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High entropy alloys (HEAs) are a series of novel materials that demonstrate many exceptional mechanical
properties. To understand the origin of these attractive properties, it is important to investigate the thermody-
namics and elucidate the evolution of various chemical phases. In this work, we introduce a data-driven
approach to construct the effective Hamiltonian and study the thermodynamics of HEAs through canonical
Monte Carlo simulation. The main characteristic of our method is to use pairwise interactions between atoms as
features and systematically improve the representativeness of the dataset using samples from Monte Carlo
simulation. We find this method produces highly robust and accurate effective Hamiltonians that give less than
0.1 mRy test error for all the three refractory HEAs: MoNbTaW, MoNbTaVW, and MoNbTaTiW. Using replica
exchange to speed up the MC simulation, we calculated the specific heats and short-range order parameters in a
wide range of temperatures. For all the studied materials, we find there are two major order-disorder transitions
occurring respectively at T; and T», where T; is near room temperature but T is much higher. We further
demonstrate that the transition at T; is caused by W and Nb while the one at T, is caused by the other elements.
By comparing with experiments, the results provide insight into the role of chemical ordering in the strength and
ductility of HEAs.

1. Introduction

High entropy alloys (HEAs) [1-3] are a class of novel materials that
attracts significant interest due to their superior mechanical properties
[4-8]. Compared to conventional alloys, the most distinctive feature of
HEAs is that they are composed of multiple principal elements in
approximately equal proportions. The random mixing of principal ele-
ments substantially enhances the configurational entropy, which can
overcome the enthalpy of mixing to stabilize the random solid solution
phase. Although initially, the completely random phase was the focus of
people’s attention, recently there is a growing interest to further
improve the mechanical properties of HEAs through the tuning of the

secondary phase, nano-structure, and short-range order (SRO) [7,9-12].
For example, second-phase particles rich in Cr and V [13] is believed to
be the origin of the excellent radiation tolerance in a W-based refractory
HEAs, and the dislocation pinning by 1.3 + 0.4 nm Ar bubbles is found to
be responsible for the high mechanical damage tolerance in MoNbTaW
thin films [14]. Moreover, compared to the ordered phase, the high
chemical complexity of HEAs introduces strong chemical fluctuation to
the random phase [15,16], which has a profound effect on quantities
governing the plastic deformation, such as stacking fault energy, dislo-
cation core structure, and Peierls potential, as revealed in recent works
[17-19,12,20,21]. As a result, it is reasonable to expect that the occur-
rence of order-disorder transition in HEAs can have a significant effect
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on the mechanical properties. To investigate these effects, it is highly
desirable to have an accurate, efficient, and versatile tool for the study of
thermodynamics in HEAs.

Density functional theory (DFT) is a powerful method to calculate
material properties from first principles. Combined with Monte Carlo
(MC) methods, DFT is widely applied to study finite temperature sys-
tems [22-24]. One simple approach to combine DFT with MC is to use
DFT to evaluate the energy at each Monte Carlo step, which is obviously
computationally very expensive due to the large number of MC steps.
For example, using a supercell of 250-atom [25], the “brute-force” sta-
tistical simulation of the order-disorder transition in CuZn alloy requires
the calculation of 600,000 DFT energies of different chemical configu-
rations, which is only practical on supercomputers with more than
100,000 CPU cores. A more common approach is to build an energy
model (effective Hamiltonian) from DFT calculations, and employ the
computationally cheap lattice model in the Monte Carlo simulation. Two
different approaches are commonly utilized to construct the energy
model. The first one is to calculate the effective cluster interactions (ECI)
directly from DFT using the linear response theory of concentration
waves. The implementations of this approach are typically based on the
coherent potential approximation (CPA), such as the S theory [26],
the generalized perturbation method (GPM) [27], and the embedded-
cluster method (ECM) [28]. While these methods can provide impor-
tant physical insight by elegantly connecting the order parameters with
the electronic band structure [29], their analytical nature and heavy
dependence on CPA renders them difficult to implement for complex
alloys. The second approach is to extract the ECI parameters from the
energies of different chemical configurations. The best-known example
of this strategy is the cluster expansion method [30-36], where the ECI
parameters are typically calculated with the Connolly and Williams
approach (also known as the structure inversion method) [37]. In
principle, cluster expansion provides a complete basis to represent
different chemical configurations. In practice, a truncation has to be
applied to retain the dominant cluster terms [38] for the calculation to
be feasible. In contrast to the aforementioned CPA methods, in cluster
expansion, DFT only plays the role of calculating energy data. The
separation of data generation and model fitting makes cluster expansion
easy to be combined with various DFT implementations, and be widely
used for the study of thermodynamics in materials.

