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Abstract

We consider the “thin one-phase" free boundary problem, associated to mini-
mizing a weighted Dirichlet energy of the function in Rﬁ_‘H plus the area of
the positivity set of that function in R”. We establish full regularity of the free
boundary for dimensions n < 2, prove almost everywhere regularity of the free
boundary in arbitrary dimension, and provide content and structure estimates on
the singular set of the free boundary when it exists. All of these results hold for
the full range of the relevant weight.

While our results are typical for the calculus of variations, our approach does
not follow the standard one first introduced by Alt and Caffarelli in 1981. In-
stead, the nonlocal nature of the distributional measure associated to a minimizer
necessitates arguments that are less reliant on the underlying PDE. © 2021 Wi-
ley Periodicals LLC.

1 Introduction

This article is devoted to the study of the regularity properties of a weighted ver-
sion of the thin one-phase problem. More precisely, we investigate even, nonnega-
tive minimizers of the following functionals: denote x € R*T1 by x = (x', y) €
R™ x R, and for § € (—1, 1) we define

(1.1) T, Q) := / 1y|B1Vu)2dx + m({v > 0} NR" N Q),
Q
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where m stands for the n-dimensional Lebesgue measure. Here and throughout
the paper the integration is done with respect to the (n + 1)-dimensional Lebesgue
measure unless stated otherwise. This functional is finite for open sets, €2, and
functions in the weighted Hilbert space,

HY(B.Q) = {ve L2(Q|yP): Vv e L2(Q:|yP)),

equipped with the usual weighted norm.
Our main concern is to investigate fine regularity properties of the free boundary
of minimizers v of (1.1), that is, the set

F() = ogn{v(x,0) > 0} N Q.

Since the free boundary lies on a codimension 1 subspace of the ambient space
R”*1, such a problem is called a thin one-phase free boundary problem. This
type of free boundary problem has been investigated for the first time by Caffarelli,
Roquejoffre, and the last author in [7] in relation to the theory of semipermeable
membranes (see, e.g., [21]]). As we will describe later,. this is an analogue of
the classical one-phase problem (also called the Bernoulli problem) but for the
fractional Laplacian.

The Bernoulli problem was first treated in a rigorous mathematical way by Alt
and Caffarelli in the seminal paper [2]: in the Bernoulli problem we consider min-
imizers of where B = 0, and the second term is replaced by £"+!({v >
0} N Q) (where £" T stands for the Lebesgue measure in R?!). In particular,
for the Bernoulli problem, the free boundary fully sits in the ambient space, R”*1.
In [2], the authors provided a general strategy to attack this type of problem. Out
of necessity we needed to modify this blueprint in several substantial ways (see
below for a more detailed comparison). For more information on the one-phase
problem (and some of its variants) we refer to the book of Caffarelli and Salsa
(and references therein) (8] and to the more recent survey of De Silva, Ferrari, and
Salsa [14].

As noticed in [7]], problem is related in a tight way to the standard one-
phase free boundary problem but with the Dirichlet energy replaced by the Gagli-
ardo seminorm [u] ;7 fora = % € (0, 1). This connection suggests that the thin
one-phase problem is actually intrinsically a nonlocal problem, though the energy
in (1.1) is clearly local.

Connection with the Fractional One-Phase Problem

As previously mentioned, the functional 7 introduced by Caffarelli, Roque-
joffre, and the last author in [7] is a local version of the following nonlocal free
boundary problem: given a function f € LlloC (R™) with suitable decay at infinity,
we can define its fractional Laplacian at x € R” by

J(x) = f§)

(=8)* f(x) = cnap. V. e X —ET2e

dE.
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At the formal level, we are interested in solutions of the free boundary problem

(A f =0 inQN{f >0,
f =4 on QN F(f),

where 07 f(x) := limgn{r>0)56—x (éi)% and where f satisfies a given

“Dirichlet boundary condition” on the complement of 2.

As in the case of the classical Laplacian (see [2]), we are interested in obtaining
equation as the Euler-Lagrange equation of a certain functional. Given a
locally integrable function f, consider its fractional Sobolev energy

/) = f®)P
Fgemn = //Rz g dEdx.

Since we want to study competitors that vary only in a certain domain £2, it is natu-
ral to consider only the integration region that may suffer variations when changing
candidates. Thus, we define the energy

_ 2
(1.3) J(£.Q) = cna /42,1\(90)2 % dedx +m(f >0} N Q).

1.2)

We say that f € LloC is a minimizer of J in Q if J(f, Q) is finite and J( f, Q) <
J(g, Q) for every g satisfying that f — g € H*(R") and such that f(x) = g(x)
for almost every x € Q€. We say that f is a global minimizer if it is a minimizer
for every open set 2 C R”. Note that both terms in are in competition, since
a minimizer of the fractional Sobolev energy in €2 is ¢-harmonic and, thus, if it is
nonnegative outside of €2, it is strictly positive inside of €2, maximizing the second
term.
Consider now the Poisson kernel for fixedn e Nand 0 < o < 1,

|y
(€, y)|mt2e

(R™) is given by

|2a

(14)  Py(§) := Pra§.y) = Cna forevery (€,y) € R” x R.

The Poisson extension of f € LloC

W)= 2 B = [ Puae) £ - 9)d
for every (x’, y) € R” x R.

(1.5)

By [9], with a convenient choice of the constant, one gets

lim 1720, (', y) = —(=A)" f(x')

INO

in every point where f is regular enough. Moreover, the extension satisfies the
localized equation V- (|y|® Vi) = 0 weakly, away from R” x {0}. The whole point
is that local minimizers of can be extended via the previous Poisson kernel Py,
to (even) minimizers of (see the Appendix for a precise statement). Therefore,
the thin one-phase problem appears as a “localization” of the one-phase problem
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for the fractional Laplacian. Notice that—and this is of major importance for us—
this localization technique does not carry over to other types of nonlocal operators
besides pure powers of second-order elliptic operators. This is a major drawback of
the theory, in the sense that, at the moment, it seems to be impossible to tackle one-
phase problems involving more general operators than the fractional Laplacian.
The main point is we do not know how to prove any kind of monotonicity for
general integral operators.

This connection between the nonlocal analogue of the Bernoulli problem and
our thin one-phase problem allows us to simplify several arguments by working in
the purely nonlocal setting. However, this underlying nonlocality is also the reason
why several results, which came more easily in the setting of [2], are nontrivial or
substantially harder for us. For example, perturbations of solutions need to take
into account long-range effects that make classical, local perturbation arguments
much more difficult.

In the paper [[7], the authors proved basic properties of the minimizers for the
functional 7 such as optimal regularity, nondegeneracy near the free boundary, and
positive densities of phases. Also they provided an argument for » = 2 showing
that Lipschitz free boundaries are C 1 A feature of the functional 7 is that the
weight |y |? is either degenerate or singular at {y = 0} (except in the case § = 0).
Such weights belong to the Muckenhoupt class A, and the seminal paper of Fabes,
Kenig, and Serapioni [26] investigated regularity issues for elliptic PDEs involving
such weights (among other things). After that, [[19] proved an e-regularity result
and [1] showed the existence of a monotonicity formula for this setting.

In the case B = 0, the problem is still degenerate in the sense that derivatives
near the free boundary blow up. The case 8 = 0 has been thoroughly investigated
in the series of papers by De Silva, Savin, and Roquejoffre [[16-18].

The main goal of our paper is to provide a full picture of the regularity of the free
boundary for any power 8 € (—1, 1), both in terms of measure-theoretic statements
and partial (or full) regularity results. From this point of view our contribution is a
complement to the paper by De Silva and Savin [[18]] for 8§ = 0. It has to be noticed
that the standard approach to regularity of Lipschitz free boundaries as developed
by Caffarelli (see the monograph [8]]) does not seem to work in our setting.

Our Approach to Regularity

In [2] (and many subsequent works), the minimizing property of the solution is
used to prove that the distributional Laplacian of that solution is an Ahlfors-regular
measure supported on the free boundary. This implies (among other things) that
the free boundary is a set of (locally) finite perimeter, and thus almost every point
on the free boundary has a measure-theoretic tangent. One can then work purely
with the weak formula (i.e., the analogue of (I.2))) to prove a “flat implies smooth”
result which, together with the existence almost everywhere of a measure theoretic
tangent, has as a consequence that the free boundary is almost everywhere a smooth
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graph and the free boundary condition in holds in a classical sense at the
smooth points.

A similar “flat implies smooth” result exists in our context (this is essentially
due to De Silva, Savin, and the last author [19]; see Theorem [2.4]below). However,
showing that the free boundary is the boundary of a set of finite perimeter proves to
be much more difficult. Due to the nonlocal nature of the problem, —div(]y|# Vi)
(considered as a distribution) is not supported on the free boundary. Furthermore,
the scaling of this measure does not allow us to conclude that the free boundary
has the correct dimension (much less that it is Ahlfors regular).

To prove finite perimeter, we take the following approach inspired by the work
of de Silva and Savin: after establishing some preliminaries we prove crucial
compactness results. This, along with a monotonicity formula originally due to
Allen [1] allows us to run a dimension reduction argument in the vein of Federer or
(in the context of free boundary problems) Weiss [38|]. With this tool in hand, we
show that the set of points at which no blowup is flat is a set of lower dimension.
Locally finite perimeter and regularity for the reduced boundary then follow from
a covering argument and some standard techniques.

Here and throughout the paper, we will denote the ball of radius r in R”*! cen-
tered at the origin by B, and B, := B, NIR" x {0}. Moreover, for the definition of
HP, see Section 2| We may then summarize our regularity results in the following
theorem.

THEOREM 1.1. [Main regularity theorem] Let u € HP (B1) be a (nonnegative,
even) local minimizer of J in By C R*"*1. Ler Bi,+(u) = {x =(x',0) € By :
u(x) > 0}, let F(u) be the boundary of B , (u) inside of B}, and assume that
0 € F(u). Then:

(1) B{’+(u) (as a subset of R" x {0}) is a set of locally finite perimeter in B.

(2) We can write the free boundary as a disjoint union F(u) = R(u) U X (u),
where R(u) is open inside F(u), and for x € R(u) there exists an ry > 0
such that B(x, r¢)N F (1) can be written as the graph of a C 1S -continuous
Jfunction.

(3) Furthermore, the set X (u) is of Hausdorff dimension < n — 3 (and, there-
fore, of H*~-measure zero). In particular, for n < 2, %(u) is empty, and
moreover, if n = 3 then X (u) is discrete.

The constants (implicit in the set of finite perimeter, and the Holder continuity of
the functions whose graph gives the free boundary) depend on n and B but not on

el ge B,y

As usual X(u) C F(u) is called the singular set of the free boundary: the set
of points around which F (1) cannot be parametrized as a smooth graph and all the
blowups will be nontrivial minimal cones; see Theorem

Our second contribution concerns the structure and size of the singular set. It
builds on recent major works on quantitative stratification [32] extended to free
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boundary problems (in particular, the one-phase problem) by Edelen and the first
author [22].

THEOREM 1.2. Let u € HP (B1) be a (nonnegative, even) local minimizer of J in
Biand 0 € F(u). Let By , (u) := {x = (x',0) € By : u(x) > 0} and F(u) be
the boundary of B| | (u) inside B|. Then, there exists a kq > 3 such that 3 (u) is
(n — k})-rectifiable and

H" ke (S(u) N D) < Cpoaisi(p.oy) forevery D € By.

