
ar
X

iv
:1

60
9.

04
44

9v
2 

 [c
s.C

R
]  

21
 Ja

n 
20

18

On the Computational Complexity of Minimal

Cumulative Cost Graph Pebbling

Jeremiah Blocki1 and Samson Zhou2

1 Department of Computer Science, Purdue University, West Lafayette, IN.
Email: jblocki@purdue.edu.

2 Department of Computer Science, Purdue University, West Lafayette, IN.
Email: samsonzhou@gmail.com.

Abstract. We consider the computational complexity of finding a legal
black pebbling of a DAG G = (V,E) with minimum cumulative cost. A
black pebbling is a sequence P0, . . . , Pt ⊆ V of sets of nodes which must
satisfy the following properties: P0 = ∅ (we start off with no pebbles on
G), sinks(G) ⊆

⋃

j≤t
Pj (every sink node was pebbled at some point) and

parents
(

Pi+1\Pi

)

⊆ Pi (we can only place a new pebble on a node v if
all of v’s parents had a pebble during the last round). The cumulative
cost of a pebbling P0, P1, . . . , Pt ⊆ V is cc(P ) = |P1| + . . . + |Pt|. The
cumulative pebbling cost is an especially important security metric for
data-independent memory hard functions, an important primitive for
password hashing. Thus, an efficient (approximation) algorithm would
be an invaluable tool for the cryptanalysis of password hash functions
as it would provide an automated tool to establish tight bounds on the
amortized space-time cost of computing the function. We show that such
a tool is unlikely to exist in the most general case. In particular, we prove
the following results.

– It is NP-Hard to find a pebbling minimizing cumulative cost.

– The natural linear program relaxation for the problem has integrality
gap Õ(n), where n is the number of nodes in G. We conjecture that
the problem is hard to approximate.

– We show that a related problem, find the minimum size subset S ⊆ V

such that depth(G−S) ≤ d, is also NP-Hard. In fact, under the Unique
Games Conjecture there is no (2− ǫ)-approximation algorithm.

1 Introduction

Given a directed acyclic graph (DAG) G = (V,E) the goal of the (parallel)
black pebbling game is to start with pebbles on some source nodes of G and
ultimately place pebbles on all sink nodes (not necessarily simultaneously). The
game is played in rounds and we use Pi ⊆ V to denote the set of currently
pebbled nodes on round i. Initially all nodes are unpebbled, P0 = ∅, and in each
round i ≥ 1 we may only include v ∈ Pi if all of v’s parents were pebbled in the
previous configuration (parents(v) ⊆ Pi−1) or if v was already pebbled in the
last round (v ∈ Pi−1). In the sequential pebbling game we can place at most one
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new pebble on the graph in any round (i.e., |Pi\Pi−1| ≤ 1), but in the parallel
pebbling game no such restriction applies.

Let P‖
G (resp. PG) denote the set of all valid parallel (resp. sequential)

pebblings of G. We define the cumulative cost (respectively space-time cost)

of a pebbling P = (P1, . . . , Pt) ∈ P‖
G to be cc(P ) = |P1| + . . . + |Pt| (resp.

st(P ) = t × max1≤i≤t |Pi|), that is, the sum of the number of pebbles on the
graph during every round. The parallel cumulative pebbling cost of G, denoted

Π
‖
cc(G) (resp. Πst(G) = minP∈PG

st(G)), is the cumulative cost of the best legal
pebbling of G. Formally,

Π‖
cc(G) = min

P∈P
‖
G

cc(P ) , and Πst(G) = min
P∈PG

st(P ) .

In this paper, we consider the computational complexity of Π
‖
cc(G), showing

that the value is NP-Hard to compute. We also demonstrate that the natural

linear programming relaxation for approximating Π
‖
cc(G) has a large integrality

gap and therefore any approximation algorithm likely requires more powerful
techniques.

1.1 Motivation

The pebbling cost of a DAG G is closely related to the cryptanalysis of data-
independent memory hard functions (iMHF) [AS15], a particularly useful prim-
itive for password hashing [PHC,BDK16]. In particular, an efficient algorithm

for (approximately) computing Π
‖
cc(G) would enable us to automate the crypt-

analysis of candidate iMHFs. The question is particularly timely as the Internet
Research Task Force considers standardizing Argon2i [BDK16], the winner of the
password hashing competition [PHC], despite recent attacks [CGBS16,AB16,ABP17]
on the construction. Despite recent progress [AB17,ABP17,BZ17] the precise se-
curity of Argon2i and alternative constructions is poorly understood.

An iMHF is defined by a DAG G (modeling data-dependencies) on n nodes
V = {1, . . . , n} and a compression function H (usually modeled as a random
oracle in theoretical analysis)3 . The label ℓ1 of the first node in the graph G is
simply the hash H(x) of the input x. A vertex i > 1 with parents i1 < i2 < · · · <
iδ has label ℓi(x) = H(i, ℓi1(x), . . . , ℓiδ (x)). The output value is the label ℓn of
the last node in G. It is easy to see that any legal pebbling of G corresponds to an
algorithm computing the corresponding iMHF. Placing a new pebble on node i
corresponds to computing the label ℓi and keeping (resp. discarding) a pebble on
node i corresponds to storing the label in memory (resp. freeing memory). Alwen
and Serbinenko [AS15] proved that in the parallel random oracle model (pROM)

3 Because the data-dependencies in an iMHF are specified by a static graph, the
induced memory access pattern does not depend on the secret input (e.g., password).
This makes iMHFs resistant to side-channel attacks. Data-dependent memory hard
functions (MHFs) like scrypt [Per09] are potentially easier to construct, but they
are potentially vulnerable to cache-timing attacks.



of computation, any algorithm evaluating such an iMHF could be reduced to a
pebbling strategy with (approximately) the same cumulative memory cost.

It should be noted that any graph G on n nodes has a sequential pebbling
strategy P ∈ PG that finishes in n rounds and has cost cc(P ) ≤ st(P ) ≤ n2.
Ideally, a good iMHF construction provides the guarantee that the amortized
cost of computing the iMHF remains high (i.e., Ω̃

(

n2
)

) even if the adversary
evaluates many instances (e.g.,different password guesses) of the iMHF. Unfortu-
nately, neither large Πst(G) nor large min

P∈P
‖
G

st(P ), are sufficient to guarantee

that Π
‖
cc(G) is large [AS15]. More recently Alwen and Blocki [AB16] showed that

Argon2i [BDK16], the winner of the recently completed password hashing com-
petition [PHC], has much lower than desired amortized space-time complexity.

In particular, Π
‖
cc(G) ≤ Õ

(

n1.75
)

.

In the context of iMHFs, it is important to study Π
‖
cc(G), the cumulative

pebbling cost of a graph G, in addition to Πst(G). Traditionally, pebbling strate-
gies have been analyzed using space-time complexity or simply space complexity.
While sequential space-time complexity may be a good model for the cost of com-
puting a single-instance of an iMHF on a standard single-core machine (i.e., the
costs incurred by the honest party during password authentication), it does not
model the amortized costs of a (parallel) offline adversary who obtains a pass-
word hash value and would like to evaluate the hash function on many different
inputs (e.g., password guesses) to crack the user’s password [AS15,AB16]. Un-

like Πst(G), Π
‖
cc(G) models the amortized cost of evaluating a data-independent

memory hard function on many instances [AS15,AB16].

An efficient algorithm to (approximately) compute Π
‖
cc(G) would be an in-

credible asset when developing and evaluating iMHFs. For example, the Argon2i
designers argued that the Alwen-Blocki attack [AB16] was not particularly ef-
fective for practical values of n (e.g., n ≤ 220) because the constant overhead
was too high [BDK16]. However, they could not rule out the possibility that
more efficient attacks might exist4. As it stands, there is a huge gap between

the best known upper/lower bounds on Π
‖
cc(G) for Argon2i and for the new

DRSample graph [ABH17], since in all practical cases the ratio between the
upper bound and the lower bound is at least 105. An efficient algorithm to

(approximately) compute Π
‖
cc(G) would allow us to immediately resolve such

debates by automatically generating upper/lower bounds on the cost of com-
puting the iMHF for each running time parameters (n) that one might se-
lect in practice. Alwen et al. [ABP17] showed how to construct graphs G with

Π
‖
cc(G) = Ω

(

n2

logn

)

. This construction is essentially optimal in theory as re-

sults of Alwen and Blocki [AB16] imply that any constant indegree graph has

Π
‖
cc(G) = O

(

n2 log logn
logn

)

. However, the exact constants one could obtain through

4 Indeed, Alwen and Blocki [AB17] subsequently introduced heuristics to improve their
attack and demonstrated that their attacks were effective even for smaller (practical)
values of n by simulating their attack against real Argon2i instances.



a theoretical analysis are most-likely small. A proof that Π
‖
cc(G) ≥ 10−6×n2

log n
would be an underwhelming security guarantee in practice, where we may have

n ≈ 106. An efficient algorithm to compute Π
‖
cc(G) would allow us to imme-

diately determine whether these new constructions provide meaningful security
guarantees in practice.

1.2 Results

We provide a number of computational complexity results. Our primary contri-

bution is a proof that the decision problem “is Π
‖
cc(G) ≤ k for a positive integer

k ≤ n(n+1)
2 ” is NP-Complete.5 In fact, our result holds even if the DAG G has

constant indeg.6 We also provide evidence that Π
‖
cc(G) is hard to approximate.

Thus, it is unlikely that it will be possible to automate the cryptanalysis pro-
cess for iMHF candidates. In particular, we define a natural integer program to

compute Π
‖
cc(G) and consider its linear programming relaxation. We then show

that the integrality gap is at least Ω
(

n
logn

)

leading us to conjecture that it is

hard to approximate Π
‖
cc(G) within constant factors. We also give an example of

a DAG G on n nodes with the property that any optimal pebbling (minimizing

Π
‖
cc) requires more than n pebbling rounds.
The computational complexity of several graph pebbling problems has been

explored previously in various settings [GLT80,HP10]. However, minimizing cu-
mulative cost of a pebbling is a very different objective than minimizing the
space-time cost or space. For example, consider a pebbling where the maxi-
mum number of pebbles used is significantly greater than the average number of
pebbles used. Thus, we need fundamentally new ideas to construct appropriate
gadgets for our reduction.7 We first introduce a natural problem that arises from
solving systems of linear equations, which we call Bounded 2-Linear Covering

(B2LC) and show that it is NP-Complete. We then show that we can encode a
B2LC instance as a graph pebbling problem thus proving that the decision version
of cummulative graph pebbling is NP-Hard.

