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Abstract
We consider the “thin one-phase" free boundary problem, associated to mini-
mizing a weighted Dirichlet energy of the function in plus the area of
the positivity set of that function in . We establish full regularity of the free
boundary for dimensions , prove almost everywhere regularity of the free
boundary in arbitrary dimension, and provide content and structure estimates on
the singular set of the free boundary when it exists. All of these results hold for
the full range of the relevant weight.

While our results are typical for the calculus of variations, our approach does
not follow the standard one first introduced by Alt and Caffarelli in 1981. In-
stead, the nonlocal nature of the distributional measure associated to a minimizer
necessitates arguments that are less reliant on the underlying PDE. © 2021 Wi-
ley Periodicals LLC.

1 Introduction
This article is devoted to the study of the regularity properties of a weighted ver-

sion of the thin one-phase problem. More precisely, we investigate even, nonnega-
tive minimizers of the following functionals: denote by

, and for we define

(1.1) J
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where stands for the -dimensional Lebesgue measure. Here and throughout
the paper the integration is done with respect to the -dimensional Lebesgue
measure unless stated otherwise. This functional is finite for open sets, , and
functions in the weighted Hilbert space,

equipped with the usual weighted norm.
Our main concern is to investigate fine regularity properties of the free boundary

of minimizers of (1.1), that is, the set

Since the free boundary lies on a codimension 1 subspace of the ambient space
, such a problem is called a thin one-phase free boundary problem. This

type of free boundary problem has been investigated for the first time by Caffarelli,
Roquejoffre, and the last author in [7] in relation to the theory of semipermeable
membranes (see, e.g., [21]). As we will describe later,. this is an analogue of
the classical one-phase problem (also called the Bernoulli problem) but for the
fractional Laplacian.

The Bernoulli problem was first treated in a rigorous mathematical way by Alt
and Caffarelli in the seminal paper [2]: in the Bernoulli problem we consider min-
imizers of (1.1) where , and the second term is replaced by L

(where L stands for the Lebesgue measure in ). In particular,
for the Bernoulli problem, the free boundary fully sits in the ambient space, .
In [2], the authors provided a general strategy to attack this type of problem. Out
of necessity we needed to modify this blueprint in several substantial ways (see
below for a more detailed comparison). For more information on the one-phase
problem (and some of its variants) we refer to the book of Caffarelli and Salsa
(and references therein) [8] and to the more recent survey of De Silva, Ferrari, and
Salsa [14].

As noticed in [7], problem (1.1) is related in a tight way to the standard one-
phase free boundary problem but with the Dirichlet energy replaced by the Gagli-
ardo seminorm for . This connection suggests that the thin
one-phase problem is actually intrinsically a nonlocal problem, though the energy
in (1.1) is clearly local.

Connection with the Fractional One-Phase Problem
As previously mentioned, the functional J introduced by Caffarelli, Roque-

joffre, and the last author in [7] is a local version of the following nonlocal free
boundary problem: given a function loc with suitable decay at infinity,
we can define its fractional Laplacian at by

p v
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At the formal level, we are interested in solutions of the free boundary problem

(1.2)
in
on

where lim and where satisfies a given
“Dirichlet boundary condition” on the complement of .

As in the case of the classical Laplacian (see [2]), we are interested in obtaining
equation (1.2) as the Euler-Lagrange equation of a certain functional. Given a
locally integrable function , consider its fractional Sobolev energy

Since we want to study competitors that vary only in a certain domain , it is natu-
ral to consider only the integration region that may suffer variations when changing
candidates. Thus, we define the energy

(1.3)

We say that loc is a minimizer of in if is finite and
for every satisfying that and such that

for almost every . We say that is a global minimizer if it is a minimizer
for every open set . Note that both terms in (1.3) are in competition, since
a minimizer of the fractional Sobolev energy in is -harmonic and, thus, if it is
nonnegative outside of , it is strictly positive inside of , maximizing the second
term.

Consider now the Poisson kernel for fixed and ,

(1.4) for every

The Poisson extension of loc is given by

(1.5)
for every

By [9], with a convenient choice of the constant, one gets

lim

in every point where is regular enough. Moreover, the extension satisfies the
localized equation weakly, away from . The whole point
is that local minimizers of (1.3) can be extended via the previous Poisson kernel
to (even) minimizers of (1.1) (see the Appendix for a precise statement). Therefore,
the thin one-phase problem appears as a “localization” of the one-phase problem
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for the fractional Laplacian. Notice that—and this is of major importance for us—
this localization technique does not carry over to other types of nonlocal operators
besides pure powers of second-order elliptic operators. This is a major drawback of
the theory, in the sense that, at the moment, it seems to be impossible to tackle one-
phase problems involving more general operators than the fractional Laplacian.
The main point is we do not know how to prove any kind of monotonicity for
general integral operators.

This connection between the nonlocal analogue of the Bernoulli problem and
our thin one-phase problem allows us to simplify several arguments by working in
the purely nonlocal setting. However, this underlying nonlocality is also the reason
why several results, which came more easily in the setting of [2], are nontrivial or
substantially harder for us. For example, perturbations of solutions need to take
into account long-range effects that make classical, local perturbation arguments
much more difficult.

In the paper [7], the authors proved basic properties of the minimizers for the
functional J such as optimal regularity, nondegeneracy near the free boundary, and
positive densities of phases. Also they provided an argument for showing
that Lipschitz free boundaries are . A feature of the functional J is that the
weight is either degenerate or singular at (except in the case ).
Such weights belong to the Muckenhoupt class and the seminal paper of Fabes,
Kenig, and Serapioni [26] investigated regularity issues for elliptic PDEs involving
such weights (among other things). After that, [19] proved an -regularity result
and [1] showed the existence of a monotonicity formula for this setting.

In the case , the problem is still degenerate in the sense that derivatives
near the free boundary blow up. The case has been thoroughly investigated
in the series of papers by De Silva, Savin, and Roquejoffre [16–18].

The main goal of our paper is to provide a full picture of the regularity of the free
boundary for any power , both in terms of measure-theoretic statements
and partial (or full) regularity results. From this point of view our contribution is a
complement to the paper by De Silva and Savin [18] for . It has to be noticed
that the standard approach to regularity of Lipschitz free boundaries as developed
by Caffarelli (see the monograph [8]) does not seem to work in our setting.

Our Approach to Regularity
In [2] (and many subsequent works), the minimizing property of the solution is

used to prove that the distributional Laplacian of that solution is an Ahlfors-regular
measure supported on the free boundary. This implies (among other things) that
the free boundary is a set of (locally) finite perimeter, and thus almost every point
on the free boundary has a measure-theoretic tangent. One can then work purely
with the weak formula (i.e., the analogue of (1.2)) to prove a “flat implies smooth”
result which, together with the existence almost everywhere of a measure theoretic
tangent, has as a consequence that the free boundary is almost everywhere a smooth
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graph and the free boundary condition in (1.2) holds in a classical sense at the
smooth points.

A similar “flat implies smooth” result exists in our context (this is essentially
due to De Silva, Savin, and the last author [19]; see Theorem 2.4 below). However,
showing that the free boundary is the boundary of a set of finite perimeter proves to
be much more difficult. Due to the nonlocal nature of the problem, div
(considered as a distribution) is not supported on the free boundary. Furthermore,
the scaling of this measure does not allow us to conclude that the free boundary
has the correct dimension (much less that it is Ahlfors regular).

To prove finite perimeter, we take the following approach inspired by the work
of de Silva and Savin: after establishing some preliminaries we prove crucial
compactness results. This, along with a monotonicity formula originally due to
Allen [1] allows us to run a dimension reduction argument in the vein of Federer or
(in the context of free boundary problems) Weiss [38]. With this tool in hand, we
show that the set of points at which no blowup is flat is a set of lower dimension.
Locally finite perimeter and regularity for the reduced boundary then follow from
a covering argument and some standard techniques.

Here and throughout the paper, we will denote the ball of radius in cen-
tered at the origin by , and . Moreover, for the definition of
H , see Section 2. We may then summarize our regularity results in the following
theorem.