In [15], De Silva and Jerison constructed a singular minimizer for the Alt-
Caffarelli one-phase problem in dimension 7, giving the dimension bound k* < 8
in the previous theorem in this case (see [22]). This result is not known for the
thin one-phase problem. The reason is that the one-phase problem, seen from the
nonlocal point of view involving the fractional Laplacian, is related to the so-called
nonlocal minimal surfaces introduced by Caffarelli, Roquejoffre, and Savin [6]. In-
deed, in [33]], the authors proved that a fractional version of Allen-Cahn equation
converges variationally to the standard perimeter functional for « > 1/2 and to
the so-called nonlocal minimal surfaces for @ < 1/2. We can then conjecture the
bound k; < 8 for o > 1/2 by analogy with the result for the standard one-phase
problem, but the bound for & < 1/2 is not clear at all. However, one knows that
there is no singular cone in dimension 2 for nonlocal minimal surfaces [34] and
that the Bernstein problem is known for those in dimensions 2 and 3 [28]].

We would like also to make a last remark about a result that is of purely nonlocal
nature. In the case of the one-phase problem, one can show that the distributional
Laplacian is a Radon measure along the free boundary. In the case of the thin
one-phase free boundary problem, due to the nonlocality of the problem, such a
behavior does not happen in the sense that we will show that the fractional Lapla-
cian is an absolutely continuous measure with respect to n-dimensional Lebesgue
measure with a precise behavior. This phenomenon is of purely nonlocal nature
and similar to the fact that the fractional harmonic measure is of trivial nature.
More precisely, every minimizer u satisfies V - (|y|# Vi) = 0 weakly, away from
R”™ N{u < 0}. Thus, equation above can be understood as an Euler-Lagrange
equation for the functional 7 in the sense that the restriction to R” of a given
minimizer ¥ in @ C R”*!, harmonic away from R” x {0} and with asymptotic
behavior u(x, y) = O(](x. y)|%), is always a solution to for A = A(a) at
“nice” points of the free boundary.

A brief summary of this paper follows. In Sections [3] and ff] we discuss com-
pactness of minimizers and we recall Allen’s monotonicity formula to derive some
immediate consequences. In Section |5 we show that the positive phase is a set of
locally finite perimeter, establishing the first part of Theorem (modulo energy
bounds), and we show that the singular set can be identified using the Allen-Weiss
density. Section [6is devoted to deducing full regularity of minimizers in R2*+1
concluding the proof of Theorem|1.1
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Once we have established the finite perimeter, in Section [7|we remove the de-
pendence of the estimates on the energy of the minimizer in the previous theorems,
using a rather subtle argument that combines results from all the previous sections.
A crucial step is to analyze some basic properties of the distributional fractional
Laplacian of our minimizer. As stated above this analysis will not be enough to
establish that the positivity set of the minimizer is a set of locally finite perimeter.
We believe that many of these results may be of independent interest. For exam-
ple, corresponding results for the classical Bernoulli problem have been used to
understand the free boundary problems for harmonic measure (see [31[]).

Finally, Section [8]is devoted to the proof of Theorem[I.2]

Notation

We denote the constants that depend on the dimension 7, ¢, and perhaps some
other fixed parameters that are clear from the context by C. Their value may
change from one occurrence to another. On the other hand, constants with sub-
scripts such as Cy retain their values along the text. For a, b > 0, we writea < b
if there is C > O such thata < Ch. We writea ~ btomeana < b < a.

Let u be a continuous function in R”? 1. Then we write Q4 (1) := QN{u > 0},
and we denote the zero phase, the positive phase, and the free boundary by

Qo(u) := {x € R” x {0} : u(x) = 0}°,
QL (u) = Q4 NR" x{0}) = {x € R” x {0} : u(x) > 0},
F(u) := Fo(u) = 0(Q4+ () NR" x {0}) N 2,
respectively. Here both the boundary and the interior are taken with respect to
the standard topology in R”. Note that R” x {0} is the disjoint union of Q¢(u),
Q' (u), and F(u) whenever u is nonnegative. We also call Freq(u) = Freq,Q (1)
the points of Fq (1) where the free boundary is expressed locally as a C! surface.
Finally, let X(u) = Xq(u) = Fqo(u) \ Fredq(u). In general, we will write
Q= QN (R" x {0}).
Throughout the paper we will often fix 8 € (—1, 1) but thenreferto« € (0, 1) or

vice versa. These two numbers are always connected by the relationship o = %

2 Preliminaries

In this section, we provide the known results concerning the problem under
consideration. We say that a function u is ever if it is symmetric with respect to
the hyperplane R” x {0}, that is, u(x’, y) = u(x’,—y). The function spaces that
we will consider are the following

H” (Q) := {u € H'(B, Q) : u is even and nonnegative}
and
HY (@) := {u € L2.(Q) : u € HF(B) for every ball B € Q).

We will omit €2 in the notation when it is clear from the context.
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DEFINITION 2.1. We say that a function u € Hﬁc

in a domain 2 if for every ball B € 2 and for every function v € HP (B) such
that the traces v|yg = ulyp, the inequality

Ju,B) < J(v,B)

(2) is a (local) minimizer of J

holds.

As usual for several free boundary problems, it is a natural question to exhibit a
particular (global) solution so that one gets an idea of the qualitative properties of
general solutions. Let us consider the following function: for every x € R” let

Jne(x) = Cn,a(xn)(i,

where a4+ = max{0,a}. Ifn = 1, f} o is a solution to (1.2) for a convenient choice
of c1 o (see [4, theorem 3.1.4]). In fact, one can see that the same is true forn > 1
using Fubini’s theorem conveniently, with

2.1 —(=D)* fua(x) = cnalxn) ",

where a_ = max{0, —a}.
As a toy question we wonder whether the trivial solutions are minimizers. In-
deed, this is the case, as we will see later in Section [4.1]

PROPOSITION 2.2. Letn € N and 0 < a < 1. Then the trivial solution u, o :=
fu.a * Py is a minimizer of J in every ball B C R"t1.

Next we collect the main properties of minimizers in the unit ball proven in [7,
theorems 1.1-1.4, prop. 3.3, and cor. 3.4].

THEOREM 2.3. Ifu € HP(By) is a minimizer of J in Q@ = By with Il s, =
IVullz2cp, y18) < Eo and xo € F(u) N B%, then it satisfies

(P1) Optimal regularity (see [[7, theorem 1.1]): ||u||Ca(Bl/2) < C(1+ Ep).

(P2) Nondegeneracy (see [7, theorem 1.2]:) u(x) > C dist(x, F(u))* for x €
By /2,4

(P3) Interior corkscrew condition (see [[7, prop. 3.3]:) there exists x4 € B;.(xo)
so that B'(x+, Cor) C Q/, (u).

(P4) Positive density (see [[7, theorem 1.3]:) |20 N B,.(xo)| Z r".

(PS5) Blowups are minimizers (see [[7, cor. 3.4]): The limit of a blowup sequence
U (x) := W converging weakly in H'(B, B1) and uniformly is a
global minimizer.

(P6) Normal behavior at the free boundary (see [7, theorem 1.4]): the boundary
condition in is satisfied at every point on the free boundary with a
measure-theoretic normal (see [24]) for a prescribed value of A.

All the constants depend on n and o, and also on Eg except for the ones in P1 and
P2.
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A major tool in the present paper is an e-regularity result, i.e., in the language
of free boundaries a statement of the type “flatness implies smoothness.” In [19],
the authors proved such an e-regularity result for viscosity solutions to the overde-
termined system associated to minimizers of J. Here we establish that all local
minimizers are in fact viscosity solutions. While this verification may be standard
for experts in the field, we include it here for the sake of completeness.

THEOREM 2.4 (e-regularity). There exists € > 0 depending only on n, «, and E
such that for every nonnegative, even minimizer u of the energy (1.1) on a ball
B C R with ||u|lys gy < Eor(B)?2 and

2.2) {(x,0) € B:xy <—€} C Bo(u) C{(x,0) € B:x, <e¢},
we have that F(u) € Cl’y(%B), with) <y < 1.

loc

Note that the dependence on Eg will be removed in Section
PROOF. We say that u is a viscosity solution to

V- (lylfvu)y =0 in B (),

2.3
23) limy g4 “EX0HVE0 — 1y - for (xo,0) € F(u)

if
() ueC(B1),u=0,
(i) u € Ckl)’c1 (B1,+(u)), u is even, and it solves V - (Iy|BVu) = 0 in the
viscosity sense, and
(iii) any strict comparison subsolution (resp., supersolution) cannot touch from
below (resp., from above) at a point (xg, 0) € F(u).
We claim that

24) every nonnegative even minimizer is a viscosity solution.

Conditions (i) and (ii) have been verified in [[19}[36]]. To verify our claim it suf-
fices to prove condition (iii) above: that any strict comparison subsolution cannot
touch u from below at a point (xg,0) € F(u). The analogous claim for strict
comparison supersolutions will follow in the same way.

Let us recall (see, e.g., definition 2.2 in [[19]) that w € C(B1) is a strict compar-
ison subsolution (resp., supersolution) to if

(@ w =0,

(b) w is even with respect to {y = 0},

© we C>({w >0},

(d) div(]z|Vw) > 0in By \ {y =0},

(e) F(w)islocally given by the graph of a C? function and for any xo € F(w)
we may write

(2.5) w(x,y) = aU((x—x0)-v(x0), y) +o(ll(x—x0, M) ). (x,y) = (x0.0).
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Here U is the extension of the trivial solution (see [19]]), and v(xg) is the
unit normal to F(w) considered as a subset of R” pointing into {w > 0}
anda > 1.

(f) Furthermore, either the inequality is strict in (d) or @ > 1 in (e).

So assume that w > u where w is a strict comparison subsolution and u is some
minimizer and that w = u at (x¢,0) € F(u). Since u(xp,0) = 0 it follows that
(x0,0) € F(w) and with a harmless rotation we can guarantee that v((xg, 0)) =
ey. We want to show that e, is also the measure-theoretic unit normal to F(u).
Indeed, since F(w) is C? there must exist a ball B C {w > 0} that is tangent
to F(w) at (xg,0). It must then be the case that B C {u > 0} as well. Thus
(x0,0) € F(u) has a tangent ball from the inside, which, by proposition 4.5 in [7]
implies that 4 has the asymptotic expansion

u(x,y) = U((x — x0) - v(x0).y) + o(ll(x = x0. ). (x.y) = (x0.0).

If u > w, this implies that w must satisfy the expansion in witha =1 at
the point xg. This, in turn, implies that div(|z|#Vw) > 0in B;\{y = 0} (by the
definition of a strict subsolution). Furthermore, since w € C? where {w > 0}, we
can guarantee that div(|z|# Vw) > 0 in all of B; N {w > 0}.

Let us return to the ball B that is a subset of {u > 0} and {w > 0} and for which
(x0,0) € B. We know that w —u # 0in B \ {y = 0} (this is because w strictly
satisfies the differential inequality in B away from {y = 0}), and we know that
w — u is a subsolution in B. Furthermore, (x¢,0) € B is a strict maximum, so by
the Hopf lemma in [5, prop. 4.11] it must be that

fim (w —u)(xo + tv(xop),0) 0.
t¢0+ I

This contradicts the fact that ¥ and w both satisfy at (xp,0) with a = 1.
Therefore, (xo, 0) must not have been a touching point and u is indeed a viscosity
solution.

Since, u is a viscosity solution, [[19, theorem 1.1] applies and we get the desired
e-regularity. O

3 Compactness of Minimizers

In this section we prove important results on the compactness of minimizers. As
we mentioned above, our contribution is that convergent sequences of minimizers
also converge in the relevant weighted Sobolev spaces strongly rather than just
weakly. This will prove essential to the compactness arguments used later in this

paper.
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3.1 Caccioppoli Inequality

First we want to show that the distribution A := V - (| y|® V) is in fact a Radon
measure with support in the complement of the positive phase as long as u is a min-
imizer. In Section [Z] we will come back to this measure to understand its behavior
around the free boundary.

