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Statistica Sinica

Estimation for nonignorable missing response or covariate using
semi-parametric quantile regression imputation and

a parametric response probability model

Emily Berg and Cindy Yu

Department of Statistics Iowa State University

Abstract: We address the problem of imputation when a response or covariate
may subject to nonignorable (or, equivalently, missing not at random) nonre-
sponse, meaning the response probability may depend on a variable that is not
always observed. We discuss model identification and develop a novel estimator
of the parameters of the response probability. We further utilize a propensity
score adjustment to incorporate a subset for which both the response and the
covariate are missing. We derive an approximation for the large sample variance
and assess the finite sample properties of the variance estimator through simula-
tions. The simulations also indicate that quantile regression offers a compromise
between fully parametric and non-parametric alternatives. In an application to
data from a 2011 survey of pet owners, quantile regression allows us to model
complex relations between two types of veterinary expenditures, and we find

evidence of nonignorable nonresponse.

Key words and phrases: B-spline, survey sampling, missing not at random



SQRI-MNAR 2

1. Introduction

A widely adopted remedy for missing data is to replace each missing
value with one or more imputed values (Kim and Shao, 2014; Rubin, 1987).
An imputation model defines (1) a relationship between a response (y) and
a covariate (z), and (2) the nature of the dependence between the event of
responding and (z,y). A common simplifying assumption is that the data
are missing at random (MAR), meaning that the probability of responding
is independent of the missing variable after conditioning on fully observed
variables. Under the MAR assumption, Kim (2011) and Wang and Chen
(2009), respectively, develop fully parametric and non-parametric imputa-
tion procedures. Chen and Yu (2016) and Berg and Yu (2019) construct
imputed values under the assumptions of a semiparametric quantile regres-
sion model, assuming MAR nonresponse. When the event of responding is
not independent of missing values given observed values, the response mech-
anism is called missing not at random (MNAR) or nonignorable. (Hereafter,
we use MNAR and nonignorable interchangeably.) We extend Chen and Yu
(2016) to nonignorable nonresponse for a data structure in which neither
the response nor the covariate is fully observed.

A condition for model identification in the presence of MNAR non-

response is the existence of a nonresponse instrument, a variable that is
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correlated with the response y but conditionally independent of the event
of responding given y (Wang, Shao, and Kim, 2014). Tang, Little, and
Rubin (2003) estimate a fully parametric model for y given x, using x as
an instrument, without requiring a specific form for the response proba-
bility. Zhao and Shao (2015) extend the framework of Tang, Little, and
Rubin (2003) to include an additional instrument. Other approaches, such
as Wang, Shao, and Kim (2014) and Chang and Kott (2008), use an in-
strumental variable to estimate a parametrized propensity score model that
depends on y but not on the instrument. Shao and Wang (2016) generalize
the propensity score model of Wang, Shao, and Kim (2014) to include a non-
parametric component. Riddles, Kim, and Im (2016) use likelihood-based
methods to improve upon the efficieny of calibration estimation. Zhao and
Ma (2019) use an instrumental variable but avoid estimating the response
probability directly. Miao and Tchetgen Tchetgen (2016) develop a dou-
bly robust estimator under the assumption that an instrumental variable
(called a “shadow variable” in their work) exists. Fang, Zhao, and Shao
(2018) use an instrumental variable assumption to estimate the coefficient
associated with a missing covariate when the response probability depends
on the covariate. However, it is well-known that identifying an instrumental

variable in a given data set is nontrivial. Morikawa and Kim (2017) gener-
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alize the instrumental variable condition of Wang, Shao, and Kim (2014) by
deriving a necessary and sufficient condition for model identification under
MNAR nonresponse. They develop an efficient propensity score estimator,
assuming a univariate response variable is missing and a univaiate covariate
is fully observed. We extend the identification condition of Morikawa and
Kim (2017) to accommodate missing covariates and construct a completed
data set through imputation.

We propose to generate imputed values from a semi-parametric quan-
tile regression model and then use estimates of the response probabilities to
approximate required expectations for non-respondents. We augment the
imputation procedure with a propensity score adjustment to incorporate a
subset for which both the response and the covariate are missing. In our
application, z and y represent two types of veterinary expenditures, neither
of which is fully observed and either of which may influence the probabil-
ity of responding. Semi-parametric quantile regression provides the needed
flexibility to model nonlinear associations between the two types of veteri-
nary expenditures. We define parametric and non-parametric alternatives
for the purpose of comparison in the simulation study. As our data set has a
univariate covariate, we focus on that case and briefly discuss an extension

to multivariate covariates in Section 6.



We validate our proposed procedure through theory and simula-
tion, and then apply the method to data from a survey of pet owners. In
Section 2, we define the model assumptions, imputation, and estimation
procedures. In Section 3, we define a variance estimator based on a linear
approximation. In Section 4, we conduct simulation studies to compare
alternative imputation models and assess the finite sample properties of
the variance estimator. We apply the method to impute veterinary expen-

ditures in Section 5. We summarize and discuss future work in Section

2. Model Assumptions, Imputation and Estimation Procedures

Let z; and y; denote a continuous covariate and a continuous response
variable, respectively, with a compact support on the box [Mi,, Ms,] X
[My,, Ms,], where ¢ = 1,...,n. Let ¢; denote a response indicator variable
such that ¢; = 1 if both x; and y; are observed, §; = 2 if x; is observed and
y; 1s missing, and 9; = 3 if y; is observed and z; is missing. We also use

Oki = I[0; = k] for k = 1,2,3. Table 1 shows the data structure.



Table 1: Structure of Missing Data

Covariate Response y Response Indicator 0

v v 1
v ? 2
? v 3
Assume that (z;,y;,0;) for ¢ = 1,...,n are iid realizations of the

random variable (X,Y, A) with joint CDF F(z,y,d). Further, assume X
and Y are absolutely continuous and denote their corresponding conditional
pdf’s by f(y|x,d) and f(x|y,0), respectively. Assume A has parametric

conditional pmf given by

PA=k|X=2,Y=y) = exp(ro + Pr1x + dr2y)
’ 22=1 exp(Pro + Gr1T + Pr2y) 7

(2.1)

for k = 1,2, 3, where (¢19, ¢11, ¢12) = (0,0,0).

