+1 belong to the
-span of f̃1, . . . , f̃s̃+1. The former inclusion implies s ⩽ s̃. The
atter implies that there exists a full-rank C-matrix M such that
f1, . . . , fs+1) = (f̃1, . . . , f̃s̃+1)M . Therefore, any nontrivial linear
ependence of the images of f1, . . . , fs+1 in C(µ̄){z̄}/I over the
onstants of the fraction field of C(µ̄){z̄}/I yields (after multiply-
ng by M) such a relation for the images of f̃1, . . . , f̃s̃+1. Therefore,
he proof of Lemma 26 implies that the corank of Wr(f1, . . . , fs)
odulo I , r − s, does not exceed the corank of Wr(f̃1, . . . , f̃s̃)
odulo I , r̃ − s̃. □

Algorithm 3 Computing optimal representation for Theorem 19

Input a monic polynomial p(x̄) ∈ C(µ̄)[x̄] (see Definition 5),
where x̄ = (x1, . . . , xn) and µ̄ = (µ1, . . . , µm) are
independent indeterminates;

utput A representation of p of the form

p = fs+1 +

s∑
j=1

cjfj

in which f1, . . . , fs+1 ∈ C[x̄] are C-linearly independent and
1, c1, . . . , cs ∈ C(µ̄) are C-linearly independent.

ix an arbitrary ordering on the monomials in µ̄. The leading
onomial and leading coefficient of a polynomial f w.r.t. this
rdering will be denoted by lm f and lc f , respectively.

Step 1) Compute the LCM q(µ̄) ∈ C[µ̄] of the denominators of
the coefficients of p. Set P(µ̄, x̄) := q · p ∈ C[µ̄, x̄].

Step 2) Write P as
ℓ∑

i=1
Ci(µ̄)Mi(x̄), where M1, . . . ,Mℓ are distinct

monomials in x̄ and C1, . . . , Cℓ ∈ C[µ̄], and C1 = q (possible
since p is monic).

Step 3) Let S be a list of pairs from C[µ̄] ×C[x̄] initialized to be
empty.

Step 4) For every i = 1, . . . , ℓ, do

(a) for every (A, B) ∈ S, where A ∈ C[µ̄], B ∈ C[x̄]

Ci := Ci −
c

lc(A)
A, B := B +

c
lc(A)

Mi, (D.1)

where c is the coefficient in front of lm(A) in Ci.
(b) if Ci ̸= 0, append (Ci,Mi) to S.

(Step 5) Let S = [(A0, B0), (A1, B1), . . . , (As, Bs)]. Return fs+1 = B0

and fi = Bi and ci =
Ai
q for every 1 ⩽ i ⩽ s.
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emma 33. Algorithm 3 is correct.

roof. First we will show that p =
∑s

i=1
Ai
q Bi + B0. By the

construction, we will have A0 = Q , so this is equivalent to
proving p =

∑s
i=0

Ai
q Bi. To prove this, we observe that the

ransformation (D.1) preserves the value∑
(A,B)∈S

A · B + CiMi.

herefore, after the ith iteration of the loop in (Step 4), the value
(A,B)∈S AB is increased by CiMi. Since it starts with zero, it will

e equal to
∑ℓ

j=1 CjMj = P after (Step 4). Therefore,
∑s

i=0
Ai
q Bi =

P
q = p.

To prove the C-linear independence of Bj’s, for each 1 ⩽
⩽ s, consider the pair (Ci,Mi) that was the jth appended pair
or (Step 4)b. Then Mi will not appear in any of Bj+1, . . . , Bs, so
1, . . . , Bs are C-linearly independent.
The linear independence of A0, . . . , As follows from the fact

that, lm(Aj) does not appear in Aj+1, . . . , As for every 0 ⩽ j ⩽ s,
and this property is due to the reduction procedure (D.1). □
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