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The BBM is a promising candidate to study spin-one systems and to design quantum simulators
based on its underlying Hamiltonian. The variety of different phases contains amongst other valuable
and exotic phases the Haldane phase. We study the Kibble-Zurek physics of linear quenches into
the Haldane phase. We outline ideal quench protocols to minimize defects in the final state while
exploiting different linear quench protocols via the uniaxial or interaction term. Furthermore, we
look at the fate of the string order when quenching from a topologically non-trivial phase to a trivial
phase. Our studies show this depends significantly on the path chosen for quenching; for example,
we discover quenches from Néel to Haldane phase which reach a string order greater than their
ground state counterparts for the initial or final state at intermediate quench times.

I. INTRODUCTION

The last three decades have witnessed an unprece-
dented progress [1] in fulfilling Feynman’s vision of con-
structing a quantum simulator which would be able to
solve quantum mechanical problems directly [2]. One
popular approach to achieve this goal is adiabatic quan-
tum computing, which relies on the preparation of the
ground state of a Hamiltonian that is easy to attain ex-
perimentally. The system is then evolved adiabatically
to the final Hamiltonian whose ground state encodes the
solution to a particular computational or optimization
problem [3]. Adiabatic quantum computing has been
used in the D-wave architecture and is strongly related
to quenches through a quantum critical point and spin-
1/2 models. However, we are not constrained to spin-1/2
systems: spin-1 and beyond have even more intriguing
features.

Quantum phases are usually characterized by local or-
der parameters, and phase transitions are then described
by symmetry breaking according to Landau’s theory.
However, there is a different class of phases called topolog-
ical phases which are characterized by non-local order pa-
rameters. These phases often have a gap in the bulk en-
ergy spectrum with gapless modes residing at the edges.
Furthermore, a new class of topological phase was discov-
ered in the last decade possessing symmetry-protected
topological order in which the gapless edge excitations
are preserved by symmetries [4, 5]. A paradigmatic ex-
ample of a symmetry-protected topological (SPT) phase
is the Haldane phase exhibited by the Heisenberg model
with odd integer spins [6]. This phase is protected by
three symmetries: time reversal, spatial inversion and
Z2 × Z2 symmetry. The phase possesses a non-local
string order. These SPT phases have become poten-
tial candidates for measurement-based quantum compu-
tation for which SPT order ensures the perfect operation
of the identity gate [7, 8]. There have also been pro-
posals to use SPT phases as adiabatic quantum transis-
tors which are universal adiabatic quantum computing
devices whose operational speed depends on the mini-
mal energy gap [9, 10]. These proposed logic gates, due

to their symmetry-protected feature, have been argued
to be quite robust against a variety of relevant noise pro-
cesses. Recently, a metrological application with the Hal-
dane insulator was proposed in which the passive, error-
preventing properties of the SPT phase can be used to
measure the direction of an unknown electric field [11].

Ultracold gases loaded in optical lattices offer an ex-
ceptionally high degree of controllability over the geome-
try and interactions as well as time-dependent quenches.
Recent years have seen a remarkable development in the
variety of non-equilibrium experiments achieved by the
ultracold gases such as studying their transport prop-
erties [12, 13], thermalization [14], many-body localiza-
tion [15, 16], relaxation dynamics [17], and quench dy-
namics across a phase transition [18, 19]. The recent
realization of quantum integer-spin chains with tunable
interactions using trapped ions opens up possibilities
to study SPT phases in spin-1 systems [20]. Ultracold
molecules represent an alternative way to achieve these
effective three level systems, also called qutrits, via the
large number of hyperfine levels and the electric dipole
moment [21, 22]. External magnetic and laser fields can
control the various interaction terms appearing in the
desired Hamiltonian and perform slow to fast quenches.
The development of the quantum gas microscope with
single site and spin resolution will grant access to the
measurement of the local and non-local order parame-
ters [23–25].

The rapid development in the field of quantum com-
putation and its relation to the SPT phases, such as the
Haldane phase and the subsequent progress in experi-
mental endeavours have prompted us to analyze in de-
tail quench dynamics across quantum critical points in
the spin-one bilinear-biquadratic model (BBM) associ-
ated with the Haldane phase [26–30]. Spin-one models,
i.e., qutrits, also enable more powerful applications due
to more internal degrees of freedom per site [31]. In spite
of many theoretical predictions, the Haldane phase has
remained elusive in experiments. Through careful anal-
ysis, we propose in this Article the parameters for linear
quench protocols which minimize defect generation and
thus will provide experimentalists a route to observe the

ar
X

iv
:2

01
2.

11
47

9v
2 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 1

8 
Fe

b 
20

21



2

Haldane phase with a finite string order. The fate of
string order when quenching is examined through differ-
ent pathways to a topologically non-trivial phase; up till
now, the dynamics of the Haldane phase has still not
been studied in much detail. Apart from the experimen-
tal stimulus, there is also the motivation of relating de-
fect generation to the quench speed. For quenches across
second-order phase transitions, the Kibble-Zurek hypoth-
esis proposes a universal nature of the density of defects,
relating them to the critical exponents of the underly-
ing quantum phase transition. We analyze the statics
and dynamics of the BBM with the matrix product state
(MPS) method [32] which is well-suited for 1-dimensional
entangled many-body systems and gives us access to a
variety of relevant measures that can be pivotal in the
analysis.