The application of cluster expansion in HEAs, however, faces addi-
tional challenges due to the rapid increase of the number of parameters
in the model. First, a simple structure inversion is no longer reliable to
determine a large number of model parameters due to the bias-variance
trade-off [39], which means a complex model is prone to overfitting. To
build a robust energy model, a large and representative dataset is
required, and techniques such as regularization, cross-validation, and
model selection, need to be applied. Second, since in practice only pair
and triplet interactions within a few atomic shells are typically included
in the cluster expansion of HEAs, the included clusters in the model
should not be assumed to form a complete basis. Due to the above two
points, it is helpful to treat this problem from the perspective of machine
learning [40-42], where cluster expansion can be viewed as a tool for
providing “physics-inspired” features, and machine learning techniques
can be employed to optimize the model. This idea is similar to the
previous efforts in the cluster expansion community, such as Bayesian
cluster expansion [43,44], optimal selection of structures [45], and
renormalized interactions [46]. Nevertheless, it is also important to note
that, the features in the model are not necessarily limited by cluster
expansion, nor the model has to be linear. One should also note that
cluster expansion seeks to obtain a model Hamiltonian for all chemical
concentrations, and such a requirement typically compromises the ac-
curacy of the energy model. In this work we focus on canonical MC
simulation, where the chemical composition is fixed. Therefore, by
“configuration”, we refer to the arrangement of atoms in the lattice,
under the constraint of fixed chemical composition.

One recent trend is to utilize machine learning approaches to
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Fig. 1. A schematic to illustrate the dependence of the local energy E; on the
local chemical environment. The different colors of the atoms signify different
chemical species. The effective pair interactions of the nearest neighbor and
next nearest neighbor are shown explicitly. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of
this article.)

construct an efficient data-driven model, predict the mechanical or
chemical properties, and improve the performance via material design
[47-49] in multicomponent systems [50-56]. In principle, if a large
dataset is provided, methods such as deep neural networks (DNN) can be
employed for this purpose. In practice, a few challenges need to be
addressed in the implementation of the machine learning approach.
First, machine learning methods are generally data-hungry, therefore it
is essential to generate the data efficiently via high-fidelity simulations.
However, most DFT implementations are computationally expensive
due to the intrinsic cubic scaling behavior. Improving the DFT calcula-
tion speed is particularly critical for HEAs due to the need for a relatively
large supercell to represent various chemical phases. Second, the dataset
needs to be representative to cover the whole high-dimensional
configuration space. Otherwise, the learned model only performs well
in the training data but shows fake predictability in the “unseen” testing
dataset. This means a statistical sampling scheme needs to be devised so
that the chemical configurations in the dataset have various degrees of
order and disorder, and contain states in the whole relevant energy
range. Both challenges need to be addressed for the investigation of the
thermodynamics of multicomponent systems, e.g. HEAs, through Monte
Carlo simulation.

In this work, we develop a data-driven framework to address the
above challenges. To speed up the data generation process, the linear-
scaling self-consistent multiple scattering (LSMS) method [57] is
employed to calculate the configurational energy from first principles.
The dataset is first initialized with random configurations to obtain a
preliminary energy model, from which a canonical MC simulation is
carried out and a small configuration sample is drawn. This sample of
configurations are calculated with LSMS, and these newly obtained data
points are then added into the original dataset to improve the data
representativeness. Using the improved dataset, we perform an adaptive
model construction and achieve a significant improvement in model
accuracy. The updated model is employed to conduct the study of
thermodynamics through Monte Carlo simulation. Note that the direct
calculation of the DFT energies of the MC samples is a key feature of our
method. It not only enables us to evaluate the model accuracy in large
MC supercell, but also renders it straightforward to implement an
adaptive, incremental learning policy. By using the same supercell in
both DFT calculation and MC simulation, the two procedures are linked
together to form a self-consistent loop, as distinct from other methods



X. Liu et al.

[41]. Using this proposed approach, the specific heats and short-range
order parameters of three refractory HEAs, MoNbTaW, MoNbTaVW,
and MoNbTaTiW are evaluated to study the order-disorder transitions.

