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a b s t r a c t

In electronic structure and quantum transport calculations, many physical quantities are integrations
over the electron energy, weighted by the Fermi–Dirac distribution function. Green’s function based
approaches commonly circumvent the numerically difficult real energy integration by extending the
integrand analytically into the complex energy plane, and using a Gaussian quadrature integration over
a complex energy contour for zero temperature. For finite temperatures, a much slower convergent
sum over the Matsubara frequencies is necessary. We present a generalized quadrature method that
uses orthogonal polynomials on the manifold of Matsubara frequencies to enable rapid convergence.
Both Gaussian quadrature integration and Matsubara frequency summation methods are shown to
be limiting cases of the generalized method. Tests on an all-electron ab initio code and total energy
calculation of interacting Anderson impurity model show convergence with a small number of energy
mesh points.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Green’s function is essential to many theoretical methods in
condensed matter physics. In such methods, evaluations of the
total energy and other physical quantities usually require inte-
grals over the electron energy of the Green’s function weighted by
the Fermi–Dirac distribution function. For example, in the Green’s
function approach to the ab initio calculation of electron density
ρ, the following integral over the energy parameter ϵ is evaluated,

ρ(r) = −
2
π
Im

∫
∞

−∞

f (ϵ, T )G(r, r; ϵ)dϵ (1)

where f (ϵ, T ) = 1/(1+ e(ϵ−µ)/kBT ) is the Fermi–Dirac distribution
function, µ the chemical potential, T the temperature, and G the
Green’s function of the Kohn–Sham equation. Such a calculation
is needed in Green’s function based ab initio electronic structure
and transport calculations, such as the Korringa–Kohn–Rostoker
(KKR) electronic structure method [1–3], the GW method [4], and
the nonequilibrium Green’s Function (NEGF) method for electron
transport [5].

✩ The review of this paper was arranged by Prof. D.P. Landau.
∗ Corresponding author.

E-mail address: xgz@ufl.edu (X.-G. Zhang).

In finite-temperature many-body calculations, observables are
usually calculated from the Matsubara Green’s function,

kBT
∑
n

G(iΩn) =
1

2π i

∫
C
dzG(z)f (z). (2)

The Matsubara frequencies arise from the poles z = iΩn of
the Fermi–Dirac function f (z). This allows sum over the dis-
crete Matsubara frequencies Ωn = (2n + 1)πkBT for fermions
to be evaluated as a contour integral [6]. In Migdal–Eliashberg
theory [7,8] for phonon driven superconductivity and dynamical
mean-field theory [9] (DMFT) for strongly correlated electrons,
equations are constructed to calculate Matsubara Green’s func-
tion. Those techniques have been extended to ab-initio electronic
structure theories. A case in point is dynamical mean-field theory
combined with density functional theory (DFT+DMFT) [10], KKR
(KKR+DMFT) [11], or exact muffin-tin orbitals (EMTO+ DMFT)
[12], which have been indispensable tools for strongly correlated
materials. Recently, Matsubara Green’s function based methods
have also been applied to finite systems [13,14], which makes it
useful for quantum chemistry.

To speed up calculations involving Eqs. (1) and (2), several
approximate Fermi–Dirac functions have been proposed [15–24].
Among these approximations, Nicholson and Zhang [16] provided
a family of approximate distribution functions that accurately
represent the Fermi–Dirac function over the valence band region.
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By approximating in an appropriate manner, e.g., f (E) ≈ fN (E),
with N indicating an Nth order approximation of f (E), one can
approximate the infinite Matsubara frequency sum with a finite
sum,∫
C
dzG(z)f (z) ≈

∫
C
dzG(z)fN (z)

= 2π i
N∑

n=1

G(iϵn)wn (3)

where iϵn are the poles of fN (E) and wn the corresponding resid-
ual. It was demonstrated on a model system for which the cal-
culated free energy at finite temperature is given accurately. For
low temperatures, when a large number of Matsubara frequencies
needs to be summed to yield accurate results, approximating
with fN may only partly alleviate the difficulty because N scales
inversely with T and may also be large.

Inspired by the commonly used Gaussian quadrature method
for continuous integration for zero temperature [25], here we
devise a generalized quadrature using orthogonal polynomials
over a discrete sum rather than a continuous integration for finite
temperature calculations. The quadrature can be applied to the
discrete Matsubara sum and reduce the number of terms by or-
ders of magnitude without sacrificing accuracy. A similar quadra-
ture can also be devised for the Nicholson–Zhang method [16]
to remove the dependence of the number of mesh points on the
temperature.1 We demonstrate the power and accuracy of the
method with two numerical examples, KKR calculations of the
total energy in fcc Cu and bcc Fe, and a numerical solution of the
Anderson impurity model.