The paper is arranged as follows: we begin with the
definition of the BBM in Sec. II, also containing a general
discussion of the Kibble-Zurek mechanism. The results
of the different quench protocols to the Haldane phase
are presented in Sec. III. We elaborate the methods, de-
tailed error analysis and the static results for finite-size
systems in Sec. IV. Finally, Sec. V concludes our work
with discussions.

II. MODEL

Although our results are general to many quantum
simulator architectures, we contextualize our study with
the specific architecture of an ultracold spin-1 bosonic gas
trapped in a 1-dimensional optical lattice with repulsive
interactions between them. Because of the identity of
bosons undergoing an s-wave interaction, the total spin
of the two interacting bosons, Stot can be 0, 2. If the
tunneling amplitude t between neighboring lattice sites
is small and finite, one can apply a second order pertur-
bation theory in t to get the low energy physics which is
given by the superexchange processes. The correspond-
ing spin Hamiltonian for two neighboring sites at unit
filling can be expanded in powers of the nearest-neighbor
Heisenberg interactions, Hi,i+1 =

∑
k ak(Si.Si+1)k. Ter-

minating the series at k = 2, i.e., second order pertur-
bation theory, gives the BBM, up to the external field
which is often also included in the BBM. The presence
of a symmetry-breaking field can have important conse-
quences. The linear Zeeman effect does not play a role
since it can be gauged out due to the fact that the total
magnetization is a constant of motion. It should be noted
that this symmetry is used as well for the numerical sim-
ulations. On the other hand, the quadratic Zeeman effect
leads to effects in spinor gases which cannot be gauged
away. Combining the two effects leads us to the BBM

with quadratic Zeeman field:

H = J

L−1∑
i=1

[cos(θ)Si.Si+1 + sin(θ)(Si.Si+1)2]

+D

L∑
i=1

Ŝzi
2
, (1)

where Si = (Ŝxi , Ŝ
y
i , Ŝ

z
i ) are the angular momentum op-

erators located at the ith site of a 1D L-site qutrit, or
spin-one lattice. The first sum in Eq. (1) is the bilinear-
biquadratic part tuned by the parameter θ, whereas the
second term is the uniaxial field D taking into account
the quadratic Zeeman field. Some of the phases exhib-
ited by Eq. (1) have degenerate ground states. Hence,
for the purposes of numerical calculations a very small
symmetry-breaking field is applied to the Lth site.

The Hamiltonian in Eq. (1) obeys a U(1) symmetry
similar to the number conservation in the Bose-Hubbard
model, where here the total spin in the z-direction is con-
served. The generator of the symmetry is ⊕Li=1Ŝ

z
i . Thus,

the possible symmetry sectors reach from a total z-spin
of −L to +L. We use a total spin of zero throughout our
simulations with open boundary conditions. We follow
the convention that the time is in units of the interaction
J .

The BBM has been extensively studied revealing a
plethora of phases such as the dimer phase, the Néel
phase, the Haldane phase, to name a few [30]. Due to
the high relevance in recent experiments with ultracold
gases in optical lattices [25, 33], we study the effects of
quenches across the following phase boundaries shared
by the Haldane phase:

• (A) - Néel and Haldane phase

• (B) - Large-D (non-Haldane) and Haldane phase

The critical points for the respective quantum phase tran-
sitions for the specific lengths of the systems are first
determined using the respective order parameters. The
linear quenches start and finish almost equidistant from
the corresponding critical points on either side. We en-
sure that the initial and final points are deep inside the
respective phases, so that the effects of the critical region
are properly considered.

The effects of the linear quench, crossing the quantum
critical point in the process, are examined via the follow-
ing six observables:

1. The instantaneous energy gap is a static measure
characterizing the difference between the ground
state energy E0 of the system and the energy Ek of
the kth relevant excited state compatible with the
integrals of motion

∆0k = Ek − E0 . (2)

The choice of the ground and relevant excited state
considered for this measure always belong to the
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same symmetry sector, i.e., have the same spin pro-
jection in the z-direction.

2. The staggered magnetization is defined as

M st
z =

1

L

L∑
i=1

(−1)iŜzi . (3)

The Néel phase is characterized by a finite value of
the staggered magnetization.

3. The entanglement entropy, also called block entropy
is a measure defined based on the reduced density
matrix or Schmidt decomposition, i.e.,

S = −TrBρAB log ρAB = −TrρA log ρA , (4)

where ρA is the reduced density matrix of the
subsystem A by tracing over the degrees of free-
dom of the rest of the system, i.e., subsystem B.
Throughout our work, we choose subsystem A as
the sites 1, . . . , L/2 with L being even; the sites
L/2 + 1, . . . L represent the subsystem B with the
degrees of freedom being traced out. Typically, the
entanglement entropy scales with the size of the
subsystem, nA ≡ L/2 [34]. However, in one di-
mensional systems with only short-ranged terms in
the Hamiltonian, the entanglement entropy satu-
rates to a constant value independent of the size
of the block. This property known as the “area
law” [35], is the cause behind the remarkable suc-
cess of tensor-network-based methods in describing
1-dimensional systems. In the vicinity of a quan-
tum critical point, the entanglement entropy starts
to diverge logarithmically with the block size nA
for large system sizes, as

S ∼ c log(nA) , (5)

where c is the central charge of the conformal field
theory describing the critical point [36–39]. For
systems slightly away from the critical point, when
the correlation length ξ in the ground state is large
but finite, the entanglement entropy behaves as

S ∼ A c
6

log ξ , (6)

where A is the number of boundary points of the
system.

