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ABSTRACT
Understanding the capabilities of new architectures is key to in-
forming system purchases and good long-term ROI (Return of In-
vestment) for cluster installations. The newest AMD architecture,
Milan, has become available first on Microsoft Azure and we use
this early access to measure the performance of this 3rd Genera-
tion AMD EPYC processor. In this paper single node performance
is gathered for seven popular scientific applications and bench-
mark test-suites. Quantitative comparisons are carried out between
two independent platforms, Milan and its architectural predeces-
sor Rome, for performance evaluations. Our results have shown
that Milan architecture have improved performance and met our
projections.

CCS CONCEPTS
• Computer systems organization → Multicore architectures;
• Computing methodologies → Massively parallel and high-
performance simulations; • General and reference → Perfor-
mance.
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1 INTRODUCTION
The performance of HPC architectures is a key indicator for many
academic research computing organizations. For instance, when
purchasing systems in heterogeneous environments [5], and when
calculating ROI and TCO (Total Cost of Ownership). Additionally,
measured architecture performance is crucial to set expectations
of the performance of a machine and in-turn provide a baseline to
understand and identify soft-failures within an HPC cluster. Lastly,
historical performance data can inform interactions with vendors
and deepen understanding of vendor road maps.

At Purdue University, the community cluster program has sup-
ported scientists from every corner of our campus since 2004, build-
ing upon decades of experience at Purdue in scientific computing
[10]. This program makes more computing power available for Pur-
due researchers than faculty and campus units could individually
afford, and provides this crucial service at the lowest cost to the
institution. The Bell cluster, featuring 2nd Generation AMD EPYC
“Rome” processors, is the most recent example of success.

With this experience in mind, Purdue proposed and was awarded
to build and operate the “Anvil” system [19] by the National Science
Foundation (NSF) within the NSF’s XSEDE program [20]. Equipped
with the latest 3rd Generation AMD EPYC processors, the CPU-
based partition of Anvil will provide 1,000 nodes of HPC capacity.
Anvil was designed and proposed before anyMilan EPYC processors
existed, and the system’s anticipated performance was based on
projections using 2nd Generation AMD EPYC processors. The Anvil
design team projected a 1.2x speedup when moving to the 3rd
Generation EPYC. The benchmark and comparison below is made
possible with the recent availability of HBv3 instances on Microsoft

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3437359.3465596
https://doi.org/10.1145/3437359.3465596


PEARC ’21, July 18–22, 2021, Boston, MA, USA Wu and Harrell, et al.

Azure, based on the same family of 64-core AMD processors that
will underpin Anvil.

In this work, we study the performance characteristics of seven
key applications from the different scientific domains (e.g. computa-
tional fluid dynamics, molecular dynamics simulation and weather
forecasting) which we expect to support on the Anvil system. We
compare these single-node application benchmarks with the pro-
jected speedup and call out some specific performance characteris-
tics of the platform.

2 ARCHITECTURE BACKGROUND
AMD’s 3rd Generation EPYC architecture, code named "Milan," is
the server product line from AMD based on their "Zen3" processor
core. A "Zen3"-based processor is composed of one or more core
complexes. These complexes have 8 Zen 3 cores. The highest per-
formance 3rd Generation processor has 8 core complex and can
come into dual processor servers for a total of 128 cores [8]. The 1st
generation EPYC processor introduced the concept of multiple sili-
con dies per package to AMD’s processors which was an evolution
following trends in the silicon industry. This original design con-
nected its core complexes together using point to point links. Core
counts were doubled from competitors for more total throughput
but connecting the memory directly to core complexes produced a
platform with a challenging memory layout [3]. The 2nd Genera-
tion EPYC Processors kept the same fundamentals but improved
internal processor core efficiencies and solved some memory per-
formance problems by isolating all external I/O to one task specific
die on the processor [13]. 3rd Generation AMD EPYC processors
bring most performance by optimizing each core for more instruc-
tions per second and shakes up the memory layout to decrease
complexity and hopefully latency [14]. These evolutionary changes
inside the processor socket and continued into system integration
should provide more throughput and more performance [8].

Integrating the 2nd and 3rd Generation AMD EPYC Processors
into a complete compute cluster for "Bell" and "Anvil" have brought
evolutionary changes as well. For comparison, Intel’s 1st and 2nd
generation Scalable processor consumed a lot less power per socket,
approaching 115 watts per processor socket [9]. The processor used
in "Anvil" will consume 280 watts of power per socket [4] which is
increased from "Bell"’s 225 watts. The increase in efficiencies and
performance have come at an increase in power. When consider-
ing these processors it became clear that we needed to evolve our
data center to keep up with hotter processors. This meant bringing
liquid water direct to the processor with CoolIT’s direct to chip
cooling solution in addition to the back of rack water cooled radi-
ator doors. By taking water directly into "Bell" nodes we brought
density to 40 nodes per server rack. The "Anvil" system continued
the same tradition by increasing power density with 480v power
directly to racks and using active cooling radiators with fans units.
These changes allowed us to put 60 nodes per rack and support the
increased power requirements to keep the processors cool. This
evolution has allowed us to keep pace and provide a solution we
hope provides comparable performance to systems run by much
larger organizations with modern data centers.