2. Quadrature rule

2.1. Generalized quadrature rule for a discrete sum

We look for an approximation to the discrete sum
∑N

n G (φn)

W (φn) where W is a weight function, analogous to the Gaussian
quadrature rule for a one-dimensional integral

∫ 1
0 G(φ)W (φ)dφ.

Similar to the Gaussian quadrature rule, we will generate the
quadrature from a set of orthogonal polynomials. To do this, we
define an inner product,

⟨F (φ) ,H (φ)⟩ ≡

N∑
n

F (φn)H (φn)W (φn). (4)

The construction of the orthogonal polynomials is similar to the
Gaussian quadrature method. The zeroth and first order polyno-
mials are

P0 (φ) = 1, (5)

and

P1 (φ) = φ −
⟨φ, P0⟩
⟨P0, P0⟩

, (6)

Higher order polynomials are obtained using the recursion rela-
tion,

Pn+1 (φ) = (φ − an) Pn − bnPn−1, (7)

where

an =
⟨φPn, Pn⟩
⟨Pn, Pn⟩

, bn =
⟨Pn, Pn⟩

⟨Pn−1, Pn−1⟩
. (8)

1 Subroutines are available at https://github.com/xgzhanggroup/QuadratureF
ermi.

Once the coefficients are determined, the Golub–Welsch algo-
rithm can be used to find the quadrature rule [26]. A symmetric
tridiagonal matrix J is constructed using an and bn,

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
√
b1 0 · · · · · · · · ·

√
b1 a1

√
b2 0 · · · · · ·

0
√
b2 a2

√
b3 0 · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · 0
√
bn−2 an−2

√
bn−1

· · · · · · · · · 0
√
bn−1 an−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(9)

The matrix is diagonlized and the quadrature points φ′

j ’s are the
eigenvalues. If η(j) is the normalized eigenvector corresponding to
φ′

j , a weight wj is defined in terms of the first component of η(j):

wj =

(
η
(j)
1

)2 N∑
n

W (φn). (10)

An NQ th order orthogonal polynomial yields the quadrature
rule,
N∑
n

G (φn)W (φn) ≈

NQ∑
j

G
(
φj

)
wj, NQ < N, (11)

where φj and wj are the quadrature points and weights.

2.2. Imaginary frequency sum

We first apply the generalized quadrature rule to reduce the
infinite imaginary frequency sum,
∞∑
n=0

G(iΩn), (12)

with a small number of terms, while preserving sufficient nu-
merical accuracy. Because this is an infinite sum, the generalized
quadrature rule cannot be applied directly with W = 1.

We assume that the sum is polynomial convergent, i.e., for
large n,

G(iΩn) ∝
1

Ω1+ε
n

, (13)

with ε > 0 to ensure convergence of the sum. The weight
function is defined as W (iΩn) = 1/Ω1+ε

n , and
∞∑
n=0

G(iΩn) =

n0∑
n=0

G(iΩn) +

∞∑
n=n0+1

Ḡ(φn)
1

Ω1+ε
n

, (14)

where Ḡ(φn) = G(iΩn)Ω1+ε
n is defined as a function of φn =

1/Ωε
n and the weight function W̄ (φn) = W (iΩn) = φ

(1+ε)/ε
n . The

first n0 terms are summed as is, in order to avoid the numerical
instability due to the dominance of the first few terms, and the
generalized quadrature is now applied with φn, starting from
n = n0 + 1. The quadrature points Ω ′

j and weights wj are

Ω ′

j = (φ′

j )
−1/ϵ (15)

wj =

(
η
(j)
1

)2
(Ω ′

j )
1+ε

∞∑
n=n0+1

1
Ω1+ε

n
(16)

where φ′

j and η
(j)
1 are obtained as described in Section 2.1.

The summation to find the inner product defined in Eq. (4) can
be truncated at a cutoff N , whose error can be estimated from∫

∞

N

1
x1+ε

dx =
1

εNε
= η, (17)
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where η is the tolerance. For ε = 1, N = 1/η. If the desired η
is small, it requires a large N and the summations in the inner
products may become computationally slow. For such cases we
need an approximate method to evaluate the truncated terms
to allow a smaller N . We note that the discrete sum beyond
truncation can be converted into an integral using the trapezoidal
rule,

∞∑
n=N

F (φn)W (φn),

=
1
2
F (φN )W (φN ) +

1
2εΩ0

∫ φN

0
F (φ)dφ

=
1
2
F (φN )W (φN ) +

1
2εΩ0

[
F (φN )φN +

1
2
dF (φN )
dφ

φ2
N

]
. (18)