2. Methods
2.1. Energy model

The total energy of a system can be expressed as a summation of the
local atomic energies, which can be approximated with an effective
Hamiltonian. Conventional cluster expansion is difficult for HEAs due to
the large number of multi-site interactions, thus here we adopt the
effective pair interactions (EPI) model [58]. In the EPI model, the
effective Hamiltonian of the system is made up of the chemical pair
interactions of the centering atom with neighboring atoms within some
cut-off radius, as illustrated in Fig. 1. The local chemical environment is
specified by & = (¢°,6',---,6™ 1), which denotes the chemical species
of the N, neighboring atoms. The local energy E; is given by

E = vanf (E’,-) + VP4V fe, €))
7

where « is the uncertainty of the EPI model, V° is the bias term same for
all sites, V¥ is a single-site term depending only on the chemical
component p of atom i, V/ are the EPI parameters, and 7' are the number
of pair interactions of type f. The feature index f is actually made up of
three parts (p,p , m), representing the element of the local atom, the
element of the neighboring atoms, and the coordination shell, respec-
tively. For a canonical system, summing up the local energies over all
sites, the total energy is then given by

E~N Z Vﬁ” I‘[Zﬂ' +const+ €, )

P <pm

where N is the total number of atoms and H‘,’,‘l’, is the proportion of pp
interaction in the m-th neighboring shell. Note that due to the fixed
chemical composition in canonical system, the single-site term V¥ has
been absorbed into the constant, and the number of independent EPI
parameters is M(M —1)/2 for a M-component system, which is the
reason for the p' < p requirement. The EPI model has demonstrate high
accuracy to approximate the total energy in recent studies [58,59]. For
fixed chemical concentrations, the pairwise iteration plays a dominant
role in determining the Hamiltonian but higher-order terms may have
limited impact on the EPI model.

2.2. EPI parameter estimate

The EPI parameters can be determined by solving the linear system
given by Eq. (2), which can be cast in a matrix form

E=VII+e 3

where E is a column vector in which the i-th element in the total energy
E;, Tl is a matrix containing the proportion of pp’ interaction in the m-th
neighboring shell, and V is a column vector in which the m-th neigh-
boring shell is V;, which also includes M(M —1)/2 elements. Deter-
mining the EPI model in Eq. (2) is equivalent to finding the parameter

vector V that minimizes the residual sum of squared (RSS) errors
2

. A typical solution is the ordinary least squares (OLS)
2
method, which performs well in the overdetermined systems. However,

a large number of parameters can lead OLS to fit the noise in the data
[35], which compromises the predictability of the model. The OLS
method is also sensitive to outliers and thus leads to unstable and un-
reliable estimates.

HE—VH
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Ridge regularization has been proved to be an effective approach to
avoid overfitting by adding an ¢ norm term to the cost function, which
amounts to adding a Gaussian prior to the EPI parameters. In this
context, the optimal EPI parameters V" can be solved by

V" = argmin|[E — VII||; -+ 4|V]]3, @
v

One problem in solving Eq. (4) is how to optimally determine the ¢,
regularization parameter A. Rather than choosing the regularization
parameter A by hand, Bayesian ridge regression treats 1 as a random
variable and determines it automatically along with other model pa-
rameters by maximizing the log marginal likelihood. Consequently, the
¢, regularization in Eq. (4) is equivalent to finding a maximum a pos-
terior (MAP) estimation [60,61] given a Gaussian prior over J with
precision ¢!, that is p(V|¢) =.7'(J|0,£7!). Typically, a MAP estimation
of the posterior distribution is obtained by Markov Chain Monte Carlo
(MCMC) algorithm [62], which is often computationally intensive and
difficult to converge for high dimensional problem [63]. In this work, we
consider a conjugate prior for which the posterior distribution can be
derived analytically and utilize the implementation in the scikit-learn
package [64] for all the reported results. More hyperparameters de-
tails can be found in [59].

Compared to the OLS method, Bayesian ridge regression has three
advantages: 1) ¢, regularization can mitigate the overfitting issue and
stabilize the estimator, and 2) Bayesian techniques can include regula-
rization parameters in the estimation procedure so that the regulariza-
tion parameter is not set in a hard sense but tuned to the data at hand
and 3) Bayesian ridge regression estimates a probabilistic model of the
regression model and is well-suite to take uncertainty (e.g. noise term)
into consideration.