LEMMA 3.1. Let @ C R"*! be an open set, and let u € Wl’Z(Q, |y|8) be such

loc

that V - (|y|# Vu) = 0 weakly in Q4 (), i.e., for every n € C (24 (),
G.) (- (P9 == [ (P9 vy = 0.

Then ) := V - (|y|# Vu) is a positive Radon measure supported on {u = 0% and
for every v € WH2(Q2, |y|#) N C.(Q)

(3.2) /vdk:—/|y|ﬂVu-Vv.

PROOF. Indeed, by (3.1) the quantity

_ By . Ve — Byy . infp _ ¥
f|y| Vu - V¢ f|y| Vu V(é‘max{rnm{Z 8,1},0})
e—0
= BVl vg =2 0
QN{0<u<2e}

defines a positive functional on positive ¢ € Cc0 ! (£2). Moreover, for compact K C
Q, consider a Lipschitz function fx such that yx < fx < yq.If{ € Cé)’l(K),
by the positivity shown above we obtain

—/ BV VE < ¢ 1o / VUV f < Crulltliio

and, by Hahn-Banach’s theorem, we can extend the functional to a positive func-
tional in C.(€2), that is given by integration against a positive Radon measure by
the Riesz representation theorem.

The fact that holds for all functions in W 1-2(Q, |y|#) N C.() follows by
a standard density argument. O

The Caccioppoli inequality is the first step to proving convergence in a Sobolev
sense. It will also be useful when we remove the a priori dependence of our results
on the Sobolev norm of the minimizer.

LEMMA 3.2 (Caccioppoli inequality). Let B C R"*! be a ball of radius r centered
on R™ x {0}, and let u € WY2(B, |y|P) be such that V - (|y | Vu) = 0 weakly in

B N{u > 0}. Then
4
/ yIBVul? < —2f N
LB = JB\1B

2
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PROOF. Let 1 be a Lipschitz function such that y 1B < n < xp and with

V| < % By Lemma
O=/ un®dx =/ |y|’3Vu-V(un2).
B B

By the Leibniz rule

/|y|ﬂn2|w2=—/ B 2unVu - Vi
B B

and using Holder’s inequality we get

4
[ < [ Pavar < [ ptadwnr S [ e,
ip B B = JB\3B
O
LEMMA 3.3. Letu € HP(B,) be a minimizer of J in Bay and 0 € F(u). Then

—n/2 —
r VUl oy gy < 7o,

= lull¢acs,) = C(1+ r_n/2||V“||L2(Bzr;|y|3))'

PROOF. The first inequality is an immediate consequence of Caccioppoli, the
middle estimate is trivial, and the last follows from P1 in Theorem[2.3] U

3.2 Compactness

In the following lemma we prove the compactness of minimizers in the relevant
Sobolev spaces. For convenience, we also detail several compactness results that
were either already proven in [[7] or are standard consequences of the nondegen-
eracy estimates in Theorem Nevertheless, we include full proofs here for the
sake of completeness. We note here (as we did above and will do again below) that
while we currently need to assume the uniform bound on the Holder norm of the
functions uy, we can get rid of this assumption in the light of the results of Section

[zl

LEMMA 3.4 (Compactness results). Let {ug}ge, C 5 (i

loc

(2) be a sequence of
minimizers in a domain Q@ C R"*T1 with ”Mk”(']a(g) < Ego with nonempty free

boundary. Then there exists a subsequence converging to some Uy < H{ic (2) such

that for every bounded open set G € 2 we have
(1) ux — ug in CB(G) for every p < «,
(2) up — ug in LP(G) for every p < oo,
(3) Huyg >0} NG — Hug > 0} N G in the Hausdorff distance,
€] Xfup >0} = X{up>0} N LI(G/)» and
(5) Vug — Vug in LP(G; |y|P) for every p < 2.



THE THIN ONE-PHASE PROBLEM 1983

PROOF. The first claim follows from uniform Hoélder continuity and compact
embeddings of Holder spaces. The claim (2) follows from (1) easily.

We now prove the third claim. Let € > 0. We will first show that for x € R” x{0}
we have

(3.3) d(x, F(ug)) > € = d(x, F(uy)) > %

for large k. This implies that F(ur) C {x: d(F(ug), x) < 2¢} for k large enough.

Let B(x,¢) C F(up)°. If ug is positive in B(x, €), then it is bounded from
below by a positive number in B{(x,e/2). In this case u; are also positive in
B(x, €/2) for large k due to uniform convergence in G. Thus B(x,€/2) C F(ug)*¢
for large k. If u = 0 in B’(x, €), then due to the uniform convergence we know
that for k large enough u; < Ce® in B’(x, €), where C is a constant given by P2
in Theorem|2.3|so that uy, has no free boundary points in B(x, €/2) for all large k.

This proves (3.3).
Next we will show that for all large k
(3.4) Fug) C{x: d(F(ug),x) < ¢}

If this was not true we could find a point x € F(up) and a subsequence of uy
such that B’(x,€) C F(ug)¢ for every k in the subsequence. If the subsequence
contains infinitely many uj such that u;z = 0 in B(x, ¢), then also ug = 0 due
to uniform convergence. Otherwise the sequence contains infinitely many uj, for
which B(x,€) is contained in the positive phase. In this case the nondegeneracy
implies that in B(x, ¢/2) we have u; > Ce%, with C independent of k. Again
uniform convergence implies the same lower bound for u¢, which contradicts our
choice x € F(uyg).

To show the fourth claim we notice that F (i) has zero n-dimensional Lebesgue
measure by the Lebesgue differentiation theorem and the positive density of the
zero phase. Take an open set V O F(ug) with m(V N G’) < €. For large k we
have F(ug) U F(uo) CV NG, 50 || Xqup>03 — X{uo>03llz1(c) < €.

Also the sequence is uniformly bounded in H'?(G;|y|#) by the Caccioppoli
inequality. This implies by compactness 29, theorem 1.31] the weak convergence
of Vuy in L?(G; |y|#). To obtain strong convergence, use Lemma [3.5|below. []

It remains to show that weak convergence implies strong convergence.
L. . 1 ...
LEMMA 3.5. Any sequence of minimizers {uy}72 o in Q C R with up — ug

uniformly and Vuy — Vug weakly in Lﬁ)C(Q, |y|B) satisfies that Vux — Vug
2

strongly in Li; (2, ]y 8.

PROOF. Let n € Cé) /1 (€2) be a nonnegative function. We claim that for every
& > () there exists jo so that

/|y|ﬁn|w—wj|2 <& forj = jo.
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First we isolate the main difficulty
[ a5, = [ 1y 0(Vuto Vi) o~ [ 1y1#n(Vuo V).
By weak convergence,

Vlylﬂn(Vuo—Vuj)-Vuo <e/d

for j big enough. Note that this is true even if the u; are not minimizers. The
bound on the second term, however, needs the minimization property.
We observe that

/ 1B n(Viuo — V) - Vu

3.5) :/|y|ﬂ(wo—w,-)-vmu,-)—/|y|ﬂu,-(Vuo—Vuj)-Vn-

=:1 =:1I

To estimate I in (3.5), let A; be the measures corresponding to u; from Lemma

By (3.2) we get that
[ 1P 0=V V) = [y dno— [y .

Since A;j is supported on {u; = 0}, we have that

/nujdkj =0

for every j (including j = 0 as uyg is also a minimizer to J, see corollary 3.4
in [[7]).
To finish the estimate on I in (3.5), we observe that

/r)uj dXo =/n(uj—u0)dko < sup |y —u0|/nd/\0.
supp 7

By uniform convergence on compact subsets, supg,,, , luj —
for j big enough.
We turn towards estimating II in (3.5)):
I} = ‘/ y1Puj(Vug — Vuy) - V??‘

(3.6) <

/ 1 (Vg — V) - (Movﬂ)‘

+ sup |uj —uoll[Vuo — Vu;jllr2q,1y5) IVillL2 @,y 8)-
supp 7
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The first term goes to zero by weak convergence of Vu; to Vug. The second term
satisfies

sup [u; —uolllViro = Vi ll L2(supp n, 18y IVl L2 (@, 1) < €/4

supp 7
for j big enough, by uniform convergence and the uniform bound of the norm
V|| L2(supp n,|y|#) derived from the Caccioppoli inequality in Lemma to-
gether with uniform convergence. O

Lemma |3.4| implies that minimizers converge to minimizers (which was ob-
served in Corollary 3.4 in [[7]), but also implies the stronger fact that the energy
is continuous under this convergence:

COROLLARY 3.6. Let uy be a sequence of minimizers in @ C R*T1 with u, —
ug locally uniformly and supy, ||\ug|lgs < o0o. Then ug is also a minimizer to J
in Q and for any B € Q we have J(ug, B) — J(ug, B) after passing to a
subsequence.

4 Monotonicity Formula and Some Immediate Consequences

From [1] we have the following monotonicity formula:

THEOREM 4.1 (Monotonicity formula, see [1, theorem 4.3]). Let u be a minimizer
in Bg(xq) for the functional J with xo € F(u). Then the function

J(u, Br(x0)) @
ri—> U (x) = W(r) = ,,nr 0 s /Z)B o) ylPu? dH"

is defined and nondecreasing in (0, §), and for 0 < p < ¢ < 8, it satisfies

2
Y(o) - ¥(p) = / y|P 2]au(x) — (x — x0) - Vu(x)|

dx > 0.
Bo (x0)\ B, (x0) |xo — x|n+2

As a consequence, the blowup limits are cones, in the sense of the following
corollary.

COROLLARY 4.2. Let u be a minimizer in Bg(xo) with xo = (xy.0). Consider
a decreasing sequence 0 < py k_)—oo> 0 and the associated rescalings up(x) :=
w. Then the Allen-Weiss density

Wi (xo) 1= rli% W (xp)
is well-defined. Furthermore, for every bounded open set D C R"*! and k >
k(D) this subsequence uy is bounded in HY2(D:|y|P) and, passing to a sub-

sequence Uy ., converges (in the sense of Lemma to ug, which is a globally
defined minimizer of J that is homogeneous of degree a.

The proof is the same as in [38} theorem 2.8].



1986 M. ENGELSTEIN ET AL.

Remark 4.3 (Nonuniqueness of blowups). We call the function uo appearing in
Corollary a blowup of u at xg. A priori, the function uo may depend on the
subsequence ug,. However, a simple scaling argument shows that for all radii
r > ( and all blowups ug to u at xo we have

W0 (0) = WY (xo).

4.1 Dimension Reduction

We use the homogeneity of the blowups to obtain dimension estimates on the
points in the free boundary for which there exists a nonflat blowup. This process
is known as “dimension reduction” and has been applied to a variety of situations
(see [|38]] for its application to the Bernoulli problem).

The first lemma shows that blowup limits have additional symmetry:

LEMMA 4.4. Letu € Hf)c (R™*1Y be an a-homogeneous minimizer of J and let

xo € F(u)\ {0}. Then any blowup limit ug at xg is invariant in the direction of
X0, Le., for every x € R**+1 and every A € R,

ug(x + Axg) = up(x).

PROOF. Let x € R™**!, and consider its decomposition x = X 4 Axg with
X € (xo)L. We only need to check that

4.1 up(x) = uo(X).

Bpk (JC())

X0

FIGURE 4.1. The distance dist(Py, P3) = O(p,%).