THEOREM 1.1. [Main regularity theorem] Let H be a (nonnegative,
even) local minimizer of J in . Let

, let be the boundary of inside of , and assume that
. Then:

(1) (as a subset of ) is a set of locally finite perimeter in .
(2) We can write the free boundary as a disjoint union R ,

where R is open inside , and for R there exists an
such that can be written as the graph of a -continuous
function.

(3) Furthermore, the set is of Hausdorff dimension (and, there-
fore, of H -measure zero). In particular, for , is empty, and
moreover, if then is discrete.

The constants (implicit in the set of finite perimeter, and the Hölder continuity of
the functions whose graph gives the free boundary) depend on and but not on

H .

As usual is called the singular set of the free boundary: the set
of points around which cannot be parametrized as a smooth graph and all the
blowups will be nontrivial minimal cones; see Theorem 2.4.

Our second contribution concerns the structure and size of the singular set. It
builds on recent major works on quantitative stratification [32] extended to free
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boundary problems (in particular, the one-phase problem) by Edelen and the first
author [22].

THEOREM 1.2. Let H be a (nonnegative, even) local minimizer of J in
and . Let and be

the boundary of inside . Then, there exists a such that is
-rectifiable and

H dist for every

In [15], De Silva and Jerison constructed a singular minimizer for the Alt-
Caffarelli one-phase problem in dimension , giving the dimension bound
in the previous theorem in this case (see [22]). This result is not known for the
thin one-phase problem. The reason is that the one-phase problem, seen from the
nonlocal point of view involving the fractional Laplacian, is related to the so-called
nonlocal minimal surfaces introduced by Caffarelli, Roquejoffre, and Savin [6]. In-
deed, in [33], the authors proved that a fractional version of Allen-Cahn equation
converges variationally to the standard perimeter functional for and to
the so-called nonlocal minimal surfaces for . We can then conjecture the
bound for by analogy with the result for the standard one-phase
problem, but the bound for is not clear at all. However, one knows that
there is no singular cone in dimension for nonlocal minimal surfaces [34] and
that the Bernstein problem is known for those in dimensions 2 and 3 [28].

We would like also to make a last remark about a result that is of purely nonlocal
nature. In the case of the one-phase problem, one can show that the distributional
Laplacian is a Radon measure along the free boundary. In the case of the thin
one-phase free boundary problem, due to the nonlocality of the problem, such a
behavior does not happen in the sense that we will show that the fractional Lapla-
cian is an absolutely continuous measure with respect to -dimensional Lebesgue
measure with a precise behavior. This phenomenon is of purely nonlocal nature
and similar to the fact that the fractional harmonic measure is of trivial nature.
More precisely, every minimizer satisfies weakly, away from

. Thus, equation (1.2) above can be understood as an Euler-Lagrange
equation for the functional J in the sense that the restriction to of a given
minimizer in , harmonic away from and with asymptotic
behavior O , is always a solution to (1.2) for at
“nice” points of the free boundary.

A brief summary of this paper follows. In Sections 3 and 4 we discuss com-
pactness of minimizers and we recall Allen’s monotonicity formula to derive some
immediate consequences. In Section 5 we show that the positive phase is a set of
locally finite perimeter, establishing the first part of Theorem 1.1 (modulo energy
bounds), and we show that the singular set can be identified using the Allen-Weiss
density. Section 6 is devoted to deducing full regularity of minimizers in
concluding the proof of Theorem 1.1.
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Once we have established the finite perimeter, in Section 7 we remove the de-
pendence of the estimates on the energy of the minimizer in the previous theorems,
using a rather subtle argument that combines results from all the previous sections.
A crucial step is to analyze some basic properties of the distributional fractional
Laplacian of our minimizer. As stated above this analysis will not be enough to
establish that the positivity set of the minimizer is a set of locally finite perimeter.
We believe that many of these results may be of independent interest. For exam-
ple, corresponding results for the classical Bernoulli problem have been used to
understand the free boundary problems for harmonic measure (see [31]).

Finally, Section 8 is devoted to the proof of Theorem 1.2.

Notation
We denote the constants that depend on the dimension , , and perhaps some

other fixed parameters that are clear from the context by . Their value may
change from one occurrence to another. On the other hand, constants with sub-
scripts such as retain their values along the text. For , we write
if there is such that . We write to mean .

Let be a continuous function in . Then we write ,
and we denote the zero phase, the positive phase, and the free boundary by

respectively. Here both the boundary and the interior are taken with respect to
the standard topology in . Note that is the disjoint union of ,

, and whenever is nonnegative. We also call red red
the points of where the free boundary is expressed locally as a surface.
Finally, let red . In general, we will write

.
Throughout the paper we will often fix but then refer to or

vice versa. These two numbers are always connected by the relationship .

2 Preliminaries
In this section, we provide the known results concerning the problem under

consideration. We say that a function is even if it is symmetric with respect to
the hyperplane , that is, . The function spaces that
we will consider are the following

H is even and nonnegative

and
Hloc loc H for every ball

We will omit in the notation when it is clear from the context.
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DEFINITION 2.1. We say that a function Hloc is a (local) minimizer of J
in a domain if for every ball and for every function H such
that the traces , the inequality

J J

holds.

As usual for several free boundary problems, it is a natural question to exhibit a
particular (global) solution so that one gets an idea of the qualitative properties of
general solutions. Let us consider the following function: for every let

where max . If , is a solution to (1.2) for a convenient choice
of (see [4, theorem 3.1.4]). In fact, one can see that the same is true for
using Fubini’s theorem conveniently, with

(2.1)

where max .
As a toy question we wonder whether the trivial solutions are minimizers. In-

deed, this is the case, as we will see later in Section 4.1.

PROPOSITION 2.2. Let and . Then the trivial solution
is a minimizer of J in every ball .

Next we collect the main properties of minimizers in the unit ball proven in [7,
theorems 1.1–1.4, prop. 3.3, and cor. 3.4].

THEOREM 2.3. If H is a minimizer of J in with H
and , then it satisfies

(P1) Optimal regularity (see [7, theorem 1.1]): .
(P2) Nondegeneracy (see [7, theorem 1.2]:) dist for

.
(P3) Interior corkscrew condition (see [7, prop. 3.3]:) there exists

so that .
(P4) Positive density (see [7, theorem 1.3]:) .
(P5) Blowups are minimizers (see [7, cor. 3.4]): The limit of a blowup sequence

converging weakly in and uniformly is a
global minimizer.

(P6) Normal behavior at the free boundary (see [7, theorem 1.4]): the boundary
condition in (1.2) is satisfied at every point on the free boundary with a
measure-theoretic normal (see [24]) for a prescribed value of .

All the constants depend on and , and also on except for the ones in P1 and
P2.
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A major tool in the present paper is an -regularity result, i.e., in the language
of free boundaries a statement of the type “flatness implies smoothness.” In [19],
the authors proved such an -regularity result for viscosity solutions to the overde-
termined system associated to minimizers of J . Here we establish that all local
minimizers are in fact viscosity solutions. While this verification may be standard
for experts in the field, we include it here for the sake of completeness.

THEOREM 2.4 ( -regularity). There exists depending only on , , and
such that for every nonnegative, even minimizer of the energy (1.1) on a ball

with H and

(2.2)

we have that loc , with .

Note that the dependence on will be removed in Section 7.

PROOF. We say that is a viscosity solution to

(2.3)
in

lim for

if
(i) , ,

(ii) loc , is even, and it solves in the
viscosity sense, and

(iii) any strict comparison subsolution (resp., supersolution) cannot touch from
below (resp., from above) at a point .

We claim that

(2.4) every nonnegative even minimizer is a viscosity solution.

Conditions (i) and (ii) have been verified in [19, 36]. To verify our claim it suf-
fices to prove condition (iii) above: that any strict comparison subsolution cannot
touch from below at a point . The analogous claim for strict
comparison supersolutions will follow in the same way.