4. We consider the reduced density matrix of a sub-
system or alternatively, the eigenvalues of the bi-
partitions via the singular values of the Schmidt
decomposition, where the Schmidt gap is defined
as

∆λ = λ1 − λ2 , (7)

with λ1, λ2 the highest two eigenvalues of the re-
duced density matrix. Using finite-size scaling, the
Schmidt gap can signal a quantum phase transi-
tion. ∆λ scales with the critical exponents related
to the conformal field theory describing the tran-
sition point [40]. References [40, 41] have recently
shown that the Schmidt gap is related to the corre-
lation length of the system, ξ, through a power-law,
where the exponent is called the dynamical criti-
cal exponent of the transition. Studying the com-
plete entanglement spectrum in a dynamical prob-
lem can be complicated. Since both entanglement
entropy and the Schmidt gap are related to the en-
tanglement spectrum and give equivalent insights,
we concentrated on these two established quanti-
ties.

5. The string order parameter is a non-local measure-
ment acting on multiple sites defined as

OS = lim
L→∞

Oi(r = L− 2i)

≡ lim
r→∞

〈
Ŝzi exp

iπ

i+r−1∑
j=i+1

Ŝzj

 Ŝzi+r
〉
, (8)

where the imaginary unit is i. The string order pa-
rameter is an effective non-local operator to charac-
terize hidden orders present in quantum phases of
matter that cannot be described by the typical lo-
cal operators [6, 42–44]. The string order has shown
signatures of of thermalization for scales related to
the Lieb-Robinson bound [45]. The remnant string
order at finite times after a sudden quench out of
the Haldane phase was credited to the preserva-
tion of symmetries of the Hamiltonian [45]. How-
ever, if the symmetry is broken in the new phase
after the sudden quench, then the string order is
lost even at infinitesimal times in the thermody-
namic limit. Such behavior makes the string order
qualitatively different from the standard local or-
der parameters [46]. In the case of finite systems,
we measure Oi(r = L − 2i), where i = 10; this
approach avoids boundary effects.

6. The excess energy measures the degree of excitation
in the time-evolved states as:

∆E(τ) = Ef − Egf , (9)

where Ef = 〈ψ(τ)|H(τ)|ψ(τ)〉, is the energy of the
system described by |ψ(τ)〉 after evolving through
the quench time τ , and Egf is the ground state en-

ergy of the final Hamiltonian, H(τ). The excess
energy is equal to the weighted sum of all the ex-
citation energies. As a result, this quantity will
serve as the analog of the defect density originally
considered by Kibble and Zurek [47–50].
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Some of the above quantities can be related to the
speed of the quench in an universal manner through the
well-known Kibble-Zurek mechanism.

This mechanism was originally proposed by Kibble in
the context of defects generated in the early universe [51],
which was later extended by Zurek to condensed matter
systems [52, 53]. This mechanism describes the forma-
tion of topological defects when the system is ramped
slowly across a second-order critical point, where the de-
fect density depends on the ramp rate exponentially. The
exponents in such a dependence were shown to be related
to the universal equilibrium exponents of the underlying
quantum phase transition. Because of the divergence of
the correlation length in the vicinity of the critical point,
it is impossible to ramp the system across the critical
point adiabatically without the formation of defects, thus
signaling the breakdown of the adiabatic theorem.

Without loss of generality, we can consider a linear
quench, such as

ε(t) = ε0 +
(εf − ε0) · t

τ
, 0 ≤ t ≤ τ , (10)

where ε is the quench parameter as a function of time t,
ε0 and εf are the initial and final values of the parameter
before and after the quench and τ is the time for quench.
The parameter ε(t) can be D, θ, or a linear combination
of both. Scaling analysis of the divergence of the correla-
tion length ξ shows that any quantity which is related to
the correlation length or the defect density, i.e., the ex-
cess energy, will depend on the quench rate polynomially,
with the exponent being a combination of the critical ex-
ponents of the transition. The defect density nex follows
the relation

nex ∼ τdν/(1+zν) , (11)

where d is the dimension of the system considered, z and
ν are the critical exponents of the transition. The scaling
in Eq. (11) has been observed in many quench protocols,
but it should also be noted that there are systems where
such a scaling analysis fails [54, 55]. For example, there
are some bosonic systems which remain non-adiabatic in
the thermodynamic limit.

The scaling analysis of Eq. (11) presumes the ther-
modynamic limit when the correlation length diverges
to infinity at the critical point. However, in finite-sized
systems, the maximum value of the correlation length
can be the system size. Following a similar argument
proposed by the Kibble-Zurek mechanism, the minimum
quench time needed for the system to attain adiabaticity
is given by

τmin = Lzν/(1+zν) . (12)

It is thus important to check for the validity of the
Kibble-Zurek mechanism in the BBM. We do so by per-
forming a linear quench across the phase transition and
checking for estimates of the τmin such that the final
time-evolved state is close to the ground state in the Hal-
dane phase. Since the excess energy, ∆E, is a measure

�θ

�D Néel

Haldane

Large D

0
FIG. 1. Schematic phase diagram: our studies encompass
quenches of either the external field D or the interaction θ.
The phase diagram contains the Néel to Haldane phase transi-
tion, and the large-D phase to Haldane transition. The exact
values of the phase boundaries depend on finite-size effects
and differ for the range of system sizes that we consider in
our simulations – a thorough study may be found in [30].

for the density of defects formed in the system, we can
use Eq. (11) by replacing nex with ∆E when checking for
the validity of the Kibble-Zurek mechanism.