In Section 5 we also investigate the computational complexity of determining
how “depth-reducible” a DAG G is showing that the problem is NP-Complete
even if G has constant indegree. A DAG G is (e, d)-reducible if there exists a
subset S ⊆ V of size |S| ≤ e such that depth(G−S) < d. That is, after removing
nodes in the set S from G, any remaining directed path has length less than
d. If G is not (e, d)-reducible, we say that it is (e, d)-depth robust. It is known
that a graph has high cumulative cost (e.g., Ω̃

(

n2
)

) if and only if the graph

is highly depth robust (e.g., e, d = Ω̃ (n)) [AB16,ABP17]. Our reduction from

5 Note that for any G with n nodes we have Π
‖
cc(G) ≤ 1 + 2 + . . .+ n = n(n+1)

2
since

we can always pebble G in topological order in n steps if we never remove pebbles.
6 For practical reasons most iMHF candidates are based on a DAG G with constant
indegree.

7 See additional discussion in Section 3.2.



Vertex Cover preserves approximation hardness.8 Thus, assuming that P 6= NP

it is hard to 1.3-approximate e, the minimum size of a set S ⊆ V such that
depth(G − S) < d [DS05]. Under the Unique Games Conjecture [Kho02], it is
hard to (2− ǫ)-approximate e for any fixed ǫ > 0 [KR08]. In fact, we show that
the linear programming relaxation to the natural integer program to compute e
has an integrality gap of Ω(n/ logn) leading us to conjecture that it is hard to
approximate e.

2 Preliminaries

Given a directed acyclic graph (DAG) G = (V,E) and a node v ∈ V we use
parents(v) = {u : (u, v) ∈ E} to denote the set of nodes u with directed edges
into node v and we use indeg(v) = |parents(v)| to denote the number of directed
edges into node v. We use indeg(G) = maxv∈V indeg(v) to denote the maximum
indegree of any node in G. For convenience, we use indeg instead of indeg(G)
when G is clear from context. We say that a node v ∈ V with indeg(v) = 0
is a source node and a node with no outgoing edges is a sink node. We use
sinks(G) (resp. sources(G)) to denote the set of all sink nodes (resp. source
nodes) in G. We will use n = |V | to denote the number of nodes in a graph, and
for convenience we will assume that the nodes V = {1, 2, 3, . . . , n} are given in
topological order (i.e., 1 ≤ j < i ≤ n implies that (i, j) /∈ E). We use depth(G)
to denote the length of the longest directed path in G. Given a positive integer
k ≥ 1 we will use [k] = {1, 2, . . . , k} to denote the set of all integers 1 to k
(inclusive).

Definition 1. Given a DAG G = (V,E) on n nodes a legal pebbling of G is a
sequence of sets P =

(

P0, . . . , Pt

)

such that:

1. P0 = ∅
2. ∀i > 0, v ∈ Pi\Pi−1 we have parents(v) ⊆ Pi−1

3. ∀v ∈ sinks(G) ∃0 < j ≤ t such that v ∈ Pj

The cumulative cost of the pebbling P is cc(P ) =
∑t

i=1 |Pi|, and the space-time
cost is st(P ) = t×max0<j≤t |Pi|.

The first condition states that we start with no pebbles on the graph. The
second condition states that we can only add a new pebble on node v during
round i if we already had pebbles on all of v’s parents during round i−1. Finally,
the last condition states that every sink node must have been pebbled during
some round.

We use P‖
G to denote the set of all legal pebblings, and we use PG ⊂ P‖

G to
denote the set of all sequential pebblings with the additional requirement that
|Pi\Pi−1| ≤ 1 (i.e., we place at most one new pebble on the graph during ever

8 Note that when d = 0 testing whether a graph G is (e, d) reducible is equivalent to
asking whether G has a vertex cover of size e. Our reduction establishes hardness
for d ≫ 1.



round i). We use Π
‖
cc(G) = min

P∈P
‖
G

cc(P ) to denote the cumulative cost of the

best legal pebbling.

Definition 2. We say that a directed acyclic graph (DAG) G = (V,E) is (e, d)-
depth robust if ∀S ⊆ V of size |S| ≤ e we have depth(G− S) ≥ d. If G contains
a set S ⊆ V of size |S| ≤ e such that depth(G − S) ≤ d then we say that G is
(e, d)-reducible.

Decision Problems

The decision problem minCC is defined as follows:
Input: a DAG G on n nodes and an integer k < n(n+ 1)/2. 9

Output: Yes, if Π
‖
cc(G) ≤ k; otherwise No.

Given a constant δ ≥ 1 we use minCCδ to denote the above decision problem
with the additional constraint that indeg(G) ≤ δ. It is clear that minCC ∈ NP and
minCCδ ∈ NP since it is easy to verify that a candidate pebbling P is legal and
that cc(P ) ≤ k. One of our primary results is to show that the decision problems
minCC and minCC2 are NP-Complete. In fact, these results hold even if we require
that the DAG G has a single sink node.

The decision problem REDUCIBLEd is defined as follows:
Input: a DAG G on n nodes and positive integers e, d ≤ n.
Output: Yes, if G is (e, d)-reducible; otherwise No.

We show that the decision problem REDUCIBLEd is NP-Complete for all d > 0
by a reduction from Cubic Vertex Cover, defined below. Note that when d =
0 REDUCIBLEd is Vertex Cover. We use REDUCIBLEd,δ to denote the decision
problem with the additional constraint that indeg(G) ≤ δ.

The decision problem VC (resp. CubicVC) is defined as follows:
Input: a graph G on n vertices (CubicVC: each with degree 3) and a positive
integer k ≤ n

2 .
Output: Yes, if G has a vertex cover of size at most k; otherwise No.

To show that minCC is NP-Complete we introduce a new decision problem
B2LC. We will show that the decision problem B2LC is NP-Complete and we will
give a reduction from B2LC to minCC.

The decision problem Bounded 2-Linear Covering (B2LC) is defined as follows:
Input: an integer n, k positive integers 0 ≤ c1, . . . , ck, an integer m ≤ k and k
equations of the form xαi

+ ci = xβi
, where αi, βi ∈ [n] and i ∈ [k]. We require

that
∑k

i=1 ci ≤ p(n) for some fixed polynomial n.
Output: Yes, if we can find mn integers xy,z ≥ 0 (for each 1 ≤ y ≤ m and
1 ≤ z ≤ n) such that for each i ∈ [k] there exists 1 ≤ y ≤ m such that
xy,αi

+ ci = xy,βi
(that is the assignment x1, . . . , xn = xy,1, . . . , xy,n satisfies the

ith equation); otherwise No.

9 See footnote 5.



3 Related Work

The sequential black pebbling game was introduced by Hewitt and Paterson [HP70],
and by Cook [Coo73]. It has been particularly useful in exploring space/time
trade-offs for various problems like matrix multiplication [Tom78], fast fourier
transformations [SS78,Tom78], integer multiplication [SS79b] and many oth-
ers [Cha73,SS79a]. In cryptography it has been used to construct/analyze proofs
of space [DFKP15,RD16], proofs of work [DNW05,MMV13] and memory-bound
functions [DGN03] (functions that incur many expensive cache-misses [ABW03]).
More recently, the black pebbling game has been used to analyze memory hard
functions e.g., [AS15,AB16,ABP17,AT17].

3.1 Password Hashing and Memory Hard Functions

Users often select low-entropy passwords which are vulnerable to offline attacks
if an adversary obtains the cryptographic hash of the user’s password. Thus, it
is desirable for a password hashing algorithm to involve a function f(.) which is
moderately expensive to compute. The goal is to ensure that, even if an adversary
obtains the value (username, f(pwd, salt), salt) (where salt is some randomly
chosen value), it is prohibitively expensive to evaluate f(., salt) for millions (bil-
lions) of different password guesses. PBKDF2 (Password Based Key Derivation
Function 2) [Kal00] is a popular moderately hard function which iterates the
underlying cryptographic hash function many times (e.g., 210). Unfortunately,
PBKDF2 is insufficient to protect against an adversary who can build customized
hardware to evaluate the underlying hash function. The cost computing a hash
function H like SHA256 or MD5 on an Application Specific Integrated Circuit
(ASIC) is dramatically smaller than the cost of computing H on traditional
hardware [NBF+15].

[ABW03], observing that cache-misses are more egalitarian than compu-
tation, proposed the use of “memory-bound” functions for password hashing
— a function which maximizes the number of expensive cache-misses. Perci-
val [Per09] observed that memory costs tend to be stable across different archi-
tectures and proposed the use of memory-hard functions (MHFs) for password
hashing. Presently, there seems to be a consensus that memory hard functions
are the ‘right tool’ for constructing moderately expensive functions. Indeed, all
entrants in the password hashing competition claimed some form of memory
hardness [PHC]. As the name suggests, the cost of computing a memory hard
function is primarily memory related (storing/retrieving data values). Thus, the
cost of computing the function cannot be significantly reduced by construct-
ing an ASIC. Percival [Per09] introduced a candidate memory hard function
called scrypt, but scrypt is potentially vulnerable to side-channel attacks as
its computation yields a memory access pattern that is data-dependent (i.e., de-
pends on the secret input/password). Due to the recently completed password
hashing competition [PHC] we have many candidate data-independent memory



hard functions such as Catena [FLW13] and the winning contestant Argon2i-
A [BDK15].10

iMHFs and Graph Pebbling All known candidate iMHFs can be described
using a DAG G and a hash function H . Graph pebbling is a particularly useful
as a tool to analyze the security of an iMHF [AS15,CGBS16,FLW13]. A peb-
bling of G naturally corresponds to an algorithm to compute the iMHF. Alwen
and Serbinenko [AS15] showed that in the pROM model of computation, any
algorithm to compute the iMHF corresponds to a pebbling of G.