Let us recall (see, e.g., definition 2.2 in [19]) that is a strict compar-
ison subsolution (resp., supersolution) to (2.3) if

(a) ,
(b) is even with respect to ,
(c) ,
(d) div in ,
(e) is locally given by the graph of a function and for any

we may write

(2.5)
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Here is the extension of the trivial solution (see [19]), and is the
unit normal to considered as a subset of pointing into
and .

(f) Furthermore, either the inequality is strict in (d) or in (e).

So assume that where is a strict comparison subsolution and is some
minimizer and that at . Since it follows that

and with a harmless rotation we can guarantee that
. We want to show that is also the measure-theoretic unit normal to .

Indeed, since is there must exist a ball that is tangent
to at . It must then be the case that as well. Thus

has a tangent ball from the inside, which, by proposition 4.5 in [7]
implies that has the asymptotic expansion

If , this implies that must satisfy the expansion in (2.5) with at
the point . This, in turn, implies that div in (by the
definition of a strict subsolution). Furthermore, since where , we
can guarantee that div in all of .

Let us return to the ball that is a subset of and and for which
. We know that in (this is because strictly

satisfies the differential inequality in away from ), and we know that
is a subsolution in . Furthermore, is a strict maximum, so by

the Hopf lemma in [5, prop. 4.11] it must be that

lim

This contradicts the fact that and both satisfy (2.5) at with .
Therefore, must not have been a touching point and is indeed a viscosity
solution.

Since, is a viscosity solution, [19, theorem 1.1] applies and we get the desired
-regularity. ⇤

3 Compactness of Minimizers
In this section we prove important results on the compactness of minimizers. As

we mentioned above, our contribution is that convergent sequences of minimizers
also converge in the relevant weighted Sobolev spaces strongly rather than just
weakly. This will prove essential to the compactness arguments used later in this
paper.
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3.1 Caccioppoli Inequality
First we want to show that the distribution is in fact a Radon

measure with support in the complement of the positive phase as long as is a min-
imizer. In Section 7 we will come back to this measure to understand its behavior
around the free boundary.

LEMMA 3.1. Let be an open set, and let loc be such
that weakly in , i.e., for every ,

(3.1)

Then is a positive Radon measure supported on and
for every

(3.2)

PROOF. Indeed, by (3.1) the quantity

max min

defines a positive functional on positive . Moreover, for compact
, consider a Lipschitz function such that . If ,

by the positivity shown above we obtain

and, by Hahn-Banach’s theorem, we can extend the functional to a positive func-
tional in , that is given by integration against a positive Radon measure by
the Riesz representation theorem.

The fact that (3.2) holds for all functions in follows by
a standard density argument. ⇤

The Caccioppoli inequality is the first step to proving convergence in a Sobolev
sense. It will also be useful when we remove the a priori dependence of our results
on the Sobolev norm of the minimizer.

LEMMA 3.2 (Caccioppoli inequality). Let be a ball of radius centered
on , and let be such that weakly in

. Then
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PROOF. Let be a Lipschitz function such that and with
. By Lemma 3.1

By the Leibniz rule

and using Hölder’s inequality we get

⇤

LEMMA 3.3. Let H be a minimizer of J in and . Then

PROOF. The first inequality is an immediate consequence of Caccioppoli, the
middle estimate is trivial, and the last follows from P1 in Theorem 2.3. ⇤

3.2 Compactness
In the following lemma we prove the compactness of minimizers in the relevant

Sobolev spaces. For convenience, we also detail several compactness results that
were either already proven in [7] or are standard consequences of the nondegen-
eracy estimates in Theorem 2.3. Nevertheless, we include full proofs here for the
sake of completeness. We note here (as we did above and will do again below) that
while we currently need to assume the uniform bound on the Hölder norm of the
functions , we can get rid of this assumption in the light of the results of Section
7.

LEMMA 3.4 (Compactness results). Let Hloc be a sequence of
minimizers in a domain with with nonempty free

boundary. Then there exists a subsequence converging to some Hloc such
that for every bounded open set we have

(1) in for every ,
(2) in for every ,
(3) in the Hausdorff distance,
(4) in , and
(5) in for every .
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PROOF. The first claim follows from uniform Hölder continuity and compact
embeddings of Hölder spaces. The claim (2) follows from (1) easily.

We now prove the third claim. Let We will first show that for
we have

(3.3)

for large This implies that for large enough.
Let If is positive in , then it is bounded from

below by a positive number in In this case are also positive in
for large due to uniform convergence in . Thus

for large If in , then due to the uniform convergence we know
that for large enough in , where is a constant given by P2
in Theorem 2.3 so that has no free boundary points in for all large
This proves (3.3).

Next we will show that for all large

(3.4)

If this was not true we could find a point and a subsequence of
such that for every in the subsequence. If the subsequence
contains infinitely many such that in , then also due
to uniform convergence. Otherwise the sequence contains infinitely many for
which is contained in the positive phase. In this case the nondegeneracy
implies that in we have with independent of Again
uniform convergence implies the same lower bound for which contradicts our
choice

To show the fourth claim we notice that has zero -dimensional Lebesgue
measure by the Lebesgue differentiation theorem and the positive density of the
zero phase. Take an open set with For large we
have , so

Also the sequence is uniformly bounded in by the Caccioppoli
inequality. This implies by compactness [29, theorem 1.31] the weak convergence
of in To obtain strong convergence, use Lemma 3.5 below. ⇤

It remains to show that weak convergence implies strong convergence.

LEMMA 3.5. Any sequence of minimizers in with
uniformly and weakly in loc satisfies that
strongly in loc .

PROOF. Let be a nonnegative function. We claim that for every
there exists so that

for
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First we isolate the main difficulty

By weak convergence,

for big enough. Note that this is true even if the are not minimizers. The
bound on the second term, however, needs the minimization property.

We observe that

(3.5)

I II

To estimate I in (3.5), let be the measures corresponding to from Lemma
3.1. By (3.2) we get that

Since is supported on , we have that

for every (including as is also a minimizer to J , see corollary 3.4
in [7]).

To finish the estimate on I in (3.5), we observe that

sup
supp

By uniform convergence on compact subsets, supsupp

for big enough.
We turn towards estimating II in (3.5):

(3.6)

II

sup
supp
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The first term goes to zero by weak convergence of to . The second term
satisfies

sup
supp

supp

for big enough, by uniform convergence and the uniform bound of the norm
supp derived from the Caccioppoli inequality in Lemma 3.2 to-

gether with uniform convergence. ⇤
Lemma 3.4 implies that minimizers converge to minimizers (which was ob-

served in Corollary 3.4 in [7]), but also implies the stronger fact that the energy
is continuous under this convergence:

COROLLARY 3.6. Let be a sequence of minimizers in with
locally uniformly and sup H . Then is also a minimizer to J

in and for any we have J J after passing to a
subsequence.

4 Monotonicity Formula and Some Immediate Consequences
From [1] we have the following monotonicity formula:

THEOREM 4.1 (Monotonicity formula, see [1, theorem 4.3] ). Let be a minimizer
in for the functional J with . Then the function

J
H

is defined and nondecreasing in , and for , it satisfies

As a consequence, the blowup limits are cones, in the sense of the following
corollary.

COROLLARY 4.2. Let be a minimizer in with . Consider

a decreasing sequence and the associated rescalings

. Then the Allen-Weiss density

lim

is well-defined. Furthermore, for every bounded open set and
this subsequence is bounded in and, passing to a sub-

sequence , converges (in the sense of Lemma 3.4) to , which is a globally
defined minimizer of J that is homogeneous of degree .

The proof is the same as in [38, theorem 2.8].
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Remark 4.3 (Nonuniqueness of blowups). We call the function appearing in
Corollary 4.2 a blowup of at . A priori, the function may depend on the
subsequence . However, a simple scaling argument shows that for all radii

and all blowups to at we have

4.1 Dimension Reduction
We use the homogeneity of the blowups to obtain dimension estimates on the

points in the free boundary for which there exists a nonflat blowup. This process
is known as “dimension reduction” and has been applied to a variety of situations
(see [38] for its application to the Bernoulli problem).

