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ABSTRACT. A model of irrigation network, where lower branches must be
thicker in order to support the weight of the higher ones, was recently in-
troduced in [7]. This leads to a countable family of ODEs, describing the
thickness of every branch, solved by backward induction. The present paper
determines what kind of measures can be irrigated with a finite weighted cost.
Indeed, the boundedness of the cost depends on the dimension of the support
of the irrigated measure, and also on the asymptotic properties of the ODE
which determines the thickness of branches.

1. Introduction. In a ramified transport network [1, 2, 14, 15, 16, 17], the Gilbert
transport cost along each arc is computed by

[length] x [flux]* (1)

for some given o € [0,1]. When a < 1, this accounts for an economy of scale:
transporting the same amount of particles is cheaper if these particles travel together
along the same arc.

In the recent paper [7], the authors considered an irrigation plan where the cost
per unit length is determined by a weight function W. The main motivation behind
this model is that, for a free standing structure like a tree, the lower portion of
each branch needs to bear the weight of the upper part. Hence, even if the flux of
water and nutrients is constant along a branch, the thickness (and hence the cost
per unit length) grows as one moves from the tip toward the root. In the variational
problems of optimal tree roots and branches[4, 6], this “weighted irrigation cost”
is more suitable to model the associated cost for transporting water and nutrients
from the roots to the leaves.

In this model, the weights are constructed inductively, starting from the outer-
most branches and proceeding toward the root. Along each branch, the weight W
is determined by solving a suitable ODE, possibly with measure-valued right hand
side. This is more conveniently written in the integral form

¢
W(s) = / F(W () do +m(s), (2)

where s € [0, /] is the arc-length parameter along the branch, s — m(s) is a non-
increasing function describing the flux, and f is a non-negative, continuous function.
A natural set of assumptions on f is
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(A1) The function f : Ry — Ry is continuous on [0, 400, twice continuously
differentiable for z > 0, and satisfies

f0) =0, f(z) >0, f'(2) <0 Vz>0. (3)

The main result in [7] established the lower semicontinuity of the weighted irriga-
tion cost, w.r.t. the pointwise convergence of irrigation plans. In particular, for any
positive, bounded Radon measure p, if there is an admissible irrigation plan whose
weighted cost is finite, then there exists an irrigation plan for y with minimum cost.

The goal of the present paper is to understand whether a given Radon measure
u irrigable or not, with respect to the weighted irrigation cost. That is, whether
there exists an irrigation plan for p whose weighted irrigation cost is finite. In the
case without weights, i.e., with the classical Gilbert cost (1), this problem has been
studied in [8], and further investigated in [3, 9, 10]. The authors in [8] proved that
if a measure p is a-irrigable, then it must be concentrated on a set with Hausdorff
dimension < ﬁ On the other hand, if « > 1 — %, every bounded Radon measure
with bounded support in R? has finite irrigation cost [1, 8].

As shown by our analysis, in the presence of weights the irrigability of a measure
1 depends on the dimension of the set where y is concentrated, on the exponent «,
and also on the asymptotic behavior of the function f(z) as z — 07.

The remainder of the paper is organized as follows. Section 2 reviews the con-
struction of the weight functions on the various branches of an irrigation plan. In
Section 3 we prove our main results on the irrigability of Radon measures.

2. Review of the weighted irrigation plans.

2.1. Weight functions on finitely many branches. To illustrate the basic idea
of the weighted irrigation model, we first consider a network with finitely many
branches. As shown on the left of Fig. 1, each directed branch will be denoted
by i : [ai,b;] = R4 = 1,..., N, oriented from the root toward the tip and
parameterized by arc-length. Call P; = ~;(b;) the ending node of the branch ~;.

FIGURE 1. Left: A free standing tree with 5 branches. In this example,
0O(1) ={2,3},0(3) = {4,5},0(2) = O(4) = O(5) = 0. Right: On each
branch, the weight decreases as one moves from the lower portion to the
tip.
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On each branch ~;, we first prescribe a left-continuous, non-increasing function
m; : [a;, b;] — R, which can be interpreted as the “flux” along the branch. Roughly
speaking, m;(t) is the amount of mass transported through the point ~;(t).

Call O(i) the set of index labelling the branches that originate from the node
Pi = 'Yi(bi)a that is

0@) = {je{l,....N} %la;) = P:}. (4)
Moreover, consider the sets of indices inductively defined by

A :{16{1,,]\7},0(1):@}, (5)
5
Teyr = {i€{l,...,N}; O()) CThU- - UL} \ (Z1 U+ - ULy).
From [7] the weight function W;(:) on each branch ~; is defined inductively on
Tk > 1.
(i) For k = 1, on each branch ~; : [a;,b;] — R with i € T;, the weight W; :
[a;, b;] = Ry is defined to be the solution of

b;
wit) = / f@(s)ds +mit), 1 €lai b (6)

where f is a given function, satisfying (A1), and m; is the flux along the
branch.
(ii) Assume the weight functions W;(t) have already been constructed along all
branches v; : [aj,b;] — R? with j € Ty U... UTj_;.
For i € Iy, the weight W;(¢t) along the i-th branch is defined to be the
solution of

b;
wit) = / Flw(s) ds+mi(t) + @i, t €ai, b (7)

where
@o= Y Wile)) = D myla)). (8)
JEO(1) JEO(1)
2.2. Irrigation plans for general measures. Following Maddalena, Morel, and
Solimini [15], the transport network for general Radon measure can be described in
a Lagrangian way. Let u be a fixed Radon measure on R? with u(R%) = M and let
© = [0, M]. We think of § € O as a Lagrangian variable, labelling a water particle.
An irrigation plan for y is a function
X:0 xRy — RY
measurable w.r.t. § and continuous w.r.t. ¢, which satisfies the following conditions:
e All particles initially lie at the origin: x(6,0) =0, V 6 € ©.
e For a.e. 0 € © the map t — x(0,t) is 1-Lipschitz and constant for ¢ large.
Namely, there exists 7(6) > 0 such that