Likewise,
∞∑

n=N

φF (φn)W (φn)

=
1
2
φNF (φN )W (φN )

+
1

2εΩ0

[
1
2
F (φN )φ2

N +
1
3
dF (φN )
dφ

φ3
N

]
. (19)

2.3. Generalized complex quadrature

More generally, one can first reduce the infinite Matsubara
frequency sum to a finite sum, then apply the generalized quadra-
ture rule to further reduce the number of terms. Recall the ap-
proximate Fermi–Dirac distribution function used in Ref. [16],

f −1
N − 1 =

[
1 + x

(
1+γ

4N

)]2N

[
1 − x

(
1−γ

2N

)]N , (20)

where γ = 3 −
√
8 and x = (ϵ − µ)/kBT . fN approaches the

exact Fermi–Dirac function as N → ∞. When N is finite, fN
significantly deviates from the exact function as x(1 − γ )/(2N) →

1. Therefore, the necessary condition of a good approximation is,

N ≳
W (1 − γ )

2kBT
≈

0.4W
kBT

, (21)

where W is the bandwidth.
When the integral along the semicircle z = Reiθ (R → ∞)

vanishes, the integral containing the approximate Fermi–Dirac
function is equal to a sum over the residues at corresponding
poles, given by∫

∞

−∞

fN (x) g (x) dx = 2π i
N∑
n

g(zn)w(zn), (22)

where g(x) is an integrand which has no poles in the upper
half plane, and zn and w(zn) are the poles and residues of fN
respectively.

The poles of fN (called Nicholson–Zhang poles hereafter) can
be easily calculated by solving the quadratic equation[
1 + z

(
1+γ

4N

)]2

1 − z
(

1−γ

2N

) = e2iφn , (23)

where φn = (2n − 1) π/(2N), n = 1, 2, . . . ,N . N is the number
of poles in the upper half plane, and also the number of terms in
the sum. Explicitly,

zn =
2(c − 1)√

(2a + bc)2 + 4a2(c − 1) ± (2a + bc)
. (24)

Fig. 1. Distribution of poles for Matsubara sum, Nicholson–Zhang’s method and
the generalized complex quadrature. The inset enlarges the region near the
origin. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 1
Asymptotics of poles and residuals in the large N limit.
Sign Pole Residual

+ i(2j − 1)π + O(1/N) 1 + O(1/N)
− O(N) O(1)

where a = (1 + γ )/(4N), b = (1 − γ )/(2N), c = exp(2iφn).
The Nicholson–Zhang poles for N = 2000 are shown in Fig. 1

(blue dots). They are so dense that a line is formed visually. A
comparison with the first 2000 Matsubara poles (black squares)
is also plotted.

A fast approximate approach to calculate the sum in Eq. (22)
is desired in the form below,

N∑
n

g (zn) w(zn) ≈

NQ∑
j

g
(
z ′

j

)
w′

j, NQ ≪ N, (25)

where zn and w(zn) are respectively the poles and residues of
the approximate Fermi distribution function, and the variables
with prime define the quadrature, which should not depend on
the form of the integrand g . NQ is the order of the generalized
quadrature.

To find the quadrature, we change the variable zn to φn using
zn = z (φn). The left hand side of Eq. (25) becomes a function of
φn only. This allows us to evaluate φj and wj using the method
described in Section 2.1,

N∑
n

g (zn) w(zn) =

NQ∑
j

g
(
z
(
φj

))
w(z(φj))wj

=

NQ∑
j

g
(
z ′

j

)
w′

j, (26)

where z ′

j ≡ z
(
φj

)
and w′

j = w(zj)wj are the quadrature points
and weights needed in Eq. (25). These quadrature points lie on
the same arc with the Nicholson–Zhang poles, as shown in Fig. 1
(red dots).

2.3.1. Large N limit at finite temperature
For terms with j ≪ N , the asymptotics of the poles and resid-

uals are given in Table 1 according to the sign in the denominator
of the poles (see Eq. (24)). Since we require the integral along the
semicircle z = Reiθ (R → ∞) to vanish, the poles corresponding
to the negative sign (bottom row in Table 1) do not contribute
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to the sum. Therefore, in the large N limit effectively all of the
Nicholson–Zhang poles converge to the Matsubara poles.