The first lemma shows that blowup limits have additional symmetry:

LEMMA 4.4. Let Hloc be an -homogeneous minimizer of J and let
. Then any blowup limit at is invariant in the direction of

; i.e., for every and every ,

PROOF. Let , and consider its decomposition with
. We only need to check that

(4.1)

FIGURE 4.1. The distance dist O .

Consider a ball so that . Let be a se-
quence of radii converging to and such that converges to
uniformly on . For big enough, . Then,

(4.2)

To control the last term above, we use the homogeneity of . Writing
and , we have and .
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Let be the intersection between the line through and and the line through
the origin and (see Figure 4.1). By homogeneity of

Thus,

O
O

By Thales’ theorem, O , and using the
character of and the fact that , we get

O O O

and (4.1) follows by (4.2) since . ⇤

We then recall that a minimizer with a translational symmetry is actually a min-
imizer without that symmetry in one dimension less. This is known as “cone split-
ting”:

LEMMA 4.5. Let Hloc be an -homogeneous minimizer of J in
that is invariant in the direction . Then is a minimizer
of J in one dimension less.

PROOF. The proof is a slight variation of [38, proof of lemma 3.2]. ⇤

Next we provide a nonstandard proof of Proposition 2.2, to show that the triv-
ial solution is a minimizer. We use (P5) in a sequence of conveniently chosen
blowups and a dimension reduction argument. Note that the proposition could also
be proven via a classical dimension reduction argument.

PROOF OF PROPOSITION 2.2. Consider a nonzero minimizer with nonempty
free boundary (see [7, prop. 3.2] for its existence), choose a free boundary point

and consider to be a blowup weak limit at this point, which exists
and is -homogeneous by Lemma 4.2. Then is also a global minimizer by (P5)
and not null by the nondegeneracy condition.

Next we argue by induction: given let be an -homogeneous
global minimizer different from such that it is invariant in a -dimensional linear
subspace , i.e., for every and every ,

Consider a point that exists as long as by the
interior corkscrew condition and positive density, and let be a blowup limit
at this point, which is again an -homogeneous global minimizer. We claim that

is invariant in fact in the -dimensional subspace .
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Indeed, is invariant in by Lemma 4.4. On the other hand, since
is invariant in , so are the functions in the blowup sequence, and thus, is
invariant in . Thus, for , , and we get

and the claim follows.
Thus, after steps, we obtain , which is an -homogeneous global

minimizer invariant in an -dimensional space , with nonempty free
boundary. Thus,

where the constant is given by (P6). The proposition follows by Proposition A.1.
⇤

4.2 Upper Semicontinuity
Next we show that Allen-Weiss energy at a fixed radius is continuous both with

respect to the minimizer and with respect to the point:

LEMMA 4.6. Let Hloc be minimizers of J in and in the sense
of Lemma 3.4. Then, for and dist ,

PROOF. Let . We want to check that for big enough,

We will consider the three terms of the energy separately. For the first term,

follows from the convergence of the gradients. Indeed, if
for big enough and , then

For the measure, we estimate
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for big enough as a consequence of in loc as before. The
fact that

for big enough is a straight consequence of the uniform convergence and the
continuity of . ⇤

It is well-known that the limit of a decreasing sequence of continuous functions
is upper semicontinuous (see [11, theorem 1.8]). The monotonicity formula also
implies the following result.

LEMMA 4.7. Let Hloc be minimizers of J in and in the
sense of Lemma 3.4, with for . Then, if and ,

lim sup lim sup

PROOF. The first inequality comes from monotonicity.
To see that

lim sup

it is enough to check that for every

lim sup

or by using monotonicity, it suffices to show that for every and big enough,

But this is true for big enough because the left-hand side converges to by the
continuity of the energy from Lemma 4.6. ⇤

5 Measure-Theoretic Properties
5.1 Finite Perimeter

We will show that is a set of locally finite perimeter. Then red will
coincide with the measure-theoretic reduced boundary by the -regularity theorem,
see [2, secs. 4.6 and 4.7].

DEFINITION 5.1. For every we can define as the infimum of

an -homogeneous minimizer Hloc s.t.

Note that, to the best of our knowledge, there is no result showing that needs
to be finite.

LEMMA 5.2. Let be an -homogeneous minimizer of J in with .
Then is a rotation of the trivial solution.
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See [38, sec. 3] for the proof.
From the positive density properties, we know that . From the homogene-

ity of the blowups we find out that the free boundary in is in fact a collection
of isolated points. Later in Theorem 6.1 we will show that in fact

LEMMA 5.3 (Isolated singularities). Let Hloc for be a mini-
mizer of J in . Then has no accumulation points in .

PROOF. Arguing by contradiction, we assume that has an interior accu-
mulation point which, without loss of generality, we assume to be the origin.

Let be a sequence of singular points converging to with . Con-
sider the blowup rescaling . Note that .
Moreover, by the interior corkscrew condition, there exist such
that , so by the nondegeneracy condition.

Choosing a subsequence, we may assume that , and
in the sense of Lemma 3.4. In particular, is homogeneous by Corollary 4.2,
reaching a contradiction with the fact that and . ⇤

We will prove the local finiteness of the perimeter of the free boundary adapting
a proof of De Silva and Savin in [18]. Our proof is essentially the same, but we
repeat it for the sake of completeness.

As in [18] we say that a set satisfies the property (P ) if the following
holds: for every there exists an such that for every , every
subset of can be covered with a finite number of balls with

such that

(5.1)

LEMMA 5.4. If H for every minimal cone in , H
for every minimizer of J defined on .

PROOF. We first show that satisfies the property ( ). If ( ) does not
hold, we find a point for ( ) is violated for a sequence We
consider the blowup sequence

(5.2)

By Corollary 3.6 we may assume, by taking a subsequence, that converges to a
minimal cone . By our assumptions we may cover with a finite
collection of balls with

By Lemma 3.4 we know that free boundaries converge in the Hausdorff sense
and thus the set is flat for all large From
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Theorem 2.4 we infer that all singularities must be covered by the same balls; that
is, for all ,

(5.3)

After rescaling we see that satisfies the condition for property ( ) in the ball
which is a contradiction. Therefore the property ( ) holds as claimed.

Consider the set Fix a point By
property ( ) applied to , we find a finite cover of with
balls satisfying

Similarly, for each ball in the cover we use the property ( ) to find a
finite number of balls which cover and
satisfy

and thus . By repeating the argument times we obtain a cover
of by balls that satisfies

This implies that H and thus H By countable
additivity we obtain the claim. ⇤
LEMMA 5.5. If H for some and for every minimal cone
in , we then have that H for every minimal cone in

PROOF. Without loss of generality we may assume Let
By Corollary 3.6 the blowups at any point of converge to

a minimal cone in dimension up to a subsequence. Let be a blowup
at By Lemma 4.5, is a minimal cone that is invariant in at least one direction.
By Lemma 4.5 , by using our assumption, this implies that H , and
thus the singular set of every possible blowup cone of any minimizer has zero
H -measure.

Arguing as in Lemma 5.4 we obtain H ⇤

Combining Lemmas 5.3, 5.4, and 5.5 we obtain the following corollary. Notice
that we will be able to replace by by Theorem 6.1.

COROLLARY 5.6. Every minimizer satisfies

H
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LEMMA 5.7. Let H be a minimizer of J in with
Then there exists a constant depending on , , and and a finite collection
of balls s.t.

(5.4) H

and

(5.5)

PROOF. The proof is by contradiction. For assume
and the left-hand side of (5.4) is bounded below by for every collection
of balls satisfying (5.5). By Lemma 3.2 we know the sequence is bounded in
H Taking a subsequence we may assume that converges locally uniformly
to a minimizer (see Corollary 3.6).

By Corollary 5.6 the set of singularities has H -measure zero, and thus
they can be covered with finitely many balls satisfying (5.5).

Since is a -surface by Theorem 2.4, using the Hausdorff con-
vergence of the free boundaries we apply again Theorem 2.4 to see that

are also -surfaces converging to uniformly
in the -norm. This is a contradiction with the assumption that the Hausdorff
measure blows up as goes to ⇤

The fact that the free boundary has finite perimeter follows now from the same
iteration argument as [18, lemma 5.10].