{ Ix(0,t) — x(0,s)] < [t—s for all t,s > 0,

x(6,t) = x(6,7(6)) for every t > 7(0).

Throughout the following, 7(6) will denote the smallest time 7 such that x (6, -)
is constant for t > 7.
e Y irrigates the measure p. That is, for each Borel set V C R?,

p(V) = meas ({0 € ©; x(0,7(0)) € V}).
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One can think of x(6,t) as the position of particle 8 at time ¢.

To define the flux on x, which measures the total amount of particles travelling
along the same path, we first need an equivalence relation between two Lipschitz
maps.

Definition 2.1. We say that two 1-Lipschitz maps « : [0,¢] = R% and 7 : [0,{] —
R? are equivalent if they are parametrizations of the same curve, and write it as
v ~ 4. When we use the arc-length re-parametrization

s(o)
o v(s(o)), where / [5(#)|dt = o,
0

then two 1-Lipschitz maps are equivalent means their arc-length re-parametrizations
coincide.

Throughout the following, we denote by 7‘[ | the restriction of a map v to the
0,t
interval [0, t].

Definition 2.2. Let x : © x R, +— RY be an irrigation plan for the measure p. On

the set © x Ry, we write (0,t) ~ (¢',¢') whenever x(6, ~)‘[0 | ~ x(¢,) 0 This
it %
means that the maps

s — x(0,s), se€]l0,t] and s — x(0,s), se€[0,t]

are equivalent in the sense of Definition 2.1.
The multiplicity at (6,¢) is then defined as

m(f,t) = meas({@’ €0; (0',t') ~ (6,t) for some t' > 0}) 9)

Given an irrigation plan x : © x R4 — R, in order to have finite weighted irri-
gation cost constructed in the next section, we should always assume the following
conditon.

(A2) For a.e. § € ©, one has m(0,t) > 0 for every 0 <t < 7(6).

2.3. Weight functions for an irrigation plan. Given a bounded Radon measure
p in R and an irrigation plan x : © x R, ~ R for y, in this section we review the
construction of the weight function W = W (6, t) on the irrigation plan. Notice that
for an irrigation plan x of a general Radon measure, for each particle 8 € O, the
map x(6,-) : Ry + R describes a continuous curve in R?. Thus x may contain
infinitely many branches. To construct the weight function on each branch, the
idea is to first compute the weights W¢ on x¢, which is the truncation of x on the
branches with multiplicity > . It turns out that x° only consists of finitely many
branches, so that we can compute W< as in Section 2.1 . The weight W is then
constructed by taking the limit of W&, as ¢ — 0+.

Definition 2.3. Given an irrigation plan y, a path v : [0, /] — R%, parameterized
by arc-length, is e-good if and only if

meas ({9 €0; x(0,) 0 ~ ~ for some t = ¢(0) > O}) > e, (10)

where the equivalence relation ~ is given in Definition 2.1.



IRRIGABLE MEASURES FOR WEIGHTED IRRIGATION PLANS 497

In other words, 7 is e-good if there is an amount > ¢ of particles whose trajectory
contains v as initial portion.

For any given e > 0, following [7] we define the e-stopping time 7. : © — Ry by
setting

7-(0) = max{t >0; m(0,t) >¢e}. (11)
Define the e-truncation x° of irrigation plan x as
x(0,1) if t<7.(6)
X“(0,t) = (12)
x(0,7:(0)) if t>7.(6)

In other words, in the e-truncation x°, only those paths in x with multiplicity > ¢
are kept. For any 0 € O, if 7.(8) > 0, the e-good portion x(6,-) 0 (6)] of the path

0,7
t — x(0,-) is included in x°.

Notice that the family of all curves parameterized by arc-length comes with a
natural partial order. Namely, given two maps « : [0,£] — R%, 7 : [0,[7] — R,
we write ¥ < 7 if £ < £ and y(s) = A(s) for all s € [0,¢]. In the family of all
e-good paths in the irrigation plan x, we can thus find the maximal e-good paths,
w.r.t the above partial order. As shown in [7], the total number of maximal e-good
paths in the irrigation plan x is bounded by %, where M is the total mass of pu.
Therefore, the e-truncation x° is a network with finitely many branches, consisting
of all maximal e-good paths in x.