2.3.2. Zero-temperature limit
At zero temperature, the continuous integral over energy∫ ϵF

−∞
g(ϵ)dϵ is evaluated, where ϵF is the Fermi energy. The stan-

dard method to calculate this integral is using the residual the-
orem to transform the integral on the real axis to that on a
semicircular contour connecting the valence band bottom and the
Fermi energy, then Gauss–Legendre quadrature can be used (see,
e.g., Ref. [25]), i.e.,∫ ϵF

−∞

g(ϵ)dϵ = −

∫ π

0
g(z(φ))z ′(φ)dφ

= −

NQ∑
j

g(z(φj))z ′(φj)wj (27)

where z(φ) = R0 + Reiφ , φj and wj are the Gaussian–Legendre
quadrature rule.

Here we show that in the zero-temperature limit our method
is equivalent to the conventional method except for a slightly
different complex energy contour. Fixing NkBT = W (1 − γ )/2
(see Eq. (21)), where W is the bandwidth, and taking the limit
T → 0 and N → ∞, the inner product defined in Eq. (4) has the
limit,

⟨F (φ) ,H (φ)⟩ =
N
π

N∑
i

π

N
F (φi)H (φi)

→
N
π

∫ π

0
FHdφ. (28)

Since all coefficients in polynomials are defined in terms of
the ratios of inner products, the constant N/π is irrelevant here.∫ π

0 FHdφ is exactly the inner product defined for Gauss–Legendre
quadrature over the interval [0, π], so are all of the coefficients
in these polynomials. Thus, for N → ∞, the quadrature points
φj are exactly their counterparts in Gauss–Legendre quadrature
over the interval [0, π], with the weights wj having a prefactor
of N/π . It is easy to verify that

w(z(φj)) = −
z ′(φj)
2Ni

. (29)

Taking into account the prefactor of N/π and 2π i for residual
theorem and comparing Eqs. (26) and (27), the generalized com-
plex quadrature in the zero temperature limit is equivalent to the
conventional method except for a different function z(φ) and the
corresponding complex energy contour.

3. Numerical examples

3.1. Anderson impurity model

To showcase this method in interacting systems, we apply the
method described in Section 2.2, imaginary frequency sum, to
the Anderson impurity model (AIM) [27]. For our purpose, the
AIM is simple enough to yield exact ground state energy and
Matsubara Green’s function by exact diagonalization method [28],
allowing us to benchmark the generalized quadrature method. In
addition, it offers a non-trivial test with similar numerical proce-
dures found in other many-body calculations based on Matsubara
Green’s function.

Here, we consider the AIM with one impurity orbital and four
bath sites,

Himp =

∑
σ

ϵcc†
σ cσ + Un↑n↓

+

∑
l,σ

(
Vl,σ a

†
l,σ cσ + V ∗

l,σ c
†
σ al,σ

)
+

∑
l,σ

ϵla
†
l,σ al,σ

. (30)

Matsubara Green’s function of the impurity orbital can be con-
structed as,

Gσ (iΩn) = ⟨0|cσ
1

iΩn + E0 − H
c†
σ |0⟩

+ ⟨0|c†
σ

1
iΩn − E0 + H

cσ |0⟩, (31)

where |0⟩ is ground state vector in Fock space and E0 is ground
state energy.

Non-interacting Green’s function can be calculated by,

G0
µ,ν(iΩn) = (iΩn − H0)

−1 , (32)

where H0 is the impurity Hamiltonian without Un↑n↓ term.
Self-energy of the impurity orbital can be calculated as,

Σ(iΩn) =
1

G0(iΩn)
−

1
G(iΩn)

. (33)

It is important in calculations to separate the self-energy into
two parts, the static part which is the asymptotic limit of self-
energy, and the frequency dependent part called dynamical self-
energy [29],

Σ(iΩn) = Σ∞
+ Σdyn(iΩn). (34)

For our model, the static part of self-energy is the Hartree poten-
tial of electron–electron interaction,

Σ∞
=

n↑ + n↓

2
× U . (35)

Total energy of the system can be calculated based on the
Matsubara Green’s function and the self-energy,

⟨H⟩ = Tr[H0P] + Σ∞
n↑ + n↓

2

+ Re
1
β

∑
n

G(iΩn)Σdyn(iΩn), (36)

where P is the single particle density matrix, which is usually
calculated as a frequency sum of the Green’s function P =∑

n G(iΩn)/β . In this work, to avoid error due to sum of Mat-
subara frequency, we used the exact ground state to calculate
the single particle density matrix. Usually, the last term has to
be calculated as sum of Matsubara frequency. Here, we applied
the generalized quadrature method to evaluate this term,

Edyn
= Re

1
β

NQ∑
j

G(z ′

j )Σ
dyn(z ′

j )w
′

j, (37)

where quadrature points z ′

j and weights w′

j were obtained using
the imaginary frequency sum with ε = 1.