To identify the parameters of (2.1), we require an additional assump-
tion. By a direct extension of Theorem 3.1 of Morikawa and Kim (2017)
to missing covariates, the additional assumption is that F'(x,y,d) is a joint

CDF such that the condition

E[GXP(—¢20 — Q21T — ¢22Y) ’ T, 0; = 1] = E[GXP(—%O - ¢/215Ui - ¢/22Y) ’ xi, 0 = 1]

(2.2)



almost everywhere implies (¢ag, a1, P22) = (P, Phy, Phy), and the condition

Elexp(—¢30 — 51X — 329i) | yi, 0 = 1] = Elexp(—¢ — 051X — d5003) | vi, 65 = 1]
(2.3)

almost everywhere implies (@30, @31, P32) = (dhg, D1y D). If P31 = P2 = 0,

then MAR holds and the model is automatically identified.

Sufficient conditions for (2.2) and (2.3) are that

hy (a2, ) = —log(Elexp{—¢2Y} | z,§ = 1]) (2.4)

is not in the column space of z, and

he(p31,y) = —log(Elexp{—¢s1 X} | y,0 = 1]) (2.5)

is not in the column space of y. If h,(¢q2, ) is in the column space of z,
then ¢ is confounded with ¢9y. Similarly, we require h,(¢31,y) to be not in
the column space of y to prevent ¢z, from being confounded with ¢3;. Note
that —hy (g9, x) is the cumulant generating function of f(y | z,6 = 1), and
likewise for —h,(¢s1,y). An aspect of (2.4) and (2.5) that is of practical
importance is that one can check these conditions using {(x;,y;) : 0; = 1},
as we illustrate in the data analysis of Section 5.
Let the parameter of interest be 6y = Eg(X,Y) = 35_ o o gla,y)dF (., 0).

In the absence of any nonresponse, an estimator of Eg(X,Y) is éfu” =
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n~t S g(@i, y;i). The estimator éfu” is not directly applicable because of

nonresponse. By Cheng (1994), a consistent estimator of 6y is

n

1
0= - 2{512'9(%‘, Yi) + 02 Elg(:, Y )|xi, 6 = 2] + 03, E[g (X, vi)|yi, 6; = 3]}

i=1
(2.6)
We convert expectations given § = 2 or ¢ = 3 in (2.6) to expectations

given § = 1 using an “exponential tilting” relationship (Kim and Yu, 2011).

Under (2.1), it is straightforward to show that

f(ylz,d = 1)exp(paay)

flyle,0=2) = Elexp(¢22Y) | 2,0 = 1]’

and

f(fl’|ya 0= 1)exp(¢31x)
Elexp(¢z1X) | y,0 = 1]’

fzly, 6 =3) = (2.8)

where ¢g9 and ¢3; are the tilting parameters. The equality in (2.7) allows
us to express the conditional expectation for the group with 6 = 2 in (2.6)

as a function of different expectations given § = 1 by

E[g(:B, Y)exp(¢22Y)|:L', 0= 1]

Elg(a,Y)|r,0 = 2] = Elexp(¢Y )|z, 0 = 1]

(2.9)

Similarly, the third conditional expectation for the group with 6 = 3 in

(2.6) converts to a ratio of two expectations given 6 = 1 as

Elg(X,y)exp(¢s1.X)|y, 6 = 1]
Elexp(¢51X)|y,0 =1]

Elg(X,y)ly,6 =3] = (2.10)
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The expressions (2.9) and (2.10) show that we can estimate ¢ with (1)
estimates of f(y | ,0 = 1) and f(x | y,0 = 1) and (2) estimates of ¢
and ¢3;. In this paper, we focus on the use of semi-parametric quantile
regression to estimate f(y | ,0 = 1) and f(x | y,6 = 1). We compare
to non-parametric and fully parametric alternatives in the simulations. We
first define our estimation method for known (g2, ¢31) in Section 2.1 and

explain how to estimate unknown (g9, ¢31) in Section 2.2.

2.1 Approximating Expectations with Estimated Quantiles

We approximate f(y|z,d = 1) and f(z]y,0 = 1) through their conditional
quantile regression functions, denoted ¢, (z) and ¢, (y), respectively, for 7 €
(0,1). By definition, the quantile regression functions satisfy 7 = P(Y <
¢-(x)|z,d = 1) and 7 = P(X < ¢.(y)|y,0 = 1). Assume ¢.(z) and ¢,(y)
are one-to-one functions of « and y, respectively, for every 7. A well-known
fact is that ¢, (z) and ¢,(y) satisty ¢.(z) = argmin, [ p-(y — a)f(ylz,d =
1)dy and ¢,(y) = argmin, [ p-(x — a)f(z|y, 6 = 1)dz, where p,(u) is the
“check function” defined by, p,(u) = u(r — Ilu < 0]) (Koenker, 2005).
We approximate ¢.(z) and ¢,(y) with a B-spline, allowing flexibility and
computational efficiency. Let B(z) be a B-spline of degree p,, and with

K, , interior knots, where n; is the sample size for 6 = 1. For any 7 € (0, 1),
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we estimate ¢,(x) by ¢,(x) = B(l’),,éy‘x(T), where

A - )‘n ! 1/
Byia(7) = argming{> _ d1ip-(y; — B(x:)'B) + Tl’yﬁ D, D,p3}, (2.11)

i=1
D,, is a difference matrix of order m, and A,,, > 0 is the smoothing
parameter. See Chen and Yu (2016) and Berg and Yu (2019) for a precise
definition of the B-spline and the difference matrix D,,. In an analogous

fashion, define the estimate of ¢.(y) by ¢,(y) = B(y)’Bx‘y(T), where

3 & )\n x
Bupy(t) = argming{> _ duip-(x;: — B(y:)'B) + —5 B D, DyB} for a given 7.