Consider a ball B = B(0,r) C R"*! 5o that X, x € B. Let {p;} be a se-
quence of radii converging to 0 and such that uz (x) := W converges to ug

uniformly on B;. For k big enough, [[uy — uollz=(B,) < €. Then,
(4.2) [uo(x) —uo(X)| < 2 + |up(x) — ug(¥)].

To control the last term above, we use the homogeneity of ©#. Writing P :=
X0+ prX and Py := xo+ pgx, we have pfuy(X) = u(P1) and pfug(x) = u(P2).
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Let P3 be the intersection between the line through P, and xg and the line through
the origin and P» (see Figure.I). By homogeneity of u
| P2 |P2—P3|)a

u(P2) = ”(P”(@) _ u(P3)(1 L1

Thus,
PElug (x) —ur ()] < [u(Pr) —u(P3)(1 + O(pr))*|
< [u(P1) —u(P3)| + [u(P3)|O(px).

By Thales’ theorem, | Py — P3| = W = O(pi), and using the C¥

character of u and the fact that u(xq) = 0, we get
Pl (x) —ur(X)] < [[ull o (I1P1— P3|* + | P3|*O(or)) = O(0g%) + Olpx).
and (4.1) follows by (.2) since pr — 0. O

We then recall that a minimizer with a translational symmetry is actually a min-
imizer without that symmetry in one dimension less. This is known as “cone split-
ting”:

LEMMA 4.5. Letu € H{ZC (R**1) be an a-homogeneous minimizer of J in R*+1
that is invariant in the direction e,. Then i (x’,y) := u(x’,0, y) is a minimizer
of J in one dimension less.

PROOF. The proof is a slight variation of |38} proof of lemma 3.2]. O

Next we provide a nonstandard proof of Proposition to show that the triv-
ial solution is a minimizer. We use in a sequence of conveniently chosen
blowups and a dimension reduction argument. Note that the proposition could also
be proven via a classical dimension reduction argument.

PROOF OF PROPOSITION[2.2. Consider a nonzero minimizer ¥ with nonempty
free boundary (see [7, prop. 3.2] for its existence), choose a free boundary point
X0 € F(u) and consider ug to be a blowup weak limit at this point, which exists
and is ¢-homogeneous by Lemma[4.2] Then uy is also a global minimizer by
and not null by the nondegeneracy condition.

Next we argue by induction: given 0 < j <n — 2 let u; be an a-homogeneous
global minimizer different from O such that it is invariant in a j-dimensional linear
subspace H; C R”, i.e., forevery v € H; and every x’ € R”,

uj(x',y) =ulx" +v,y).

Consider a point x; € F(u;)\ (H; x{0}) that exists as long as j < n —1 by the
interior corkscrew condition and positive density, and let #; 1 be a blowup limit
at this point, which is again an a-homogeneous global minimizer. We claim that
uj 41 is invariant in fact in the (j 4 1)-dimensional subspace H; + (xJ/.).
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Indeed, u; 41 is invariant in (xj’.) by Lemma On the other hand, since u;
is invariant in Hj, so are the functions in the blowup sequence, and thus, u; 1 is
invariant in H;. Thus, forv € Hj, vg € (xJ’.), and x € R*T1 we get

u(x + v +x7) = ulx +v) = u(x),

and the claim follows.

Thus, after n — 1 steps, we obtain u,—;, which is an «-homogeneous global
minimizer invariant in an (n — 1)-dimensional space H,_;, with nonempty free
boundary. Thus,

Mn—l(x/, 0) = Cn,a(x;/g)a )

where the constant is given by [(P6)] The proposition follows by Proposition [A.T.
g

4.2 Upper Semicontinuity

Next we show that Allen-Weiss energy at a fixed radius is continuous both with
respect to the minimizer and with respect to the point:

LEMMA 4.6. Letu;j € H{ic(Q) be minimizers of J in Q and u; — ug in the sense

of Lemma [3.4] Then, for xj — xo and r < dist(xo, 02),
WY (x;) 2225w (xy).
PROOF. Let ¢ > 0. We want to check that for j big enough,
W, (xj) — WO (x0)| < e

We will consider the three terms of the energy separately. For the first term,
/ |y1P|Vu; 2 —f 1P| Vuo|? < re/3
r(x)) By (x0)

follows from the L? convergence of the gradients. Indeed, if §; := |x; — xo| < §
for j big enough and B, 15 C €2, then

/ |y|ﬂ|w,~|2—/ 18 1Vuol?
By (x;) B, (x0)

5/ |y|f’(|w,-|2—|wo|2)+/ 18 Vuol?

Br(xj Br(xj)ABr(xo)

5/ |y|ﬁ(|wj|2—|wo|2)+/ 18 Vo ?
By s(x;) (Br+8j \Brfsj)(xo)

<r'e/3.

For the measure, we estimate

1o ~dm—/ 1o dm
/Br(x,,»)' ) By

<r'"e/3
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for j big enough as a consequence of o | (u;) = X2 (uo) N L1 as before. The

loc
faCt that
BBV()CJ') 3B,-(X())

for j big enough is a straight consequence of the uniform convergence and the
continuity of ug. O

<r"tlg/3

o

It is well-known that the limit of a decreasing sequence of continuous functions
is upper semicontinuous (see [11, theorem 1.8]). The monotonicity formula also
implies the following result.

10c (§2) be minimizers of J in Q and uj LIS Uq in the
sense of Lemma[3.4] with x; € F(u;) for j € N. Then, if x; — xo and rj — 0,

LEMMA 4.7. Letu; € HY

lim sup \Ifgj (xj) < limsup \Ilrujj (xj) < W (xp).
J J

PROOF. The first inequality comes from monotonicity.
To see that
lim sup W, (xj) < WO (xo),
J
it is enough to check that for every r > 0

lim sup W,/ (x;) < W¥0(xo),
J

or by using monotonicity, it suffices to show that for every ¢ > 0 and j big enough,
WY (x) — WO (xo) < .

But this is true for j big enough because the left-hand side converges to 0 by the
continuity of the energy from Lemma [4.6] O

5 Measure-Theoretic Properties

5.1 Finite Perimeter

We will show that Q/, (u) is a set of locally finite perimeter. Then Freq(u) will
coincide with the measure-theoretic reduced boundary by the e-regularity theorem,
see [2, secs. 4.6 and 4.7].

DEFINITION 5.1. For every 0 < @ < 1 we can define k as the infimum of

{k € N : 3 an e-homogeneous minimizer u € 5 (4 R st T(w) = {O}}.

loc
Note that, to the best of our knowledge, there is no result showing that k needs
to be finite.

LEMMA 5.2. Let u be an a-homogeneous minimizer of J in R* 1 with n < k.
Then u is a rotation of the trivial solution.
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See [38, sec. 3] for the proof.

From the positive density properties, we know that k; > 2. From the homogene-
ity of the blowups we find out that the free boundary in R!' 1 is in fact a collection
of isolated points. Later in Theorem[6.1] we will show that in fact k; > 3.
LEMMA 5.3 (Isolated singularities). Let u € ) 0 (Q) for Q C R'™! be a mini-

loc
mizer of J in Q. Then F(u) has no accumulation points in 2.

PROOF. Arguing by contradiction, we assume that F(u) has an interior accu-
mulation point which, without loss of generality, we assume to be the origin.

Let (xz,0) be a sequence of singular points converging to 0 with x; > 0. Con-
sider the blowup rescaling uy (x) := ”(i—l{‘;x) Note that 14 (0,0) = u;(1,0) = 0.
Moreover, by the interior corkscrew condition, there exist zx € (1/2,3/2) such
that ug | g/ (z,,0) > 0,50 u(zg,0) 2 C by the nondegeneracy condition.

Choosing a subsequence, we may assume that z; — zo > 1/2, and up — ug
in the sense of Lemma [3.4] In particular, ug is homogeneous by Corollary
reaching a contradiction with the fact that (1, 0) = 0 and u¢(z0,0) = C. O

We will prove the local finiteness of the perimeter of the free boundary adapting
a proof of De Silva and Savin in [18]]. Our proof is essentially the same, but we
repeat it for the sake of completeness.

As in [[18] we say that a set A C R” satisfies the property (P;) if the following
holds: for every x € A there exists an rx > 0 such that for every 0 < r < ry, every
subset .S of B{x,r) N A can be covered with a finite number of balls B(x;, r;) with
x; € S such that

(5.1) > r<rt)2,

LEMMA 5.4. IfH'(Z(U)) = 0 for every minimal cone U in R*T1, H (Z(u)) = 0
for every minimizer u of J defined on @ C R"+1.

PROOF. We first show that X (u) satisfies the property (P¢). If (P) does not
hold, we find a point y € X(u) for (P;) is violated for a sequence ry — 0. We
consider the blowup sequence
(5.2) Ure (X) = 1 %u(y + rex).

By Corollarywe may assume, by taking a subsequence, that u,, converges to a
minimal cone U. By our assumptions we may cover X (U) N B(0, 1) with a finite
collection of balls {B(x;, f—é)}le with

By Lemma we know that free boundaries converge in the Hausdorff sense
and thus the set F(u,,) N B(0,1) \ |UJ; B(x;, p;/5) is flat for all large k. From
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Theorem 2.4 we infer that all singularities must be covered by the same balls; that
is, for all k > ko,

(5.3) S(ur,) N BO.1) C | Blxi,pi/5).
1
After rescaling we see that u satisfies the condition for property (£;) in the ball
B(y,ry), which is a contradiction. Therefore the property (P;) holds as claimed.
Consider the set Dy := {y € X(u) : r, > 1/k}. Fix a point yo € Dj. By
property (P;) applied to ro = 1/k, we find a finite cover of D; N B(yg, ro) with
balls B(y;,r;), yi € Dy, satisfying

> ot =/
i

Similarly, for each ball B(y;,r;) in the cover we use the property (P;) to find a
finite number of balls B(y;;,rj), yij € Dg, which cover Dy N B(y;,r;) and

satisfy
DT =Ti/2
J

and thus ) ;. jlij = rf/4. By repeating the argument N times we obtain a cover
of Di N B(yo, ro) by balls B(z;, r;) that satisfies

¢ —N .t
Zrl <27"rp.
l

This implies that H’ (B(yg,79) N Di) = 0 and thus H!(Dy) = 0. By countable
additivity we obtain the claim. U

LEMMA 5.5. If H'(Z(U)) = O for some t > 0 and for every minimal cone

in R**1 we then have that H'T1(Z(V)) = 0 for every minimal cone V in
]R(n-i-l)-i-l.

PROOF. Without loss of generality we may assume X (V) # {0}. Let x €
2 (V) \ {0}. By Corollary [3.6|the blowups at any point of X (V) N dB converge to
a minimal cone in dimension (n + 1) + 1 up to a subsequence. Let V, be a blowup
at x. By Lemma4.3] Vy is a minimal cone that is invariant in at least one direction.
By Lemma, by using our assumption, this implies that H+*1(X(Vx)) = 0, and
thus the singular set of every possible blowup cone of any minimizer V' has zero
H!T1-measure.

Arguing as in Lemmal5.4) we obtain H/t1(Z(V)) = 0. O

Combining Lemmas and [5.5| we obtain the following corollary. Notice
that we will be able to replace n — 1 by n — 2 by Theorem [6.1

COROLLARY 5.6. Every minimizer satisfies
H Y )) = 0.
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LEMMA 5.7. Let u € HB (2B) be a minimizer of J in 2B with ||u ||CQ(ZB) < Ejy.
Then there exists a constant C depending on n, «, and Eg and a finite collection

of balls { B(X;,ri)} s.t.