3 EXPERIMENTAL SETUP
3.1 Hardware
All experiments were carried out on two separate platforms, the Bell
cluster and the HBv3 instance at Microsoft Azure, only available
for early-user testing at the time of writing.

3.1.1 The Bell Cluster at Purdue [2] was built through a partner-
ship with Dell and AMD in late 2020. Bell consists of Dell compute
nodes with two 64-core AMD EPYC 7662 "Rome" processors (128
cores per node) and 256 GB of DDR4 memory. All nodes have 100
Gbps HDR Infiniband interconnect. Simultaneous Multithreading
(SMT) is disabled on Bell. We partition the CPU into four NUMA
domains per socket (NPS=4). This NUMA configuration has been
suggested by vendors to provides the a good combination of mem-
ory bandwidth and memory latency for a HPC/HTC workload.
Considering that most applications will fully subscribe all the cores
on each node, the InfiniBand device on Bell is selected as the Pre-
ferred IO Device to achieve full message rate when all CPU cores
are active. This is crucial for HPC applications and especially for
multi-node scalability.

3.1.2 The Microsoft Azure HBv3 instance [12] features two 64-core
AMD EPYC 7V13 "Milan" CPUs for a total of 128 physical "Zen3"
cores. SMT is disabled on HBv3. These 128 cores are divided into 16
sections (8 per socket), each section containing 8 processor cores
with uniform access to a 32 MB L3 cache. The HBv3 VM reserves
8 hypervisor host cores symmetrically across both CPU sockets,
taking the first 2 cores from specific Core Complex Dies (CCDs)
on each NUMA domain. As a result, the remaining 120 cores are
available for use. When the NPS is two, the server boots with 4
NUMA domains (2 per socket) each 32-cores in size. Each NUMA
has direct access to 4 channels of physical DRAM operating at 3200
MT/s.

3.2 Software
We selected a suite of scientific applications for benchmark closely
matching the most used applications on both Purdue’s commu-
nity clusters and XSEDE platforms. Representative applications in
the field of molecular dynamics, computation fluid dynamics and
weather forecasting are selected to provide broader performance
assessment. A well-known benchmark, HPCG [7], was also used.

CentOS 7.8 and CentOS 8.1 are used on Bell and HBv3 VMs,
respectively. To ensure fast and reliable application build, we set up
the latest Spack [6] version 0.16.1 on the Azure instance to make
the installations whenever possible. On both systems, we used the
GCC compiler version 9.3 and OpenMPI version 3.1.4. All test code
and datasets used by the experiments in this paper are available in
Appendix A.

3.2.1 DB12 - DIRAC Benchmark 2012 is a Python-based self-
contained benchmark that provides an estimate of CPU processing
capabilities for High Energy Physics codes. Considered as a short
version of HS06 [11], it iteratively samples a sequence of pseudo-
random numbers from a Gaussian distribution. The number of
iterations is fixed at 12.5x106, which corresponds to 250 HS06 sec-
onds. We used version 0.1 of DB12 from the GitHub repository.
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3.2.2 HPCG - High Performance Conjugate Gradient is a bench-
mark designed to test a handful of common HPC algorithms. It is
intended as a complement to HPL [15], however, it gives a more
complete picture of the capabilities of any specific machine.

3.2.3 GROMACS [1] – GROningen MAchine for Chemical Simula-
tions is a molecular dynamics package designed for biomolecuar
simulations. In our benchmark runs, we used version 2019.2 and
performed an 500ps MD simulation of a molecular system with
206,220 atoms.

3.2.4 LAMMPS [17] – Large-scale Atomic/Molecular Massively Par-
allel Simulator is a molecular dynamics program from Sandia Na-
tional Laboratories. Version 21Jul20 was used in our benchmark
runs. We performed 2000 MD steps of a system build from the
Rhodopsion benchmark by replicating four times along each direc-
tion. The final system contains 2,048,000 atoms.

3.2.5 NAMD [16] – Nanoscale Molecular Dynamics is a parallel
molecular dynamics code designed for high-performance simu-
lation of large biomolecular systems. We used version 2.13. The
F1ATPase dataset in the benchmark has 327,506 atoms and employs
periodic boundary condition and Particle Mesh Ewald (PME) for
treating electrostatic interactions.