Quantities such as the Schmidt gap and entanglement
entropy are related to the correlation length, and hence
will scale with the quench time following the Kibble-
Zurek mechanism as

∆λ ∼ τ−zν/(1+zν) , (13)

S =
Acν

6(1 + zν)
log τ + const . (14)

For finite sized systems, a subsystem has two boundaries,
and hence A = 2 [38, 56, 57].

III. QUENCHING TO THE HALDANE PHASE

In this work, we concentrate on reaching the Haldane
phase from the Néel phase and the large-D phase since
these phases can be easily prepared in experiments with
high fidelity. We choose representative quantum critical
points and perform a linear quench across the respective
quantum critical points as shown schematically in Fig. 1.

We begin the quench sufficiently far away from the
quantum critical point and terminate the quench process
approximately equidistant from the critical point on the
other side. The quench time is then varied to study its
effects on the quench processes. In addition, the system-
size dependence is studied by scaling up to systems as
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large as 200 sites. We categorize the results according
to the selected quantum phase transitions: subsections
III A and III B for linear quenches from Néel and large D
to Haldane phase, respectively.

100 101

τ

10−3

10−2

10−1

100

101

∆
E

L = 50

L = 200

∼ τ−2

0.00 0.02

1/L

−1.2

−1.0

b

FIG. 2. Excess energy ∆E as a function of quench times τ
for two different lengths L = 50, 200. We quench the uniaxial
field from Di = −0.5 to Df = −0.15; the interaction terms
are constant at θ = 0. The dashed lines denote the region
where the excess energy, ∆E, is fitted by a power-law for the
respective system sizes. The orange line denotes an inverse
quadratic function, ∆E ∼ τ−2. (Inset) The values of Kibble-
Zurek exponent b(L), extracted by fitting a power-law to the
excess energy in the intermediate τ values for different system
sizes, L, plotted as a function of the inverse system size 1/L.
A quadratic fit was employed to extrapolate an estimate for
the thermodynamic limit, b∞.

A. Néel to Haldane phase

The Néel phase is characterized by a finite non-zero
spontaneous staggered magnetization M st

z . On the other
hand, the Haldane phase represents a topological phase
in a 1-dimensional system signaled by a finite string or-
der defined in Eq. (8). The Haldane phase also displays a
degeneracy in the entanglement spectrum, given by the
Schmidt gap as defined in Eq. (7). Using a finite-size
scaling of the staggered magnetization acting as the or-
der parameter, the phase boundary separating these two
quantum phases has been identified in an earlier work
[30]. Therein, finite-size scaling analysis of the staggered
magnetization and Schmidt gap yields the critical expo-
nent ν = 1.01, consistent with the Ising universality class,
νIsing = 1 [30, 58, 59]. For an Ising transition the criti-
cal exponent, z = zIsing = 1 is known. However, for the
present transition from Néel to Haldane phase, the value
of z has not been calculated explicitly and numerically.

We perform a linear quench on the uniaxial field D
and keep the interaction θ fixed to 0 during the time
evolution. We ensure that the initial and final values of

D are such that they correspond to Néel and Haldane
phase, respectively, and are far away from the quantum
critical region.

We first look at the excess energy ∆E the system ac-
quires when quenched across the quantum critical point,
as defined in Eq. (9). ∆E is proportional to the num-
ber of defects formed in the system after the quench,
and hence is expected to display Kibble-Zurek-like scal-
ing [60]. The behavior of ∆E as a function of the quench
time τ is plotted in Fig. 2 for two different system sizes.
Three distinct regimes can be seen from the plots. ∆E
saturates to its maximum value for very fast quenches,
i.e., low values of τ . This observation is consistent with
the fact that there can be a maximum number of excita-
tions in the system after the quench due to its finite size.
The final state after the time evolution is thus a super-
position of several excited states. The value of ∆E for
the same value of τ increases with the system size indi-
cating a larger number of defects in the system is formed
after the quench for bigger systems. This expected trend
is due to the inverse dependence of the energy gap on
the system size at the critical point. For larger system
sizes, the gap is smaller; a smaller energy gap enhances
the probability of exciting the system to higher excited
states, which leads to a larger number of defects.

For very large values of τ , applying the effective
Landau-Zener model would have resulted in a scaling of
∆E ∼ τ−2 [53, 60]. However, as shown in Fig. 2, we do
not quite observe such a behavior. We could explore the
Landau-Zener effect for higher values of τ for the system
sizes considered. Such simulations are beyond the scope
of the current numerical techniques because of the large
error involved. In contrast, we observe the decay at large
τ superimposed by oscillations for L = 50. These oscilla-
tions naturally arise when effects of finite duration time
are considered [60–62]. The frequency of the oscillations
decrease with increasing system size, along with a shift to
higher quench times where the oscillations are dominant.
The oscillatory behavior can be suppressed by increasing
the distance of the initial value Di from the critical Dc

compared to the width of the critical regime [60]. The
intriguing quasi-adiabatic region lies between these two
regimes where the residual energy follows a power-law
behavior. We attempt to verify the Kibble-Zurek mech-
anism for this quench protocol. For different lengths, we
fit a power-law in the intermediate power-law regime,

∆E = aτ−b(L) . (15)

The value of the exponent, b(L) calculated through the
exponential fitting procedure for different system sizes,
L is then fitted using a quadratic scaling resulting in an
asymptotic value of b∞ ∼ 0.866 ± 0.008 (see Fig. 2) for
L → ∞. The error bars include the errors arising from
the fitting procedure due to the range of τ values used to
fit and the fit itself.