Measuring Pebbling Costs In the past, MHF analysis has focused on space-
time complexity [Per09,FLW13,BCS16]. For example, the designers of Catena [FLW13]
showed that their DAG G had high sequential space-time pebbling cost Πst(G)
and Boneh et al. [BCS16] showed that Argon2i-A and their own iMHF candi-
date iBH (“balloon hash”) have (sequential) space-time cost Ω

(

n2
)

. Alwen and
Serbinenko [AS15] observed that these guarantees are insufficient for two rea-
sons: (1) the adversary may be parallel, and (2) the adversary might amortize
his costs over multiple iMHF instances (e.g., multiple password guesses). Indeed,
there are now multiple known attacks on Catena [BK15,AS15,AB16]. Alwen and
Blocki [AB16,AB17] gave attacks on Argon2i-A, Argon2i-B, iBH, and Catena

with lower than desired amortized space-time cost — Π
‖
cc(G) ≤ O

(

n1.8
)

for

Argon2i-B, Π
‖
cc(G) ≤ Õ

(

n1.75
)

for Argon2i-A and iBH and Π
‖
cc(G) ≤ O

(

n5/3
)

for Catena. This motivates the need to study cumulative cost Π
‖
cc instead of

space-time cost since amortized space-time complexity approaches Π
‖
cc as the

number of iMHF instances being computed increases.
Alwen et al. [ABP17] recently constructed a constant indegree graph G with

Π
‖
cc(G) = Ω

(

n2

log n

)

. From a theoretical standpoint, this is essentially optimal as

any constant indeg DAG has Π
‖
cc = O

(

n2 log logn
logn

)

[AB16], but from a practical
standpoint the critically important constants terms in the lower bound are not
well understood.

Ren and Devedas [RD17] recently proposed an alternative metric MHFs
called bandwidth hardness. The key distinction between bandwidth hardness
and cumulative pebbling cost is that bandwidth hardness attempts to approx-
imate energy costs, while cumulative pebbling cost attempts to approximate
amortized capital costs (i.e., the cost of all of the DRAM chips divided by the
number of MHF instances that can be computed before the DRAM chip fails). In
this paper we focus on the cumulative pebbling cost metric as we expect amor-
tized capital costs to dominate for sufficiently large n. In particular, bandwidth
costs scale linearly with the running time n (at best), while cumulative pebbling
costs can scale quadratically with n.

10 The specification of Argon2i has changed several times. We use Argon2i-A to refer to
the version of Argon2i from the password hashing competition, and we use Argon2i-
B to refer to the version that is currently being considered for standardization by
the Cryptography Form Research Group (CFRG) of the IRTF[BDKJ16].



3.2 Computational Complexity of Pebbling

The computational complexity of various graph pebbling has been explored pre-
viously in different settings [GLT80,HP10]. Gilbert et al. [GLT80] focused on
space-complexity of the black-pebbling game. Here, the goal is to find a peb-
bling which minimizes the total number of pebbles on the graph at any point
in time (intuitively this corresponds to minimizing the maximum space required
during computation of the associated function). Gilbert et al. [GLT80] showed
that this problem is PSPACE complete by reducing from the truly quantified
boolean formula (TQBF) problem.

The optimal (space-minimizing) pebbling of the graphs from the reduction of
Gilbert et al. [GLT80] often require exponential time. By contrast, observe that
minCC ∈ NP because any DAG G with n nodes this algorithm has a pebbling
P with cc(P ) ≤ st(P ) ≤ n2. Thus, if we are minimizing cc or st cost, the
optimal pebbling of G will trivially never require more than n2 steps. Thus, we
need different tools to analyze the computational complexity of the problem of
finding a pebbling with low cumulative cost.

In Appendix D, we show that the optimal pebbling from [GLT80] does take
polynomial time if the TQBF formula only uses existential quantifiers (i.e., if we
reduce from 3SAT). Thus, the reduction of Gilbert et al. [GLT80] can also be
extended to show that it is NP-Complete to check whether a DAG G admits a
pebbling P with st(P ) ≤ k for some parameter k. The reduction, which simply
appends a long chain to the original graph, exploits the fact that if we increase
space-usage even temporarily we will dramatically increase st cost. However, this
reduction does not extend to cumulative cost because the penalty for temporarily
placing large number of pebbles can be quite small as we do not keep these
pebbles on the graph for a long time.

4 NP-Hardness of minCC

In this section we prove that minCC is NP-Complete by reduction from B2LC.
Showing that minCC ∈ NP is straightforward so we will focus on proving that the
decision problem is NP-Hard. We first provide some intuition about the reduction.

Recall that a B2LC instance consists of n variables x1, . . . , xn, and k equations
of the form xαi

+ ci = xβi
, where αi, βi ∈ [n], i ∈ [k], and each ci ≤ p(n) is

a positive integer bounded by some polynomial in n. The goal is to determine
whether there exist m different variable assignments such that each equation is
satisfied by at least one of the m assignments. Formally, the goal is to decide if
there exists a set ofm < k variable assignments: xy,z ≥ 0 for each 1 ≤ y ≤ m and
1 ≤ z ≤ n so that for each i ∈ [k] there exists y ∈ [m] such that xy,αi

+ci = xy,βi

— that is the ith equation xαi
+ci = xβi

is satisfied by the yth variable assignment
xy,1, . . . , xy,n. For example, if k = 2 and the equations are x1 + 1 = x2 and
x2 +2 = x3, then m = 1 suffices to satisfy all the equations. On the other hand,
if x1 + 1 = x2 and x1 + 2 = x2, then we require m ≥ 2 since the equations are
no longer independent. Observe that for m = 1, B2LC seeks a single satisfying



assignment, whereas for m ≥ k, each equation can be satisfied by a separate
assignment of the variables (specifically, the ith assignment is all zeroes except
xβi

= ci).

Suppose we are given an instance of B2LC. We shall construct a minCC instance
GB2LC in such a way that the optimal pebbling of GB2LC has “low” cost if the
instance of B2LC is satisfiable and otherwise, has “high” cost. The graph B2LC

will be constructed from three different types of gadgets: τ gadgets C1
i , . . . , C

τ
i

for each variable xi, a gadget Ei for each equation and a “m-assignments” gadget
Mi for each variable xi. Here τ is a parameter we shall set to create a gap between
the pebbling costs of satisfiable and unsatisfiable instances of B2LC. Each gadget
is described in more detail below.

Variable Gadgets Our first gadget is a chain of length c =
∑

ci so that each node
is connected to the previous node, and can only be pebbled if there exists a pebble
on the previous node in the previous step, such as in Figure 1. For each variable
xi in our B2LC instance we will add τ copies of our chain gadget C1

i , . . . , C
τ
i .

Formally, for each j ∈ [τ ] the chain gadget Cj
i consists of c vertices vj,1i , . . . , vj,ci

with directed edges
(

vj,zi , vj,z+1
i

)

for each z < c. We will later add a gadget to

ensure that we must walk a pebble down each of these chains m different times

and that in any optimal pebbling P ∈ P‖
GB2LC

(with cc(P ) = Π
‖
cc (GB2LC)) the

walks on each chain gadget C1
i , . . . , C

τ
i are synchronized e.g., for each pebbling

round y and for each z ≤ c we have vj,zi ∈ Py ↔ {v1,zi , . . . vτ,zi } ⊆ Py. Intuitively,
each time at which we begin walking a pebble down these chains will correspond
to an assignment of the B2LC variable xi. Hence, it suffices to have c =

∑

ci
nodes in the chain.

C
j
i : v

j,1
i v

j,2
i v

j,3
i

. . . v
j,c
i

Fig. 1. Example variable gadget C
j
i of length c =

∑

ci. GB2LC replicates this gadget τ

times: C1
i , . . . , C

τ
i . Each of the τ copies behaves the same.

Equation Gadget For the ith equation xαi
+ ci = xβi

, the gadget Ei is a chain
of length c − ci. For each j ∈ [τ ] we connect the equation gadget Ei to each
of the variable gadgets Cj

αi
and Cj

βi
as follows: the ath node eaj in chain Ej has

incoming edges from vertices vl,aαi
and vl,a+ci

βi
for all 1 ≤ l ≤ τ , as demonstrated

in Figure 2. To pebble the equation gadget, the corresponding variable gadgets
must be pebbled synchronously, distance ci apart.



C
j
1 : v

j,1
1 v

j,2
1 v

j,3
1

. . . v
j,c
1

C
j
3 : v

j,1
3 v

j,2
3 v

j,3
3

. . . v
j,c
3

Gadget Ei e1i
. . . ec−2

i

Fig. 2. The gadget Ei for equation x3+2 = x1. The example shows how Ei is connected
to the variable gadgets C

j
1 and C

j
3 for each j ∈ [τ ].

Intuitively, if the equation xα + ci = xβ is satisfied by the jth assignment,
then on the jth time we walk pebbles down the chain xα and xβ , the pebbles on
each chain will be synchronized (i.e., when we have a pebble on vl,aα , the ath link

in the chain representing xα we will have a pebble on the node vl,a+ci
β during

the same round) so that we can pebble all of the nodes in the equation gadget,
such as in Figure 3. On the other hand, if the pebbles on each chain are not
synchronized appropriately, we cannot pebble the equation gadget. Finally, we
create a single sink node linked from each of the k equation chains, which can
only be pebbled if all equation nodes are pebbled.

Cj
1 :

Cj
3 :

Time step 1

Cj
1 :

Cj
3 :

Time step 2

Cj
1 :

Cj
3 :

Time step 3

Cj
1 :

Cj
3 :

Time step 4

Cj
1 :

Cj
3 :

Time step 5

Cj
1 :

Cj
3 :

Time step 6

Fig. 3. A pebbling of the equation gadget x3+2 = x1 (at the top) using the satisfying
assignment x3 = 1 and x1 = 3.

We will use another gadget, the assignment gadget, to ensure that in any legal
pebbling, we need to “walk” a pebble down each chain Cj

i on m different times.

Each node vj,zi of a variable gadget in a satisfiable B2LC instance has a pebble on



it during exactly m rounds. On the other hand, the assignment gadget ensures
that for any unsatisfiable B2LC instance, there exists some i ≤ n and z ≤ c such
that each of the nodes v1,zi , . . . , vτ,zi are pebbled during at least m+ 1 rounds.

We will tune the parameter τ to ensure that any such pebbling is more
expensive, formalized in Claim 8 in Appendix A.

m assignments gadget Our final gadget is a path of length cm so that each
node is connected to the previous node. We create a path gadget Mi of length
cm for each variable xi and connect Mi to each the variable gadgets C1

i , . . . C
τ
i

as follows: for every node zp+qc
i in the path with position p + qc > 1, where

1 ≤ p ≤ c and 0 ≤ q < m− 1, we add an edge to zp+qc
i from each of the nodes

vj,pi , 1 ≤ j ≤ τ (that is, the pth node in all τ chains C1
i , . . . C

τ
i representing the

variable xi ). We connect the final node in each of the n paths to the final sink
node vsink in our graph GB2LC.

Intuitively, to pebble vsink we must walk a pebble down each of the gadgets
Mi which in turn requires us to walk a pebble along each chain Cj

i , 1 ≤ j ≤ τ ,
at least m times. For example, see Figure 4.

z1i
. . . zci . . . . . . z2ci

. . . . . . zcmi

Chain for C
j
i : v

j,1
i

. . . v
j,c
i

Mi:

Fig. 4. The gadget Mi for variable xi is a path of length cm. The example shows how
Mi is connected to C

j
i for each j ∈ [τ ]. The example shows m = 3 passes and c = 3.