i=1
To approximate the full distributions of f(y; | x;,0; = 1) and f(x; |
yi, 0; = 1), we obtain estimates Bm,(T) and BW(T) for a grid of 7; defined
by 7, =n+(j—1)/J for j =2,...,J, where 17 ~ Unif(0,1/J). The
resulting estimated quantiles, defined as y; = {y;; = ¢-,(z:) : j = 1,..., J},
serve as imputed values for element i with §; = 2. Likewise, z; = {z}; =
Gr;(yi) : j =1,...,J} serve as imputed values for element 7 with §; = 3.
The sequence of estimated quantiles permits us to approximate the ex-
pectations defining 6. For any arbitrary function m(zx,y), a variable trans-

formation implies

T

! f \xé:l(F_l
Elm(x,Y x,ézlz/mx,Fl_T = ylz
(e s =11 = [ eyt () 7

Mla) g
y ()|x)dT—/0 m(z, q-(x))dr.

T

We approximate E[m(z,Y)|x,8 = 1] by E[m(z,Y)|z,6 = 1] = J! ijl m(z, Gr; (7))
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We approximate the numerator and denominator of (2.9) by replacing
m(z,Y) with g(x,Y)exp(peoY) and exp(pa2Y), respectively. Specifically,

Elg(z,Y)exp(¢Y)e,6 = 1] = J7 37, g(2, 4y (2))exp(9204y, (2)), and

Elexp(¢oY )|z, 6 = 1] = J Z}le exp(¢p22G-; (z)). Then, an approximation

for (2.9) is
Elg(w:,Y)|s, 6 = 2) = Zw% b2, Y1) 9(@0, Yy (212)

where ¢, = (¢20, ®a1, ¢22)’, and

) exp(p22y;;)
Wai (2, Y;) = =3 ’ L (2.13)
Zj:l exp(¢a2y;;)
Analogously, we estimate the expectation in (2.10) as
E[ (X Yi |y$75 — 3 Zwi’n] ¢3a ; zjvy’i)a (214)
where @3 = (¢30, P31, ¢32)" and
Y exp(¢s127;)
wsg; (@3, ;) = ’ (2.15)

Z;‘le exp(¢s127;) ‘

2.2 Estimation of Response Probability

The estimated expectations in (2.12) and (2.14) require estimators of ¢
and ¢g31, the two tilting parameters. We estimate ¢ = (¢}, ¢})" using

conditional probabilities. Define for k = 2, 3,

+ i T i
Wkl(xhyi: ¢k> = (6 =k | Tiy Yi, ¢k75 € {1 k}) exp(¢k0 ¢k1x ¢k2y)

1+ exp(¢ro + Pr1%i + Prayi)’
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and let migeo(v) := P(0 = 1|v,0 € {1,k}) forv =z if k =2, and v = y if

k = 3. Based on a result of Morikawa and Kim (2017), we can show that

exXp(— —pa1x+hy(— T
71-1200(33) = E[l — 721 (ZL‘, Y, ¢2) | T, o€ {17 2}] = 1+e£é)(fif)2ole2ll_+%i(fii%;))),

(2.16)

and

EeXP(—¢30+ha(—¢31,y)—
7Tl3oo(y) = E[l — T31 (X7 Y, ¢3) ’ Ys 0 € {17 3}} = 1+e££)(i¢25030+hi(ffbl?)i)y)f?;i)y);

(2.17)
where hy (g2, ;) and h,(¢ps1,y;) are defined in (2.4) and (2.5), respectively.
Note that m1(2) depends only on x and 734, (y) depends only on y. Thus

equation (2.16) suggests an estimator of ¢, defined as

R ¥ N\ (= a
s = argmaiy, Z log exp(—pa0 — Pa1%; + yf $22, Qyz?) (2.18)
P 1+ exp(—g20 = Q217; + hy(— P22, Gyi))

+ Z log [1 - exp(—¢a — i + ByA(_szZ; 4yi)) ]
14 exp(—¢20 — P21 + hy(—d22,4yi)) ’

Zél:2
where ﬁy(¢22, q,i) = —log (J_l Z}]=1 exp{—gzﬁmy;‘j}) . Likewise, we estimate

@3 as

exp(—=s0 + I (= P31, Gui) — P32:) ] (2.19)

(/53 = argmag, log - »
3 Z 1+ exp(—¢s0 + ha(—P31, Gui) — P32¥i)

7:0;=1

3 log [1_ exp(~b0 + hie( =0, Gus) ~ G320 ]

1:0;=3 1+ eXp(—(;530 + }Alx(_gbi%la sz) - ¢32yi)
where hy(¢s1, Gni) = —log (Jfl Z;]:l exp{—(bglej}) . Note that h, and h,

are estimates of i, and h, using the imputed values y;; and z7;. In opera-
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tion, we use the R function optim to find the maximum, where the initial

value for ¢, is from the logistic regression of 1—dy; on (1, z;, B(z;)'J ! ijl ,C:]y|x(7'j))’
for the set with d3; = 0. We define the initial value for ¢3 from the logis-

tic regression of 1 — d3; on (1, B(y;) J ™! 25:1 B:p‘y(Tj), y;)' for the set with

do; = 0.

In summary, we define the basic steps of the estimation procedure:

1. Use {(x;,y;) : 6; = 1} to estimate the quantile regression model and

*
177

define imputed values y;; and z7;, as defined in Section 2.1.
2. Estimate ¢ and ¢3 as defined in Section 2.2.
3. Define the imputed estimator 6 by
n J J
0=n"" {01g(wi, ts) + 02 Y waij (o, y7)g(wi, yfy) + G5 Y waij (s, })g(wy, i) }-
i=1 j=1 j=1

(2.20)

This completes the description of our imputation and estimation proce-

dures.