LEMMA 5.8. Let be as in Lemma 5.7. Then for some constant depending only
on ,

(5.6) H

PROOF. By Lemma 5.7 we find a finite collection of balls such that

(5.7)

with H and
Applying Lemma 5.7 again for each ball , we have

(5.8)

with H and Moreover, we have

H H H
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Continuing inductively, after steps we have that

(5.9)

with

H

and This gives the claim. ⇤

Finally, the fact that has locally finite perimeter in follows
from the previous lemma and well-known results of Federer; see, for example, [3,
prop. 3.62] or [27, 4.5.11].

5.2 Energy Gap
Next we will check that the Allen-Weiss density can also be used to identify

singular points. First, let us state a useful identity for minimizers (which is also
valid in the context of variational solutions in the sense of [37]).

LEMMA 5.9 (See [1, prop. 3.4]). Let Hloc be a minimizer to (1.1) in .
For every we have

(5.10) H

Let be a minimizer and . If we consider a blowup at , then

H

By Lemma 5.9 we get

H

H

Since almost everywhere on the sphere, the first and the
third terms cancel out, and we obtain

Thus, the density at a free boundary point is given by the area of the positive
phase of any blowup at the same point.

We write for the volume of the -dimensional ball.
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PROPOSITION 5.10. Every homogeneous minimizer Hloc has density

and equality is only attained when is the trivial minimizer.

PROOF. Let be a minimizer such that .
Let red . Being a regular point, . On the other hand, by

the homogeneity and the continuity in Lemma 4.6,

lim lim

Combining both assertions with the monotonicity of we get that .
But using the second formula in Theorem 4.1, one can see that this is true only
whenever is -homogeneous with respect to . Thus, is -symmetric and
invariant in the direction of .

By Corollary 5.6 red has full H measure on . Thus, we can find
red linearly independent. By the previous discussion is invari-

ant on an -dimensional affine manifold, and thus, it is the trivial solution. ⇤
COROLLARY 5.11 (Energy gap). There exists depending only on and
such that every minimizer Hloc and every singular point satisfy

PROOF. Assume the conclusion to be false. Then there exist minimizers in
with

Passing to a subsequence, as in Lemma 3.4. Using Lemma 4.7 we get
that

lim

But then is the trivial cone by Proposition 5.10. Since in
the Hausdorff distance, using -regularity (see Theorem 2.4) we get that is the
trivial cone for big enough. ⇤

The value above depends on the constants and on in a neighborhood
of . In Section 7 we will show that does not depend on at all.

6 Full Regularity in
In the case of , we prove full regularity of the free boundary for minimizers

of our functional. Note that this result does not depend on the previous sections
except that we use dimension reduction and blowups to deduce regularity of the
free boundary.
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THEOREM 6.1. Let . Then there is no singular minimal cone. In particular,
the free boundary of every minimizer is everywhere.

PROOF. We follow closely the arguments in [18, theorem 5.5], building on [34].
The case has been considered in [18]. The idea is to construct a competitor
by a perturbation argument. We note at this point that the argument is two dimen-
sional in nature and does not generalize to higher dimensions. Recall the functional
under consideration:

J

Let be a nontrivial minimal cone. Define, as in [18], the Lipschitz continuous
function

(6.1) ln
ln

Define now the bi-Lipschitz change of coordinates

and set . Clearly, one has

Id

where . Defining now exactly as changing
into , the very same computation as in [18] gives

J J J

Now, we have

H

Now since is homogeneous of degree by assumption, the function
is homogeneous of degree . Therefore by a trivial

change of variables on the sphere of radius and using the fact that , we get
the very same estimate

ln

The rest of the proof follows verbatim [18, p. 1318], since this is only based on
energy considerations, and we refer the reader to it. ⇤
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7 Uniform Bounds Around the Free Boundary
The optimal regularity bound and the nondegeneracy described in Theorem 2.3

were obtained in [7] with bounds that depend on the seminorm H . As
a consequence, this dependence propagates to many of our estimates above. In
this chapter we use the seminorm dependent estimates (e.g., Lemma 5.8) to prove
seminorm independent nondegeneracy estimates. Re-running the arguments above
yields the seminorm independent results presented in our main Theorem 1.1.

The question of seminorm independence may seem purely technical; however,
independence allows the compactness arguments of the next section to work with-
out additional assumptions on the minimizers involved.

7.1 Uniform Nondegeneracy
We will begin by showing uniform nondegeneracy from scratch to deduce uni-

form Hölder character from this fact, reversing the usual arguments in the literature.
The following lemma was shown in [1, cor. 4.2] in a more general setting. Here

we give a more basic approach based on [2, lemma 3.4]. The main difference is that
where Alt and Caffarelli could use the energy to directly control the norm of
the minimizer, in our case we need to find an alternative because the measure term
of the functional is computed on the thin phase (as opposed to the norm which
is computed on the whole space). To bypass this difficulty we will use Allen’s
monotonicity formula.

The drawback of our approach is that we need the ball to be centered on the free
boundary, while in the original lemma, Alt and Caffarelli could center the ball in
the zero phase, allowing for a slightly better result.

LEMMA 7.1. Let be a minimizer in with . Then sup
with depending only on and .

PROOF. By rescaling we can assume that .
Let L , consider , which is a solution of

L away from the origin (or log if and ), and let

max
where sup

It follows that on and thus

J J min
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and observing that on and on the annulus , we
get

min min

max

By Green’s theorem, writing H we get

(7.1)

with .
Using the monotonicity formula and Proposition 5.10, we get that

, and therefore

(7.2) J

so using Hölder’s inequality and the AM-GM inequality we obtain

(7.3)
J

Combining (7.1), (7.2), and (7.3) we obtain

J J

and therefore .
⇤

To show averaged nondegeneracy we need a mean value principle that is well-
known, but we include its proof for the sake of completeness.

LEMMA 7.2 (Mean value principle). Let be a weak solution to
L in , and let with . Then

where the mean is taken with respect to the measure .
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PROOF. Changing variables, we have that

On the other hand, set

Since is a weak solution to in , we can apply Green’s formula
twice to obtain

Because is absolutely continuous on lines (see [24, theorem 4.21]), for almost
every we have . Applying
Fubini’s theorem we get

So for all .
On the other hand, taking the mean with respect to the measure

and using the continuity of (see [26, theorem 2.3.12]) we obtain

lim lim

lim ⇤

COROLLARY 7.3. Let be a minimizer in with and let
H . Then with depending only on and .

PROOF. Let be the L-harmonic replacement of in , that is, the solution to

(7.4)
L in

on
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see [29, theorem 3.17]. After differentiating with respect to the radius, by the mean
value principle we get that . By the comparison principle and the
Harnack inequality we get that

⇤(7.5) sup sup

7.2 Behavior of the Distributional Fractional Laplacian
Next we use an idea of [2] and investigate the behavior of the distributional

-Laplacian of the minimizer introduced in Section 3. As mentioned in the in-
troduction, in [2] this investigation immediately yields that the positivity set is a
set of locally finite perimeter, and more precisely, that it is Ahlfors regular of the
correct dimension. However, the nonlocal nature of this problem indicates that the
distributional fractional Laplacian may not be supported on the free boundary, and
thus we cannot expect to immediately gain such strong geometric information.

First we can bound the growth of the fractional Laplacian measure around a
free boundary point. Note that this growth is the natural counterpart to the upper
Ahlfors regularity in the case of Alt-Caffarelli minimizers.

THEOREM 7.4. Let H be a minimizer of J in , and let
. Then, we have

In particular, .

A glance at (2.1) will convince the reader that these estimates are sharp, for they
cannot be improved even in the case of the trivial solution.

PROOF. Without loss of generality we may assume that . Let L
and let be the L-harmonic replacement of in ; see (7.4).

Write H and . By Harnack’s inequality (see [7],
for instance) and the mean value principle in Lemma 7.2,

inf

We have that

Since in the support of and is L-subharmonic (see [2, lemma 2.2]) we
get

By the properties of the measure , we obtain
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and using the definition of the functional and the fact that is a minimizer, we get

J J
Altogether, we have that

and since uniform nondegeneracy (see Corollary 7.3) implies that , we
can conclude the proof of the first statement.