2.3. Monte Carlo simulation

The thermodynamic observables are estimated using canonical
Monte Carlo simulation, where both the temperature and the number of
particles of each component are fixed. Specifically, each Monte Carlo
update is made up of proposing a swap of chemical species between
neighboring atoms and accepting it according to a Markov Chain
updating scheme, which is the Metropolis algorithm in our case. After
the system reaches equilibrium, the configurations follow Boltzmann
distribution and samples can be drawn to calculate observables. Due to
the competing interactions in the system, the replica exchange Monte
Carlo (REMC) algorithm [65] is employed to speed up the simulation. In
REMC, multiple simulations are performed simultaneously at different
temperatures, and the systems exchange configurations according to a
Metropolis-like probability that satisfies the detailed balance condition.
The transition probability from a configuration {7}, simulated at
temperature T, to a configuration { ¢}, simulated at temperature T, is

W({@},, Tul{@},, T,) = min[1,exp( — )], (5)
where
A= (1/kgT, —1/kgT,)(E,, — E,), (6)

and kg is the Boltzmann constant. Since the specific heats are non-
divergent at the transition point for all the HEAs studied, it is optimal
to set the simulation temperature in geometric series [66]. The Monte
Carlo step hence consists of an atom swap trial for every lattice site,
followed by a replica exchange update between neighboring tempera-
tures. In practice, 5 different initial configurations are utilized to esti-
mate the statistical error and ensure the equilibrium state is reached.
During the Monte Carlo simulation, 10® warm-up steps are discarded
and the subsequent 107 steps are used to estimate thermodynamic ob-
servables. In this work, the thermodynamic quantity we focus on are the
specific heat and the short-range order parameter. The specific heat is
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calculated by evaluating the standard deviation of the energy. The

Warren-Cowley short-range order parameter [67,68] aff is defined as

, PI’\F’
a? =1-—-m )

m .
Sp

where ¢, is the concentration of element p, and P2F  is the probability of

finding element p at the m-th neighbor shell for a given element p’, and is
calculated by averaging over the Monte Carlo samples.

2.4. DFT calculation

In the data generating process, larger supercells are needed to
simulate the complex chemical environment, and a big number of
chemical configurations are required to generate enough data. Both the
two requirements substantially increase the computational cost, making
DFT calculation the bottleneck of the calculation speed, therefore an
efficient implementation of DFT is highly desirable. As mentioned in the
introduction, the speed improvement is accomplished by the linear-
scaling LSMS method. The LSMS method is a real space implementa-
tion of the Korringa-Kohn-Rostoker (KKR) method [69,70]. Its linear-
scaling behavior is achieved by restricting the quantum scattering of
the electrons within the so-called local interaction zone (LIZ). Note that
all the electrostatic interactions are still explicitly calculated, therefore
LSMS can reliably predict the small energy difference between different
chemical configurations.

In practice, the dataset is initially made up of configurations gener-
ated randomly using supercells of different sizes. This is a simple
approach to include various degrees of order and disorder in the
configuration sample, because small supercells naturally give rise to
ordered structures due to periodic boundary conditions, while large
supercell configurations will be close to the random state. After deter-
mining the DFT energies of the configurations with LSMS, the data are
split into training and test datasets. For all the three refractory HEAs, the
lattice constants are chosen as 6.2 Bohr, the angular momentum cutoff is
3, the Barth-Hedin local-density approximation is used as the exchange-
correlation functional, and the size of the LIZ is 59 atoms. To properly
treat the heavier elements in the system, the scalar-relativistic equation
is solved rather than the conventional Schrodinger equation. In our
experience, LSMS takes about 1 h to calculate the energy of a 1000-atom
system using 200 CPU cores (~ 5 nodes) in the Summit supercomputer,
which means the calculation can also be accomplished with regular
computing clusters. If needed, the excellent linear-scaling behavior of
LSMS can be utilized to investigate systems of more than 10° atoms.