To make sure that the excited states do not make contribution
to ⟨H⟩, we use a very low temperature β = 512. All hoppings
between the impurity and the bath are set to −1.0; on-site
energies of the four bath orbitals are ±1.0 and ±2.0. When U =

3.0 and impurity on-site energy is ϵc = −1.5, the impurity is half-
filled. To stay away from half-filling, parameters of U = 2.0, ϵc =

−0.5 are chosen so we have four electrons in the model and the
occupation number of the impurity is n = 0.67.

The total energy is calculated by exact diagonalization with
summations over the Matsubara frequencies and the quadrature
points via Eqs. (36) and (37). Absolute error of the total energy
is plotted in Fig. 2. As one can see, in order to achieve accuracy
around 1.0 × 10−5, only 20 quadrature points are necessary in
addition to the first n0 = 10 Matsubara frequencies which are
summed directly. In contrast, to reach the same level of accuracy
using direct summation over Matsubara frequencies, about 107

points are needed. Thus we conclude that the generalized quadra-
ture method can greatly speed up finite-temperature many-body
calculations.
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Fig. 2. (left) Total energy absolute error of impurity model as a function of the number of quadrature points; (right) total energy absolute error of impurity model
as a function of the number of Matsubara frequencies.

Table 2
The total wall clock time (t) of self-consistent field (SCF) ab initio electronic
structure calculations for Cu and Fe at finite temperatures. In the table, N is the
number of poles used in the Nicholson–Zhang approximate distribution function,
and NQ is the number of quadrature points used in Eq. (25). The wall clock
time is determined by the number of poles or the number of quadrature points
used in each SCF iteration, as well as the total number of iterations to achieve
convergence.
T (K) Cu (LSMS) Fe (spin-polarized, KKR)

Nicholson–Zhang Quadrature Nicholson–Zhang Quadrature

N t (s) NQ t (s) N t (s) NQ t (s)

300 199 539.993 15 153.313 199 1468.811 15 110.520
1000 61 200.571 10 100.038 61 521.090 10 100.673
1500 41 147.253 10 100.223 41 335.802 10 125.965

3.2. Ab-initio code

The generalized complex quadrature method described in
Section 2.3 has been implemented in the MST2 package [30], an
all-electron ab initio code based on multiple scattering theory
capable of performing full-potential KKR or linear scaling LSMS
electronic structure calculations [31]. This will enable the ab initio
code to calculate the electronic free energy and other physical
quantities at finite temperatures.

To compare the code performance for using the Nicholson–
Zhang method and the quadrature method for finite temperature
calculation, we show the timing of the self-consistent calculation
for fcc Cu and bcc Fe at temperatures 300 K, 1000 K, and 1500 K.
Specifically, we performed LSMS calculation for fcc Cu, and spin-
polarized KKR calculation for bcc Fe. In these finite temperature
calculations, the integral in Eq. (1) is reduced to a summation
of the Green functions either evaluated at the Nicholson–Zhang
poles or the quadrature points. The results are presented in
Table 2, in which the timing is the wall clock time for each job
running on 8 CPU cores. For the LSMS calculation for Cu, the local
interaction zone size is chosen to be 88 atoms, which is sufficient
to converge the calculations with total energy difference <5 ×

10−8 Ry and the rms of the LDA potential is less than 1 × 10−7

Ry. For the spin-polarized KKR calculation for Fe, the number of

special k-points in the irreducible Brillouin zone is 140, which is
sufficient to converge the calculations with total energy differ-
ence <5 × 10−9 Ry and the rms of the LDA potential <1 × 10−8

Ry. The computational results show that the quadrature method
improves the code performance at low temperatures, due to the
fact that a significant number of Nicholson–Zhang poles (N) are
required at low temperatures, compared to much smaller number
of quadrature points (NQ ) need to be used in order to achieve a
similar accuracy.

4. Conclusion

In summary, two new integration methods containing Fermi–
Dirac distribution function, which extend the Gaussian quadra-
ture method to discrete points in the complex energy plane,
have been presented. Their efficiency and accuracy have been
demonstrated in total energy calculation of interacting Anderson
impurity model and in the all-electron ab initio code MST2 pack-
age respectively. These methods will allow for ab initio calculation
of the electronic free energy at finite temperatures, especially for
codes to have better performance and numerical stability when
the material under investigation exhibits large density of states
fluctuation near the Fermi energy. The quadrature is general and
can be applied to other approximate Fermi–Dirac functions, and
even integrals involving functions other than the Fermi–Dirac
function.
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