(5.4) ! ((F(u) N8\ N B(X,-,r,-)) <C
i=1

and

(5.5) ot %

i=1

PROOF. The proof is by contradiction. For k € N assume ||u|| co2B) < Ey
and the left-hand side of is bounded below by k > 0 for every collection
of balls satisfying (5.5). By Lemma [3.2] we know the sequence uy is bounded in
HA(B). Taking a subsequence we may assume that 1y converges locally uniformly
to a minimizer u (see Corollary [3.6).

By Corollarythe set of singularities X (1) has "~ !-measure zero, and thus
they can be covered with finitely many balls B; satisfying (5.5).

Since F(u) \ = (u) is a C "7 -surface by Theorem using the Hausdorff con-
vergence of the free boundaries we apply again Theorem to see that F'(uy) N
B \Uf‘il B; are also C 1Y -surfaces converging to F (1) N B \Uf‘il B; uniformly
in the C'-norm. This is a contradiction with the assumption that the Hausdorff
measure blows up as k goes to co. O

The fact that the free boundary has finite perimeter follows now from the same
iteration argument as [[18} lemma 5.10].

LEMMA 5.8. Let u be as in Lemmal5.7) Then for some constant C depending only
on Ey,

(5.6) H" Y (Fu) N B) < C.
PROOF. By Lemma(5.7)we find a finite collection of balls By, such that
(5.7) FuynBcT Ul JB,,

with H*~}(T') < C and Zri”_l < %
Applying Lemma|5.7)again for each ball B,,, we have

(5.8) Fu)n By, c iUl By,

. n—1 . n—1 n—1 1 .n—1
with H* = (T;) < C ri~" and > ri =g Moreover, we have

H 7 ((Feo 0 B 0 Bry) = MU + Y WD)
i,j o 1
=c(1+ > E C(l + E)'
2V
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Continuing inductively, after k steps we have that

N

(5.9) FuynB, cT'u ] By,

g=1
with

k .
HUT) < C(Z 2—’) < 2C,
i=0

and ) rl’;_l < 27k This gives the claim. O

Finally, the fact that {u > 0} U Q has locally finite perimeter in 2 follows
from the previous lemma and well-known results of Federer; see, for example, [3|
prop. 3.62] or [27, 4.5.11].

5.2 Energy Gap

Next we will check that the Allen-Weiss density can also be used to identify
singular points. First, let us state a useful identity for minimizers (which is also
valid in the context of variational solutions in the sense of [37]).

LEMMA 5.9 (See [1, prop. 3.4]). Letu € HﬁC(Q) be a minimizer to (1.1) in .
For every B € Q2 we have

(5.10) /|y|ﬂ|w|2=/ Iy|Buvi -vdH".
B oB

Let u# be a minimizer and x¢ € F(u). If we consider a blowup u¢ at x¢, then
Wi (xo) = W1°(0)

:/ 1918 Vuol? + m({uo >O}ﬂ]R”ﬂBl)—a/ ly1Pu dn™.
By

0B

By Lemma|5.9|we get

wi0(0) = /aB ( )|y|BuOVu0'vdH” + m{uo > 0} NR" N By)
1(xo

—oc/ |y|ﬂu%d7-[”.
0B

Since Vug(x)-v(x) = |z—|u0(x) almost everywhere on the sphere, the first and the

third terms cancel out, and we obtain
wi%(0) = m({up > 0} N By).

Thus, the density Wy at a free boundary point is given by the area of the positive
phase of any blowup at the same point.
We write w, := m(Bj) for the volume of the n-dimensional ball.
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PROPOSITION 5.10. Every homogeneous minimizer u € Hf)c (R**1) has density

Wi(0) = m(fu > 0y 0 B}) = .
and equality is only attained when u is the trivial minimizer.

PROOF. Let u be a minimizer such that U} (0) < .
Let X1 € Freq(u). Being a regular point, Wy (x1) = 2. On the other hand, by
the homogeneity and the continuity in Lemma 4.6}

lim U¥(x;) = lim U%(x;/r) = $¥(0) < 2.
r—00 r—00 2
Combining both assertions with the monotonicity of W we get that W (x1) = %
But using the second formula in Theorem one can see that this is true only
whenever WV is a-homogeneous with respect to x;. Thus, u is 1-symmetric and
invariant in the direction of (xp).
By Corollary Frea(u) has full H*~! measure on F (#). Thus, we can find
X1y...Xn—1 € Freq(u) linearly independent. By the previous discussion u is invari-
ant on an (n—1)-dimensional affine manifold, and thus, it is the trivial solution. [

COROLLARY 5.11 (Energy gap). There exists € > 0 depending only on n and o
such that every minimizer u € Hff)c(Q) and every singular point xo € X(u) satisfy

Ui (x0) — w_zn > €.
PROOF. Assume the conclusion to be false. Then there exist #; minimizers in
B1 with
u; Wp .
v = S+ 1)
Passing to a subsequence, #; — ug as in Lemma Using Lemma [4.7| we get
that
< ®
UI°(0) = lim Wy (0) < .
But then ug is the trivial cone by Proposition [5.10. Since F(u;) — F(u) in

the Hausdorff distance, using e-regularity (see Theorem we get that u; is the
trivial cone for j big enough.

The value € above depends on the constants and on ||ul| . in a neighborhood
of x¢. In Section [7|we will show that € does not depend on u at all.

6 Full Regularity in R2+1

In the case of n = 2, we prove full regularity of the free boundary for minimizers
of our functional. Note that this result does not depend on the previous sections
except that we use dimension reduction and blowups to deduce regularity of the
free boundary.
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THEOREM 6.1. Let n = 2. Then there is no singular minimal cone. In particular,
the free boundary F(u) of every minimizer u is C 1* everywhere.

PROOF. We follow closely the arguments in [[18} theorem 5.5], building on [34].
The case f = 0 has been considered in [18]]. The idea is to construct a competitor
by a perturbation argument. We note at this point that the argument is two dimen-
sional in nature and does not generalize to higher dimensions. Recall the functional
under consideration:

T, Q) = /Q Iv18 |[Vul?2 + m({u > 0y NR* N Q).

Let V' be a nontrivial minimal cone. Define, as in [[18]], the Lipschitz continuous
function

1, 0<t<R,

— In(7) 2

(6.1) YR() = 12— 1qgy: R=1=R%
0, t > R2.

Define now the bi-Lipschitz change of coordinates

Z(x'.y) = (", y) + yrUG, y)Der
and set V; (Z) = V(x', y). Clearly, one has
D(x/,y)Z =Id+ A4

where |A|| < [¥%(|(x", y)])| << 1. Defining now V exactly as Vg changing
¥R into —y R, the very same computation as in [[18]] gives

TVE Bgo) + T(Ve. Bro) < 27(V. Byo) + / 1B VYA,

B>

Now, we have

R2
/ |y|f’|VV|2||A||2=// YEIVVRIAIR dH" dr.
2 R JOB,

R

Now since V' is homogeneous of degree « by assumption, the function g(x, y) =
ly|# [VV|? is homogeneous of degree 8 + 2o — 2 = —1. Therefore by a trivial
change of variables on the sphere of radius » and using the fact that n = 2, we get
the very same estimate

C R
[ DEIVUPIA? < —C B2
; In(R)

R2

The rest of the proof follows verbatim [[18, p. 1318], since this is only based on
energy considerations, and we refer the reader to it. U
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7 Uniform Bounds Around the Free Boundary

The optimal regularity bound and the nondegeneracy described in Theorem
were obtained in [7] with bounds that depend on the seminorm ||u||gs (B): AS
a consequence, this dependence propagates to many of our estimates above. In
this chapter we use the seminorm dependent estimates (e.g., Lemma to prove
seminorm independent nondegeneracy estimates. Re-running the arguments above
yields the seminorm independent results presented in our main Theorem|1.1

The question of seminorm independence may seem purely technical; however,
independence allows the compactness arguments of the next section to work with-
out additional assumptions on the minimizers involved.

7.1 Uniform Nondegeneracy

We will begin by showing uniform nondegeneracy from scratch to deduce uni-
form Holder character from this fact, reversing the usual arguments in the literature.

The following lemma was shown in [1, cor. 4.2] in a more general setting. Here
we give a more basic approach based on [2, lemma 3.4]. The main difference is that
where Alt and Caffarelli could use the energy to directly control the H'! norm of
the minimizer, in our case we need to find an alternative because the measure term
of the functional is computed on the thin phase (as opposed to the /! norm which
is computed on the whole space). To bypass this difficulty we will use Allen’s
monotonicity formula.

The drawback of our approach is that we need the ball to be centered on the free
boundary, while in the original lemma, Alt and Caffarelli could center the ball in
the zero phase, allowing for a slightly better result.

LEMMA 7.1. Let u be a minimizer in By with 0 € F(u). Then supyg u > Cr*
with C depending only on n and «.

PROOF. By rescaling we can assume that r = 1.
Let Lu = —V - (|y|#Vu), consider ['(x) = —-15, which is a solution of

x|nf2a ’

LT = 0 away from the origin (or I'(x) = log|x| ifn = 1 and @ = 1/2), and let

1 -T(2x),0}
v(x) = Emax{ (2x). 05 where £ := sup u.
1-T'(2) 3B,

It follows that # < ¥ on dB; and thus

J(u, By) < J(min{u, v}, By),
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and observing that ¥ = 0 on By, and ¥ > 0 on the annulus A := By \ By/2, we
get

[ PIvul - m(8 5 )
B2
=< /A |y (1Y (minfu, T3)* — [Vul?) + m(A), (min{u. 5})) — m (A4, (u))
< —2/ 1y|#V max{u — 7,0} - V7.
A
By Green’s theorem, writing do = |y|# d 1" we get

[P m(B @) <=2 [ udido
(7.1) 12

with Cp o > 0.
Using the monotonicity formula and Proposition [5.10, we get that ¢*(r) >
Y (0) = @, and therefore

d
(7.2) 3/ u?do + @Byt < Jr(u),
3B, 2

r

so using Holder’s inequality and the AM-GM inequality we obtain

1
2 1 1 1
/ udo < (/ u? da) Cra —/ u?do + ~Cyq
(73) 331/2 3B|/2 2 8B1/2 2

Cn,aJl/Z(”)-

A

IA

Combining (7.1)), (7.2), and (7.3) we obtain
0< j1/2(u) = Cn,oezjl/Z(u),

and therefore £ > C, .
O

To show averaged nondegeneracy we need a mean value principle that is well-
known, but we include its proof for the sake of completeness.

LEMMA 7.2 (Mean value principle). Let u € HY(B,Q) be a weak solution to
Lu:=V-(ly|PVu) =0in Q, and let xo € R" x {0} with By (x¢) C . Then

u(xo) :]{3 udw

where the mean is taken with respect to the measure dw = |y|P dx.
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PROOF. Changing variables, we have that
A(p) = :
P):= Tt J,
On the other hand, set

Ap) :=/B Y BVu(px + xo) - x dx
1

_/ (|y|)*‘3w<x)-<x—xo) dx
Bo(xo) \ P o prtl

1 f 5
= — |y|ﬂVu(x)-V|x—x0| dx.
2pﬂ+n+2 B (xo)

Pt = / v Pu(px + xo)dx.

o (X0 B

Since u is a weak solution to V- (| y|# Vu) = 0in Q, we can apply Green’s formula
twice to obtain

1

A(p) = —f x — xoPIy[AVu(x) - vdx
2pﬂ+n+2 8Bp(.x0)
: / Y EVu(x) - vdx =0
e y ULX)-vax = U.
20841 J3B,(xo)

Because u is absolutely continuous on lines (see [24, theorem 4.21]), for almost
every x we have f; Vu(tx + xo) - xdt = u(rx + xo) — u(px + xp). Applying
Fubini’s theorem we get

r r
/A‘(t)dz:/ |y|ﬁ/ Vu(tx + xo) - x dt dx
o By o

- /B 18 ulrx + x0) — ulpx + x0))dx = A(r) — A(p).