2.5. Improve data representativeness

An additional benefit of the LSMS method is that it allows the use of
the same supercell during data generation and Monte Carlo simulation,
in contrast to the conventional practice of using different supercells in
DFT and MC simulation. As a result, the configuration obtained from
Monte Carlo simulation can be directly fed into LSMS to calculate the
DFT energy. This allows the evaluation of the model for configurations
unable to be described with small supercells, such as nano-precipitates.
Moreover, by unifying the data generation and simulation process, the
initial dataset can be improved through choosing a small set of MC
configurations to be calculated with DFT. Depending on the goal of the
simulation, different schemes can be devised to choose the MC config-
urations. For example, if one only wants to find the ground state, then a
weighted sampling favoring low energy states can be adopted. In our
case, since we are mainly interested in the temperature dependence of
the observables, we adopt a simple scheme of mixing the configurations
from a range of different temperatures up to Tay. The value of Ty is set
to be a little higher than the order-disorder transition temperature so
that the ordered states not well represented in the initial random dataset
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Fig. 2. A diagram of the workflow of our method..

can be incorporated.

2.6. Methodology workflow

The workflow of our method is shown in Fig. 2 and summarized as
follows:

e Step 1: Initial dataset: Generate random configurations with different
size supercells and calculate their energies with LSMS, using the
same calculation parameters. Combine these DFT data of different
supercells to include both ordered and disordered states. We denote
the initial (current) dataset as D.

Step 2: Effective Hamiltonian: Split the data D into training dataset
D, and validation dataset D,. Determine the EPI model parameters
with Bayesian ridge regression. A model selection process is also
carried out to optimize the hyper-parameters [59]. For the EPI
model, this corresponds to determine the coordination shell cutoff m.
Step 3: Monte Carlo simulation: Carry out MC simulation using the
learned data-driven energy model. Replica exchange is utilized to
speed up the calculation. In this work, we use 10 x 10 x 10 supercell
for demonstration.

Step 4: New data points: Select a set of new configurations from the
Monte Carlo samples to improve the data representativeness and

increase the model accuracy. Calculate the DFT energies E of these
new data points D, with LSMS, and compare them with E calculated
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Fig. 3. Comparison of the DFT energis against the energies predicted by the model for the three HEAs. The Blue circles represent the data points of random con-
figurations using different supercells. The red dots represent the data points from Monte Carlo simulation. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

Table 1
Summary of the testing R? scores and root mean square errors (RMSEs) for the
training and testing. The data include both the random configurations and the
Monte Carlo samples. Half of the data is used for training and the other half for
testing.

Material RZ,, score  RZ score  RMSEu, (mRy)  RMSE. (mRy)
MoNbTaW 0.9995 0.9995 0.0170 0.0197
MoNbTaVW 0.9997 0.9994 0.0322 0.0443
MoNbTaTiW 0.9978 0.9968 0.0805 0.0992

by the current EPI model. If the difference ¢ = ‘E —E ‘ is less than a

threshold €, the accuracy criterion is accepted, then go to step 5;
otherwise, add these new data D, into the current dataset D to update
the energy model (go back to step 2). Note that the choice of ¢ is
somewhat case by case since it depends on the specific material. For
the purpose of canonical MC simulation, ¢ = 0.1 mRy is generally
good since it corresponds to a temperature difference of about 15 K.
Step 5: Physical observables: Calculate thermodynamic observables
from the MC samples. In this work we are mainly interested in the
SRO parameters and specific heats at different temperatures, in order
to investigate the order-disorder transitions in the refractory HEAs.

3. Results
3.1. Accuracy of the effective Hamiltonian

The energies of configurations generated randomly (random data)
and from Monte Carlo simulations (MC data) are shown as x-axis data in

Fig. 3. For MoNbTaW, there are 72 MC data and a total of 704 random
data from supercells of 64, 128, 256, and 512 atoms. For MoNbTavVW,
there are 48 MC data and a total of 1232 random data from supercells of
20, 40, 80, 160, 320, 640, and 1280 atoms. For MoNbTaTiW, there are
85 MC data and 899 random data from supercells of 20, 40, 80, 160, and
320 atoms. From Fig. 3, it is easy to see that while the random config-
urations (blue dots) well represent the states at elevated temperatures,
they do not take into account the low temperature states. On the other
hand, the low energy states are well incorporated in the Monte Carlo
samples (orange dots). To evaluate the accuracy of the model, the
dataset is split randomly into two halves, with one used for training and
the other one for testing. From these data, A 6-shell EPI model is used to
predict the DFT energies, and the results are displayed as the y-axis data
in Fig. 3. The reason to use 6 coordination shells in the model is detailed
in Ref [59], where the Bayesian information criterion (BIC) is employed
to identify the best number of coordination shells. From Fig. 3, it can be
seen that this model gives a very accurate prediction of the DFT energy
for all the three HEAs. In practice, we also tried to include higher-order
interactions, for example, quadratic interaction terms to the energy
model but did not see an improvement of accuracy. Based on the
Occam’s razor principle, we adopt the relatively simple EPI model
throughout this work.