The phase transition from Néel to Haldane phase along
the D axis belongs to the Ising universality class con-
cluded from previous finite-size-scaling studies with the
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staggered magnetization and Schmidt gap [41, 63]. We
insert the corresponding critical exponents, νIsing, zIsing
in Eq. (11) and obtain a value of btheoretical = 0.5. This
number is quite different from the estimate extracted
from our present numerical calculations using excess en-
ergy b∞. The discrepancy can arise for two different
reasons: either the Kibble-Zurek mechanism is not valid
for this transition or the critical exponents are incorrect.
Before coming to the conclusion that the Kibble-Zurek
mechanism fails to describe the transition, let us try to
verify all the critical exponents appearing in Eq. (11).
Since ν has been rigorously calculated using density ma-
trix renormalization group (DMRG) method and Quan-
tum Monte Carlo simulations, the only quantity that re-
mains unknown is critical exponent z since d = 1. As-
suming the Kibble-Zurek scaling to be valid, and insert-
ing the value of b∞, we can estimate z = 0.159. Using
this value of z, we can see if other quantities such as
the Schmidt gap and the entanglement entropy behave
consistently according to the Kibble-Zurek mechanism
with the obtained value of z. It should be noted that
the possibility of anomalous Kibble-Zurek scaling exists
as reported earlier for quenches across topological phases
with edge states [64] which is robust to defect forma-
tion. However, that is unlikely the case here since we are
quenching from a non-topological phase to a topological
phase.

We point out that the reverse quench protocol, i.e.,
from the Haldane to the Néel phase, finds a similar
power-law behavior of the excess energy in the interme-
diate regime of quench times. We performed additional
simulations to verify this observation, not shown here for
brevity.

The Schmidt gap and the block entropy, as defined in
Eqs. (7) and (4), are analyzed for the same quench proto-
col from Néel to Haldane phase by changing D, see Fig. 3.
Due to dependency of both quantities on the correlation
length, they should also follow a Kibble-Zurek scaling.
Assuming the Kibble-Zurek scaling is valid for this tran-
sition, inserting the values obtained from the scaling of
excess energy into Eq. (13) leads to the following scaling
of the Schmidt gap:

∆λ ∼ τ−0.138. (16)

Periodic oscillations are observed for a given system size
in the Schmidt gap related to crossings of the first two
eigenvalues in the entanglement spectrum, with an over-
all decay. This decay is power-law in nature with an ex-
ponent agreeing with Eq. (16). The cusps in the Schmidt
gap are related to the periodic non-analyticities of the
free-energy density in the thermodynamic limit [65]. The
cusps are not an artifact of finite size effects since the po-
sition of the cusps converge to one value for system sizes
larger than 100. A similar behavior of the Schmidt gap
have been reported earlier [57, 66] indicating the signa-
ture of a dynamical phase transition.

The block entropy for small quench times, i.e., τ ≤ 10,
coincides for all the lengths considered in our simulations.

100 101

τ

10−2

10−1

∆
λ

L = 50

L = 100

L = 150

L = 200

∼ τ−0.138

100 101

τ

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S L = 50

L = 100

L = 150

L = 200
1
6b∞ log2 τ + const.

FIG. 3. Schmidt gap ∆λ (top) as a function of the quench
time τ for different lengths L displays cusps related to the
non-analytic behavior of the free-energy density. (Bottom)
Block entropy, S for as a function of τ for the same quench
parameters as above. The maroon dashed curve in the plot
of the block entropy corresponds to the Kibble-Zurek scaling
from Eq. 14. The quench protocol is similar to that shown in
Fig. 2

This observation implies that the entanglement spread
has occurred on a length scale much smaller than any of
the system sizes considered in this work. Thus, we can
set a lower limit on the ramp velocities, i.e., the inverse
of τ , for which the size of the system does not play an
important role for the formation of entanglement. For
τ > 10, the data for L = 50 deviates from the larger
lengths: the entropy abruptly jumps to a higher value.
We note as expected that such a separation for larger
lengths is also observed in the Schmidt gap behavior. The
block entropies for the large lengths continue to show a
remarkable coincidence for significantly higher values of
τ . The peak value at τ ≈ 50 in this regime occurs at the
τ value for which we observed the cusps in the Schmidt
gap in Fig. 3.

To check the validity of the Kibble-Zurek mechanism,
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0 10 20 30 40 50 60 70

τ

0.45

0.50

0.55

0.60

0.65
O
S

L = 50

L = 100

L = 150

L = 200

Initial ground state

Final ground state

FIG. 4. String order OS after a time evolution τ for different
lengths L decreases for slower quenches and becomes equal to
the ground state value of the final Hamiltonian. The quench
protocol is similar to that shown in Fig. 2. The initial (green
dashed) and final (green dot-dashed) ground state values for
the largest system size are shown for comparison.

we insert ν = 1.01 and z = 0.159 in Eq. (14) with
c = 1/2 [40, 57]. The logarithmic behavior is clearly seen
for all system sizes for τ < 10 in Fig. 3; thus, we confirm
the Kibble-Zurek behavior of the entanglement entropy.
As expected, the Kibble-Zurek prediction breaks down
for smaller system sizes, i.e., L = 50, and larger τ val-
ues. There is an oscillatory behavior superimposed on
the logarithmic behavior which arises from the oscilla-
tory nature of the entanglement entropy. But to see the
oscillations clearly, quenches with larger τ values need
to be simulated; these simulations are beyond the scope
of this work. Both the Schmidt gap and block entropy
verify our initial assumption of the Kibble-Zurek mecha-
nism to be valid, and hence the value of z deduced from
our calculations for this particular phase transition from
Néel to Haldane phase is proved to be correct.