Figure 5 shows an example of a reduction in its entirety when τ = 1.

M2:

M1:

C1
1 :

C1
2 :

E1 (equation 1: x1 + 0 = x2):

E2 (equation 2: x2 + 1 = x1):
Sink

Fig. 5. An example of a complete reduction GB2LC, again m = 3 and c = 3. The green
nodes represent the pebbled vertices at time step 2 while the red nodes represent the
pebbled vertices at time step 10.



Lemma 1. If the B2LC instance has a valid solution, then Π
‖
cc

(

GB2LC

)

≤ τcmn+
2cmn+ 2ckm+ 1.

Lemma 2. If the B2LC instance does not have a valid solution, then Π
‖
cc

(

GB2LC

)

≥
τcmn+ τ .

We outline the key intuition behind Lemma 1 and Lemma 2 and refer to the
appendix for the formal proofs. Intuitively, any solution to B2LC corresponds to
m walks across the τn chains Cj

i , 1 ≤ i ≤ n, 1 ≤ j ≤ τ of length c. If the B2LC

instance is satisfiable then we can synchronize each of these walks so that we
can pebble every equation chain Ej and path Mj along the way. Thus, the total
cost is τcmn plus the cost to pebble the k equation chains Ej (≤ 2ckm), the
cost to pebble the n paths Mj (≤ 2cmn) plus the cost to pebble the sink node
1.

We then prove a structural property about the optimal pebbling P = (P0, . . . , Pt) ∈
P‖
GB2LC

. In particular, Claim 8 from the appendix states that if P = (P0, . . . , Pt)

is optimal (i.e., cc(P ) = Π
‖
cc (GB2LC)) then during each pebbling round y ≤ t

the pebbles on each of the chains C1
i , . . . , C

τ
i are synchronized. Formally, for

every y ≤ t, i ≤ n and z ≤ c we either have (1)
{

v1,zi , . . . , vτ,zi

}

⊆ Py, or (2)
{

v1,zi , . . . , vτ,zi

}

⋂

Py = ∅ — otherwise we could reduce our pebbling cost by

discarding these unnecessary pebbles.
If the B2LC instance is not satisfied then we must adopt a “cheating” pebbling

strategy P , which does not correspond to a B2LC solution. We say that P is a
“cheating” pebbling if some node vj,zi ∈ Cj

i is pebbled during at least m + 1
rounds. We can use Claim 8 to show that the cost of any “cheating” pebbling is
at least cc(P ) ≥ τ (mc+ 1). In particular, P must incur cost at least τmc(n−1)
to walk a pebble down each of the chains Cj

i′ with i′ 6= i and 1 ≤ j ≤ τ . By
Claim 8, any cheating pebbling P incurs costs at least τ(mc+ 1) on each of the
chains C1

i , . . . , C
τ
i . Thus, the cumulative cost is at least τcmn+ τ .

Theorem 1. minCC is NP-Complete.

Proof. It suffices to show that there is a polynomial time reduction from B2LC to
minCC since B2LC is NP-Complete (see Theorem 3). Given an instance P of B2LC,
we create the corresponding graph G as described above. This is clearly achieved

in polynomial time. By Lemma 1, if P has a valid solution, then Π
‖
cc(G) ≤

τcmn+2cmn+2ckm+1. On the other hand, by Lemma 2, if P does not have a

valid solution, then Π
‖
cc(G) ≥ τcmn+τ . Therefore, setting τ > 2cmn+2ckm+1

(such as τ = 2cmn+2ckm+2) allows one to solve B2LC given an algorithm which

outputs Π
‖
cc(G).

Theorem 2. minCCδ is NP-Complete for each δ ≥ 2.

Note that the only possible nodes in GB2LC with indegree greater than two are the
nodes in the equation gadgets E1, . . . , Em, and the final sink node. The equation
gadgets can have indegree up to 2τ + 1, while the final sink node has indegree



n + m. To show that minCCδ is NP-Complete when δ = 2 we can replace the
incoming edges to each of these nodes with a binary tree, so that all vertices
have indegree at most two. By changing τ appropriately, we can still distinguish
between instances of B2LC using the output of minCCδ. We refer to the appendix
for a sketch of the proof of Theorem 2.

Theorem 3. B2LC is NP-Complete.

To show that B2LC is NP-Completewe will reduce from the problem 3-PARTITION,
which is known to be NP-Complete. The decision problem 3-PARTITION is defined
as follows:
Input: A multi-set S of m = 3n positive integers x1, . . . , xm ≥ 1 such that (1)
we have T

4n < xi <
T
2n for each 1 ≤ i ≤ m, where T = x1 + . . .+ xm, and (2) we

require that T ≤ p(n) for a fixed polynomial p.11

Output: Yes, if there is a partition of [m] into n subsets S1, . . . , Sn such that
∑

j∈Si
xj =

T
n for each 1 ≤ i ≤ n; otherwise No.

Fact 4 [GJ75,Dem14] 3-PARTITION is NP-Complete.12

We refer to the appendix for the proof of Theorem 3, where we show that there
is a polynomial time reduction from 3-PARTITION to B2LC.

5 NP-Hardness of REDUCIBLEd

The attacks of Alwen and Blocki [AB16,AB17] exploited the fact that the Argon2i-
A, Argon2i-B, iBH and Catena DAGs are not depth-robust. In general, Alwen
and Blocki [AB16] showed that any (e, d)-reducible DAG G can be pebbled with
cumulative cost O

(

ne+n
√
nd

)

. Thus, depth-robustness is a necessary condition
for a secure iMHF. Recently, Alwen et al. [ABP17] showed that depth-robustness
is sufficient for a secure iMHF. In particular, they showed that an (e, d)-depth

reducible graph has Π
‖
cc(G) ≥ ed.13 Thus, to cryptanalyze a candidate iMHF it

would be useful to have an algorithm to test for depth-robustness of an input
graph G. However, we stress that (constant-factor) hardness of REDUCIBLEd does
not directly imply that minCC is NP-Hard. To the best of our knowledge no one
has explored the computational complexity of testing whether a given DAG G
is (e, d)-depth robust.

11 We may assume T
4n

< xi <
T
2n

by taking any set of positive integers and adding a
large fixed constant to all terms, as described in [Dem14].

12 The 3PARTITION problem is called P[3,1] in [GJ75].
13 Alwen et al. [ABP17] also gave tighter upper and lower bounds on Π

‖
cc(G) for

the Argon2i-A, iBH and Catena iMHFs. For example, Π
‖
cc(G) = Ω

(

n1.66
)

and

Π
‖
cc(G) = O

(

n1.71
)

for a random Argon2i-A DAG G (with high probability). Blocki
and Zhou [BZ17] recently tightened the upper and lower bounds on Argon2i-B show-

ing that Π
‖
cc(G) = O

(

n1.767
)

and Π
‖
cc(G) = Ω̃

(

n1.75
)

.



We have many constructions of depth-robust graphs [EGS75,PR80,Sch82,Sch83,MMV13],
but the constant terms in these constructions are typically not well under-
stood. For example, Erdös, Graham and Szemerédi [EGS75] constructed an
(

Ω(n), Ω(n)
)

-depth robust graph with indeg = O
(

logn
)

. Alwen et al. [ABP17]
showed how to transform an n node (e, d)-depth robust graph with maximum
indegree indeg to a (e, d × indeg)-depth robust graph with maximum indeg =
2 on n × indeg nodes. Applying this transform to the Erdös, Graham and
Szemerédi [EGS75] construction yields a constant-indegree graph on n nodes

such that G is (Ω(n/ log(n)), Ω(n)
)

-depth robust — implying that Π
‖
cc(G) =

Ω
(

n2

log n

)

. From a theoretical standpoint, this is essentially optimal as any con-

stant indeg DAG has Π
‖
cc = O

(

n2 log logn
logn

)

[AB16]. From a practical standpoint
it is important to understand the exact values of e and d for specific parameters
n in each construction.

5.1 Results

We first produce a reduction from Vertex Cover which preserves approxima-
tion hardness. Let minREDUCIBLEd denote the problem of finding a minimum
size S ⊆ V such that depth(G − S) ≤ d. Our reduction shows that, for each
0 ≤ d ≤ n1−ǫ, it is NP-Hard to 1.3-approximate minREDUCIBLEd since it is NP-Hard
1.3-approximate Vertex Cover [DS05]. Similarly, it is hard to (2−ǫ)-approximate
minREDUCIBLEd for any fixed ǫ > 0 [KR08], under the Unique Games Conjec-
ture [Kho02]. We also produce a reduction from Cubic Vertex Cover to show
REDUCIBLEd is NP-Complete even when the input graph has bounded indegree.

The techniques we use are similar to those of Bresar et al. [BKKS11] who
considered the problem of finding a minimum size d-path cover in undirected
graphs (i.e., find a small set S ⊆ V of nodes such that every undirected path
in G − S has size at most d). However, we stress that if G is a DAG, Ĝ is the
corresponding undirected graph and S ⊆ V is given such that depth(G−S) ≤ d
that this does not ensure that Ĝ − S contains no undirected path of length
d. Thus, our reduction specifically address the needs for directed graphs and
bounded indegree.

Theorem 5. REDUCIBLEd is NP-Complete and it is NP-Hard to 1.3-approximate
minREDUCIBLEd. Under the Unique Games Conjecture, it is hard to (2 − ǫ)-
approximate minREDUCIBLEd.

Theorem 6. Even for δ = O(1), REDUCIBLEd,δ is NP-Complete.

We defer the proofs of Theorem 5 and Theorem 6 to Appendix A. We leave
open the question of efficient approximation algorithms for minREDUCIBLEd. Lee
[Lee17] recently proposed a FPT O (log d)-approximation algorithm for the re-

lated problem d-path cover problem running in time 2O(d3 log d)nO(1). However, it
is not clear whether the techniques could be adapted to handle directed graphs
and in most interesting cryptographic applications we have d = Ω (

√
n) so the

algorithm would not be tractable.



6 LP Relaxation has Large Integrality Gap

In this section, we show that the natural LP relaxation for the integer program
of DAG pebbling has a large integrality gap. We show similar results for the
natural LP relaxation for the integer program of REDUCIBLEd in Appendix B.

LetG = (V,E) be a DAG with maximum indegree δ and with V = {1, . . . , n},
where 1, 2, 3, . . . , n is topological ordering of V . We start with an integer program
for DAG pebbling, in Figure 6. Intuitively, xt

v = 1 if we have a pebble on node v

min
∑

v∈V

∑n2

t=0 x
t
v. s.t. (3) ∀v ∈ sinks(G),

∑n2

t=0 x
t
v ≥ 1.