3. Large Sample Theories and Variance Estimation

As a pre-cursor to the statement of the large sample distributions of qig

and q_7>3, we give the large sample distributions of the the estimates of the
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quantile regression coefficients as Lemma 1. We state Lemma 1 without
proof because lemma 1 is essentially an application of Yoshida (2013) to
the set with 9; = 1. We use the linear approximation in lemma 1 in the
subsequent derivation of the asymptotic properties of (¢, @) and 6.
Lemma 1 uses the following property of Barrow and Smith (1978). The
result is that the best L., approximation to ¢,(x) (as a function of z), de-
noted B(z)'B;,(7), satisfies supze(nn, i) | 4-(2) +07(x) — B(z)'8;,(1) |=

o(K;ny‘z“)), where b%(x) is the bias due to using a B-spline to approximate

the true function ¢,(z), and is defined as in Yoshida (2013).

(Py|a+ )( )

Lemma 1. Assume q(py‘z )(:v) 15 continuous, where qr denotes

the p + 1 derivative of q,(x) with respect to x, K,, , = O(n 1/(2py‘z+3)), and

Anyy = O(ny") for v, < (Pyle +m +1)/(2py» +3). Then,

o (B Bya(r) = ar() = bi(2) = D}(2) ) = Wa, +0y(1),
where
Wa, = Kzl B(z)'H ny y\x Z B(zi)r( €y|z, (7)),

1571

¢T(u) SRR I[u < O}; 6y|az,i(7—) =Y — QT(xi)J
thy\w(T) = ¢y|w(7) + nfl)‘nl,yD;anv

B (2) = — 2 By (<I>y|x<7> ¥

ni

—1
2DD,)  DLD.GLG). (31)
1
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and (I)y\ac(T) = limy, 00 nfl Zi:éizl Fol@s=1) (@i, ¢-(2:)) B(z:) B(;)'.

Lemma 1 holds for a given 7, but the order of approximation does not
depend on 7. A result analogous to lemma 1 holds for Bx‘y(T). We assume

that the degree of B(y), denoted py,, is such that py, -p;

|z

= O(1). We
also assume that the number of interior knots used to define B(y), denoted

K, o, satisfies Ko, , - Kt = O(1).

3.1 Asymptotic Variance of é and 6

We state the large sample distribution of cﬁz and 6 as Theorems 1 and 2,
respectively. Section S1 of the supplement contains a result for qgg analogous

to Theorem 1 as well as proofs.

Theorem 1. In addition to the assumptions of Lemma 1, assume ég—q’)g =
0,(1), J = O(n%5*9) for some & > 0, and the conditions in the supplement

hold. Then, ¢» — ¢ = Bai "), b2 — s =n"" D it I, 'Uy,i + 0p(n0%),

and r/nVy,"* (¢s — o) % N(0, I), where

n—o0

V,, = lim n 1I <Z U¢21U¢22> ¢2 : (3.2)

Iy, =lim, . In,¢2(qy>7 In,¢>2(Qy) =n"! ZieAm T12i (P2, Qyi)(l—ﬂm((ﬁ% qyi))z2i<¢27 qyi>z2i<¢2> qyi>/;

Mz — Jo €TP(d224r (2))i(r)dr
Usyi = (01i+02) Sioo(h2)+ 022011 [1. 2 DT 1200 () (1=T1200 (%)) 2000 () B() Ofol €$p2(z>(122qr($))d‘r dF (z |

01402 = 1), p1 = limyoon™ 01, Sico(P2) = (011 — M200(21)) 22100, £i(T) =
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H ' (T)B(@:)Yr(ey)ai(T)), 2a0o(2) = (=1, =2, =Eo(Y | 2)), 22100 = Z200(:i), 22i(h2, @yi) =

(=1, =2, =By ;(Y | 245 02,Qyi)), @Qyi = {qr,(xs) = = 1,...,J}, By (Y |

}1,

A = {Z 1015 4 09 = 1}; qy = {qyi 01 + 0 = 1}; and EQ[Y | x] = E[Y |

J
x5 P2, Qyi) = Zj:l w2ij(¢2> Qyi)QTj (74),

T2i( @2, Qyi) = {1 + exp

J
G20 + o175 + log <J_1 Z exp{ 922, (%)})

Jj=1

An estimator of the variance of ¢, is

V{go} =n7I;} <ZU¢QZU¢2Z> . (3.3)

where we substitute unknown parameters with their corresponding esti-
mators to define IAM,Z and l}'¢2i7 as defined explicitly in Section S2 of the

supplement.

Theorem 2. Continue to assume the conditions of Theorem 1. Also, as-
sume g(X,Y) has bounded 2 + ¢ moments for ¢ > 0 and has bounded sec-
ond derivatives with respect to both x and y. Let K,,, = maz{K,, 4, K, .}

Then, iV, *3(0—Elg(X,Y)]) % N(0,1), where Vy = limy, o0(n—1)"" 30 (r;—

=1
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A r=n"tY "
i = g(@i, i) — Eg(X,Y) 4 095 (Eo[g(2:, Y) | 3] — g(@i, yi)) + 03 (Es[9(X, u3) | wil = g(xi, vi))

(3.4)
+ (511 + (522‘ {Czw} e/QI(;21U¢2 i (511 + 531 {0300} 63 1U¢3 i

b / /MM (1)dF (x| § = 2) dT+/ /MM mi(7)dF(y | 6 = 3)dr),

Cooo = limy, oo n Y0 S0k Cova(g(xr, Y), Y | 21), Caoe = limy, soo n ™t > 1, 83xCov3(g(X, yx), X |
i), Cova(g(z,Y),Y | 2) = Cov(g(z,Y),Y | X = 2,8 = 2), Covs(g(X,y), X |

y) = Cov(g(X,y), X | Y =y,0 = 3),Ex[g(z,Y) | 2] = E[g(z,Y) [ § =

2,X =z, B3lg(Xy) | y] = Elg(X,y) | 6 = 3,Y = yl.es = (0,0,1)’,

Cy<x?7—) = éy(x’ 7)B(z), C.(y,7) = ¢:(y,7)B(y),

i g = &)  Be(z.Y) | z Pazexp(Pgr(z))
{%:7) fol exp(¢22g-(z)) ) ]fol exp(¢22g-(x))
&y — (Y, 7) _ Byg(X ¢316Ip(¢31q7(y))¢31
) T etomar i Y Y ot

cy(2,7) = erp(d224: (7)) g, (7, ¢ (7)) +9(z, ¢- () exp(Paagr () P22, c2(y, T) =
exp(9319:(4))9:(0- (V) ¥) +9(¢-(y), y) exp(d314- (y) ) 31, and my(T), Ly, and

Uy, are defined in the supplement for the linear approximation for (;33.