For a fixed ¢ > 0, to compute the weight functions on the e-truncation x°,
we now let {91,...,%,} be the set of all maximal e-good paths. Along each path
3; : [0,4;] = R we define the multiplicity r; : [0,4;] — R by setting

’/?Ll(s) =

(13)
g [0751})

Since two maximal paths may coincide on the initial portion and bifurcate later,
we consider the bifurcation times

Tij = Tji = max {tZO, "A}/l(s):’A}/](S) VSG[O,t]}. (14)
For each maximal path %;, we split it into several elementary branches 7., by the
following Path Splitting Algorithm(PSA), which is first introduced in [7].
(PSA) For each i € {1,...,v}, consider the set

meas( {9 € ©; there exists t > 0 such that x(6, )‘ ~ 4,

{rin, o} = {tin, - ting b
where the times
0=tip <tin <tlizg < - <lng < b (15)

provide an increasing arrangement of the set of times 7;; where the path 4;
splits apart from other maximal paths. For each k = 1,..., N (i), let ;1 be
the restriction of the maximal path 4; to the subinterval [¢; x—1,t; ). The
multiplicity function m; j along this path is defined simply as

mi7k(t) = ’I’hi(t), te [ti,kfhti,k}- (16)
If ;5 > 0, i.e. if the two maximal paths 4; and 4; partially overlap, it is

clear that some of the elementary branches ; ; will coincide with some ~; ;.
To avoid listing multiple times the same branch, we thus remove from our



498 QING SUN

list all branches v;; : [tji—1,t1] — R? such that tj1 < 15 for some ¢ < j.
After relabeling all the remaining branches, the algorithm yields a family of
elementary branches and corresponding multiplicities

i+ [ai, bi] = RY, m; : lag, bl — Ry, i=1,...,N (17)

where N is the total number of elementary branches.

73
15

7

FIGURE 2. Left: Two finite truncation plans, showing three maximal
e-good paths (thick lines) and six maximal &’-good paths (thin lines), for
0 < ¢ < e. Right: The three maximal e-good paths can be partitioned
into five elementary branches, by the Path Splitting Algorithm.

On these elementary branches v;,7 > 1, we can compute the weight function W;
on each ~; inductively, as in Section 2.1.

On each maximal e-good path 4; with 1 < ¢ < v, the above construction yields
a weight W, 5, on the restriction of 4; to each subinterval [t; x_1,%;%]. Along the
maximal path 4;, the weight W : [0, 4;] = R, is then defined simply by setting

Wi(t) = Win(t) if € [tig—1,ti)- (18)

Next, on the e-truncation x° we define the weight function W¢: © x Ry — R4

by setting

Wis) i <m0, X0~ A

We(0,t) = 0517 (19)

0 it t>7(0).

As proved in [7], the map € — W*¢(6,t) is nondecreasing for each (,¢). This leads
to:

Definition 2.4. Let x : © x R, + R? be an irrigation plan satisfying (A2). The
weight function W = W (0, t) for y is defined as
W(0,t) = sup We(0,1). (20)
e>0
Once we computed the weight functions on the irrigation plan y, its weighted
irrigation cost £V is defined as follows:

Definition 2.5. Let f : Ry — Ry be a continuous function, satisfying all the
assumptions in (A1l). Let x be an irrigation plan satisfying (A2) and let W =
W (6,t) be the corresponding weight function, as in (20). The weighted cost £~
for some « € [0,1] is
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M 7(0) a
via(X)i/o/o mme,mdme. (21)

In the special case where x consists of only finitely many branches, let W; be the
corresponding weight functions on the branch ~; : [a;,b;] — R, by applying the
change of variable formula, we have the following identity for the weighted irrigation
costs[7]:

N b;
o) = 3 [ Wis))ds, (22)

where N is the total number of branches.

2.4. Lower semicontinuity of weighted cost. In this section we recall the main
theorems on the lower semicontinuity of weighted irrigation cost, proved in [7].
Given a sequence of irrigation plans y, : © x Ry +— R, we say that ,, converges
to x pointwise if, for every x > 0 and a.e. § € O,

Theorem 2.6. Let (xn)n>1 be a sequence of irrigation plans, all satisfying (A2),
pointwise converging to an irrigation plan x. Assume that the function [ satisfies
(A1). Then
EV(x) < liminf EW(x,,). (24)
n—oo
Given a positive, bounded Radon measure p on R? we define the weighted
irrigation cost ZW'*(u) of p as
() = mfEM(x), (25)
where the infimum is taken over all irrigation plans for the measure j, and W
is defined as in (21). By Theorem 2.6, if there is an irrigation plan for p with
finite weighted irrigation cost, then the infimum in (25) is actually a minimum.
That is, there exists an optimal irrigation plan x* of u, such that the weighted
irrigation cost £"*(x*) is minimum among all admissible irrigation plans, and
IV () = EW(x).
The next result states the lower semicontinuity of the weighted irrigation cost,
w.r.t. weak convergence of measures. For a proof, see Theorem 6.2 in [7].

Theorem 2.7. Let f satisfies (A1). Let (un)n>1 be a sequence of bounded positive
Radon measures, with uniformly bounded supports, such that weakly converges to
some . Then

TV (p) < liminf Z"(u,,). (26)

n—oo

3. Irrigability dimension. When f =0, a > 1 — é, it is well known that all
measures with bounded support and finite mass in R are a-irrigable [1, §].

Here is a formal computation in this direction. It is obtained by modifying the
estimates at p. 113 of [1].

Let u be a probability measure that supported in B(0,1) C R%. For each j =
1,...,n, let P; be the set of centers of balls of radius r; = 277 that cover Supp(u).