To show the second one, note that since the free boundary has locally finite
-dimensional Hausdorff measure, given a set and we can

find a collection of balls such that

sup and H

Thus,

sup

⇤
Next we study the measure away from the free boundary. We should empha-

size here that even though the estimates in Lemma 7.5 and Theorem 7.6 depend
on , they will be used to remove the dependence of our other estimates on .
More precisely, Theorem 7.6 will play a role in establishing the continuity of the
Green function in Lemma 7.9. This qualitative fact is used to prove the quantitative
uniform Hölder character in Theorem 7.8.

After proving Theorem 7.8, we may drop the hypothesis H from
both Lemma 7.5 and Theorem 7.6.

LEMMA 7.5. If Hloc is a minimizer of J in the ball with H
and , then for every we get

lim dist

Moreover, for every ball centered at with , we have that

dist

for dist , where the constant may depend on .

PROOF. Let be a minimizer, and let with .
By [35, lemma 2.2], we can write O , where
is a function, with a uniform control on the error term in terms of

. In particular, lim .
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Let us define

(7.6)
if
if

It is clear that L in . According to [36, lemma 3.26, cor. 3.29]
is an even function in H (note that

is out of the usual range of ) and satisfying . The mean
value principle (see Lemma 7.2) applies also to this case, so

and using P1–P3 if dist , we get

On the other hand, on the upper half-plane we have

so

and
lim

the limit being uniform on compact subsets of . ⇤

THEOREM 7.6. If Hloc is a minimizer of J in with H ,
then the measure is absolutely continuous with respect to the Lebesgue measure,
and for -almost every we have that

lim dist

with constants depending on , , and .

PROOF. By Theorem 7.4 we only need to show absolute continuity in
. For by [9, lemma 4.2] we have that

lim

and, for we have seen in Lemma 7.5 that

lim dist

showing the second part of the statement.
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Consider a ball with and a collection of even smooth
functions . Then

(7.7)

and for every we use the Green’s theorem to get

Using the symmetry properties and taking limits,

(7.8) lim

Next we want to apply the dominated convergence theorem. Let us begin by con-
sidering a ball centered in the zero phase, with dist

. In this case, by Lemma 7.5 we have

(7.9)

with constants depending perhaps on and as well.
If instead , by [36, theorem 3.28] is an even function

on , so O Thus

(7.10)

In both cases, the dominated convergence theorem applies, and

lim lim

and by (7.7) and (7.8), we obtain

lim

In particular, lim loc , and taking limits in
we get

lim ⇤

A consequence of our control of the behavior of is that we can establish the
existence of exterior corkscrews. We should note that exterior corkscrews can also
be obtained by a purely geometric argument given the nondegeneracy and positive
density of Theorem 2.3 (see, e.g., the proof of proposition 10.3 in [13]).

COROLLARY 7.7. If is a minimizer in with H , then
satisfies the exterior corkscrew condition, i.e. there exists a constant such that
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for every and every dist one can find so
that

PROOF. This is a consequence of Theorems 7.4 and 7.6, and the positive density
condition for the zero phase. Indeed, given a ball , combining both
theorems we get

dist

sup dist

and the positive density condition implies that

Thus,
sup dist

which is equivalent to the exterior corkscrew condition. ⇤

7.3 Uniform Hölder Character
The uniform nondegeneracy of Section 7.1 lets us conclude uniform control on

the Hölder norm of .

THEOREM 7.8. Let be a minimizer of J in with . Then
for every with depending only on and .

PROOF. Again we set to be the L-harmonic replacement of inside of as
in (7.4). Let so that

L L L

and .
Consider the Green function such that L and

loc with null trace on (see [25, prop. 2.4]). By [25,
prop. 2.1, lemma 2.7] there exists so that is the unique function in

such that L , and moreover

(7.11)

for almost every .
Below, in Lemma 7.9, we will see that the equality (7.11) is in fact valid for

every , that is, . In particular,
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Next we use the following estimate (see [25, theorem 3.3]): let .
Then

where is the weight . Computing, for we obtain

max

First we assume that . Thus, if , then

(7.12)

Note that by Theorem 7.4. Thus, writing , we
have that

By the strong maximum principle, the Green function in the annulus is bounded
by . This fact, together with Theorem 7.4, implies that

By the mean value theorem we conclude that

where H . The theorem follows by observing that, as in (7.5), the
mean of dominates by sup sup .

In case , which could only happen for and , estimate
(7.12) reads as

log

and the proof follows the same steps.
In case , then estimate (7.12) reads as

and the estimate is even better compared to the above. ⇤

LEMMA 7.9. is continuous in .
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PROOF. Let and let , with . Then

(7.13)

Next we use (7.12) and Theorems 7.4 and 7.6. By decomposing the domain on
dyadic annuli, in case we get

(7.14)

In case we obtain

log

on the right-hand side instead, and in case we obtain

In every case, by fixing small enough, this term can be as small as wanted. The
same will happen with the last term on the right-hand side of (7.13).

On the other hand, by [26, theorem 2.3.12] Green’s function is uniformly con-
tinuous on the set , so

with

Thus,

Assuming that is small enough, we obtain that

is as small as wanted and the claim follows. ⇤
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Remark 7.10. In light of Theorem 7.8 and the Caccioppoli inequality (see Section
3.1), arguing as in [7, theorem 1.1] we obtain that every minimizer in a ball

with has uniform character in and the same for the H
norm. Moreover, using [7, theorem 1.2] we can find interior corkscrew points with
constants not depending on these norms. This allows us to remove the a priori
dependence on H from all of our results above.

7.4 Lower Estimates for the Distributional Fractional Laplacian
Next we bound the growth of the measure around a free boundary point from

below. None of these results will be used in the present paper, but we include them
to give a complete picture of the tools under consideration.

THEOREM 7.11. Let H be a minimizer of J in such that .
Then we have

PROOF. Let L and let be the L-harmonic replacement of
in (see (7.4)). Let , and consider the Green function
as in the proof of Theorem 7.8.

Let to be fixed later. By P1–P3 in Theorem 2.3, there exists a point
with

(7.15)

with constants depending only on and by Remark 7.10. By P1 there is a
constant such that for every we have that . Since
is supported on the zero phase of , the ball is away from its support,
and

Using the strong maximum principle (see [29, theorem 6.5]) and (7.12), for
almost every we get

sup sup

sup

That is,

(7.16)

On the other hand, note that is continuous. By the Riesz representation theo-
rem, there exists a probability measure L such that

L

We can choose so that intersects a big part of a corkscrew ball; i.e., assume
that there exists a point that is the center of a ball where



THE THIN ONE-PHASE PROBLEM 2007

has positive values. This can be done by the interior corkscrew condition, with all
the constants involved depending only on and . Then, changing the constant if
necessary, all points satisfy that by the nondegeneracy
condition and the optimal regularity. Call . Then

L

But L is bounded below by a constant by [29, lemma 11.21] and the Harnack
inequality (use a convenient Harnack chain). All in all, we have that

(7.17)

Combining (7.16), (7.15), and (7.17) and choosing small enough, depending
on and , we get

for small enough.
In case , that is, for and , using similar changes as in

the proof of Theorem 7.8 we get

sup log log

instead of (7.16). In case , the proof is even easier than before. ⇤
Remark 7.12. Theorem 7.11 implies that the -Hausdorff measure of the
free boundary is locally finite. This does not suffice to show finite perimeter of the
positive phase; therefore we had to use the approach in Section 5.

The following theorem summarizes the information that we have gathered so far
about the measure .

THEOREM 7.13. If Hloc is a minimizer of J in , then the measure is
absolutely continuous with respect to the Lebesgue measure in . Moreover,
given and such that , then

(7.18)

and for almost every we have that

lim dist

with constants depending only on and .