A proof of Theorem 2 is presented in Section S1 of the supplement. An

estimator of the variance of the imputed estimator is

n

V{0} = (n(n —1))7" Y (7 = 72)", (3.5)

i=1
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where 7; is a plug-in estimator of r; defined in Section S2.3 of the supple-
ment, and 7 = n~! > i, 7. In supplement Section S2.4, we define how to
use a further Taylor linearization to estimate the variance of “composite”

estimators of the form 6 = h(él, ...,0k) of a parameter 0 = h(0y,...,0k),

where each 0y, is of the form Eg,(X,Y), for some function gi(X,Y).

3.2 Propensity Score Adjusted Imputed Estimator

The data set may contain a fourth group for which both x; and y; are
missing. Let dy; = 1 if both x; and y; are missing. In this context, we inter-
pret the probabilities (2.1) as conditional probabilities given that d,; = 0.
We apply the imputation procedure to {i : d5; = 0}, as described in Section
2. We then apply a propensity score adjustment using a p—dimensional

covariate v; known for all i = 1,...,n. Assume

P (64 = 0) = exp(¢ao + ¢lyv:)[1 + exp(dao + Pyvi)] ' := pui(ds). (3.1)

Estimate the (p + 1)-dimensional parameter ¢, = (¢u0, @) with ¢4 =
(¢10, Py)' satisfying Sy(ds) = 0, where Sy(¢ps) = D0, (1, v;)/(1 — by —
pai(¢4)). Then, let py; = psi(¢ps). The assumption (3.1) justifies the propen-

sity score adjusted imputed estimator defined by

P4i P4i

n J - . § 5 . . )

) ! g i Ti 2= Wi (B2, 79 (i, 1 Wai (s, 2 )g(27;, vi

QPSA—IMPZE{ 5119(?; )+52z J=1 ]( ) ( ]) +53i2] 1 .7( ) ( J ) '
i=1 4i



19

The propensity weights p};' extrapolate the set {i : 01; + 0o + 03, = 1}
onto the full sample {i = 1,...,n}. In supplement Section S3, we define an
estimator of the variance of § PSA—Imp as a straightforward extension of (3.5),
and we verify through simulation that épSA, mp and the corresponding

variance estimator are approximately unbiased.

4. Simulation Study

We assess the finite-sample properties of the proposed estimator. We
first compare the estimator of Section 2 to competitive alternatives. We

then assess the properties of the variance estimator proposed in Section 3.

4.1 Comparison of Alternative Imputation Estimators

We consider two distributions for F(y,x,d). For both, the parameter of
interest is @ = (EY, EX,V(Y),V(X),C(X,Y)), where V(Y) (or V(X))
and C'(X,Y), respectively, denote the variance of Y (or X) and the corre-
lation between X and Y. We compute the estimators for a Monte Carlo
(MC) sample size of 500 and define @ based on a separate simulation of size
500,000.

We compare the estimator proposed in Section 2 (abbreviated “Imp”)

to three alternatives. To assess the impact of accounting for MNAR nonre-
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sponse, we consider an ignorable (Ign) estimator that is essentially that of
Chen and Yu (2016) and is obtained by setting ¢ = 0 so that ws;; (2, q,i) =
w3 (3, qzi) = J 1. We define parametric (Par) and non-parametric (NP)
alternatives that involve implementing the 3 steps of Section 2.3, including
estimation of ¢, but generating the imputed values differently. For Par, we
assume that y; = By, + 81, + By 2? + B3 ,@3 +€;,,, where €;, w N(0,0Z,),

and likewise, ©; = By + B2+ P22y + P3.2Y; +€inr Where €; 4 ~ N(0, aﬁ,x).

. did
vij

The imputed values for Par are vj; = 0; + e;,;;, where for v = z,y, e
N(0, &iy), 0; is the predicted mean using the ordinary least squares coeffi-
cients (8o, Bi: Bo,ws Ba,0), and 62, = (n —4)~' S0 (v — ;). For NP, we
generate imputed values independently and with replacement from the set of
observed values such that P{y;; = yr} = K(z), — z) Doy 01K (e — )] 71,
Plaj; = o} = K(yr — vi) 204 016K (ye — ys)] ™", where K (-) is a Gaussian
kernel with bandwidth defined by applying the R function bw.ucv to the
sets {x; : 01; = 1} and {y; : 61; = 1} individually. Due to the adjustment for
MNAR nonresponse, through estimation of ¢, the Par and NP estimators
proposed above are themselves innovations upon Kim (2011) and Wang and

Chen (2009), respectively.