In dimension d, we can assume that the cardinality of this set is

#P; < C2¢
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We can define a map +; : P; — P;_1 such that
|z —7;(2)] < 3-27

for every x € P;, with Py = {0}.

Consider a probability measure pu.,, supported on P,,. The cost of transporting
this measure from P,, to another measure supported on P,,_; is

E*(Ppn,Pn-1) < [number of arcs] x [flow]* x [length]
(27)
< Cznd . (C;nd>0¢ .3.9"n — 3cl—a . (2ad—d+1)—n_

Notice that we are here considering the worst possible case, where we have the
largest number of arcs and all arcs carry equal flow.

Summing over 7 = 1,2,...,n we obtain that the total transportation cost is
bounded by
1 T oad—dt 1y 3Cct—«
e —a od— _
BT < 30170 ) (T < o (28)

=
The series 3, 2[(@=D=adl(k+1) converges provided that

1
(d—1)—ad < 0, hence a > l—g

To understand what happens in the case where weights are present, we first
make an explicit computation in the case of a dyadic irrigation plan [1, 16]. More
precisely, as shown in Fig. 3, we now assume

1 = Radon measure with total mass M, concentrated on a cube @ in R%. Q is
centered at the origin and with edge size L > 0.

For each n > 1, we divide @ into 2% smaller cubes of equal size, with edge size
L/2™. Take {QF 122 the set of all these closed smaller cubes, call P, = {xf}ii
the set of centers of these smaller cubes of edge size L/2". For each n > 1, define

the dyadic approximated measure p,,

] E€Pnp

where 0, is the Dirac measure at xj', and m}' is determined as

QF = Qr\Jey,  mi=p@n, vi<i<or
J<i
It is not hard to show that y,, weakly converges to p, see for example [1, 16]. That
is, for any bounded continuous function ¢ : R? — R, one has [ ¢dp, — [¢dpu.
For each p,, we construct an irrigation plan y,, as follows:

e First, move the particles from the origin (center of @) to the centers in
P1, with 2¢ straight paths connecting the origin and the centers in P; =
{al,2d, ... ,x%d}. Each path has length @, on the path that connecting
x}, 1 <i <29 the multiplicity is constant m;.

e By induction, at the level k,1 < k < n, for the particles arriving at each center
xf‘l in Pr_1, where a:f_l is the center of the cube Qf‘l, we transport them

to the 2¢ neighboring centers in Py, which are all contained in the cube Qf‘l.

Without loss of generality, fixed :Ei-“l in Pr_1, let {x’f,...,x’;d} be the 2¢

neighboring centers around xf‘l. For each x?, 1 < j < 2% we build a straight

path connecting xffl to mf , with length 5,@% and constant multiplicity m;?.
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Xl X 1 [ ] [ ] [ J [ J
1 2

* ¢ o ?

H 4 ° °
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X % xl [ ] [ ] [ J [}

L e | ‘e | ® ®

Q [ ] [ ] [ ] Q

>

FIGURE 3. Left: The dyadic approxmiated measure pu; is supported on

the four centers x1,...,z; of small cubes. Right: Dyadic approximated
measures corresponding to a family of partitions into dyadic cubes in
R

Since the dyadic measure p,, is supported on the centers in P,,, after n steps we
build an irrigation plan for ., which we call the dyadic irrigation plan x,,.

For example, in the case R?, Fig. 4 shows two dyadic irrigation plans constructed
by the preceding procedure.

Given an irrigation plan with finite branches as in Section 2.1, consider the case
f(2) = c2?, with some constant ¢ > 0,0 < 8 < 1. It is readily to check that f
satisfies (A1). With the notions in Section 2.1, consider a measure u consisting
of finitely many point masses m; > 0 located at points P;, where P; is the ending
node of branch 7;(s) : [0,4;] = R?. In this case, the multiplicity function on each

x! X,
@)
C1) (@)
. * Q Q

>

FIGURE 4. The dyadic irrigation plans in R?. Left: The dyadic irriga-
tion plan xi. The multiplicity on each branch equals to the mass on the
terminal point. Right: The dyadic irrigation plan y2. The particles are
first transported to the 4 centers in P1, then on each center in P;, the
particles are transported to the neighboring 4 centers in Ps.



502 QING SUN

branch is constant. Then the computation of weights (6)-(8) becomes

1
Fci

wits) = (W, "+ e=8)t:—5)""

1

1 -8

Wi = mi+Yeon (Wj P (1 - ﬁ)zj)
If O(i) = (), that is i € Z, from (30) we have W; = m,.

The following two lemmas proved that under suitable conditions, the weighted
irrigation costs of the dyadic irrigation plans {xn }»>1 are uniformly bounded. Uti-
lizing this fact and Theorem 2.7, since the dyadic approximated measures p,, weakly
converges to p, we can conclude the irrigability of g with weighted cost.

To fix the ideas, we first consider the case that u is the Lebesgue measure on the
unit cube Q.

Lemma 3.1. Suppose 1 > 5 > 1 — é, 1>a>1- 5, while p is the Lebesque
measure on the unit cube Q in R%. Then, in the dyadic irrigation plans x,, the
weight function W™ remains uniformly bounded on all branches. Moreover, the
irrigation cost EW*(xy,) is uniformly bounded. That is, there exists an uniform
constant C' > 0, such that for all dyadic irrigation plan xp,

wr < 0, EW(x,) < C. (31)

Proof. For the dyadic irrigation plan x,,, since each dyadic irrigation plan has finite
branches and p,, is supported on the centers in P,,, we can use formula (30) to
compute the weights W". We start from the centers in P,,.