So A(r) — A(p) =0forallp < r.
On the other hand, taking the mean with respect to the measure dw := |y|# dx
and using the continuity of u (see [26, theorem 2.3.12]) we obtain

u(xo) —

T A = ) 0000

< lim 0,-0(1) = 0. O
p—0

COROLLARY 7.3. Let u be a minimizer in By with 0 € F(u) and let do =
|y|B dH™. Then faB,» udo = Cr% with C depending only on n and o.

PROOF. Let v be the £-harmonic replacement of u in B, that is, the solution to

(7.4) {ﬁv =0 in B,,

v=u ondB,;
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see [29, theorem 3.17]. After differentiating with respect to the radius, by the mean
value principle we get that v(0) = B, U do. By the comparison principle and the
Harnack inequality we get that

(7.5) Cr“fsupufsupvfc][ udo. O
Br/2 Br/2 0B,

7.2 Behavior of the Distributional Fractional Laplacian

Next we use an idea of [2] and investigate the behavior of the distributional
a-Laplacian of the minimizer introduced in Section As mentioned in the in-
troduction, in [2] this investigation immediately yields that the positivity set is a
set of locally finite perimeter, and more precisely, that it is Ahlfors regular of the
correct dimension. However, the nonlocal nature of this problem indicates that the
distributional fractional Laplacian may not be supported on the free boundary, and
thus we cannot expect to immediately gain such strong geometric information.

First we can bound the growth of the fractional Laplacian measure around a
free boundary point. Note that this growth is the natural counterpart to the upper
Ahlfors regularity in the case of Alt-Caffarelli minimizers.

THEOREM 7.4. Let u € HP (B, (x0)) be a minimizer of J in Bar(xo), and let
xo € F(u). Then, we have

A(Br(x0)) < Cr"™%.
In particular, A(F(u)) = 0.

A glance at (2.1)) will convince the reader that these estimates are sharp, for they
cannot be improved even in the case of the trivial solution.

PROOF. Without loss of generality we may assume that xo = 0. Let Lu =
—V - (|y|#Vu) and let v be the £-harmonic replacement of u in Ba,; see (7.4).
Write do = |y dH" and M := faB2r u do. By Harnack’s inequality (see [7],
for instance) and the mean value principle in Lemma[7.2}

ilglfv > Cv(0) = CM.

We have that

1
)L(B,):/Bdkfm/ vdi.

Since u = 0 in the support of A and u is £-subharmonic (see [2, lemma 2.2]) we

get
frvdk = /r(v—u)d)t < /;?zr(v—u)d)t.

By the properties of the measure A, we obtain

/(v—u)cm:—/ |y|ﬂV<v—u)-Vu=/ B (Vul? — Vo),
Ba, Bay By
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and using the definition of the functional and the fact that u is a minimizer, we get

/ B (Vul — Vo)

= J(u, Bay) —m(B5,(w)) — T (v, Bay) + m(B3,) < Cr".
Altogether, we have that
1
A,(Br) < mCr",

and since uniform nondegeneracy (see Corollary implies that M > Cr%, we
can conclude the proof of the first statement.

To show the second one, note that since the free boundary has locally finite
(n — 1)-dimensional Hausdorff measure, given a set £ C F(u) and k € N we can
find a collection of balls I, = {Bik}i such that

Ec |J B. supr(B)<l/k. and > r(BY""' <2H"'(E).

Bely Belk Bely
Thus,
k
MEY< Y MBS Y r(B %< sup r(B)TE Y r(B" 50,
Bely Bely Bely Bely

O

Next we study the measure away from the free boundary. We should empha-
size here that even though the estimates in Lemma [7.5| and Theorem [7.6, depend
on FEy, they will be used to remove the dependence of our other estimates on Ey.
More precisely, Theorem will play a role in establishing the continuity of the
Green function in Lemma[7.9] This qualitative fact is used to prove the quantitative
uniform Holder character in Theorem [7.8

After proving Theorem we may drop the hypothesis ||u||gs(p,) < Eo from
both Lemma [7.5]and Theorem [7.6]

LEMMA 7.5. Ifu € Hfsoc (B2) is a minimizer of J in the ball Bz with |[u||gsp,) <

Eo and 0 € F(u), then for every xo = (x,0) € By,0(u) we get
lim |y|? luy(x', y)| = C dist(xo, F(u)) ™.
y—0

Moreover, for every ball B centered at R" x {0} with B’ € By,0(u), we have that
1P [uy &', )] < C dist(xo, F )™
for |y| < Cpg dist(x, F(u)), where the constant Cg may depend on B.

PROOF. Let u be a minimizer, and let B := B,(x¢) with B’ C By o(u).
By [35, lemma 2.2], we can write u(x’, y) = |y|' " Pg(x") + O(y?), where g
isa Cl1+A (%B’ ) function, with a uniform control on the error term in terms of
Il 225, y|)- In particular, limy o Iy [P~ u(x’, y) = g(x').
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Let us define

(7.6) T y) = {u(x .Y) if y >0,

—u(x’,—y) ify <0.
It is clear that £ = 0 in B. According to [36, lemma 3.26, cor. 3.29] v(x', y) =
|y y=1%i(x’, y) is an even COO(%B) function in H2~#(B) (note that 1 < 2— 8 <

3 is out of the usual range of ) and satisfying V - (|y[2~#Vv) = 0. The mean
value principle (see Lemma(7.2)) applies also to this case, so

1 1
g(x/)=v(xo)=—/ |y|2—ﬂv(x)=0—/ ).
’ JiglyI># Jip r2=B+ntl J1p

2
and using P1-P3 if r = dist(xg, F(u)), we get

g(x(/)) = U(XO) ~ Crﬂ—2+1+a = Cr .

On the other hand, on the upper half-plane we have

uy = (y17Pv)y, = 0 =By v+ yPu,,

SO
Youy' y) = (1= Po(x. ) + yuy (v, y)
and
lim yPuy (', y) = (1= pg) ~ r™®,
y—>0t
the limit being uniform on compact subsets of B. U

loc
then the measure A is absolutely continuous with respect to the Lebesgue measure,

and for m-almost every x € B’ (u) we have that

THEOREM 7.6. Ifu € ) 1 (B2) is a minimizer of J in By with ||ullgsp,) < Eo,

dA ) . _
T ) =2 Tim [y 1y (2 3) & g () distlx, F )™,
with constants depending on n, «, and Ey.

PRrROOF. By Theoremwe only need to show absolute continuity in By o(u) U
Bi (). Forx = (x’,0) € By , (u) by [9, lemma 4.2] we have that

lim [y|?u, (x", y) =0,
Jim, [y [Puy (x", y)
and, for x € By (1) we have seen in Lemma([7.5|that

lim |y|’3uy(x’,y) ~ dist(x, F(u))™%,
y—0

showing the second part of the statement.



2002 M. ENGELSTEIN ET AL.

Consider a ball By(xg) with xg € R” x {0} and a collection of even smooth
functions yp, < ¥x < xB e Then
3

1.7) A(By) < — / BV - Tk < ABrsqub):

and for every ¢ > 0 we use the Green’s theorem to get
vy == [ Ve v [ P vdm.
lyl<e lyl=¢
Using the symmetry properties and taking limits,

(7.8) —/|y|’3Vu-Vwk =2lin})/8ﬂwk(x’,8)uy(x/,8)dm(x’).

Next we want to apply the dominated convergence theorem. Let us begin by con-
sidering a ball B, (xgp) C Bj centered in the zero phase, with dist(B(xo), F(u)) >
2r. In this case, by Lemma[7.5]we have

(7.9) P uy(x’,e) Sr %,

with constants depending perhaps on u and B, as well.
If instead By (xo) € B | (u), by [36} theorem 3.28] u is an even C*° function

on B/ (x¢), 5o |y|Puy, = O(|y|'*#). Thus
(7.10) P uy(x',e) < r2 2,
In both cases, the dominated convergence theorem applies, and
lim 8ﬂwkuy dm = / Vi 1im(8ﬂuy(-,8))dm,
20BN iy=¢} Bl a0
and by (7.7) and (7.8), we obtain
M <2

Vi li_r)r%)(sﬂuy(-,s))dm < ABri+1/k))-
Bira/m  °f

In particular, lim,_¢ (8/3 uy(-,e)) € LIIOC(BLO (u) U Bi,+(“))’ and taking limits in
k we get

A(By) = 2[ lim (eﬂuy(',s))dm. OJ
B; &—>0

A consequence of our control of the behavior of A is that we can establish the
existence of exterior corkscrews. We should note that exterior corkscrews can also
be obtained by a purely geometric argument given the nondegeneracy and positive
density of Theorem [2.3](see, e.g., the proof of proposition 10.3 in [13]).

COROLLARY 7.7. Ifu € is a minimizer in By with ||u||gs(p,) < Eo, then B{ (1)
satisfies the exterior corkscrew condition, i.e. there exists a constant Cy such that
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for every x € F(u) and every 0 < r < dist(x, dBy) one can find xg € By(x) so
that
B(xo,C1r) N Bi’+(u) = .

PROOF. This is a consequence of Theorems|[7.4]and[7.6] and the positive density
condition for the zero phase. Indeed, given a ball B, C R”T!, combining both
theorems we get

"7 2 (B0t 0 B,) = Co, [ dist(x, 981) ™
By o(w)NB,

—
zC( sup dist(x,aBl)) |B1.o(u) N By,
B1.ow)NB,

and the positive density condition implies that

|Bl,0(u) N Br| > CEOr”.

Thus,
sup  dist(x,0B1) > CEg,r.
Blso(u)ﬂB,»
which is equivalent to the exterior corkscrew condition. g

7.3 Uniform Holder Character

The uniform nondegeneracy of Section lets us conclude uniform control on
the Holder norm of u.

THEOREM 7.8. Let u be a minimizer of J in By with 0 € F(u). Then |u(x)| <
C|x|* for every x € 0B, with C depending only on n and a.

PROOF. Again we set v to be the £-harmonic replacement of u inside of B, as
in (7.4). Let 4 := v — u so that

Li=Lv—Lu=—-)=-V-(yPVu)

and ii € Hy>(Br; |y|P).

Consider the Green function G : B, x B, — R such that LG(-,z) = §; and
G(-,z2) € HI(I)’CZ(B_r\ {z}) with null trace on dB;, (see [25, prop. 2.4]). By [25,
prop. 2.1, lemma 2.7] there exists pg > 1 so that i is the unique function in
H(}’po (By;|y|B) such that £& = A, and moreover

(7.11) fi(z) = /B G(z. x)dA(x)

for almost every z € B;.
Below, in Lemma we will see that the equality (7.11) is in fact valid for
every z € B4, thatis, # = [ G(-,x)dA(x). In particular,

v(0) = 7(0) = / G(0, x)d A(x).

B,
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Next we use the following estimate (see [25, theorem 3.3]): let z,x € B;j4.