Both the initial and final phases display a finite string
order, although deep in the Néel phase the string order is
higher than in the Haldane phase. Quenching from the
Néel to the Haldane phase, the time-evolved state is ex-
pected to generate defects since it crosses the quantum
critical point. We consider it worthwhile to study the
fate of the string order after the quench in D as shown
in Fig. 4. We observe that for approximately τ > 20,
the string order attains a value very close to that of the
ground state of the final Hamiltonian for all the system
sizes. We can thus conclude that the string order con-
verges to the final ground state value very quickly com-
pared to the other observables shown before. This result
indicates the possibility of creating the Haldane insula-
tor phase experimentally. One needs to first prepare the
Néel phase, which has already been achieved in experi-
ments [67], and then quench D with τ > 20 to reach the
Haldane insulator phase for system sizes considered here.
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FIG. 5. Top: Quenching from Haldane to Néel phase by
changing the tuning of the interaction θ from −0.1π to 0.1π
at a constant uniaxial field of D = −0.310 exhibits a dif-
ferent behavior for excess energy ∆E with a power-law be-
havior denoted by the red line with the power-law exponent,
b = 0.873±0.011 for a system size of L = 150. Bottom: String
order OS after the linear quench for intermediate quench
times becomes higher than the final ground state value. The
initial (dashed cyan line) and final (dot-dashed cyan line)
ground state values of the string order are shown for com-
parison.

The quench process will not excite the system enough to
kill the string order, as reported in earlier theoretical
works with sudden quenches [68, 69].

The quench from the Néel to the Haldane phase can
also be achieved along the θ direction. Figure 5 shows
the behavior of the excess energy as a function of the
quench time after a quench by changing θ, holding D
constant at −0.310. We find a power-law region for in-
termediate τ values. Extrapolating the power-law expo-
nents for different system sizes gives a value of b∞ =
0.873 ± 0.011, which is consistent with the extrapolated
value obtained in the previous protocol of quenching the
external field from Néel to Haldane phase, where we
found b∞ = 0.866± 0.008.
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We now look at the evolution of the string order pa-
rameter, OS after the quench in the θ-direction in Fig. 5.
Before proceeding to study the effect of the quench, it
is informative to notice the ground state values. Typi-
cally the Néel phase has a larger string order compared
to the Haldane phase. This observation is always true
when the interaction, θ is fixed and external field, D is
varied. However, this statement may not be true when
going from Néel to Haldane phase through other trajec-
tories in the phase diagram. For the protocol where D is
kept fixed and θ changed, we clearly see that the ground
state string order in the Néel phase is smaller than in the
Haldane phase. Following the linear quench, the string
order converges to the ground state value of the final
Hamiltonian for longer quench times, see τ > 30. In con-
trast, we observe that for very short quench times the
string order increase monotonically, till it reaches a max-
imum at τ ∼ 3. Surprisingly, for intermediate quench
times (2 < τ < 30), the string order after the time evo-
lution is larger than the final ground state value. This
behavior is indeed not expected, and it implies that for
a certain range of quench times, the excitations are pro-
duced in such a way that enhances the final string order.
This observation implies clearly that using this quench
protocol the ground state of the Haldane phase may not
be reached for intermediate times, but the final state will
have larger string order, offering a surprising and useful
experimental prescription to maximize string order.

B. Non-Haldane (large-D) to Haldane phase

We now investigate the effects of quenching from the
large D phase to the Haldane phase as shown in the
schematic Fig. 1. We follow a similar approach as before,
quenching by changing D and θ. Previous studies [40]
have shown that this transition has a critical exponent
ν = 1.56 and a central charge c = 1, both distinct from
the values of ν and c corresponding to the transition from
Néel to Haldane phase.

Figure 6 clearly shows a power-law region as expected
from the Kibble-Zurek mechanism. Characteristic os-
cillations in the residual energy are observed for very
slow quenches. Due to computational complexity, this
feature is visible only for smaller lengths. Fitting the
extracted value of the power-law exponent b(L) in the
quasi-adiabatic regime with a quadratic function of the
system size, we obtain b∞ = −1.06± 0.02. This value is
certainly different than what was obtained in the previ-
ous quench protocol of Néel to Haldane phase. Since
the Kibble-Zurek mechanism is valid, we can extract
the critical exponent z as before. This analysis yields
z = 0.229± 0.004.

The final Schmidt gap displays cusp-like behaviors aris-
ing from the non-analyticity, but only for larger lengths,
i.e., L = 150, 200, which can be early-time indications of
dynamical phase transitions as shown in Fig. 7. If the
quench is done rapidly (τ < 8), the largest two eigen-

values of the reduced density matrix remain almost de-
generate. However for L > 150, the Schmidt gap is two
orders of magnitude lower than that in the adiabatic limit
(τ > 20) when compared to smaller systems of L < 100.
Due to the fact that the Schmidt gap in the final ground
state is smaller than its initial ground state value, the
oscillations exhibit a power-law decay envelope.