1. From P,, to P,,_1, for each x?fl € P,_1, by the construction of the dyadic
irrigation plan x,, there are straight paths connecting :v;%l to the 2¢ neighboring
centers in P,. Since p is the Lebesgue measure on unit cube ), mass on each center
in P, is 2,1% The branches connecting l’?il to centers in P,, are identical, with
branch length v/d/2"*! and constant multiplicity 1/2"?. We only need to compute
the weight on one such branch, and write it as W, where the superindex n means
it is the weight for irrigation plan ., and the subindex n means from P,, to P, _1.

By formula (30), for s € [0, %]7

W2ts) = (a1 = B = 5)) ™ (32)
W20) = () 4 el - B ) 7 (33)

2. From P,_; to P,_a, using formula (30), on each branch we need to first
compute the weights WZ—1 at the tip. For the dyadic approximated measure i,
it is supported on P,,, thus the mass on each center in Py, k # n is 0. Since each

center in P,_, connects 2¢ identical centers in P,,_1, we therefore have

—n ., 1, Vd \ 15

W = 2W20) = 2((5) P +e=Bgnr) - ()
Each branch between P,_s and P,_1 has length g. By formula (30), for s €
0, ¥4,

Wiy(s) = (2007 [(%)“Mc(l—mgﬁ} +c<1—ﬁ><§—s>)m7 (35)
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n-1(0) = ((zoil)d)l_ﬁ Tel=4) [QnT@(l—B) - gbﬁ '

3. From P,_ to P,_x_1, each branch has length Wle Similarly for s €

[0, 5],

W:Ll—k(s) = ((Q(Tblk)d)l_ﬂ +

(36)

o i (37)

0(12—7176)1\/32?:12%—]) +3d1-B) | (1 - B) 2n+1 _ ) B
Wi ,(0) = ((ﬁ)l_ﬁ—kc(l%élfz 9(k—j)+jd(1—- /3)) )
38

_ 1 1-5 , c(1=-B)Vd 1 =
= ((Q(n—k)d) + onFi-—k ZJ =0 2[1—d(1—AT; .

4. Since W'_,.(s) < W_,(0), to have an uniform bound on the weight function,
we only need to estimate W,"_, (0), for each 0 < k < n—1. Indeed, When 3 > 1-1/d,
one has 1 — d(1 — 8) > 0, then for each k, from (38),

1 4, c(1-pB)Vd 1 =
10 = (Gt + G )
Therefore, we have an uniform bound for the weight function
_1
n C(l — ﬂ)\/;i o
< PR S A S —
wnr < <1+ [ (L) di-5) , (40)

which is independent of n.

5. We now estimate the irrigation cost £"*(x,) by the formula (22). Fixed
the dyadic irrigation plan x,,, call E? the cost from P, to P,_;. There are 27¢
branches from centers in P,, to centers in P,_1. On each branch, the weight W) is
given by (32). Therefore,

ey

_Vd_ =
En o = gud (30 <(271Ld)1—ﬂ +e(1— B) (54 — s)) ds

- c(1+rj—[3) <|:(2}1d)13+c(15)2n\/§1:| o [(2%)1 ﬁ} Ltac B>.

Similarly, denote E)'_, the cost from P,,_j to Pp,_p_1. There are 2(n=k)d Hranches
from centers in P, _j to centers in P, _p_1.

(41)

va
. - ik n \1-8 Vd b=}
Er = 2 k)d/o (W) +el =BG =) “ds (42)

In the following, we use the same C to denote different constants which only
depend on ¢, a, 8 and the dimension d. From (39) and the fact that (1 — §)d < 1,
for each n and k,

o \18 Vd c
(Wn_k) +c(1-5) onti—k < 2(n—k)(1—B)d (43)

Consider z,y > 0,

. 14a—8 E C
g(l',y) = (£C+y) 1_[3 —x 1=F x+y§m (44)
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then, by a first order Taylor expansion,

Applying (43) and (45) in (42), we obtain
" e < 2(n7k)d2(n_k)c(’ad+1) — z(n_k)[g_l)dH] . (46)
When o > 1—1/d, one has (o« —1)d + 1 > 0. Then by (46),
n—1 - c
EW(xn) = kZOE;L Z = k)[ aaET S 1T (D (47)

where C' is some constant independent of n. Combining the estimates (40) and (47),
we obtain the existence of a constant C, independent of n, such that (31) holds. O

Under the same conditions on «, 3, this uniform boundedness result holds for
general positive, finite Radon measures.

Lemma 3.2. Suppose 1 —é <p <1l 1- é < a < 1. uis a finite measure
on the cube Q with edge size L in R?, denote M the total mass of . Then in the
dyadic irrigation plan X, the weight function W™ on each branch remains uniformly

bounded,
wr < o(MF L) . (48)
Moreover, the irrigation cost EW'*(x,) is uniformly bounded, namely
EWe(y,) < C(M0L+L1+ﬁ) (49)
where C' is some constant independent of n.

Proof. For the dyadic irrigation plan x,, to compute the weights W, we start from
the centers in P,,.