We define the Flipped Exp simulation model by

yi = h(z;) +1.25(1 + 2;)(e; — 0.2), and € “© Beta(1,4),  (4.2)
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where h(x;) = {2exp(—2)—exp(—2(x;—1)) H [x; < 2]+{2exp(2)—exp(—2(x;—
B) M2 < a5 < 4] + exp(—2(z; — 3))I[4 < 2; < 6], 7 < Unif(0,6) for i =
1,...,n,and (¢0, Pa1, P22, P30, P31, P32) = (—1,0.033,0.12, —0.800, 0.1, 0.033).
We consider n = 100, 1000, and 5000. The penalties (A, y; Anyz) are
(0.2, 2), (1, 10), and (3, 30) for n = 100, 1000, and 5000, respectively.
They are based on a rule of (A, 4, Anyz) = (0.1,0.01)n5°, determined
from an exploratory analysis of simulated data using generalized cross-
validation (Chen and Yu, 2016) and the relation between \,,, and n in
Lemma 1. We define J ~ n%5, giving J = 10, 30, and 70 for n = 100,
1000, and 5000, respectively. The knots are the k/(K + 1) quantiles of
{z; : 61+ 09 = 1,0 = 1,...,n} and {y; : 0y; + 93 = 1,4 = 1,...,n},
where £ = 1,..., K, and K = 20,30, and 35 for n =100, 1000, and 5000,
respectively. The values of K are based loosely on the rule of thumb,
K = min{n/4,35} (Ruppert, Wand, and Carroll, 2003).

Tables 2 and 3 contain the MC biases and RMSE’s of the estimators of
0 and ¢, respectively, with the smallest absolute value among competitors
in bold. For mn = 100, variation from estimating additional parameters
causes the RMSE of Imp to exceed those of Par and Ign, except for £ X
and Cor(X,Y). For n = 1000, the Imp procedure is efficient. As n increases

to 5000, the efficiency NP improves. The Imp estimator of ¢ typically has
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smallest absolute bias and RMSE.
To construct a model that better satisfies the assumptions of the Par
estimator, we define the Exp configuration by (4.2) with h(z;) = exp(2z;),
where z; % Unif(—1,1), and (¢20, do1, b2, d30, d31, d32) = (—0.9,0.15,0.2, —0.8,0.15, 0.1).
A rule of A, , = A, 2 & 15/ gives penalties of 20 and 100 for n = 100 and

1000, respectively. We define knots and 7; the same as for FlippedExp.
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Table 2: MC bias and RMSE of alternative estimators of 8 for Flipped Exp.

Bias RMSE
True Ign Imp Par NP Ign Imp Par NP
n = 100
LY 4.412 -0.034 0.022 0.041 -0.125 0.637 0.644 0.751 0.751
EX 3.000 -0.838 -0.001 -0.010 -0.014 0.862 0.180 0.186 0.196
V(Y) 42.865 -0.182  0.619 3.469 -1.610 5.545 6.235 14.460 5.575
V(X) 3.000 0.954 -0.018 0.011 -0.040 1.010 0.315 0.308 0.312
C(X,Y) 0.939 -0.341 -0.000 -0.015 -0.039 0.352 0.014 0.030 0.059
n = 1000
LY 4.412 -0.039 0.004 -0.044  0.011 0.209 0.208 0.229 0.211
EX 3.000 -0.839 -0.000 -0.003 -0.002 0.841 0.053 0.056 0.053
V(Y) 42.865 -0.564 0.003 -0.114 -0.038 1472 1.430 1809 1.441
V(X) 3.000 1.001 -0.002 0.015 -0.005 1.006 0.089 0.095 0.090
C(X,Y) 0.939 -0.341  0.000 -0.003 -0.005 0.342 0.004 0.005 0.007
n = 5000
LEY 4.412 -0.035  0.007 -0.037 0.007 0.101  0.097 0.110 0.096
EX 3.000 -0.838  0.001 0.001 0.001 0.838 0.025 0.025 0.025
V(Y) 42.865 -0.574  0.011 -0.190 -0.010 0.833 0.654 0.833 0.637
V(X) 3.000 1.002 -0.004 0.012 -0.004 1.003 0.039 0.042 0.039
C(X,Y) 0.939 -0.341  0.000 -0.002 -0.001 0.341 0.002 0.003 0.002
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Table 3: MC bias and RMSE of alternative estimators of ¢ for Flipped Exp.

Bias RMSE

n True Imp Par NP Imp Par NP
¢20 100 -1.0000 0.1008 -0.2918 -0.3151 1.0756 1.3114 1.0886
¢21 100 0.0333 -0.0853 0.1236 0.1046 0.5482 0.6408 0.5548
¢22 100 0.1200 0.0277  -0.0323 -0.0176 0.1475 0.1712 0.1663
¢30 100 -0.8000 -0.0923 -0.0709  -0.0852 1.3860 1.5112 1.7724
¢z 100 0.1000 -0.0023 -0.0231 -0.0477 0.7272 0.7588 0.8893
¢32 100 0.0333 0.0061 0.0103 0.0223 0.1928 0.2037  0.2286
¢20 1000 -1.0000 0.0021  -0.1877 = -0.0042 0.3077 0.4324 0.3001
¢21 1000 0.0333 -0.0049 0.0995 -0.0059 0.1531 0.2242 0.1510
¢22 1000 0.1200 0.0025  -0.0248 0.0042 0.0400 0.0598 0.0402
@30 1000 -0.8000 0.0075 0.0664 0.0549 0.3613 0.4875 0.3721
@31 1000 0.1000 -0.0045 -0.0379  -0.0296 0.1824 0.2535 0.1892
@32 1000 0.0333 0.0014 0.0097 0.0078 0.0479 0.0669 0.0498
¢20 5000 -1.0000 0.0014 -0.1442  -0.0016 0.1411 0.2273  0.1402
@21 5000 0.0333 -0.0012 0.0798  0.0000 0.0691 0.1198 0.0688
¢22 5000 0.1200 0.0006  -0.0199 0.0006 0.0180 0.0311 0.0179
®30 5000 -0.8000 0.0057 0.0191 0.0221 0.1630 0.2210 0.1654
@31 5000 0.1000 -0.0027 -0.0100 -0.0113 0.0829 0.1139 0.0843
¢32 5000 0.0333 0.0008 0.0025 0.0030 0.0214 0.0295 0.0218
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Results for Exzp in Table 4 favor Par because the assumed cubic ap-

proximates the Fxp function well. An exception is for Var(X), where Imp

has smaller RMSE than Par for n = 100 and n = 1000. Imp and Par are

superior to NP in Table 4 due to the small sample size. Results for qAb and

n = 5000 (omitted for brevity) lead to similar conclusions.