The entanglement entropy after the time evolution
shows a characteristic power-law behavior for smaller
quench times, followed by oscillations. Fitting this
power-law region with Eq. (14), the corresponding values
for this transition do not show a good agreement. This
behavior can imply either the Kibble-Zurek mechanism is
not valid in this transition, and hence the z value derived
is incorrect, or the entanglement entropy does not comply
with the Kibble-Zurek mechanism. Deviations from the
power-law behavior occur progressively at larger quench
times with increasing system size. The oscillations typi-
cally occur when the power-law region ends, and can be
attributed to the presence of excited components in the
wave function after crossing the critical point [57].

The Haldane phase has a finite string order unlike the
large D phase. Following a quench from the large D
to Haldane phase, the string order is found to approach
the final ground state value in the Haldane phase for
all system sizes as shown in Fig. 8. Oscillations in the
time-evolved string order as a function of the quench
time in the adiabatic limit is noticeable for smaller sys-
tem sizes whereas the proximity of the converged time-
evolved string order to the final ground state value in-
creases as the system size increases. Both these effects
can be attributed to finite-size effects. The quench time
at which the evolved string order converges close to the
final ground state value depends explicitly on the system
size.

The quench from large D to Haldane phase can also
be attained by changing θ and keeping D fixed. Figure 9
shows the behavior of the excess energy as a function of
quench times. Extracting the power-law exponent from
the quasi-adiabatic regime and extrapolating to the ther-
modynamic limit suggests a value of b∞ = 0.701± 0.001.
This value is markedly different from that obtained when
quenching along the external field, D, from the large D
phase to Haldane phase, suggesting a different universal-
ity class of the transition depending on the path taken
from one phase to the other. Examining the string order
after the quench in Fig. 10, we recognize a system-size-
dependent behavior. The evolved string order reaches the
final ground state value at quench times which increases
with system size. Unlike the previous quench protocol,
we observe neither any oscillations in the time-evolved
string order nor a size-dependent difference between the
ground state and the evolved string order. However, it
should be noted that both the quench protocols show a
system-size-dependent behavior of the string order when
evolving from large D to Haldane phase. This observa-
tion is in stark contrast to the scenario when evolving
from the Néel to the Haldane phase, where the string
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FIG. 6. Excess energy ∆E displays a power law behavior
as a function of quench time τ , shown here for two differ-
ent lengths L after quenching from a uniaxial field Di = 1.6
to Df = 0.6; the interaction is held constant, θ = 0. The
vertical dashed lines denote the region which is fitted by the
power-law: ∆E = aτ b(L), for the corresponding system size,
L. (Inset) Quadratic extrapolation of b-values for different
system sizes, L, yields b∞ = −1.06 ± 0.021.

order has no dependence on the system size. Such a be-
havior will be very useful for experimental groups where
observations are likely to show finite-size effects.

IV. METHODS AND ERROR ANALYSIS

We used two different MPS packages to simulate statics
and dynamics of the Hamiltonian described in Eq. (1),
i.e., openTEBD [70] and openMPS [71, 72]. The ground
state simulations were carried out with bond dimension
1000, and a maximum system size of 200 lattice sites.
For the time-dependent simulations, fourth order Suzuki-
Trotter decomposition was used with typical time steps of
0.01, truncation error limit of 10−10 and bond dimensions
between 500 to 800 depending on the quench protocol and
system size.

We support our results from the previous section with
the following error analysis. Numerical simulations with
tensor network methods have two main sources of er-
ror. On the one hand, we have the Trotter approxima-
tion scaling as a power of the time step dt [32]. On the
other hand, we have the truncation of the Hilbert space
in terms of the bond dimension. Both errors are appli-
cable to the statics and dynamics as we use imaginary
time evolution for the statics; a variational ground state
does not have a Trotter error [21]. Error bounds can be
calculated for observables based on the variance of the
energy and the energy gap to the first excited state for
the ground state [71]. The nth order Trotter decompo-
sition has a well-controlled error proportional to O(dtn).
Thus, we concentrate in the following on the bond dimen-
sion, where the maximum grows exponentially with the
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L = 200

∼ τ−0.2427
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1.4

1.6
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2.0

S L = 50

L = 100
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1
3 log2 τ + const.

FIG. 7. (Top) Schmidt gap after the quench has cusps at
different quench times for larger system sizes. The pink dot-
dashed line is the expected power law envelop from Eq. 13.
(Bottom) The block entropy shows a marked deviation from
the expected Kibble-Zurek scaling, shown by the maroon
dashed line. The quench protocol is similar to that mentioned
in Fig. 6.

system size. The validity of a truncation to a value well
below the maximum is demonstrated in the following.

Our result for the Kibble-Zurek scaling are based pri-
marily on the excess energy. Three states emerge in the
error analysis: (i) the ground state serving as the initial
state to the quench; (ii) the ground state of the final pa-
rameters of the quench; and (iii) the final state of the
quench. These three values are sufficient to track down
the main source of error. Figure 11 shows the conver-
gence of the energy measurements, which are the foun-
dation of the excess energy. We varied the bond dimen-
sion from 25 to 1000. In addition, we show the differ-
ence from the simulation with the highest bond dimen-
sion. The convergence for the simulated bond dimension
is straightforward. The remaining error of the order of
10−15 is an artifact of the machine precision in numeri-
cal simulations. This short error analysis justifies us in
dismissing error bars from the numerical simulations in
the fitting procedure for the Kibble-Zurek scaling.
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FIG. 8. Following a quench as mentioned in Fig. 6, the
string order increases towards the final ground state value
for slower quenches. However, larger systems require longer
quench times to reach the final ground state value, shown by
the green dot-dashed line.
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FIG. 9. Excess energy ∆E as a function of quench times
τ for two different lengths L after quenching the interacting
parameter from θi = −0.25π (Large D phase) to θf = 0.15π
(Haldane phase); the uniaxial field is held constant at D =
0.5. The dashed line denotes the region which is fitted by
the power-law: ∆E = aτ b. (Inset) The thermodynamic value
of b∞ = 0.701 ± 0.001 is obtained when b(L) is fitted with a
quadratic function of 1/L.