1. From P, to P,_1. Let m} be the mass of u, on the center z} in P,. On

the branch from z}' to any center in P,_;, the arc-length of the branch is 2\@&

and the multlphmty is constant m;". Let W', be the corresponding weights, where
the superindex n means we con51der the Welght function on irrigation plan x,, the

subindex (n,7) means we consider the weight on the i-th branch from P,, to P,_1.
Then by formula (30), for s € [0, %],

n nyl— \/ZlL %B
wiis) = (m) "+ et - B)(5 —s>)1 , (50)
W) = ()’ B+c<1— B)ae) (51)
2. From P,,_1 to Pn_s. For each center z;” " in P,_1, to Compute the weight

wp

n—1,i from x}'~ L to any center in P,_o, we ﬁrst estimate W .. Each x?fl in

n—1,7"

Pn_1 connects 2¢ nearby centers in P,,. By (30) and (51) one has,

Wit = > W) = Y ((m?)l_ﬁ+c(1—ﬂ);{i]j)m. (52)

JEO(D) JEO(i)
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Notice for fixed b > 0, g(z) = (217 +b)T- T7 is a concave function of 2 on R Thus
for any IV,

1 al B L ZN 125 =
il 1- T < J=17N\1-5 e
~ ;(% o) < (S +b) (53)
For each i, the cardinality of the set O(i) in (52) is 2¢. From (52)-(53),
_ Yico 1-8 VdL1 15
szl,i < 2 [(%) +c(1-p) 2n,+1:| : (54)

Each branch from z7~' to P,_» has length ‘/QCZL. By the formula (30), for s €
0, 53],

W;}fl’i(s) = ( (WZ_M)l_B +e(1— ﬁ)(@f . 3)) =

(55)
1
— -8
< ((Zjeomm' = + el = B) | 5lthm + (4 —9)]) 77,
VdL VAL 5
n n\1-48
a0 < (O m' = +et=B) | o + 9 ) (56)
JEO(i)
3. From P,,_5 to P,,_3. For each center x?*Q in P,,_2, according to (56),
Wn 2,0 T Zkeo(z n— 1k(0)
- (57)

< Yreow ((Cyeomm)' =" +c— 8) | 5lthms + Y2£] )7

Using the concavity inequality (53),

—n 2 keo(i),jeO(k 1-8 VdL VdL
O BRI SE

In the following, for each center z¥ in Py, if there is a concatenated path from z¥ to
center ' € Py, in the dyadic irrigation plan x,, we say ¢ < j. With this notation,
the above estimate can be written as

W '<2d[<w> _B—i—c(l—ﬁ)[ VL +‘/gLHl_ﬁ. (58)

n—2,i 9d on+1—d(1-p) n

Each branch from x?fz to P,_3 has length Q{df{ By the formula (30), for s €
0, 3%,

y 2n 1

Wisu(s) = (Wisas) 4 et - (8% — )

1
-3
S ((Zz—<] m])l o + (]‘ _6)|:2n+1\/§t11€1 B) + on \{ElL B) + (Q\{L{ _S):|>

(Zm 1ﬁ+cl_m{ VdL L +\/&LD¢5

on+1-2d(1-B) ' 9n—d(1-p) ' 9on—1
1<J

4. From P,,_j to P,_r—1 . Similarly we have,

nZz

n k 1 1

T d 1=<J I N1-
Wiki < 2 (( 2d ) + 2n+2 k 221 d(l Bl ) ’ (59)
1=0
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wn o, (s) <

n—k,i —

nyl— c(1-B)VdL —k -5
((ZRJ' m; )1 f+ % Zzzl m +c(1 - ﬁ)(gn\ﬁfik — 8)) )

k 1
n n\1—-p3 C(l B B)\/&L 1 -8
a0 < (S + S Y ) )
i< —

5. Since W, .(s) < W, ;(0), to have an uniform bound on the weight func-
tion, we only need to estimate W[L”_k’i(O), foreach 0 <k <n—1,1< i< 2dn=Fk),
When 8 > 1—1/d, one has 1 —d(1 — ) > 0. From formula (61),

n nyl— C(l - /6)\/EL 1 ﬁ
0 < (Cmp7+ )7 )

n—Fk,i n+1l—k 1
i< 2 1- 21—d(1-5)

Since ZHj m7 < M, if denote W™ the weights on dyadic irrigation plan x,, from
(62) there is an uniform bound for the weight function
wn < (Ml—b’_’_c(]-_ﬂ)l\/a[’)l%ﬁ < C(Ml_ﬂ“r‘L)l%ﬁ (63)
1 = sr=aa=

where we use the same C' to denote all constants independent of n. This completes
the proof of (48).