8 Rectifiability of the Singular Set
In this section we use the Rectifiable-Reifenberg and quantitative stratification

framework of Naber-Valtorta [32] to prove Hausdorff measure and structure results
for the singular set. Recall that is the first dimension in which there exists
nontrivial -homogeneous global minimizers to (1.1) defined in Section 5.
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THEOREM 8.1. Let Hloc be a minimizer of (1.1) in a domain . Then
is -rectifiable, and for every we have

H dist

Part of the power of this framework is that it is very general. One needs certain
compactness properties on the minimizers and a connection between the drop in
the monotonicity formula and the local flatness of the singular set (see Theorem
8.14 below). To avoid redundancy and highlight the original contributions of this
article, we omit many details here and try to focus on the estimates needed to apply
this framework to minimizers of (1.1). Whenever we omit details, we will refer the
interested reader to the relevant parts of [22].

The key first step is to introduce the appropriate formulation of quantitative strat-
ification. First introduced by Cheeger and Naber [10] in the context of manifolds
with Ricci curvature bounded from below, this is a way to quantify the intuitive fact
that should “look” -dimensional near a point at which
the blowups have -linearly independent translational symmetries.

8.1 Quantitative Stratification for Minimizers to J
We have seen in Section 4.1 that homogeneous functions have linear spaces of

translational symmetry. Here we want to quantify (both in terms of size and sta-
bility) how far a function is from having no more than directions of translational
symmetry.

DEFINITION 8.2. We write for the collection of linear -dimensional subspaces
of . A function is said to be -symmetric if it is -homogeneous with respect
to some point, and there exists a so that

for every

A function is said to be -symmetric in a ball if for some -symmetric
we have

Next we define the -stratum , the -stratum , and the -
stratum . A key insight here is to define these strata by the blowups having

or fewer symmetries as opposed to exactly symmetries.

DEFINITION 8.3. Let , , and dist ,
let be a continuous function in , and let . We say that:

if has no -symmetric blowups at ;
if is not -symmetric in for

min ;
if is not -symmetric in for

min .
If it is clear from the context we will omit from the notation.
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We now detail some standard properties of the strata defined above and how they
interact with the free boundary . While the proofs are mostly standard, we
give the details as the scaling associated to the problem (1.1) adds some technical
difficulties. This proof also provides a blueprint for fleshing out the details in
Sections 8.3 and 8.4.

LEMMA 8.4. Let , , dist , and
let Hloc be a minimizer in . Then:

(1) . Moreover, for the reduced
boundary, we have that red and .

(2) We have , and moreover, .
(3) Also and moreover, .

(4) The sets are closed, in both and : if loc and
with , then .

(5) If loc , , and are -symmetric in , then is
-symmetric in .

PROOF.
(1) The inclusions of the first property are trivial. The last equali-

ties are consequences of the nondegeneracy. The fact that red
can be deduced from the Hausdorff convergence of the free boundaries

described in Lemma 3.4 and Theorem 2.4. Finally, is a
consequence of Lemmas 4.5 and 5.2.

(2) The inclusions of the second property come from the definitions:
if then there exist a ball centered at and a -
symmetric so that But is also

-symmetric. Thus, .
The fact that is a consequence of the uniform convergence on

Lemma 3.4: if , then has a -symmetric blowup sequence
at converging uniformly. Thus,

That is,
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Therefore, for every there exists a ball small enough so that is -
symmetric in it. In particular, .

To see the converse, assume that . Then for every there
exist a -symmetric function , invariant with respect to ,
and min dist such that

In the case when stays away from , since , we can take a sub-
sequence converging to , and one can see that is -
symmetric in the ball . Otherwise, consider

and

By taking subsequences, we can assume that locally in the
Hausdorff distance, and that locally uniformly. One can check
also using the Hölder character of that is uniformly bounded in

, so taking subsequences again, we can assume the existence
of so that in . This function will be -
symmetric, being invariant in the directions of . By the triangle inequal-
ity we get

The first and the last integrals converge to by our choice of the subse-
quence. For the middle term, just change variables as before:

Thus we have that and therefore, .
(3) The inclusions of the third property come from the

definitions and thus . The converse implication is also
trivial.

(4) The closedness is obtained by a contradiction argument again. It is straight-
forward but we write it here for the sake of completeness.

Assume by contradiction that . Then there exist a -
symmetric function and a radius such that
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Let be fixed and consider so that for every
. By the triangle inequality

We define so that . Choose big enough so that every
satisfies that . Then

, contradicting the hypothesis.
(5) Assume that is invariant with respect to and

Consider a subsequence so that the varieties locally in the
Hausdorff distance. Using the triangle inequality as in (4), it follows that
is -symmetric with . ⇤

PROPOSITION 8.5. There exists such that if Hloc is a mini-
mizer of J in a domain , then .

PROOF. It is enough to show that if is a minimizer of J in , then
.

By contradiction, let us assume that there is a sequence of positive numbers

, functions minimizing J in and ,
, with being -symmetric in , and let be an

-dimensional subspace that leaves invariant one of the admissible
-symmetric approximants. By rescaling we can assume that .

Passing to a subsequence we can assume that locally in
the Hausdorff distance and . By the compactness results in Lemma 3.4
we have a uniform limit that is a minimizer as well, and it is -
symmetric with invariant manifold . By Lemma 4.4 any blowup at will
be -symmetric as well. Applying Lemma 4.5 times,
we find that the restriction of to the orthogonal manifold is a -
dimensional minimal cone, which, by Lemma 5.2, is the trivial solution, and so is

. Thus, is a regular point for .
On the other hand, the Hausdorff convergence of Lemma 3.4 together with the

improvement of flatness of Theorem 2.4 imply that for big enough red ,
reaching a contradiction. ⇤
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8.2 The Refined Covering Theorem
Our estimates on the size and structure of the singular set come from sim-

ilar results concerning the . In particular, we prove the following covering
result:

THEOREM 8.6. Let H be a minimizer to (1.1) in with . For
given real numbers , , and every natural number ,
we can find a collection of balls with such that

In particular, for every and

H

From Proposition 8.5 and Theorem 8.6, we can conclude the following corollary,
which comprises the second part of Theorem 8.1 above.

COROLLARY 8.7. If H is a minimizer to (1.1) in with ,
then is -rectifiable and for every we have

In particular,
H

Rectifiability is encoded in the following result. We omit the details of proof
here but it is a consequence of the packing result above, the Rectifiable-Reifenberg
theorem of [32], and Theorem 8.14 below. For more details see sections 2 and 8
of [22] (particularly theorem 2.2 in the former and the proof of theorem 1.12 in the
latter).

THEOREM 8.8. Let be a nonnegative, even minimizer to (1.1) in a domain .
Then is -rectifiable for every , and hence each stratum is -recti-
fiable as well.

The proof of Theorem 8.6 follows from inductively applying the following,
slightly more technical packing result (for details see section 4 of [22]).

THEOREM 8.9. Let . There exists such that, for every minimizer
H of J in with and , there is a finite

collection U of balls with center and radius that
satisfy the following properties:

(A) Covering control:

U
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(B) Energy drop: For every U ,

either or sup sup

(C) Packing:

U

We construct the balls of Theorem 8.9 using a “stopping time” or “good ball/bad
ball” argument. Much of this argument uses harmonic analysis and geometric mea-
sure theory and is completely independent of the original problem (1.1). However,
there are a few places in which we need to connect the behavior of minimizers to the
geometric structure of the singular set. Here we will sketch the good ball/bad ball
argument, taking for granted the estimates needed to apply this argument to our
functional. In the next few subsections we will provide these estimates. For more
details on the construction itself, we refer the reader to section 7 in [22].

Outline of the Construction in Theorem 8.9
To find this covering we define good and bad balls as follows: imagine our ball,

, has radius 1. We say that is a good ball if at every point in the
monotone quantity centered at that point at some small scale, , is not much smaller
than the monotone quantity on ball (we say these points have “small density
drop”). A ball is a bad ball if all the points in with small density
drop are contained in a small neighborhood of a -plane. This dichotomy
follows from Theorem 8.10 in Section 8.3.

In a good ball of radius we cover with balls of radius , iterating the
construction until we find a bad ball or until the radius of the ball becomes very
small. In a bad ball, we cover away from the -plane without much
care. Close to the -plane we cover with balls of radius , iterating
the construction until we reach a good ball or until the radius of the ball becomes
very small.