To illustrate the accuracy of the model in more quantitative detail,
the calculated R? scores and root mean square errors (RMSEs) are listed
in Table 1. It can be seen that all the R? scores are higher than 0.99 and
all the RMSEs are less than 0.1 mRy. To be specific, the test RMSEs are
0.0197, 0.0443, and 0.0992 for MoNbTaW, MoNbTaVW, and MoN-
bTaTiW, respectively. Moreover, the differences between the training
and testing results are very small, indicating that the models are well
trained and not being overfitted.

0.15
0.134 Train:Random, Test:All
Train:All, Test:All
0.121 Train:Random, Test:MC
Train:All, Test:MC
& 0.091 0.086 0.084
E
L
n
= 0.06 1
o
0.03 1

0.00 -
MoNbTaW

MoNbTavVW

MoNbTaTiW

Fig. 4. The root mean square errors (RMSEs) calculated with different training and testing datasets. In the plot legend, “Random” represents using random con-
figurations, “MC” signifies using only Monte Carlo samples, and “All” represents using both random configurations and Monte Carlo samples.
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To demonstrate the effects of adding the MC data, two EPI models are
trained separately with different datasets: one contains only the random
data and the other one includes both the random data and MC data. The
two models are then tested separately with the complete dataset and the
MC dataset. The results are shown in Fig. 4. First, it is easy to observe
that even by training with the random data, the obtained model still
performs reasonably good for the MC samples, which is mostly outside
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the energy range of the random data. This demonstrates the robustness
of the EPI model due to the use of the “physics-informed” features.
Second, it can be seen that including the MC samples indeed reduces the
RMSEs. The improvement is less significant when tested with the com-
plete data. This is because the number of MC data is much less than the
random one. When tested only with the MC data, the RMSEs are
decreased substantially by almost one order of magnitude. These results
underpin the importance of adding the MC data, particularly for the
accurate prediction of low energy states. Finally, it is necessary to note
that the red bar in Fig. 4 is lower than the others, indicating that the EPI
model is better at describing the low temperature ordered states than the
random states.

3.2. Investigation of effective pair interaction parameters

To understand the microscopic origin of the strength and ductility of
materials, it is important to study the atomic interactions, which cor-
responds to the EPI parameters in our model. The bonding profile be-
tween atoms affects the formation and movement of dislocations,
therefore it plays an important role in the plastic deformation of mate-
rials. The element-element pair interactions [15] in HEAs are particu-
larly interesting due to their complex chemical compositions. Generally
speaking, if the interactions between different element pairs are of
similar magnitudes, then it is easy for the atoms to change positions in
the lattice since the energy difference is small. As a result, it is easier for
this type of HEA to form random solid solutions. On the other hand, if
the interactions are highly heterogeneous, then the HEA tends to form
an intermetallic compound. Furthermore, it can be expected that HEAs
with homogeneous pair interactions tend to demonstrate better ductility
because the easy movement of atoms facilitates dislocation glide.

The EPI parameters for the three refractory HEAs are shown in Fig. 5.
First, it is easy to note that the nearest and next-nearest neighbor pair
interactions are the dominant ones. Among the three HEAs, the pair
interactions beyond the second neighbor are relatively weak in MoN-
bTaW, as compared to MoNbTaVW and MoNbTaTiW, which contain
more frustrated long-range interactions. To be more specific, for MoN-
bTaW, the strongest interaction occurs among the MoTa pairs, which is
in agreement with the results in literature [71,59]. For MoNbTaVW, the
result shows that V has much stronger interactions with other elements,
with the TaV pair as the strongest. For MoNbTaTiW, the strongest
interaction occurs in the TaTi pairs. From these results, we can observe
that the strongest pair interactions occur among atoms with the largest
difference of electronegativity. On the other hand, for all the materials,

Fig. 6. Snapshots of the structure of MoNbTaW at 101 K, 304 K, and 2000 K.
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configurations, while the old model represents using only the random
configurations.

NbTa and NbW are the weakest pair interactions.