6. We now estimate the irrigation cost £":%(y,,) by formula (22). In the dyadic
irrigation plan y,, let EI* be the cost from P,, to P,_1, by (50),

S o
Ey = Zg,-;bepn 0 (Wﬁz(S)) ds
(64)

VdrL _a
on+1 nyl— -3
= Sanep, J& () 4 o1 = B) (378 —5)) T ds.
Similarly, denote E'_, the cost from P, _; to Pp_r_1,

VdL «
Bl k= Zarrer, ., o ( 7?*’”(5)) ds (65)

From (61) and the non-decreasing of W, .(s),

VdL 1— c(1-p)VdL 7
Bnw < Zx?”“emw anHI-Fk ((ZHJ my) ’+ 20 R (= —atr—sy)

(66)

CL(X,,; m})” cLr1E .
< Z$?7kepn—k [ onFi=F + SR Z ) | T In—k + I

where C' is some constant that only depends on «, 3, ¢ and on the dimension d. The
cardinality of P,,_y, is 2~ Therefore

CL' T CL'* T8
= < .
Tn—k Z ot 1=k (125 +1) = oK) (1+725-d) (67)
:cTYLikE'Pnfk
On the other hand, 1 > a > 0, by elementary concavity inequality,
_ CL(Y, . m™)®
Lok = Yoorep, , i)
68)
B 2 n—k P 225%™\ & a (
< 2(n k)d( - 62(27:)11 ) 2n€%—k < 2(n—l§)‘[1§4—dl(/1—a)]'

When1l>a>1—-1/dand 1> 8 >1—1/d, one has

1-d1l-a) > 0, 1+$—d>0. (69)
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Therefore, using (66)-(68),

EW(xn) ho Er_y < 0o Hnek + Jni]

14—
n LM LT
C> o [gll—du—am + 2(1+ﬁ—d)j} (70)

IA

< o(Lme + 17
where C' is some constant independent of n. This completes the proof of (49). O

By the previous results, when f(z) = cz? in (6)-(8), with the conditions in
Lemma 3.2, we have the uniform bounds (49) for the dyadic irrigation plan sequence
{Xn}n>1. Since each x, is an admissible irrigation plan for u,, by the definition
(25), we have a uniform bound on all the irrigation costs Z"*(u,), n > 1. By
the weak convergence pu,, — p and the lower semicontinuity of the irrigation cost,
stated in Theorem 2.7, we conclude ZW:® () < +o0.

By a comparison argument we can now prove the irrigability for a wide class of
functions f and measures p, with the weighted irrigation cost Z"** in (25).

Theorem 3.3. Let p1 be a positive, bounded Radon measure in R, with total mass
M > 0 and supported in the cube Q of edge size L > 0. Assume o« > 1 — é, f
satisfies (A1) and

limsup 2 7f(z) < +oo (71)
z—0+
for some 1> B >1— 1% Then IW*(p) < +oo.

Proof. The assumptions (71) and (A1) together imply that

f(z) < c2f Vz € [072ﬁ20},
(72)
f(z) < ez Vz € [20,00),

with some constants ¢, zop > 0. We will prove that the weighted irrigation costs of
the dyadic approximated measures p,,, defined as in (29), are uniformly bounded.
Since p,, weakly converges to p, by Theorem 2.7, this uniform bound implies the
boundedness of ZW(p).

It suffices to prove the uniform bound for dyadic approximated measures p,, =
ZI?GP" m;d;n with n > ng, where ng is some fixed integer. Choose ng large enough
such that in (62),

el ﬂ)\/ch < zé_ﬁ.
270 - (1 = sr=a0=57)

In the following, we construct the irrigation plan for u,, with uniformly bounded
weighted cost.

1. Consider first from P,, to P,—_1. For those z}' such that m}' > zy, we transport
the particles at =}’ along a straight path directly to the origin. Let &,, be the set of
all such paths. For each path in S,,, the multiplicity is larger than zy and bounded
by M. The length of path is bounded by v/dL. Let W(t) be the weight function
on these paths, then clearly W (t) > zo. By formula (6)-(8) and (72) the weight
satisfies

(73)

Vd Vd
W) < /t YWy ds £ M < /t Y oW (e ds 1M < VM. (1a)
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On the other hand, for the remaining centers x}', we transport the particles from P,
to P, _1, using the branches of the dyadic irrigation plan Y,,, defined as in Lemma
3.2. Notice on each such branch, m} < zo. Then from (51) and (73), the weight

wp.: [0, 2\{%] — R on the branch ~; from P, to P,_1 satisfies

n 1o VdL\ 5 _ N 1
Wiis) = (mi) P +e1-A3s) " < (o P4z )T = 27720, (75)

where we compute the weight W, as solution to Wﬁl = (W )P. Let W; be the

corresponding solution of (6) with m;(t) replaced by constant multiplicity m[, by
(72) and comparision principle from ODE theory,

Wils) < Wri(s). (76)

Then clearly the total cost on these dyadic branches from P,, to P,,_1 is bounded
by E, given in (64).

2. From P,,_1 to P,_o. After removing the point masses transported by branches
in §,,, we still denote the remaining measure as pu,,, and transport pu, to the centers
in P,_1, using the branches from P, to P,_1 of the dyadic irrigation plan x,.
Notice that after removing the masses transported by branches in S,,, m}* < z, for
each 1 < i < 2" with some m; = 0.

For each center x?fl in P,_1, when

Z mi > 2o (77)

we then connect x?fl to the origin directly by a straight branch. Let S, _1 be the
set of all such branches. Similarly as in (74), the weight on each branch in S, _; is

bounded by eVAL V[ For the remaining x?fl, we transport the flux from P,_; to
Pn—2, by the branches of dyadic irrigation plan x,. From (62) and (72)-(73), on
each dyadic branch ; from P,,_1 to P,_o,

VdL
2n

Wi(s) < Wiy ,(s) < 2772, se o, I. (78)
Then clearly the total cost on these dyadic branches from P, _; to P, _s is bounded
by E'_,, defined by (65).