Inside long strings of good balls, the packing estimates follow from powerful
tools in geometric measure theory (see Theorem 8.13 below) and the connection
between the drop in monotonicity and the local flatness of the singular strata (see
Theorem 8.14 below). We give more details in Section 8.4.

Inside long strings of bad balls, each of which is near the -plane of the
previous bad ball, we have even better packing estimates than expected (as we are
effectively well approximated by planes that are lower dimensional). This leaves
only points that are in many bad balls, and in most of those balls they are far away
from the -plane. However, at these points the monotone quantity drops a
definite amount many times, which contradicts either finiteness or monotonicity.
This implies that the points and scales inside the bad balls that are not close to the

-plane form a negligible set (the technical term is a Carleson set). We give
more information about the bad balls in Section 8.3.
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8.3 Tools for Bad Balls: Key Dichotomy
THEOREM 8.10 (Key dichotomy). Let be fixed numbers with .
There exists an such that for every , every

, every , and every minimizer H of J in with
and sup , then either

on , or
there exists so that .

The key dichotomy is a direct consequence of Lemma 8.11 below. The core
idea is to make effective the following assertion: if is -symmetric, then along
the invariant manifold the Allen-Weiss density is constant, and every point away
from the manifold will have -symmetric blowups by Lemma 4.4.

LEMMA 8.11. Let be fixed numbers with . There exist
such that for every , every , and every minimizer of J in

with and sup , if there exist and affine
manifolds with

and for every

then

(8.1) on

and

(8.2)

The proof follows (with only minor modifications) the proof in [22, lemma 3.3].
We end this subsection by formally defining the good/bad balls alluded to above:

DEFINITION 8.12. Let , , and be a minimizer to J in .
We say that the ball is good if

on

and otherwise we say that is bad.

By Theorem 8.10 in any bad ball there exists an affine -manifold
with

(8.3)

8.4 Tools for Good Balls: Packing Estimates and GMT
In this section we control the local flatness of the singular strata by the drop in

monotonicity. To do this we introduce a key tool from geometric measure theory
that estimates the flatness of a set. Given a Borel measure , a point , and a radius
, the beta coefficient is defined as follows:

(8.4) inf
dist
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where stands for the collection of -dimensional affine sets of . The beta
coefficients are meant to measure in a scale invariant way how far a measure is
from being flat, in this case in the distance, although other versions have
been used in the literature for quite often, dating back to [30] (for the

version) and David-Semmes [12] (for the version).
If we control the size of the ’s we can conclude size and structure estimates

on the measure . The following theorem says exactly this and represents a major
technical achievement. It differs (importantly) from prior work in this area by
the lack of a priori assumptions on the upper or lower densities of the measure
involved.

THEOREM 8.13 (Discrete-Reifenberg Theorem; see [32, theorem 3.4]). Let
be a collection of disjoint balls, with and ,

and let be the packing measure , where stands for the Dirac
delta at . There exist constants depending only on the dimension
such that if

for every

then

To obtain the packing estimates required for the Discrete-Reifenberg theorem,
we need to control the beta coefficients. The key estimate of this entire framework
lies in the following theorem, which shows the drop in monotonicity at a given
point and that a given scale controls the beta coefficient at a comparable scale.

THEOREM 8.14. Let be given. There exist and such that
for every H minimizing J in with and

(8.5)
is -symmetric in
is not -symmetric in

and every Borel measure , we have that

(8.6)

We follow the proof of [22, theorem 5.1] closely. First, the authors give an
explicit formula for the beta coefficients.

LEMMA 8.15. Let be the center of mass of a Borel measure on .
Let be the decreasing sequence of eigenvalues of the nonnegative bilinear
form
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and let be a corresponding orthonormal sequence of eigenvectors, that is,
and . Then

dist

where span .

Next we find a relation between the eigenvalues of and Allen-Weiss’ energy.

LEMMA 8.16. Under the hypothesis of Lemma 8.15, for every H min-
imizing J in and every , we have that

(8.7)

PROOF. The argument follows as in [22, (18) and below]. In formula (18) one
needs to change by , which can be done with exactly the same argument.

⇤

Finally, using compactness, we bound the left-hand side of (8.16) from below.

LEMMA 8.17. Let be given. There exists a and such
that, for every orthonormal basis and every H minimizing J
in with and satisfying (8.5), we have that

(8.8)

PROOF. The proof follows that of [22, (19)] and we omit it. ⇤

PROOF OF THEOREM 8.14. By Lemmas 8.15, 8.17, and 8.16 we get that

⇤

Appendix A Relation with the Nonlocal Bernoulli Problem
As in [20, lemma 2.1], we see that the study of minimizers of J includes the

study of minimizers of .
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PROPOSITION A.1. If is a minimizer of in the unit ball of , then is
a minimizer of J in every ball such that .

If is a minimizer of J , then is a minimizer for . In particular, if
is a minimizer of J in every ball, positive outside the hyperplane , and

O , then is a minimizer for in every ball.

We follow [20, lemma 2.1]; that is, we use the following result from [6, sec. 7].

LEMMA A.2. Let satisfy that and , and suppose
that is compactly supported in . Then we have that

inf

where the infimum is taken among all the symmetric bounded Lipschitz domains
with the property that and among all symmetric functions
with trace satisfying that is compactly supported on .

PROOF OF PROPOSITION A.1. Let be a minimizer of in the unit ball of
and let be a ball such that . We want to show that is a
minimizer of J in .

Let so that in and . Let be
the trace of in . By Lemma A.2 we have that

(A.1)

for every .
Since , is an admissible competitor for and ,

i.e.,

(A.2)

The proposition follows combining (A.1) and (A.2) and letting .
The converse follows the same sketch: every global minimizer can be expressed

as the Poisson extension of its restriction to the hyperplane by Proposition B.1. ⇤
As a consequence of the previous proposition, all the results that we have proven

for minimizers of J also apply to minimizers of :

COROLLARY A.3. If is a minimizer to in and
, then , it satisfies the nondegeneracy condition

dist for , the positive phase satisfies the corkscrew condi-
tion, every blowup limit is -homogeneous, and the boundary condition in (1.2) is
satisfied at red .

Moreover, the positive phase is a set of finite perimeter, the singular
set is an -rectifiable set, it is discrete whenever , and it is empty if

.
All the constants depend only on and .
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Appendix B Uniqueness of Extensions
In Proposition A.1 we have used the following result, included in [7, prop. 3.1].

Here we provide a proof that is different than the one appearing in [7].

PROPOSITION B.1. Let and , and set L div
in . Suppose that is nonnegative outside , and it is a
solution to L in with for all and .
Then .

PROOF. First, since is away from the hyperplane , loc .
Let now , and set

Let be a ball centered at with radius , and let
be its double ball. Set also for . Since is a

solution of L in , [26, theorem 2.4.3] shows that

max

From convergence of difference quotients (similarly to [23, theorem 3, p. 277]), if
, the last estimate will imply that is uniformly bounded in

by a constant . Therefore, from the boundary Caccioppoli estimate [26, (2.4.2)]
we have that

hence is bounded in . From weak compactness, a subsequence
of converges to a solution of L in , and since pointwise,
we obtain that is an solution in . Hence is a solution to
L in .

Now, for , let . We distinguish between two cases:
and .

In the first case, set to be the ball of radius , centered at . Note then that
. Then, from [26, theorem 2.3.1], Caccioppoli’s estimate, and the

assumption ,

sup
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In the second case, let be the ball centered at with radius , and
denote . Then ; therefore from [26, theorem 2.4.3]
and the boundary Caccioppoli estimate,

sup

So, in all cases, . Letting and using the maximum
principle, we find that for any . Therefore does not depend
on the first variables, so . Hence, in ,

div

for some constant . From [26, theorem 2.4.6], is Hölder continuous up to the
boundary; therefore, for any ,

which implies that

for any . Letting we obtain that ; hence as
well, which implies that is a constant. Since vanishes on , this implies that

. ⇤
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