Then
r sds
G [ Sl
|X—Z| U)(B(x, S))

where w is the A» weight w(x) = |y|#. Computing, for x = (x’, y) we obtain

y+s
w(B(x,s)) ~ s”/ t18 dt ~ s" max{|y|,s}Pt.
y—s
First we assume that n — 2« > 0. Thus, if x € B;/4, then

,
012 G [Py g = g
lx—z|
Note that A(B,) < Cr"~® by Theorem|[7.4] Thus, writing A; s := Bs \ B;, we
have that

v(0) = /B G(0, x)dA(x)

o0

< / A(x € Byys : G(0,x) > 1})dt —i—f G(0, x)d A(x).
cr2a—n Ar/ar

By the strong maximum principle, the Green function in the annulus is bounded
by Cr*~2%_ This fact, together with Theorem implies that

o0

oo —
v(0) 5/ )L(B ~ )dz +Cr% < Cf (T3 dt + Cr® = Cr®.,
c

r2a—n Ct n—2a) cr2o—n

By the mean value theorem we conclude that

][ vdo < Cr%,
0B,

where do = |y|? dH". The theorem follows by observing that, as in (7.3)), the
mean of v dominates u by supyp_, u < supyg,, v <C faB, vdo.
In case n — 2« = 0, which could only happen forn = 1 and & = 1/2, estimate

(7.12) reads as
G(z,x) ~ log( ! ),
lx —z|

and the proof follows the same steps.
In case n — 2 < 0, then estimate (7.12) reads as

G(z,x) ~ phn2e

and the estimate is even better compared to the above. g

LEMMA 7.9. [z G(z,x)dA(x) is continuous in z € By /4.
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PROOF. Lete < r/2andletz1,22 € B,/4, with |21 — 22| < &/2. Then

/ 1G(z1. %) — Gz, 2)|dAX)

By

7.13) - f 1G(21.%) — G(z2. 1) dAX)
Br\BS(Zl)

i /B oy FEL XA + /B | G2 A,

Next we use (7.12) and Theorems [7.4] and By decomposing the domain on
dyadic annuli, in case n — 2¢¢ > 0 we get

/ G(z1,x)dA(x)
B:(z1)

(7.14) <y /A G(z1, x)dA(x)

j<07 427157 .(z1)

S Y MBarp @)@ e 5 e Y20

J=<0 J=0
In case n — 2o = ( we obtain
; r
o ja
£ 2% lo (—)

Z & 2Je

Jj=0
on the right-hand side instead, and in case n — 2« < 0 we obtain

gn—arza—n Z 2j(n—a).
J=0

In every case, by fixing & small enough, this term can be as small as wanted. The
same will happen with the last term on the right-hand side of (7.13).

On the other hand, by [26, theorem 2.3.12] Green’s function is uniformly con-
tinuous on the set {(z,x) € By x By : |z — x| > ¢}, s0

|G(z1,x1) — G(22,x2)| < 8:(]z1 — 22| + |x1 — x2|)  with 8¢(¢) 20 0.
Thus,
/ G2, %) — G(za. OldAG) < 8s(l21 — 22DA(By) — 0.
B, \B:(z1)

Assuming that |77 — z»| is small enough, we obtain that

f |G(z1,x) — G(z22,x)|dA(x)

B,

is as small as wanted and the claim follows. O
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Remark 7.10. In light of Theorem and the Caccioppoli inequality (see Section
B.1I), arguing as in [7, theorem 1.1] we obtain that every minimizer  in a ball
B, with 0 € F(u) has uniform C® character in B,/ and the same for the HA
norm. Moreover, using [7, theorem 1.2] we can find interior corkscrew points with
constants not depending on these norms. This allows us to remove the a priori
dependence on ||u ||gs from all of our results above.

7.4 Lower Estimates for the Distributional Fractional Laplacian

Next we bound the growth of the measure around a free boundary point from
below. None of these results will be used in the present paper, but we include them
to give a complete picture of the tools under consideration.

THEOREM 7.11. Letu € HP(B»,) be a minimizer of J in Bay such that O € F(u).
Then we have
AMBy) > Cr"%,

PROOF. Let Lu := —V-(|y|# Vu) and let v be the £-harmonic replacement of u
in B, (see (7.4)). Let i := v—u, and consider the Green function G : B, xB, — R
as in the proof of Theorem|[7.8]

Let 0 < k < 1 to be fixed later. By P1-P3 in Theorem [2.3] there exists a point
zo € B,y with

(7.15) u(zo) ~ (kr)%,

with constants depending only on n and « by Remark [/.10. By P/ there is a
constant ¢ such that for every z € B(zg, ckr) we have that u(z) = (kr)%. Since A
is supported on the zero phase of u, the ball B(zo, ckr) is away from its support,
and

U(z) :f G(z,x)dA(x).
B \B(zg,ckr)
Using the strong maximum principle (see [29} theorem 6.5]) and (7.12), for
almost every z € B(zg,ckr/2) we get
u(z) = A(By) sup G(z.x) = A(By) sup G(z,x)

x€B\B(zo,ckr) x€By/4\B(zo,ckT)

~A(By)  sup  |x —z)2T" = M(By)(ckr)* ",
x¢B(zo,ckr)

That is,
(7.16) (z) < A(By)(ckr)>*™.

On the other hand, note that u is continuous. By the Riesz representation theo-
rem, there exists a probability measure w? such that

v(z) = /83 u(x)dw? (x).

We can choose r so that 3B, intersects a big part of a corkscrew ball; i.e., assume
that there exists a point & € 0B, that is the center of a ball B’(§y, cr) where u
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has positive values. This can be done by the interior corkscrew condition, with all
the constants involved depending only on # and «. Then, changing the constant if
necessary, all points § € B(&p, cr) satisfy that u(§) > Cr* by the nondegeneracy
condition and the optimal regularity. Call U := dB, N B(&p, cr). Then

v(z) Z r*wZ(U).
But % (U) is bounded below by a constant by [29, lemma 11.21] and the Harnack
inequality (use a convenient Harnack chain). All in all, we have that
(7.17) v(z) 2 r*.

Combining (7.16), (7.15), and (7.17) and choosing « small enough, depending
on n and a, we get

(zo) Cr* —C'(kr)* _
A(Br) 2 > > Cpar™™®
( r) ~ (c[cr)zo‘_” - (CKr)za_n - n,o
for ¥ small enough.
In case n — 2o = 0, that is, forn = 1 and & = 1/2, using similar changes as in

the proof of Theorem[7.8] we get

u(z) < AMBy) sup log(

x¢B(zo,ckr)

) ~ A(B;)|log k]
[x —z|

instead of (7.16). In case n — 2o < 0, the proof is even easier than before. g

Remark 7.12. Theorem [7.11 implies that the (n — «)-Hausdorff measure of the
free boundary is locally finite. This does not suffice to show finite perimeter of the
positive phase; therefore we had to use the approach in Section [3]

The following theorem summarizes the information that we have gathered so far
about the measure A.

THEOREM 7.13. Ifu € HﬁC(Q) is a minimizer of J in €2, then the measure A is

absolutely continuous with respect to the Lebesgue measure in Q'(u). Moreover,
given xo € F(u) and r > 0 such that By, (x¢) C 2, then

(7.18) A(Br(x9)) ~ r"7%,

and for almost every x € B}.(x¢) we have that
dA . . -
Do ) =2 Tim 3120y (2 3) & 0 () distCr, F()) ™,
with constants depending only on n and «.

8 Rectifiability of the Singular Set

In this section we use the Rectifiable-Reifenberg and quantitative stratification
framework of Naber-Valtorta [32] to prove Hausdorff measure and structure results
for the singular set. Recall that k) is the first dimension in which there exists
nontrivial ¢-homogeneous global minimizers to defined in Section[5]
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THEOREM 8.1. Letu € HﬁC(Q) be a minimizer of (1.1) in a domain Q2. Then

X (u) is (n — k})-rectifiable, and for every D € Q we have
H' (2 () N D) < CyadisD,09)-

Part of the power of this framework is that it is very general. One needs certain
compactness properties on the minimizers and a connection between the drop in
the monotonicity formula and the local flatness of the singular set (see Theorem
[8.14 below). To avoid redundancy and highlight the original contributions of this
article, we omit many details here and try to focus on the estimates needed to apply
this framework to minimizers of (L.1). Whenever we omit details, we will refer the
interested reader to the relevant parts of [22].

The key first step is to introduce the appropriate formulation of quantitative strat-
ification. First introduced by Cheeger and Naber [10] in the context of manifolds
with Ricci curvature bounded from below, this is a way to quantify the intuitive fact
that F'(u) should “look” (n — k/)-dimensional near a point xo € F(u) at which
the blowups have (n — kj)-linearly independent translational symmetries.

8.1 Quantitative Stratification for Minimizers to J

We have seen in Section that homogeneous functions have linear spaces of
translational symmetry. Here we want to quantify (both in terms of size and sta-
bility) how far a function is from having no more than k directions of translational
symmetry.

DEFINITION 8.2. We write V¥ for the collection of linear k-dimensional subspaces
of R”. A function u is said to be k-symmetric if it is «-homogeneous with respect
to some point, and there exists a L € V¥ so that

u(x +v) =u(x) foreveryv e L.

A function u is said to be (k, €)-symmetric in a ball B if for some k-symmetric i
we have

r—2—"/ Iy|Blu— )% dy <e.
B

Next we define the k-stratum S (1), the (k, €)-stratum Sek (1), and the (k, €, r)-
stratum SEk, +(u). A key insight here is to define these strata by the blowups having
k or fewer symmetries as opposed to exactly £k symmetries.

DEFINITION 8.3. Let0 <k <n,0 <& < o00,and 0 < r < dg(x) := dist(x, 0€2),
let u# be a continuous function in 2, and let x € F'(u). We say that:
o x € S¥(u) if u has no (k + 1)-symmetric blowups at x;
e x € Sf(u) if u is not (k + 1, €)-symmetric in Bg(x) for 0 < s
min{l, dg(x)};
e x € Sf’r(u) if u is not (k + 1, €)-symmetric in Bg(x) for r < s
min{l, dgo(x)}.
If it is clear from the context we will omit u from the notation.

A

A
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We now detail some standard properties of the strata defined above and how they
interact with the free boundary F(u). While the proofs are mostly standard, we
give the details as the scaling associated to the problem adds some technical
difficulties. This proof also provides a blueprint for fleshing out the details in

Sections[8.3]and [8.4]

LEMMA 84. Let0 < j <k <n0<e<t <00 0<r <s <dist(x, dR), and
letu € Hfic(Q) be a minimizer in S2. Then:
(1) S% c St ¢ --- ¢ $*! = S" = F(u). Moreover, for the reduced
boundary, we have that Feq(u) C S"'\ $" 2 and (u) C S" *a.
(2) We have Srj C S€k C Sk, and moreover, Sk = U6>0 Sé‘.
(3) Also S C S,j,r C Sek’s and moreover, S¥ = ,~, Sir.

k . . LE.(211P)
(4) The sets S¢ are closed, in both x and u: if u; ———— u and x; — x

with x; € Sf(u,-), then x € Sf(u).

LE.(211P) o .
(5) If uyy ———— u, € — 0, and u; are (k, €;)-symmetric in By, then u is

k-symmetric in B.

PROOF.

(1) The inclusions ¥ ¢ §**1 of the first property are trivial. The last equali-
ties are consequences of the nondegeneracy. The fact that Fyeq(u)NS" 2 =
@ can be deduced from the Hausdorff convergence of the free boundaries
described in Lemma and Theorem [2.4| Finally, X(u) C S n—ks is a

consequence of Lemmas [4.5|and
(2) The inclusions S{ C Sf of the second property come from the definitions:

if x ¢ Sf then there exist a ball B C 2 centered at x and a (k + 1)-
symmetric # so that r(B)™27" I3 |y|Plu —Ti|2dy < € < 7. But il is also
(j + 1)-symmetric. Thus, x ¢ s

The fact that S f c Skisa consequence of the uniform convergence on
Lemma if x ¢ Sk, then u has a (k + 1)-symmetric blowup sequence
u; — ug at x converging uniformly. Thus,

2
X —X
f |91 fu(x) —p?‘uo( 0)‘ dx
Bpl.(xo) pi

+20+n+1 u(xo + pix)
= pfretn / ylf ===
1

2

; —uo(x)| dx

i
2
< P! 2w(B1)|lui — uol|o.
That is,

b2 / ML
B,Di (x)

2
u(x)—rf‘uo(x xo)‘ dx 7% 0.

i
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Therefore, for every ¢ there exists a ball small enough so that u is (k+1, &)-
symmetric in it. In particular, S¥ > | .., S¥.