By comparing the EPI parameters of the three HEAs, a few pre-
dictions can be made about their properties, based on our previous ar-
guments. First, the order-disorder transition temperature of MoNbTaVW
should be much higher than MoNbTaW and MoNbTaTiW, because the
addition of V introduces strong pair interactions to the material,
including VW, TaV, and NbV, which hinder the formation of random
phase. Second, the ductility of MoNbTaVW should be worse than the
other two materials due to its heterogeneous element-element pair in-
teractions. This is actually in agreement with the experimental obser-
vation that adding V decreases the ductility [8]. To draw a quantitative
conclusion, a detailed study of the Peierls potentials of each material
would be required.

3.3. Order-disorder transition
The thermodynamics of MoNbTaW has been well studied in other

works [71,72,41]. For test purposes, the chemical configurations of
MoNbTaW at three different temperatures are shown in Fig. 6. It is not

Computational Materials Science 187 (2021) 110135

difficult to see that at 100 K, MoNbTaW segregates into two phases, with
Mo and Ta forms B2 structures. When the temperature increases to 304
K, some Nb and W atoms move into the Mo-Ta phase, and the B2
structure is partially broken. At T = 2000K, the ordered structure van-
ishes completely and the system forms a random solid solution. These
results are in agreement with the calculation results in literature
[71,72,41]. To investigate the thermodynamics of the refractory HEAs
in detail, the specific heats C, and the nearest neighbor (NN) SRO pa-
rameters at different temperatures are calculated from canonical Monte
Carlo and shown in Fig. 7 and 8. The specific heats from the EPI model
using only the random data are also shown in Fig. 7 as a comparison.
Note that although the improvement of the model is only about 0.1 mRy,
it still has a significant impact on the curve, especially at low temper-
ature and phase transition point. The result further highlights the
importance of using the MC data to improve the energy model.

The most noticeable feature in Fig. 7 is that there are mainly two
phase-transition peaks in the C, curve. The first transition occurs near
room temperature at T;, and the second one occurs at an elevated
temperature of T,. The origin of the phase transitions can be better
understood from the SRO parameters of the same elements, as shown in
the right side of Fig. 8. It can be seen that for all the three materials, T; is
due to an order-disorder transition of Nb and W, while T, is due to the
order-disorder transition of the other elements. In other words, it is
easier for W and Nb to form random phase, compared to the other ele-
ments. From the left side of Fig. 8, it is easy to see that the Nb-W SRO
parameter indeed quickly drops to zero as temperature increases.
Moreover, this is also consistent with the results in Fig. 5, where the pair
interactions involving Nb and W tend to be weak. As a result, W and Nb
tend to occupy lattice sites randomly in the material rather than form
ordered compounds. These observations provide a possible explanation
to the excellent combined mechanical properties of HEAs: the random
phases provide good ductility, while the ordered precipitates enhance
the strength by impeding the movement of dislocations. Similar mech-
anisms are also reported in other works [12,21,73].

This theory is supported by the results shown in Fig. 7. It can be seen
that the addition of V drastically enhances the value of T, in MoN-
bTaVW, which is about 2300 K, as compared to 870 K for MoNbTaW and
1300 K for MoNbTaTiW. As discussed in Section 3.2, this is expected
because V demonstrates much stronger bonding with other elements.
This strong bonding favors the formation of ordered compounds. As a
result, even the order-disorder transition temperature of Ta and Mo has
been increased, as shown in Fig. 8. Therefore, compared to MoNbTaW
and MoNbTaTiW, we expect MoNbTaVW to demonstrate better
strength, but poorer ductility,due to the large amount of ordered pre-
cipitates or second phases. The distinction of the materials is particularly
prominent in the temperature range between 1300 K and 2000 K, where
MoNbTaW and MoNbTaTiW are predominantly random solid solutions,
while MoNbTaVW is still largely ordered. This is in excellent agreement
with the experimental stress-strain curve in Ref. [6]. For convenience,
the peak strength and peak strain data in Ref. [6] are shown in Fig. 9. We
also expect to see an increase of ductility among all the materials around
T, (about 300400 K), due to the order-disorder transition of W and Nb.
This is also in agreement with the result in Ref. [6], where the fracture
strain of MoNbTaVW is found to be only 1.7 % at 296 K, but quickly
increase to 13 % when measured at 873 K, as shown in Fig. 9. Of course,
the strength and ductility of a material depends on the various factors at
different length scales, therefore more detailed study is required to draw
a more quantitative conclusion.