(1) xt
v ∈ {0, 1} ∀1 ≤ v ≤ n and 0 ≤ t ≤ n2. (4) ∀v ∈ V \sources(G), 0 ≤ t ≤ n2 − 1

(2) x0
v = 0 ∀1 ≤ v ≤ n. xt+1

v ≤ xt
v +

∑
v′∈parents(v) xt

v′

|parents(v)|
.

Fig. 6. Integer Program for Pebbling.

during round t. Thus, Constraint 3 says that we must have a pebble on the final
node at some point. Constraint 2 says that we do not start with any pebbles
on G and Constraint 4 enforces the validity of the pebbling. That is, if v has
parents we can only have a pebble on v in round t+1 if either (1) v already had
a pebble during round t, or (2) all of v’s parents had pebbles in round t. It is
clear that the above Integer Program yields the optimal pebbling solution.

We would like to convert our Integer Program to a Linear Program. The
natural relaxation is simply to allow 0 ≤ xt

v ≤ 1. However, we show that this LP

has a large integrality GAP Ω̃
(

n
logn

)

even for DAGs G with constant indegree.

In particular, there exist DAGs with constant indegree δ for which the optimal

pebbling has Π
‖
cc(G) = Ω̃

(

n2

logn

)

[ABP17], but we will provide a fractional

solution to the LP relaxation with cost O
(

n
)

.

Theorem 7. Let G be a DAG. Then there is a fractional solution to our LP
Relaxation (of the Integer Program in Figure 6) with cost at most 4n.

Proof. In particular, for all time steps t ≤ n, we set xt
i = 1

n for all i ≤ t, and

xt
i = 0 for i > t. For time steps n < t ≤ n+ ⌈logn⌉, we set xt

v = min
(

1, 2
t−n

n

)

for all v ∈ V . We first argue that this is a feasible solution. Trivially, Constraints
1 (with the LP relaxation) and 2 are satisfied. Moreover, for t = n + ⌈logn⌉,
xt
v = 1 for all v ∈ V , so Constraint 3 is satisfied. Note that for 1 < t ≤ n, if

xt
v = 1

n , then xt−1
u = 1

n for all u < v, so certainly
∑

v′∈parents(v)

xt−1

v′

|parents(v)| ≥ 1
n .

Furthermore, xt−1
v = min

(

1, 2t−1−n

n

)

for n < t ≤ n+⌈logn⌉ implies that setting

xt
v = xt−1

v +
∑

v′∈parents(v)

xt
v′

|parents(v)| =
2t−1−n

n
+

2t−1−n

n
=

2t−n

n

is valid. Therefore, Constraint 4 is satisfied.



Finally, we claim that
∑

v∈V

∑

t≤n+⌈logn⌉ x
t
v ≤ 4n. To see this, note that for

every round t ≤ n, we have xt
v ≤ 1

n for all v ∈ V . Thus,

∑

v∈V

∑

t≤n

xt
v ≤

∑

v∈V

∑

t≤n

1

n
≤

∑

v∈V

1 = n.

For time steps n < t < n+ ⌈logn⌉, note that xt
v ≤ 2t−n

n for all v ∈ V . Thus,

∑

v∈V

∑

n<t<n+⌈logn⌉

xt
v ≤

∑

n<t<n+⌈log n⌉

2t−n ≤ 2n.

Finally, for time step t = n+ ⌈log n⌉, xt
v = 1 for all v ∈ V . Consequently,

∑

v∈V

∑

t=n+⌈log n⌉

xt
v = n.

Therefore,
∑

v∈V

∑

t≤n+⌈logn⌉

xt
v ≤ 4n.

One tempting way to “fix” the linear program is to require that the peb-
bling take at most n steps since the fractional assignment used to establish the
integrality gap takes 2n steps. There are two issues with this approach: (1) It
is not true in general that the optimal pebbling of G takes at most n steps.
See Appendix C for a counter example and discussion. (2) There exists a family
of DAGs with constant indegree for which we can give a fractional assignment
that takes exactly n steps and costs O(n logn). Thus, the integrality gap is still
Ω̃(n). Briefly, in this assignment we set xi

i = 1 for i ≤ n and for i < t we set
xt
i = max

{

1
n , {2−dist(i,t+j)−j+2 : j ≥ 1}

}

, where dist(x, y) is the length of the
shortest path from x to y. In particular, if j = 1 (we want to place a ‘whole’
pebble on node j + t in the next round by setting xj+t

j+t = 1 ) and node i is a

parent of node t + j then we have dist(i, t + j) = 1 so we will have xj+t
i = 1

(e.g., a whole pebble on node i during the previous round).

7 Conclusions

We initiate the study of the computational complexity of cumulative cost mini-
mizing pebbling in the parallel black pebbling model. This problem is motivated
by the urgent need to develop and analyze secure data-independent memory
hard functions for password hashing. We show that it is NP-Hard to find a par-
allel black pebbling minimizing cumulative cost, and we provide evidence that
the problem is hard to approximate. Thus, it seems unlikely that we will be
able to develop tools to automate the task of a cryptanalyst to obtain strong
upper/lower bounds on the security of a candidate iMHF. However, we cannot
absolutely rule out the possibility that an efficient approximation algorithm ex-
ists. In fact, our results only establish worst case hardness of graph pebbling. We



cannot rule out the existance of efficient algorithms to find optimal pebblings
for practical iMHF proposals such as Argon2i [BDK16] and DRSample [ABH17].
The primary remaining challenge is to either give an efficient α-approximation al-

gorithm to find a pebbling P ∈ P‖ with cc(P ) ≤ αΠ
‖
cc(G) or show that Π

‖
cc(G)

is hard to approximate. We believe that the problem offers many interesting
theoretical challenges and a solution could have very practical consequences for
secure password hashing. It is our hope that this work encourages others in the
TCS community to explore these questions.
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A Missing Proofs

Reminder of Lemma 1. If the B2LC instance has a valid solution, then

Π
‖
cc

(

GB2LC

)

≤ τcmn+ 2cmn+ 2ckm+ 1.
Proof of Lemma 1. Suppose the given instance of B2LC has a valid solution,
{xi,j}. Recall that a pebble must pass m times through each of the τ chains of
length c representing each variable. For a set k, let xk,j1 ≤ xk,j2 ≤ . . . ≤ xk,jn .
We start the kth pass through the τ chains by placing a pebble on C1

jn
, . . . , Cτ

jn
,

the τ chains representing variable jn. At each subsequent time step, we move
the existing pebbles to the next node along the chain. When the pebbles on
chains C1

jn , . . . , C
τ
jn reach the (xk,jn − xk,jn−1 + 1)th nodes, we place a pebble

on C1
jn−1

, . . . , Cτ
jn−1

, the τ chains representing variable jn−1. We continue this
process by moving existing pebbles to the next node along each chain for each
subsequent time step.

When pebbles on chains C1
jl
, . . . , Cτ

jl
reach the (xk,jl −xk,jl−1

+1)th nodes, we

place a pebble on C1
jl−1

, . . . , Cτ
jl−1

, the τ chains representing variable jl−1. Thus,
the gadgets E1, . . . , Em which are satisfied by xk,1, . . . , xk,m+1 can be pebbled
during this pass, since by construction, we offset the positions of the pebbles
by the appropriate distances. When a pebble reaches the end of its chain, we
remove the pebble. Hence, we see that each chain has c time steps with pebbles,
and each of those steps needs only one pebble. There are n variables, τ chains
representing each variable, and m passes through each chain. Across all variable
chains, the cumulative complexity is τcmn since there are n variables and τ
chains representing each variable.

Similarly, making m walks through the paths C1
j , . . . , C

τ
j allows us to pebble

the path Mj (j ≤ n). These paths each have length cm and we keep at most one
pebble on Mj at any point in time. There may be a delay of up to c time steps
between consecutive walks through the paths C1

j , . . . , C
τ
j during which we cannot

progress our pebble through the path Mj . However, there are at most 2cm total
steps in which we have a pebble on Mj . Thus, the cumulative complexity across
all paths M1, ...,Mn is at most 2cmn.

Likewise, since each equation gadget Ej is represented by a chain, one pebble
at each time step suffices for each of these paths. We may have to keep a pebble
on the gadget Ej while we make m walks through the paths, but we keep this
pebble on Ej for at most 2cm steps (each walk takes c steps and the delay
between consecutive walks is at most c steps). Since there are k equations, and
there is a chain for each equation, the cumulative complexity across all equation
chains is at most 2ckm.

There is one final sink node, so the cumulative complexity for an instance of
B2LC with a valid solution is at most τcmn+ 2cmn+ 2ckm+ 1. �



Claim 8 will be useful in our proof of Lemma 2.

Claim 8 Any pebbling strategy P = (P0, . . . , Pt) ∈ P‖
GB2LC

with Π
‖
cc(P ) = Π

‖
cc(G)

must satisfy the following property: for all i ∈ [n], j ∈ [τ ] and all pebbling rounds

y ∈ [t] and z ∈ [c] we have vj,zi ∈ Py ↔ {vj
′,z

i : j′ ∈ [τ ]} ⊆ Py. In particular,

whenever we have a pebble on node vj,zi (the z’th node in the j’th path gadget

Cj
i for variable xi) we also have pebbles on each of the nodes v1,zi , . . . , vτ,zi .

Proof of Claim 8. Let P = (P0, . . . , Pt) ∈ P‖
GB2LC

be a pebbling that does not sat-
isfy our property. We will construct another legal pebbling P ′ = (P ′

0, . . . , P
′
t ) ∈

P‖ (GB2LC) with Π
‖
cc(G) ≤ cc(P ′) < cc(P ). For time step y, set

P ′
y = Py \ UNSY NCy

where

UNSY NCy =
{

vj,zi : i ∈ [n], j ∈ [τ ], z ∈ [c] and {vj
′,z

i : j′ ∈ [τ ]} 6⊂ Py

}

.

We clearly have
∣

∣P ′
y

∣

∣ ≤ |Py| at each time step y. Furthermore, because P does

not satisfy our property we must have |Py| >
∣

∣P ′
y

∣

∣ for some step y. Thus,

cc(P ′) =
∑

|P ′
y| <

∑

|Py | = cc(P ) .