Table 4: Comparison of imputation procedures for Ezp.

Bias RMSE
True Ign Imp Par NP Ign Imp Par NP
n = 100
EY 1.813 -0.012  0.000  0.007 -0.025 0.203 0.202 0.199 0.223
EX 0.000 -0.008 0.002  0.009 -0.015 0.053 0.059 0.063 0.069
V(Y) 3.613 -0.211 = -0.161 -0.069 -0.197 0.685 0.675 0.648 0.846
V(X) 0.333 -0.084 0.001  0.024 -0.005 0.089 0.032 0.095 0.033
C(X,Y) 0.888 -0.129 0.004 0.005 -0.075 0.139 0.015 0.018 0.107
n = 1000
EY 1.813 -0.015  -0.007 -0.008 -0.006 0.063 0.062 0.061 0.062
EX 0.000 -0.009 -0.001 -0.001 -0.003 0.018 0.019 0.019 0.019
V(Y) 3.613 -0.099  -0.069 -0.070 -0.046 0.216 0.208 0.200 0.206
V(X) 0.333 -0.084 -0.001  0.002 -0.002 0.084 0.009 0.010 0.010
C(X,Y) 0.888 -0.124  0.001 0.001 -0.010 0.125 0.006 0.005 0.014
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4.2 Variance Estimator for Imputed Estimator

Table 5: Properties of variance estimator for Imp for Flipped Exp.

n =100 n = 1000 n = 5000

Vie(d)  RB% CR% Vie(@) RB% CR%  Vye(d)  RB% CR%

x 103 x 103 x 103

EY 517.943  -9.061 93.4 43164 2.387  94.6 8854 0.771  95.6
EX 37.112 -10.713  93.8 3102 -0.216 94.0 0.633 2467 94.8
V(Y) 36090.740 -11.852  93.0 | 1962.765 -1.616 944 | 435.427 -10.830 93.6
V(X) 84.684 33.543  96.6 7.271 10.397  95.2 1.623  -3.466  94.2
C(X,Y) 0.185 29.068  96.0 0.014  0.177 928 0.003 12921  95.6
$20 1121574 5837 974 100.770 -3.255  94.2 19.616  -2.580  95.2
bon 298.448  1.864 97.0 25131 -5.082  93.8 4974  -6.440  94.6
P22 21.847  -0.004  96.0 1.759  -5.536  93.6 0.343  -6.006 93.4
b30 1707.902  -5.553  97.4 131.168 -3.995  95.0 25236 -2.336  94.2
b31 467.293  -8.326  96.2 33.185 -3.753  95.0 6.163 1473  95.0
b3 32.245 -5.849  97.0 2.351 -5.450  95.0 0411 5636 954

~

Table 5 contains the MC variances (Vy;c(60)) of the Imp estimators,
the percent relative biases (RB%) of the variance estimator (100(Eyc[V]—
Vae(0))/Vare (), where Eye[V] denotes the MC mean of the variance es-

timator (3.5)), and the percent of normal theory confidence intervals that
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contain the true parameter values (CR%). For n = 100, the absolute RB%
can exceed 15% and CR% can exceed 97%. For n € {100,5000}, the abso-

lute RB% is below 15% and the CR% is within 2% of 95%.

5. Data Analysis

We analyze data from the 2011 Pet Demographic Survey (PDS), a national
survey that collects information about pet ownership. The Iowa State Cen-
ter for Survey Statistics and Methodology (CSSM) received the data as an
agreement to plan for the 2017 survey. Variables of interest on the PDS
include the number and type of pets owned, body types of those pets, and
expenditures on veterinary services. We consider X*, the sum of the most
recent vet visit expenditures for a dog and cat combined, as a covariate for
Y™, the average vet visit expenditures in 2011 for dogs and cats. Table 6 has
the number of observations for X* and Y™* with four missing data patterns.
We apply the propensity-score adjusted imputed estimator to estimate the
veterinary expenditures for dogs and cats.

Table 6: Number of records in each group for pet data.

Group Count Group Count

1: X* and Y* observed 3338 | 3: Only Y™ observed 262

2: Only X* observed 2461 | 4: X* and Y missing 1169




28

The nature of the relationship between X* and Y™ as well as extreme
values preclude us from finding a quantile regression model that fits sample
data well in the original scale. Further, the 75 zeros for X* and 64 zeros for
Y™ make a log transformation problematic. After exploring several trans-
formations, including square root, cube root, and fifth root, we find that
the cube root transformation allows us to construct a quantile regression
model that appears adequate.

We apply the quantile regression procedure to first construct imputed
values for X = (X*)¥/3 and Y = (Y*)/3 for groups 2 and 3. The generalized
cross-validation criterion of Chen and Yu (2016) suggests A, , = 100. The
rule used for the Exp configuration of A, , ~ n%g, where 193 is the number
of observations in groups 1, 2, and 3, suggests A, , =~ 330. At first, we tried
the approximate mid-point of A, , ~ 200 and obtained negative estimated
quantiles for y; for 7; and small values of z;. Increasing the penalty to
Aniy = 300 successfully avoided negatives. We present results for A,, , =
300. We use a fixed sequence of 7, = j/(J + 1) for j = 1,...,J with
J = 80 =~ n%}. The fixed sequence avoids extreme quantiles and ensures
that the data analysis is reproducible. (Chen and Yu (2016) compare results
for fixed and random 7;.) We define knots at the k/(K + 1) quantiles of

{z; 101 +0;=1:i=1,...,n}and {y; : 01, + 03, =1:i=1,... ,n} for
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k=1,...,K, where K = 35.