4. Conclusion

We develop a novel data-driven framework to construct effective
Hamiltonian for the study of thermodynamics in HEAs using a data-
driven approach. Compared to traditional DFT methods, the use of the
linear-scaling LSMS greatly improves the calculation speed, allowing the
use of a relatively larger DFT dataset and the direct evaluation of the
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Fig. 8. The nearest-neighbor short-range order parameters of MoNbTaW, MoNbTaVW, and MoNbTaTiW. The left side plots are for pairs of different elements, while

the right side ones are for pairs of the same element.

configurations from Monte Carlo simulation. By using the effective pair
interactions as the features and adopting the regularized Bayesian
regression, the learned effective Hamiltonians demonstrate excellent
robustness. By systematically adding data from the Monte Carlo sam-
ples, the representativeness of the datasets is greatly improved and the
obtained effective Hamiltonian demonstrates very high predicted ac-
curacy, with the test RMSEs as small as 0.019, 0.044, and 0.099 mRy
respectively for MoNbTaW, MoNbTaVW, and MoNbTaTiW. These small
errors are particularly critical for the study of low temperature phases
and order-disorder transition in thermodynamics.

Using the learned effective Hamiltonian, we investigate the evolu-
tion of the specific heats and short-range order parameters through ca-
nonical Monte Carlo simulation. For all the studied materials, we
demonstrate that there are two major order-disorder transitions, one
occurring near room temperature and another one at a higher temper-
ature. We identify that the first transition is caused by W and Nb, while
the second one is due to the other elements. We conclude that these
results provide an explanation for the stress-strain relations found in the
experiment. For example, the addition of V introduces strong pair in-
teractions, which significantly increases the temperature of the second
order-disorder transition.As a result, the abundance of second-phase

precipitates in a wide temperature range reduces the ductility of the
MoNbTaVW, as compared to MoNbTaW and MoNbTaTiW. Moreover,
the first order-disorder transition in the materials also helps explain the
experimental phenomenon of ductility increase after room temperature.
These findings will provide useful guidance and insight to the future
design of HEAs.

We would also like to make some comments about our results. First,
the high accuracy of the EPI Hamiltonian demonstrates that for fixed
chemical concentrations, the pair interactions are the dominant ones in
the investigated materials. We think this is quite reasonable considering
that the elements in HEAs generally have similar chemical properties. Of
course, whether this generally holds true still requires further in-
vestigations on other HEA systems. Second, while the EPI model is
highly accurate for canonical Monte Carlo simulation, it is interesting to
ask how the pair interactions would be affected if the chemical con-
centrations change. From Fig. 5, it is easy to see that for different ma-
terials, the magnitude of the EPIs of the same chemical pairs are very
close, which indicates that the EPIs are not sensitive to the chemical
concentrations. On the other hand, the change of the chemical concen-
trations will generally affect the number of valence electrons, the Fermi
surface, and the electronic structure, which may require more
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complicated form of effective Hamiltonians to describe. For such a case,
advanced machine learning methods may perform better than a simple
linear regression.

Finally, we want to provide some perspective on the computational
cost. Note that most of the computational time is spent on the DFT
calculation. Compared to the conventional method that directly calls
DFT calculations at each Monte Carlo (MC) step, our proposed method
only needs a much smaller number of DFT calculations for training and
then constructs an efficient data-driven EPI model as a surrogate for MC
simulations. In particular, we use 200 DFT data for EPI model training
with additional 50 DFT data from Monte Carlo samples to improve the
data representativeness. Although a little piece of time is spent on data
processing and training, the proposed data-driven method is still much
less than the conventional method, which typically needs more than
millions of DFT calculations. In this case, an approximate estimation is
that the computational cost of the data-driven method is less than
0.0025% of the brutal force method with simple directly combing DFT
and MCs. In particular, from the perspective of CPU core hours cost, the
approximately 50 DFT energies from the Monte Carlo sample are the
most expensive ones, with each energy data taking about 200 CPU core
hours, so the total computational cost is about 10,000 core hours. This is
easy for current supercomputers, while the conventional statistical
simulation method mentioned in the introduction requires more than
millions of core hours. Moreover, if one only uses a smaller 100-atom
supercell for the DFT data, then the computational cost of one single
data point is reduced to about 20 core hours. This means the calculation
can be carried out on regular workstation computers. For a 100-atom
supercell, it is also practical to include lattice relaxation effects using
other common DFT implementations (e.g., pseudopotential planewaves,
linearized augmented planewaves), at the price of longer computational
time than LSMS due to their cubic scaling behaviors.
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