It remains to show that P ′ is a legal pebbling i.e., ∀y∀v ∈ P ′
y+1 we have

parents(P ′
y+1) ⊆ P ′

y. For a node v ∈ P ′
y+1, we have four cases:

1. For some variable xi the node v is a part of one of the τ gadgets for that
variable i.e., v = vj,zi ∈ Cj

i for some j ∈ [τ ]. By construction of P ′ we must

also have vj
′,z

i ∈ P ′
y+1 for each j′ ∈ [τ ]. Since vj

′,z
i ∈ P ′

y+1 ⊆ Py+1, we must

have parents(vj
′,z

i ) = {vj
′,z−1

i } ⊂ Py by the legality of the original pebbling

P. Thus, {vj
′,z−1

i : j′ ∈ [τ ]} ⊆ P ′
y since UNSY NCy ∩{vj

′,z−1
i : j′ ∈ [τ ]} = ∅.

It follows that parents(v) ⊆ P ′
y.

2. v = zp+qc
i ∈ Mi. In this case we observe that, since v ∈ Py+1, we have

parents(v) ⊆ Py by the legality of the original pebbling P . By construc-

tion, of GB2LC we have parents(zp+qc
i ) = {vj

′,p
i : j ∈ [τ ]} ∪ {zp+qc−1

i }.
In the construction of P ′

y we would not discard any of these pebbles since

parents(zp+qc
i ) ∩ UNSY NCy = ∅. Thus, we have parents(v) ⊆ P ′

y.

3. v = eki ∈ Ei for some equation gadget Ei. The proof that parents(v) ⊆ P ′
y is

essentially the same as in case 2.

4. v is a sink. By legality of P we have parents(v) ⊆ Py. In this case we note

that parents(sink) is disjoint from all of the variable gadgets Cj
i . Since, P

′
y =

PY \ UNSY NCy can only remove pebbles on the variable gadgets Cj
i it

follows that parents(v) ⊆ P ′
y.



In each case, parents(v) ⊆ P ′
y so P ′ is a legal pebbling. �

Reminder of Lemma 2. If the B2LC instance does not have a valid solution,

then Π
‖
cc

(

GB2LC

)

≥ τcmn+ τ .
Proof of Lemma 2. Suppose the given instance of B2LC does not have a valid

solution and let P = (P0, . . . , Pt) ∈ P‖
GB2LC

be given such that cc(P ) = Π
‖
cc (GB2LC)

i.e. P is optimal. We first observe that in any legal pebbling P = (P0, . . . , Pt) ∈
P‖ (GB2LC) we must walk a pebble down each of the paths M1, . . . ,Mn of length
cm. Let tzi denote the first time step in which we place a pebble on vzi — the z’th
node on path Mi. Clearly, t

z
i < tz+1

i for z < cm and at time tzi − 1 we must have

a pebble on all nodes in parents
(

vzi
)

. In particular, v1,yi , . . . , vτ,yi ∈ Ptz
i
−1 where

y = z (mod c). Thus, for each node vj,zi with i ∈ [n], j ∈ [τ ], z ∈ [c] there are at

least m distinct rounds y ∈
{

tzi , t
z+c
i , . . . , t

z+c(m−1)
i

}

during which vj,zi ∈ Py.

We say that the pebbling P “cheats” if it does not correspond to a valid B2LC

solution. Formally, P is a “cheating” pebbling if for some node vj,zi there are at

least m+1 distinct rounds y ∈ {y1, . . . , ym+1} during which vj,zi ∈ Py. By Claim

Claim 8 we must have
{

v1,zi , . . . , vτ,zi

}

∈ Py for each y ∈ {y1, . . . , ym+1}. Thus,
if P is a cheating pebbling we have

cc(P ) ≥
∑

y∈[t]

∑

j∈[τ ]

∣

∣

∣
Py ∩ vj,zi

∣

∣

∣
+

∑

y∈[t]

∑

j∈[τ ]

∑

i∈[n],z∈[c] s.t

(i′,z′) 6=(i,z)

∣

∣

∣
Py ∩ vj,zi

∣

∣

∣

≥ τ(m+ 1) +
∑

j∈[τ ]

∑

i∈[n],z∈[c] s.t

(i′,z′) 6=(i,z)

m

= τ(m+ 1) + (cnτm− τm)

= τcmn+ τ .

Any non-cheating pebbling corresponds to a valid B2LC solution. If an equa-
tion xαi

+ ci+xβi
is not satisfied by one of the assignments in the B2LC solution

then there is no legal way to pebble the equation chain Ei without cheating
because at no point during the m walks are both variables in the equation offset
by the correct amount. Thus, any instance of B2LC which does not have a valid

solution requires that Π
‖
cc (GB2LC) ≥ τcmn+ τ . �

Reminder of Theorem 2. minCCδ is NP-Complete for each δ ≥ 2.
Proof of Theorem 2. (sketch) We sketch the construction for δ = 2 due to
its similarity to the general case where the indegree is not restricted and we
highlight the differences between the constructions. Although we maintain τ
chains representing each variable, we can no longer maintain the gadgets for
the equation, E1, . . . , Em, for which each vertex has indegree 2τ + 1, one edge
from its predecessor in the gadget, and 2τ edges from the chains representing the
variables involved in the equation. Instead, in place of the 2τ edges, we construct
a binary tree, where the bottom layer of the tree has at least

(

τ
2

)

nodes. Each of

the
(

τ
2

)

connects to a separate instance of the chains representing the variables



involved in the equation. Thus, if the equation involves variables xi and xj , then
each of the

(

τ
2

)

nodes will have an edge from one of the τ chains representing xi,
and an edge from one of the τ chains representing xj , offset by an appropriate
amount. This construction ensures that the root of the tree is pebbled only if all
equations are satisfied, but any “dishonest” walk along the chains will require
at least τ additional pebbles. Similarly, we replace the 2τ edges in the paths
P1, . . . , Pn of length cm with binary trees with base

(

τ
2

)

. Finally, we replace

the m + n incident edges to the sink node with a binary tree with base
(

m+n
2

)

.
Since each of these terms are polynomial in c,m, n, there exists a τ that is also
polynomial in c,m, n which allows us to distinguish between honest walks and
dishonest walks. As a result, we can decide between instances of B2LC. �

Reminder of Theorem 3. B2LC is NP-Complete.
Proof of Theorem 3. Given an instance S of 3-PARTITION, first sort S so that
S = {s1, s2, . . . , sm} and si ≤ sj for any i ≤ j. Let T =

∑m
i=1 sm. We then

create mn = 3n2 equations:

x1 + s1 = x2, x2 + s2 = x3, . . . , xm + sm = xm+1,

x1 + 0 = x2, x2 + 0 = x3, . . . , xm + 0 = xm+1,

x1 + T = x2, x2 + T = x3, . . . , xm + T = xm+1,

x1 + 2T = x2, x2 + 2T = x3, . . . , xm + 2T = xm+1,

x1 + (n− 2)T = x2, x2 + (n− 2)T = x3, . . . , xm + (n− 2)T = xm+1,

Finally, we create the additional n equations:

x1 +
T

n
+ 3(i− 1)(n− 2)T = xm+1, (1)

for i ∈ [n]. This gives a total of 3n2+n equations so that the reduction is clearly
achieved in polynomial time.

Recall that B2LC is true if and only if there exist {ai,j}, i ∈ [n], j ∈ [m]
so that each equation xi + ci,j = xj is satisfied by the assigning xi = ai,k and
xj = aj,k for some k. We show that there exists a solution to 3-PARTITION if
and only if there exists a solution to B2LC.

Suppose there exists a partition of S into n triplets S1, S2, . . . , Sn so that the
sum of the integers in each triplet is the same, and equals T

n . We set a1,1 = 0
and for each si that appears in S1, we choose to satisfy the equation, a1,i+ si =
a1,i+1. Otherwise, if si does not appear in S1, we choose to satisfy the equation
a1,i + 0 = a1,i+1.

Suppose that ai,j are defined for all i < k. Then we set ak,1 = 0 and for
each si that appears in Sk, we choose to satisfy the equation, ak,i + si = ak,i+1.
If si appears in Si for some i < k, then we choose to satisfy the equation
ak,i+(i−2)T = ak,i+1. Otherwise, if si does not appear in S1, . . . , Sk, we choose
to satisfy the equation ak,i + (i− 1)T = ak,i+1.

Thus, to get ai,m+1 from ai,1, we add in three elements whose sum is T
n . That

is, we pick three unused elements of S, say st, su, sv, and we choose to satisfy



the equations xt + st = xt+1, xu + su = xu+1, and xv + sv = xv+1. We then
add in 3(i − 1) instances of (i − 2)T , for each of the elements which appear in
S1, . . . , Si−1. Finally, we add in (3n− 3i) instances of (i− 1)T . Hence, it follows
that

ai,1 +
T

n
+ 3(i− 1)(i− 2)T + (3n− 3i)(i− 1)T = ai,m+1

ai,1 +
T

n
+ (3in− 3n− 6i+ 6)T = ai,m+1

ai,1 +
T

n
+ 3(i− 1)(n− 2)T = ai,m+1,

so that all equations in 1 are satisfied. Thus, a solution for 3-PARTITION yields
a solution for B2LC.

Suppose there exists a solution for the above instance of B2LC. Observe that
since there are n instances of the equation x1+

T
n +3(i−1)(n−2)T = xm+1, then

the equation must hold for each ai,1, ai,m+1. Thus, ai,1 +
T
n ≡ ai,m+1 (mod T )

for all i. Hence, to obtain a1,m+1 from a1,1, we must take three equations of
the form xi + si = xi+1 since the summing less than three elements in S is less
than T

n , while the summing more than three elements in S is more than T
n but

less than T + T
n (as each element of S is greater than T

4n and less than T
2n and

the sum of all elements in S is T ). Say that these three equations use the terms
si1 , si2 , si3 . Then we let S1 = {si1 , si2 , si3}, which indeed sums to T

n .
Similarly, to obtain ak,m+1 from ak,1, we must take three equations of the

form xi + si = xi+1. Since there are 3n equations of this form which must be
satisfied and each of the n assignments of the form ai,1, . . . , ai,m+1 (where 1 ≤ i ≤
n) uses exactly three of these equations, then each assignment of ai,1, . . . , ai,m+1

must satisfy a disjoint triplet of the 3n equations. Say that the three satisfied
equations for ai,1, . . . , ai,m+1 are sk1 , sk2 , sk3 . Then we let Sk = {sk1 , sk2 , sk3},
which indeed sums to T

n .