3.2.6 WRF [18] - The Weather Research and Forecasting Model is a
mesoscale numerical weather prediction system designed for both
atmospheric research and operational forecasting applications. The
WRF data set is a real domain over the continental US (CONUS) Feb-
ruary 19th, 2019 with a timestep of 18 seconds, with a 3-kilometer
grid spacing with 50 vertical levels and approximately 325,000 tiles.
The benchmark period is 12 hours. We used WRF V3.9.1 as well as
WPS V3.9.1 from UCAR for pre-processing.

3.2.7 OpenFOAM [21] - Open source Field Operation And Manip-
ulation is a free, open source C++ CFD toolbox with over sixty
customized solvers and pre-/post- processing utilities that can per-
form simulations on basic CFD, combustion, turbulence modeling,
electromagnetics, heat transfer, multiphase flow and stress analysis.
In our testing, we used OpenFOAM 6 to run a modified case based
on depthCharge3D example that comes with the source code.

4 RESULTS AND ANALYSIS
Here we present the single node performance for the two platforms
of Bell and Azure. We summarized our test results in Table 1 below
to show the performance enhancement for different benchmarks
and applications. To account for the different number of available
computing cores, we adjusted the results obtained on Bell when
all the cores on a node was fully subscribed by a scaling factor
0.9375 (120/128). In addition, the two computing systems we tested
were not set up in the same way, including the NUMA nodes per
socket parameters. Such differences could make the quantitative
comparisons in the study less straightforward, but would still pro-
vide insight into how to properly build and optimize the application
environment on the latest AMD CPUs.

Most applications have a 10%-30% performance improvement
which is consistent with the vendor’s expectation and our projec-
tion in the designing phase of Anvil. In addition, we have observed
that process pinning to core in general help the performance and

Table 1: Single node performance data of Bell-Rome and
Azure-Milan system for different benchmarks and applica-
tions.

Application Performance
on Rome

Performance
on Milan

Performance
Improvement

unit

GROMACS 49.3 67.2 1.36 ns/day
LAMMPS 0.81 0.88 1.09 ns/day
NAMD 4.13 4.80 1.16 ns/day

OpenFOAM 4754 4048 1.17 seconds
WRF 1852 1469 1.26 seconds
DB12 1800.3 2509.1 1.39 events/s
HPCG 38.8 42.4 1.09 GFLOPs

properly mapping by NUMA or L3cache is better than the default
binding, resulting a small but noticeable performance enhancement
on both test systems.

Figure 1: Single node performance enhancement between
the Bell-Rome and Azure-Milan systems for each applica-
tion and benchmark suite. The results obtained from Bell
and Rome are referenced to be 1 for easy comparisons.

We also explored the performance impact of cache and memory
bandwidth on the AMD CPUs. WRF is known to be very sensitive
to memory bandwidth, so different process and tiling schemes
were tested, using both MPI version as well as the hybrid parallel
configuration option with OpenMP (see Table 2). The portion of
the computational domain to a process could be too large to fit
into the CPU cache. It is possible to decompose the domain into
tiles. Significant speedup is observed when the number of tiles is
increased from 1 to 8 on both test systems. We also evaluate the
effect of hybrid MPI+OpenMP parallelization. Similar performance
could be achieved by a judicious combination of processes and tiles
as well as the careful placement of MPI processes onto CPU cores.
For instance, we are able to get better performance results using 1
or 2 threads than 4 threads on HBv3 VM. It is also noted that the
MPI communication overhead could be reduced by using hybrid
MPI+OpenMP parallelization depending on the specific use case.

Using Bell and the Azure instances up to 64 cores provided us
expected results but performance decreased when scaling up. We
continue to work to understand the problem.
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Table 2: Single node performance of WRF in seconds with
different parallel process and tiling schemes on both Bell
and Azure HBv3.

parallelization 1
tile

2
tiles

4
tiles

8
tiles

platform

120 tasks 1461 1348 1278 1250 Azure
128 tasks 1736 1616 1540 1520 Bell

60 tasks/2 threads 1386 1299 1243 Azure
30 tasks/4 threads 1437 1347 Azure

5 CONCLUSION
In this paper we have tested single node performance of Rome
processors and Milan processors which, at the time of writing this
paper, were only available on the Microsoft Azure platform. We
compare these numbers with the benchmarking extrapolation from
the Anvil NSF proposal.

At the Anvil cluster designing stage, the proposal team estimated
approximately 20% performance enhancement moving top SKUs of
Rome to the Milan platform. As shown in this paper we are able
to obtain the expected performance gain on Milan vs the Rome
architecture at a single node level.

We will continue to explore interesting issues on the Azure
instances, such as the HPL benchmark beyond a single socket as
well as carry out multi-node studies including strong scaling of the
applications. We expect that the early experiences on the Milan
platform will be crucial for us to successfully deliver the Anvil
cluster to the national science and engineering community.
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