V. CONCLUSION

We have examined the effects of linear quenches across
quantum critical points in the BBM with a quadratic
Zeeman field. Our primary focus has been to quench
into the Haldane phase from phases which can be readily
prepared in experiments, such as the Néel and large D
phases. We evaluated the validity the of Kibble-Zurek
mechanism in each of these transitions by studying ex-
cess energy and different observables which are related
to the correlation length as a function of quench time,
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FIG. 10. String order OS after the time evolution for different
lengths L corresponding to the quench from θi = −0.25π to
θf = 0.15π while holding D = 0.5.
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FIG. 11. Error analysis: The difference in the final energy
after time evolution, the initial ground state energies and
the final ground state energies for different bond dimensions,
χ, with the corresponding value obtained using the largest
bond dimension, as a function of bond dimensions for Hal-
dane phase to large D phase quenches and a system size of
200 sites.

such as the block entropy and the Schmidt gap. We base
our results on numerical simulations with matrix product
states methods in 1-dimensional finite-size systems.

For the Néel to Haldane phase transition, we found
Kibble-Zurek like power-law behavior in the excess en-
ergy. However, the behavior of the excess energy, along
with the power-law exponent, depends on the quench pro-
tocol, i.e., whether we perform the quench along exter-
nal magnetic field, D, or interaction parameter, θ. The
Schmidt gap and block entropy shows signs of dynamical
phase transitions through the appearance of cusps at spe-
cific quench times. The power-law exponent derived from
the behavior of excess energy follows the Kibble-Zurek
mechanism if the correct critical exponents are consid-
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ered.
We find that the behavior of string order depends heav-

ily on the quench protocol, with a marked difference in
the two scenarios. Quenching across θ reveals a regime
for quench times in which the final time-evolved string
order is larger than the final ground-state string order,
suggesting the formation of defects due to the quench
which not only preserves the string order, but also en-
hances it. Furthermore, the behavior of string order as
a function of quench times shows almost no dependence
on the system size. Quenching from the large D to the
Haldane phase shows yet again the dependence on the
quench direction in the phase diagram. The string or-
der shows a clear system-size dependence, with larger
systems needing longer times for the final time-evolved
string order to become approximately equal to the final
ground-state value. Our observations of the string order
following a linear quench across the two quantum phase
transitions will play an important role in experiments in
search of the elusive Haldane phase.

We have seen that the investigation of the transitions
to the Haldane phase yields intriguing physics. These
results raise the question of which other phenomena the

remaining phase transitions in the BBM may contain.
These transitions are a fruitful subject for future studies.
Secondly, it would be important to eventually model the
system as an open systems coupled to a reservoir, e.g., a
with a Lindblad master equation in order to examine the
question of decoherence in quantum simulators seeking
to identify and explore the Haldane phase. Finally, a re-
maining open question is which cause for defects, i.e., the
quench rate or the open system effects, is predominant
for a given parameterization of the system.
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[32] U. Schollwöck, “The density-matrix renormalization
group in the age of matrix product states,” Annals of
Physics , 118 (2011).

[33] Timon A. Hilker, Guillaume Salomon, Fabian Grusdt,
Ahmed Omran, Martin Boll, Eugene Demler, Immanuel
Bloch, and Christian Gross, “Revealing hidden antiferro-
magnetic correlations in doped Hubbard chains via string

correlators,” Science 357, 484–487 (2017).
[34] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, “En-

tanglement in quantum critical phenomena,” Phys. Rev.
Lett. 90, 227902 (2003).

[35] J. Eisert, M. Cramer, and M. B. Plenio, “Colloquium
: Area laws for the entanglement entropy,” Rev. Mod.
Phys. 82, 277–306 (2010).

[36] Christoph Holzhey, Finn Larsen, and Frank Wilczek,
“Geometric and renormalized entropy in conformal field
theory,” Nuclear Physics B 424, 443 – 467 (1994).

[37] V. E. Korepin, “Universality of entropy scaling in one
dimensional gapless models,” Phys. Rev. Lett. 92, 096402
(2004).

[38] Pasquale Calabrese and John Cardy, “Entanglement en-
tropy and quantum field theory,” Journal of Statisti-
cal Mechanics: Theory and Experiment 2004, P06002
(2004).

[39] Pasquale Calabrese and John Cardy, “Entanglement en-
tropy and conformal field theory,” Journal of Physics A:
Mathematical and Theoretical 42, 504005 (2009).

[40] L. Lepori, G. De Chiara, and A. Sanpera, “Scaling of
the entanglement spectrum near quantum phase transi-
tions,” Phys. Rev. B 87, 235107 (2013).

[41] G. De Chiara, L. Lepori, M. Lewenstein, and A. Sanpera,
“Entanglement spectrum, critical exponents, and order
parameters in quantum spin chains,” Phys. Rev. Lett.
109, 237208 (2012).

[42] F. D. M. Haldane, “Nonlinear field theory of large-spin
Heisenberg antiferromagnets: Semiclassically quantized
solitons of the one-dimensional easy-axis Néel state,”
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