Therefore, we have a partition of S into triplets, which each sum to T
n , as

desired. Thus, a solution for B2LC yields a solution for 3-PARTITION. �

Reminder of Theorem 5. REDUCIBLEd is NP-Complete and it is NP-Hard to
1.3-approximate minREDUCIBLEd. Under the Unique Games Conjecture, it is hard
to (2− ǫ)-approximate minREDUCIBLEd.
Proof of Theorem 5. We provide a reduction from VC to REDUCIBLEd. Given an
instance G = (V,E) of VC, arbitrarily label the vertices 1, . . . , n, where n = |V |,
and direct each edge of E so that 1, . . . , n is a topological ordering of the nodes.
For each node i we add two directed paths (where path length is the number of
edges in the path): (1) a path of length i− 1 with an edge from the last node on
the path to node i, (2) a path of length n − i with an edge from node i to the
first node of the path. To avoid abuse of notation, let U represent the original n
vertices (from the given instance of VC) in the modified graph.

We claim VC has a vertex cover of size at most k if and only if the resulting
graph is (k, n)-reducible. Indeed, if there exists a vertex cover of size k, we remove



the corresponding k vertices in the resulting construction. Then there are no
edges connecting vertices of U . By construction, any path of length n− 1 must
contain at least two vertices of U . Hence, the resulting graph is (k, n)-reducible.

On the other hand, suppose that there is no vertex cover of size k. Given
a set S of k = |S| vertices we say that a node u ∈ U is “untouched” by S if
u /∈ S and S does not contain any vertex from the chain(s) we connected to
node u. If there is no vertex cover of size k, then removing any set S of k = |S|
vertices from the graph leaves an edge (u, v) with the following properties: (1)
u, v ∈ U , (2) u and v are both untouched by S. Suppose u has label i. Then the
(untouched) directed path which ends at u has length i− 1. Similarly, there still
exists some directed path of length ≥ n− i which begins at v. Thus, there exists
a path of length at least n, so the resulting graph is not (k, n)-reducible. �

Reminder of Theorem 7. Let G be a DAG. Then there is a fractional solution
to our LP Relaxation (of the Integer Program in Figure 6) with cost at most 4n.
Proof of Theorem 7. In particular, for all time steps t ≤ n, we set xt

i =
1
n for

all i ≤ t, and xt
i = 0 for i > t. For time steps n < t ≤ n + ⌈logn⌉, we set

xt
v = min

(

1, 2t−n

n

)

for all v ∈ V . We first argue that this is a feasible solution.

Trivially, Constraints 1 (with the LP relaxation) and 2 are satisfied. Moreover,
for t = n + ⌈logn⌉, xt

v = 1 for all v ∈ V , so Constraint 3 is satisfied. Note
that for 1 < t ≤ n, if xt

v = 1
n , then xt−1

u = 1
n for all u < v, so certainly

∑

v′∈parents(v)

xt−1

v′

|parents(v)| ≥ 1
n . Furthermore, xt−1

v = min
(

1, 2t−1−n

n

)

for n < t ≤
n+ ⌈logn⌉ implies that setting

xt
v = xt−1

v +
∑

v′∈parents(v)

xt
v′

|parents(v)| =
2t−1−n

n
+

2t−1−n

n
=

2t−n

n

is valid. Therefore, Constraint 4 is satisfied.
Finally, we claim that

∑

v∈V

∑

t≤n+⌈logn⌉ x
t
v ≤ 4n. To see this, note that for

every round t ≤ n, we have xt
v ≤ 1

n for all v ∈ V . Thus,

∑

v∈V

∑

t≤n

xt
v ≤

∑

v∈V

∑

t≤n

1

n
≤

∑

v∈V

1 = n.

For time steps n < t < n+ ⌈logn⌉, note that xt
v ≤ 2t−n

n for all v ∈ V . Thus,
∑

v∈V

∑

n<t<n+⌈logn⌉

xt
v ≤

∑

n<t<n+⌈log n⌉

2t−n ≤ 2n.

Finally, for time step t = n+ ⌈log n⌉, xt
v = 1 for all v ∈ V . Consequently,

∑

v∈V

∑

t=n+⌈log n⌉

xt
v = n.

Therefore,
∑

v∈V

∑

t≤n+⌈logn⌉

xt
v ≤ 4n.

�



B Integrality Gaps for REDUCIBLEd

We now suggest a natural integer program for REDUCIBLEd and show that the
integrality gap is quite large Ω̃(n).

min
∑

v∈V
xv. s.t. (2) 0 ≤ du,v ≤ d ∀(u, v) ∈ V 2

(1) xv ∈ {0, 1} ∀1 ≤ v ≤ n. (3) dw,v ≥ dw,u + 1− (d+ 1)(xu + xv) ∀w ∈ V, (u, v) ∈ E

Fig. 7. Integer Program for REDUCIBLEd.

Intuitively, setting xv = 1 means that we include v ∈ S and du,v represents
the length of the maximum length directed path from u to v in the graph G−S.
Constraint 2 requires that the longest path has length at most d, and Constraint
3 ensures that dw,v upper bounds the length of the longest path from w to v in
G − S. If we have a path from w to u of length k in G − S and u, v /∈ S then
there is a path of length k + 1 from w to v in G − S — if u ∈ S or v ∈ S then
the −n(xu + xv) term effectively eliminates the constraint since this particular
path does not exist in G− S.

The LP relaxation is obtained by changing Constraint 1 to 0 ≤ xv ≤ 1. To
see that the LP relaxation has high integrality gap we first observe that there
is a family of (Ω(n), Ω(n))-depth robust DAGs Gn with indeg(Gn) ≤ logn. By
Theorem 9 the LP relaxation for Gn has a solution with cost at most n/d = θ(1),
but the Integer Program must have cost at least Ω(n). Thus, the integrality
gap is Ω(n). Even if we require indeg(Gn) = 2 then we still have a family of
(Ω(n/ logn), Ω(n))-depth robust DAGs [ABP17] so we get an integrality gap of
Ω(n/ logn).

Theorem 9. For any DAG G the LP relaxation (of the Integer Program in
Figure 7) has a solution with cost at most n/d.

Proof. Set xv = 1
d for all v ∈ V and set du,v = 0 for all u, v ∈ V 2.

C On Pebbling Time and Cumulative Cost

In this section we address the following question: is is necessarily case that an
optimal pebbling of G (minimizing cumulative cost) takes n steps? For exam-
ple, the pebbling attacks of Alwen and Blocki [AB16,AB17] on depth-reducible
graphs such as Argon2i-A, Argon2i-B, Catena all take exactly n steps. Thus,
it seems natural to conjecture that the optimal pebbling of G always finishes
in depth(G) steps. In this section we provide a concrete example of an DAG G
(with n nodes and depth(G) = n) with the property that any optimal pebbling
of G must take more than n steps. More formally, let Π‖(G, t) denote the set
of all legal pebblings of G that take at most t pebbling rounds. We prove that

minP∈Π‖(G,t) cc(P ) > minP∈Π‖(G) cc(P ) = Π
‖
cc(G).



Theorem 10. There exists a graph G with n = 16 nodes and depth(G) = n s.t.

for some t > 0,
min

P∈Π‖(G,t)
cc(P )

Π
‖
cc(G)

≥ 28
27 .

Proof. Consider the following DAG G on 16 nodes {1, . . . , 16} with the following
directed edges (1) (i, i + 1) for 1 ≤ i < 16, (2) (i, i + 9) for 1 ≤ i ≤ 5 and (3)
(i, i + 7) for 8 ≤ i ≤ 9. We first show in Claim C that there is a pebbling P
with cost 27 that takes 18 rounds. Theorem 10 then follows from Claim C where
we show that any P ∈ Π‖(G, 16) has cumulative cost at least 28. Intuitively,
any legal pebbling must either delay before pebbling nodes 15 and 16 or during
rounds 15− i (for 0 ≤ i ≤ 5) we must have at least one pebble on some nodes in
the set {9, 8, ..., 9− i}.

Claim. For the above DAG G we have Π
‖
cc(G) ≤ 27.

Proof. Consider the following pebbling: P0 = ∅, P1 = {1}, P2 = {2}, P3 =
{3}, P4 = {4}, P5 = {5}, P6 = {6}, P7 = {7}, P{8} = {8}, P9 = {1, 9}, P10 =
{2, 10}, P11 = {3, 11}, P12 = {4, 12}, P13 = {5, 13}, P14 = {6, 14}, P15 = {7, 14}, P16 =
{8, 14}, P17 = {9, 15}, P18 = {16}. It is easy to verify that cc(P ) = 9+2 ∗ 9 = 27
since there are 9 steps in which we have one pebble on G and 9 steps in which
we have two pebbles on G.

Claim. For the above DAG G we have minP∈Π‖(G,16) cc(P ) ≥ 28.

Proof. Let P = (P1, . . . , P16) ∈ Π‖(G, 16) be given. Clearly, i ∈ Pi for each
round 1 ≤ i ≤ 16. To pebble nodes 15 and 16 on steps 15 and 16 we must have
9 ∈ P15 and 8 ∈ P14. By induction, this means that P14−i ∩ {8, ..., 8− i} 6= ∅ for
each i > 0. To pebble node 9 + i at time 9 + i we require that i ∈ P8+i for each
1 ≤ i ≤ 5. These observations imply that |P9| ≥ 3, |P10| ≥ 3, . . ., |P13| ≥ 3. We
also have |P15| ≥ 2 and |P14| ≥ 2. We also have |Pi| ≥ 1 for all 1 ≤ i ≤ 16. The
cost of rounds 1–8 and round 16 is at least 9. The cost of rounds 9–13 is at least
15 and the cost of rounds 14 and 15 is at least 4. Thus, cc(P ) ≥ 28.

Open Questions: Theorem 10 shows thatΠ
‖
cc(G) can be smaller than minP∈Π‖(G,t) cc(P ),

but how large can this gap be in general? Can we prove upper/lower bounds on

the ratio:
min

P∈Π‖(G,t)
cc(P )

Π
‖
cc(G)

for any n node DAGG? Is it true that
min

P∈Π‖(G,t)
cc(P )

Π
‖
cc(G)

≤
c for some constant c? If not does this hold for n node DAGs G with constant
indegree? Is it true that the optimal pebbling of G always takes at most cn steps
for some constant c?

D NP-Hardness of minST

Recall that the space-time complexity of a graph pebbling is defined as st(P ) =
t×max1≤i≤t |Pi|. We define minST and minSST based on whether the graph peb-
bling is parallel or sequential. Formally, the decision problem minST is defined
as follows:



Input: a DAG G on n nodes and an integer k < n(n+ 1)/2.
Output: Yes, if min

P∈P
‖
G

st(P ) ≤ k; otherwise No.