3. By backward induction we construct the irrigation plan until to the level P,,.
For each k > ng, from Py, to Pr_1, there are two types of paths, one is the branches
in Sk, and the other one is the dyadic branches of y,,. Clearly we have

#(Us) <X (79)

Z
k>ngo 0

where M is the total mass of u. Indeed, from our construction, each branch in
Uksn, Sk Will transport distinct groups of particles with mass > 2o, the total mass
of p, is M, thus we have the upper bound in (79). For each branch in Sy, there
is an uniform bound (74) on the weight W(¢), and the length of each branch is
bounded by v/dL, thus the total cost J on branches in Sy, k > ng is bounded by

M o
J < —-(ecﬂLM) VAL = Ky (80)
20
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On the other hand, the total cost I on the dyadic branches is bounded by

I < f: Er < C(MaL+Ll+ﬁ) = (81)

k>ng

where the last inequality comes from (49).

Notice the bounds in (80)-(81) are independent of n, therefore, there exists a
uniform constant C' > 0, such that for each dyadic approximation pu,, we have
IW%(u,,) < C. Thanks to Theorem 2.7, we conclude that ZW-*(u) < C. O

3.1. Examples of non-irrigable measures. In the following we show some cases
for measures p with infinite weighted irrigation cost Z"><.

Definition 3.4. Let u be a positive, bounded measure in R?. If there exists v > 0
and a constant C' > 1 such that

1
o’ < wB(z,r) < O, Vo esupp(p), e [0,1]; (82)
then we say p is Ahlfors regular in dimension ~. Here supp(p) is the support of p,

B(z,r) is the ball of radius r that centered at z.

Remark 1. If a measure y is Ahlfors regular in dimension +, then one can prove
supp(p) has Hausdorft dimension ~y. Indeed, consider any covering U2, B(z;,7;) of
supp(p), consists of closed balls with radius less than 1. From the second inequality

n (82) one has
' M

S > Y M) M,

i>1 i>1
which implies supp(p) has Hausdorff dimension > . On the other hand, by the
Vitali’s Convering Theorem|[11], there exists a countable subcollection of disjoint
B(z;,7;), which we still denote as >~ B(x;,7;), such that supp(p) C U2, B(;, 575).
Then from the first inequality in (82), since B(z;,r;) are disjoint,

257"1 = 5"*2:7"7 < 5702/1 (z:,71)) < 5°CM,

i>1 i>1 i>1
and it implies the Hausdorff dimension of supp(u) < 7.

For the irrigation cost Z%(-) without weights that defined in [15], we recall the
following theorem. For a proof, see Theorem 1.2 in [15].

Theorem 3.5. Let p be a finite a-irrigable measure, with a € (0,1). That is,
TI%(pn) < oo. Then there is a Borel set E C R4, u(RY\ E) = 0, such that for any
s> L

1—a’

H(E) = 0,

where H*(E) is the s-Hausdorff measure of the set E. In other words, if p is
a-irrigable, then p is concentrated on a set E with Hausdorff dimension < %

Remark 2. As mentioned in [7], for any bounded Radon measure u, we always
have ZW:(u) > Z%(u). Therefore, if Z"*(u) < +oo, from Theorem 3.5, p is

l—a”
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Lemma 3.6. If u is a bounded Radon measure as in Theorem 3.3 and let x be an
irrigation plan of p with finite weighted irrigation cost EV*(x) < co. Then for any
r >0,

é’W,a é
R\ B(O,1)) < ((X)) | (33)
Proof. The function
o
= (2P e(1=8)(r—1)"7, x € Ry
is concave. Let m, = u(R?\ B(0,r)), then by definition (21) and (30) we have
/ (mh (1= B)(r — )77 dt < €7 (). (84)
0
Since r — t > 0, it implies that
(i)™ = ey < £V (),
which completes the proof of (83). O

Theorem 3.7. Let p be a positive, bounded Radon measure in R? and Ahlfors
reqular in dimension d. Let f satisfy (A1).
If either o < 1 — é or
liminf 27 7f(2) > 0 (85)

z—0t

for some B <1— ﬁ, then W% (1) = +oo.

Proof. Case 1: If a < 1— 1, then 1 < d. Suppose Z%*(u) < 400, by Remark

2, p is concentrated on a set E with Hausdorff dimension < ﬁ < d, which is

a contradiction to the assumption that g is Ahlfors regular in dimension d (see
Remark 3.5). Thus, we have Z"%(p) = +o0.

Case 2: The assumption (85) implies that, for some constants ¢, zg > 0,
f(z) > ¢ Vz € [0, zo]. (86)

Since pu is Ahlfors regular in dimension d, then for each irrigation plan x and any
6 > 0, there are O(éid) disjoint cubes with diameter § and each of them has measure
~ §?. In each cube, the lower bound for the cost is

e

/05 (5(1(1—5) +c(1—6)(6 - t)) Tt (87)

and the total number of such disjoint cubes is 5%.

EWe(x) > & (690D e(1— BY(6 — )7 dt

> 5 fy (C(l — B0 - t)) = i (88)

ta—B _ 4

> Co -8

where C' is some constant independent of §. Since 1 > o > 1 — é, 1-— ﬁ > >0,
we have % < d. Sending 4 to 0+, the right hand side in (88) goes to +00. Thus,
for any irrigation plan x of u, E"®(x) = +o0c and we conclude ZW*(u) = +oo. O
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