We assess the model identification conditions (2.4) and (2.5) using
the estimated functions iLy((;gQg,x) and hy(¢s1,y) plotted in Figure 1. To
construct the left plot in Figure 1, we first define an estimate of hy(@g, x;)
in equation (2.4) as the negative logarithm of the lowess regression of
exp(—qgnyi) on x; for the {i : §; = 1}, where QEQQ is the estimated expo-
nential tilting parameter in (2.7) obtained using the method described in
Section 2.3. The right plot is constructed analogously, interchanging the
roles of x; and y; and replacing Qggg with Qggl. The nonlinearities seen in

Figure 1 support the model identification conditions (2.4) and (2.5).

)
04 08
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4

02
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I

Figure 1: Estimated hy (¢, ) (left) and hy(ds1,y) (right).

Table 7 gives estimates and corresponding standard errors for the

propensity score model. The covariates, given in the column headings, are
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selected with step-wise selection, starting with a model that contains all
fully observed covariates and using the BIC criterion. The gender variable
is 1 for females and 0 for males. The other covariates (defined in Section
S3.3 of the supplement) are defined by ordered categories and are treated as
numeric. The response variable is the indicator that unit 7 is not in group
4. Therefore, a positive coefficient is associated with a higher probability
of providing a response. As such, we estimate that women with higher
income and education who live alone or with one other person are more
likely to provide a response to at least one of the questions about veterinary

expenses.

Table 7: Estimated g134 and SE for propensity score model.

Intercept Age Gender Income FEducation Household Size

Est. 0.16252 0.10355 0.38652 0.38395  0.21250 -0.31212

SE 0.20897  0.02687 0.09208 0.03056  0.03671 0.05129

Table 8 contains estimates of ¢, and ¢3 (obtained using (2.18)
and (2.19)) along with associated standard errors (defined in (3.3)). The
estimator of ¢q; differs significantly from zero at the 5% level, but after
accounting for x;, y; is no longer significantly associated with the response

indicator, d9;. Interestingly, the estimate of ¢3; is more than double the
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standard error. The component of the model that accounts for nonignorable

nonresponse is important for ds;.

Table 8: Estimates and standard errors for ¢ = (@), @4)’ for the pet data.

¢2j Est. qbgj SE ¢3j Est. ¢3j SE
j=0 05136 0.2782 | -1.0677 0.4484
g=1 -0.0561 0.0271 | -0.2590 0.1037
j=2 -0.0810 0.0903 | 0.0609 0.0587

Table 9: Complete case and Imp-PSA estimators of selected parameters,

along with standard errors for the Imp-PSA estimator.

EY EX Var(Y) Var(X) Cor(X,Y) EY3 EX3
Complete Case 5.210 7.359 3.729 7.073 0.420 208.336 575.560
SE Complete Case 0.032 0.035 0.161 0.225 0.033 5.664  11.409
Imp-PSA 5.052 7.274 3.269 6.979 0.442 185.164 566.653
SE Imp-PSA 0.077 0.035 0.184 0.218 0.016 7.297  10.912

Table 9 compares the propensity-score adjusted imputed estimator (Imp-

PSA) to the complete case estimator, which naively ignores missing values.

The parameters £Y? and EX? represent the mean expenditures in the orig-

inal scale and are defined by g(z,y) = y* and g(z,y) = 23, respectively.
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We also estimate means and the correlation in the cube root scale. The
comparison of complete case and imputed estimators suggests that ignor-
ing the missing data would overstate the expenditures and understate the
correlation between X and Y. As a result of the nonignorable nonresponse,
the complete-case standard errors are also invalid. Imputation requires es-
timating additional parameters and can therefore leads to an increase in
SE relative to the complete-case SE. The sample size for the complete-case
estimator of the correlation is smaller than the sample size used to estimate
the other parameters because the complete-case estimator of the correlation

only uses pairs where both x; and y; are simultaneously observed.

6. Discussion

The theory, simulations, and data analysis demonstrate that the proposed
semiparametric quantile regression imputation procedure is a viable method
of constructing imputed values when the probability of responding may de-
pend on the value of a missing response or covariate. We prove that the
imputed estimator is asymptotically normal and verify through simulation
that an estimate of the large sample covariance matrix has reasonable finite-
sample properties. The simulations also show that failure to account for

nonignorable nonresponse can lead to a severe bias. The squared bias of the
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ignorable predictor can account for over 90% of MSE. In contrast, the ratio
of the squared bias to MSE for the proposed (Imp) estimator is consistently
below 1%. In our simulations, quantile regression is more robust than fully
parametric imputation and more efficient than non-parametric imputation
at small sample sizes. We do not have theoretical support for the superiority
of semi-parametric quantile regression relative to non-parametric regression
and therefore do not expect these results to hold broadly. A further ad-
vantage of quantile regression over the non-parametric estimator of Wang
and Chen (2009) is that quantile regression permits a linearization-based
variance estimator. In the application, the proposed procedure allows us to
use one type of veterinary expenditure to impute the other, while allowing
for nonignorable nonresponse and modeling complex patterns in the data.
Further, we develop a propensity score adjustment to incorporate a set for
which neither veterinary expenditure is observed.

In this paper, we use a fully parametric model for the response
probability. As demonstrated in Robins and Ritov (1997), identification
for nonignorable nonresponse is elusive without any restrictions. Nonethe-
less, relaxing the parametric assumptions of the response probability model,
along the lines of Shao and Wang (2016), is a possible avenue for future

work.
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In principle, our approach of modeling the conditional distribution
of the covariate given a response extends to multivariate covariates. One
must ensure that the quantile regression model adequately describes each
full univariate conditional and that identification conditions are satisfied.
We define an identification condition for multivariate covariates in Section
S4 of the supplement. An alternative approach for missing covariates is to
use Bayes rule to deduce f(x | y) from a specification of f(y | x) and f(z)
(Yang and Kim, 2017). Our preliminary studies suggest that an extension of
Yang and Kim (2017) to nonignorable nonresponse and quantile regression

is a promising direction for future work.

Supplementary Materials have details omitted for brevity.
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