The decision problem minSST is defined as follows:
Input: a DAG G on n nodes and an integer k < n(n+ 1)/2.
Output: Yes, if Πst(G) ≤ k; otherwise No.

Gilbert et al.[GLT80] provide a construction from any instance of TQBF to a
DAGGTQBF with pebbling number 3n+3 if and only if the instance is satisfiable.
Here, the pebbling number of a DAG G is minP=(P1,...,Pt)∈P‖ maxi≤t |Pi| is the
number of pebbles necessary to pebble G. An important gadget in their construc-
tion is the so-called pyramid DAG. We use a triangle with the number k inside to
denote a k-pyramid (see Figure 8 for an example of a 3-pyramid). The key prop-
erty of these DAGs is that any legal pebbling P = (P0, . . . , Pt) ∈ P‖(Pyramidk)
of a k-pyramid requires at least mini |Pi| ≥ k pebbles on the DAG at some point
in time. Another gadget, which appears in Figure 9, is the existential quantifier
gadget, which requires that si, si− 1, and si − 2 pebbles must be placed in each
of the pyramids to ultimately pebble qi.

Remark: We note that [GLT80] focused on sequential pebblings (P ∈ P) in
their analysis, but their analysis extends to parallel pebblings (P ∈ P‖) as well.

≡

k

Fig. 8. A 3-Pyramid.

We observe that any instance of TQBF where each quantifier is an existential
quantifier requires at most a quadratic number of pebbling moves. Specifically,
we look at instances of 3-SAT, such as in Figure 10. In such a graph representing
an instance of 3-SAT, the sink node to be pebbled is qn. By design of the con-
struction, any true statement requires exactly three pebbles for each pyramid
representing a clause. On the other hand, a false clause requires four pebbles,
so that false statements require more pebbles. Thus, by providing extraneous
additions to the construction which force the number of pebbling moves to be
a known constant, we can extract the pebbling number, given the space-time
complexity. For more details, see the full description in [GLT80].
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Fig. 9. An existential quantifier, with xi set to true in the left figure and xi set to false
in the right figure.

Lemma 3. [GLT80] The quantified Boolean formula Q1x1Q2x2 · · ·QnxnFn is
true if and only if the corresponding DAG GTQBF has pebbling number 3n+ 3.

Lemma 4. Suppose that we have a satisfiable TQBF formula Q1x1Q2x2 · · ·QnxnFn

with Qi = ∃ for all i ≤ n. Then there is a legal sequential pebbling P =
(P0, . . . , Pt) ∈ P

(

GTQBF

)

of the corresponding DAG GTQBF from [GLT80] with
t ≤ 6n2 + 33n pebbling moves and maxi≤t |Pi| ≤ 3n+ 3.

Proof. We describe the pebbling strategy of Gilbert et al. [GLT80], and analyze
the pebbling time of their strategy. Let T (i) be the time it takes to pebble qi in
the proposed construction for any instance with i variables, i clauses, and only
existential quantifiers.

Suppose that xi is allowed to be true for the existential quantifier Qi = ∃.
Then vertex x′

i is pebbled using si moves, where si = 3n − 3i + 6. Similarly,
vertices di and fi are pebbled using si − 1 and si − 2 moves respectively. Ad-
ditionally, fi is moved to x′

i and then xi is moved to x′
i in the following step,

for a total of two more moves. We then pebble qi+1 using T (i + 1) moves and
finish by placing a pebble on xi and moving it to ci, bi, ai, and qi, for five more
moves. Finally, we use six more moves to pebble an additional clause. Thus, in
this case,

Ttrue(i) = si + (si − 1) + (si − 2) + 13 + T (i+ 1).

On the other hand, if xi is allowed to be false for the existential quantifier
Qi = ∃, then first we pebble x′

i, di, and fi sequentially, using si, si−1, and si−2
moves respectively. We then move the pebble from fi to x′

i and then to xi, for a
total of two more moves. We then pebble qi+1 using T (i+1) moves. The pebble
on qi+1 is subsequently moved to ci and then bi, using two more moves. Picking
up all pebbles except those on bi and x′

i, and using them to pebble fi takes si−2



more moves. Additionally, the pebble on fi is moved to x′
i and then ai, while

the pebble on x′
i is moved to xi and then qi, for four more moves. Finally, we

use six more moves to pebble an additional clause. In total,

Tfalse(i) = si + (si − 1) + (si − 2) + (si − 2) + 14 + T (i+ 1).

Therefore,
T (i) ≤ 4si + 10 + T (i+ 1),

where si = 3n− 3i+ 6. Thus,

T (i) ≤ 12(n− i) + 34 + T (i+ 1).

Writing R(i) = T (n− i) then gives

R(i) ≤ 12i+ 34 +R(i− 1),

so that R(n) ≤ ∑n
i=1(12i+ 34) = 6n2 + 40n. Hence, it takes at most 6n2 + 40n

moves to pebble the given construction for any instance of TQBF which only
includes existential quantifiers.

Theorem 11. minST is NP-Complete.

Proof. We provide a reduction from 3-SAT to minST. Given an instance I of
3-SAT with at most n clauses or variables, we create the corresponding graph
from [GLT80]. Additionally, we append a chain of length 300n3+6n2+40n+100
to the graph with an edge from the sink node qn from [GLT80] to the first node
in our chain. By adding a chain of length 300n3 + 6n2 + 40n + 100 we can
ensure that for any legal pebbling P = (P0, . . . , Pt) ∈ P‖(G) of our graph G we
have t ≥ 300n3 + 6n2 + 40n+ 100. By Lemma 4, at most 6n2 + 40n moves are
necessary to pebble the 3 − SAT portion of the graph, while the chain requires
exactly 300n3 + 6n2 + 40n + 100 moves. Thus, if I is satisfiable then we can
find a legal pebbling P = (P0, . . . , Pt) with space maxi≤t |Pi| ≤ 3n + 3 and
t ≤ 300n3+12n2 +80n+100 moves. First, pebble the sink qn in t′ = 6n2 +40n
steps and maxi≤t′ |Pi| ≤ 3n+ 3 space by Lemma 4 and then walk single pebble
down the chain in 300n3 + 6n2 + 40n+ 10 steps keeping at most one pebble on
the DAG in each step. The space time cost is at most st(P ) ≤ 900n4 + 936n3 +
276n2+540n+300. If I is not satisfiable then, by Lemma 3 for any legal pebbling
P = (P0, . . . , Pt) ∈ P‖(G) of our graph we have maxi≤t |Pi| ≥ 3n + 4 and
t ≥ 300n3+6n2+40n+100. Thus, st(P ) ≥ 900n4+1218n3+144n2+460n+400
we have

900n4+1218n3+144n2+460n+400−
(

900n4+936n3+276n2+540n+300
)

> 0 .

for all n > 0. Thus, I is satisfiable if and only if there exists a legal pebbling
with st(P ) ≤ 900n4 + 936n3 + 276n2 + 540n+ 300. Clearly, this reduction can
be done in polynomial time, and so there is indeed a polynomial time reduction
from 3-SAT to minST.



We note that the same reduction from TQBF to minST fails, since there exist
instances of TQBF where the pebbling time is 2Ω(n). However, the same rela-
tionships do hold for sequential pebbling.

The proof of Theorem 12 is the same as the proof of Theorem 11 because we
can exploit the fact that the pebbling of GTQBF from Lemma 4 is sequential.

Theorem 12. minSST is NP-Complete.

E Discussion of Other Techniques

In this section, we address a number of seemingly similar problems. In particular,
several related graph partitioning problems actually have fundamentally different
structures.

In the d-Vertex Separator problem, the goal is to remove the minimum num-
ber of vertices so that each remaining connected component has at most d ver-
tices. This problem fails to translate to a successful solution for (e, d)-reducibility,
as a binary tree of height d− 1 with all directed edges pointing from parents to
leaves has an exponential number of vertices, but requires no removal of vertices
to ensure depth less than d.

In the d-Distance Minimum Vertex Cover problem, the goal is to find the
smallest subset S of vertices so that all vertices are at most distance d from a
vertex in S. Of course, even if all vertices are within distance 1 from a vertex
in S, the depth of G− S can be as large as n

2 . Consider, for example, a path of
length n, with additional edges (i, i+2) for each i ≤ n− 2. Then even removing
all even or all odd labeled vertices leaves a path of length n

2 .
Recently, Lee [Lee17] proposed an O (log d)-approximation algorithm to the

d-Path Transversal problem (also called d-path cover by Bresar et al. [BKKS11])

for undirected graphs with parameterized complexity 2O(d3 log d)nO(1). The goal
is to remove the minimum number of vertices so that the resulting graph contains
no (undirected) paths of length d. It is not clear whether or not the techniques
could be extended to deal with directed graphs. Furthermore, in most cryptanal-
ysis applications we will have d = Ω( 3

√
n) so the approximation algorithm would

run in exponential time.
Another possible approach to build an approximation algorithm for minREDUCIBLEd

would be to exploit tree embeddings by transforming the DAG G into a tree us-
ing the longest path metric and then find a depth-reducing set for the resulting
tree. However, the longest path between two vertices in directed graphs does
not qualify as a metric, and it is not immediately obvious how to address this
issue. Furthermore, even if one could find a tree embedding for DAGs which
approximately preserves distances under the longest path metric it is not clear
how to use a depth-reducing set for the tree to produce a depth-reducing set in
the original DAG. In particular, observe that a complete DAG and a path of
length n might both yield a simple path after performing the tree embedding
under the longest path metric. However, the size of the depth-reducing sets of
the two instances differ drastically.



Why Doesn’t the Gilbert et al. Reduction Work for Cumulative Cost?

The construction from [GLT80] is designed to minimize the number of pebbles
simultaneously on the graph, at the expense of larger number of necessary time
steps and/or a larger average number of pebbles on the graph during each peb-
bling round. As a result, one can bypass several time steps by simply adding
additional pebbles during some time step. For example, it may be beneficial to
temporarily keep pebbles on all three nodes xi, xi and x′

i at times so that we
can avoid repebbling the si− 2-pyramid later. Also if we do not need the pebble
on node xi for the next

(

si
2

)

steps then it is better to discard any pebbles on x′
i

and xi entirely to reduce cumulative cost. Because we would need to repebble
the si-pyramid later our maximum space usage will increase, but our cumulative
cost would decrease. Our reduction to space-time cost works because st cost is
highly sensitive to an increase in the number of pebbles on the graph even if
this increase is temporary. Cumulative, unlike space cost or space-time cost, is
not very sensitive to such temporary increases in the number of pebbles on the
graph.
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Fig. 10. Graph GTQBF for ∃x1, x2, x3, x4 s.t. (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4).
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