To see the converse, assume thatx ¢ | ), S ek . Then foreveryi € N there
exista (k + 1)-symmetric function #;, invariant with respect to L; € V5+1,
and r; < min{1, dist(x, d2)} such that

1 / s 1
1P () =7 ()P dx < —
+2
In the case when r; stays away from 0, since ; < 1, we can take a sub-
sequence converging to rg € (0,1), and one can see that u is (k + 1)-
symmetric in the ball By, (x¢). Otherwise, consider

_u(xp + rix)

Ui(xo + rix)
i-= o - a

and ;; =

T Ti
By taking subsequences, we can assume that L; — Lo locally in the
Hausdorff distance, and that ¥; — u¢ locally uniformly. One can check
also using the Holder character of u that {; ;} is uniformly bounded in
L%(B;|y|P), so taking subsequences again, we can assume the existence
of #ig so that if; ; — g in L2(B; |y|#). This function will be (k + 1)-
symmetric, being invariant in the directions of Lg. By the triangle inequal-
ity we get

1B o — 0|2 dx sf

B

1B o — w2 dx + / 1B i — 712 dx

B
+ / (Bl — o dx.
B

The first and the last integrals converge to 0 by our choice of the subse-
quence. For the middle term, just change variables as before:

~ 1 -
/B 1Py — 73| dx = rn+2/ |y 1P lux) = ()] dx — 0.
1 ] ¥

[2 i

Thus we have that g = g and therefore, x ¢ Sy.
The inclusions S C S,],r C Sf’ ¢ of the third property come from the
definitions and thus S¥ ¢ (MNr>o0 Séi +- The converse implication is also
trivial.
The closedness is obtained by a contradiction argument again. It is straight-
forward but we write it here for the sake of completeness.

Assume by contradiction that x ¢ ka (u). Then there exist a (k + 1)-
symmetric function # and a radius » such that

1
. B o~ 2
€0 1= pEE /Br(x) [y|Flu(x) —u(x)|“dx < e.
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Let < 1 be fixed and consider ig € N so that By, (x;) C B,(x) for every
i > ip. By the triangle inequality

1
- Blu: () — ()% d
Gy fB oy PP ) =T d

< gl —ul? t o

— (‘L’V)n+2 ! L2(Bey (x:);1¥18) ht2”

€+€o
2

2
L2(Bzr(x);ly
Sek (u;), contradicting the hypothesis.

(5) Assume that #; is invariant with respect to L; € Vk+1 and

/|y|ﬂ|u,-—m~|256,-.

. Choose ip big enough so that every
8y < (tr)" T2, Then x; ¢

We define 7 so that -9 =
T
i > ig satisfies that ||u; — u||

Consider a subsequence {u;} so that the varieties L; — L locally in the
Hausdorff distance. Using the triangle inequality as in (4), it follows that u
is (k, 6;)-symmetric with §; — 0. g

PROPOSITION 8.5. There exists €(n,«) > 0 such that if u € H{‘ZC(Q) is a mini-
mizer of J in a domain Q C R"T1, then T (u) C S:_k“ (u).

PROOF. Itis enough to show that if u is a minimizer of J in B,(0), then X (1) N
Bi(0) € 8¢5 w).

By contradiction, let us assume that there is a sequence of positive numbers
€ 1z, 0, functions u#; minimizing 7 in B3(0) and x; € X{(u;) N B1(0), r; €
(0, 1], with u; being (n — kj + 1, €;)-symmetric in By, (x;), and let L; be an
(n — k) + 1)-dimensional subspace that leaves invariant one of the admissible
(n — k + 1)-symmetric approximants. By rescaling we can assume that r; = 1.

Passing to a subsequence we can assume that L; — Lo € V" “kat1 [ocally in
the Hausdorff distance and x; — x¢. By the compactness results in Lemma (3.4
we have a uniform limit u¢ that is a minimizer as well, and it is (n — k; + 1)-
symmetric with invariant manifold Lo. By Lemma[4.4]any blowup 1,9 at xo will
be (n — kj; + 1)-symmetric as well. Applying Lemma (n —kj + 1) times,
we find that the restriction of 19,9 to the orthogonal manifold L(J)- isa(ky —1)-
dimensional minimal cone, which, by Lemma[5.2] is the trivial solution, and so is
ug,0. Thus, xg is a regular point for ug.

On the other hand, the Hausdorff convergence of Lemma [3.4]together with the
improvement of flatness of Theorem@limply that for i big enough x; € Fieq(u4;),
reaching a contradiction. U
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8.2 The Refined Covering Theorem

Our estimates on the size and structure of the singular set X (1) come from sim-
ilar results concerning the Sf (u). In particular, we prove the following covering
result:

THEOREM 8.6. Let u € HP (Bs) be a minimizer to (1.1) in Bs with 0 € F(u). For
given real numbers € > 0, 0 < r < 1, and every natural number 1 <k <n —1,
we can find a collection of balls { By (x,)}lN L With N < Cn,a,er_k such that

Sk ayn By c | Br(x).
i

In particular, | B, (Sf’, N By)| < Cn,a,er”_k forevery O <r < 1and
H*(SKw) N By) < Crge.

From Proposition[8.5]and Theorem[8.6] we can conclude the following corollary,
which comprises the second part of Theorem [8.1]above.

COROLLARY 8.7. If u € HP(Bs) is a minimizer to (L1) in Bs with 0 € F(u),
then X (u) is (n — kj)-rectifiable and for every 0 < r < 1 we have

|Br(Z(u) N By)| < Cn,ark;-

In particular,

H" ™ a(2() N B1) < Cra.

Rectifiability is encoded in the following result. We omit the details of proof
here but it is a consequence of the packing result above, the Rectifiable-Reifenberg
theorem of [32]], and Theorem [8.14 below. For more details see sections 2 and 8
of [22] (particularly theorem 2.2 in the former and the proof of theorem 1.12 in the
latter).

THEOREM 8.8. Let u be a nonnegative, even minimizer to (1.1) in a domain Q.

Then S ék (u) is k-rectifiable for every €, and hence each stratum S*(u) is k-recti-
fiable as well.

The proof of Theorem follows from inductively applying the following,
slightly more technical packing result (for details see section 4 of [22]).

THEOREM 8.9. Let € > 0. There exists n(n, «, €) such that, for every minimizer
u € HP(Bs) of J in Bs with 0 € F(u) and 0 < R < 1/10, there is a finite
collection U of balls B with center xp < Sek,nR and radius R < rg < 1/10 that
satisfy the following properties:

(A) Covering control:

sk.rNBic | B
Beu
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(B) Energy drop: For every B € U,

either rp =R or supW¥3,  <supW¥j —n.
2B B>

(C) Packing:
Z r]’f; <cn,a,c¢).

Beu

We construct the balls of Theorem|8.9]using a “stopping time” or “good ball/bad
ball” argument. Much of this argument uses harmonic analysis and geometric mea-
sure theory and is completely independent of the original problem (1.1). However,
there are a few places in which we need to connect the behavior of minimizers to the
geometric structure of the singular set. Here we will sketch the good ball/bad ball
argument, taking for granted the estimates needed to apply this argument to our
functional. In the next few subsections we will provide these estimates. For more
details on the construction itself, we refer the reader to section 7 in [22]].

Outline of the Construction in Theorem [8.9]

To find this covering we define good and bad balls as follows: imagine our ball,
B, has radius 1. We say that B is a good ball if at every pointin x € § f (1) N B the
monotone quantity centered at that point at some small scale, p, is not much smaller
than the monotone quantity on ball B (we say these points have “small density
drop”). A ball B is a bad ball if all the points in Sf (¥) N B with small density
drop are contained in a small neighborhood of a (X — 1)-plane. This dichotomy
follows from Theorem[8.10 in Section [8.3]

In a good ball of radius » we cover Ssk (u) with balls of radius pr, iterating the
construction until we find a bad ball or until the radius of the ball becomes very
small. In a bad ball, we cover Ssk (1) away from the (k — 1)-plane without much
care. Close to the (k — 1)-plane we cover S f (1) with balls of radius pr, iterating
the construction until we reach a good ball or until the radius of the ball becomes
very small.

Inside long strings of good balls, the packing estimates follow from powerful
tools in geometric measure theory (see Theorem @ below) and the connection
between the drop in monotonicity and the local flatness of the singular strata (see
Theorem 8.14 below). We give more details in Section

Inside long strings of bad balls, each of which is near the (k — 1)-plane of the
previous bad ball, we have even better packing estimates than expected (as we are
effectively well approximated by planes that are lower dimensional). This leaves
only points that are in many bad balls, and in most of those balls they are far away
from the (k — 1)-plane. However, at these points the monotone quantity drops a
definite amount many times, which contradicts either finiteness or monotonicity.
This implies that the points and scales inside the bad balls that are not close to the
(k — 1)-plane form a negligible set (the technical term is a Carleson set). We give
more information about the bad balls in Section[8.3]
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8.3 Tools for Bad Balls: Key Dichotomy

THEOREM 8.10 (Key dichotomy). Let €, p,y, 7 > 0 be fixed numbers with py < 2.
There exists an no(n,a,€,p,y,n’) < p/100 such that for every n < ng, every
r > 0, every E > 0, and every minimizer u € HP (Ba;) of J in Bay with 0 € F(u)
and suppg, VY. < E, then either

° ‘IJJ’fPrZE—n’onSk N B, or

€enr
o there exists £ € L¥~! 5o that {x € B, : \Dgw(x) > E —n} C Bpr(£).
The key dichotomy is a direct consequence of Lemma [8.11 below. The core
idea is to make effective the following assertion: if u is k-symmetric, then along
the invariant manifold the Allen-Weiss density is constant, and every point away

from the manifold will have (k + 1)-symmetric blowups by Lemmal4.4}

LEMMA 8.11. Let €,p,y,n7 > 0 be fixed numbers with yp < 2. There exist
no, 0 > 0 such that for every n < ng, every E > 0, and every minimizer u of J in
By with 0 € F(u) and supg, W5 < E, if there exist wo, ..., wx € By and affine
manifolds L' := (wy. ..., w;) € V with

w; ¢ Bp(Li_l) and \Pgn(wi) >FE—n foreveryi €{0,...,k},

then

(8.1) ¥ (x) = E—n' onBe(LF)n By
and

(8.2) Sk, N B1 C Ba(LF).

The proof follows (with only minor modifications) the proof in [22, lemma 3.3].
We end this subsection by formally defining the good/bad balls alluded to above:

DEFINITION 8.12. Let x € B>,0 < R < r < 2, and ¥ be a minimizer to 7 in Bs.
We say that the ball B (x) is good if

W, > E— n  on Sek,nR N Br(x),

and otherwise we say that B, (x) is bad.

By Theorem [8.10 in any bad ball B there exists an affine (kx — 1)-manifold £p
with

(8.3) {weB: Wy, (w)>E—n} C By ().
8.4 Tools for Good Balls: Packing Estimates and GMT

In this section we control the local flatness of the singular strata by the drop in
monotonicity. To do this we introduce a key tool from geometric measure theory
that estimates the flatness of a set. Given a Borel measure ., a point x, and a radius
r, the beta coefficient is defined as follows:

1 dist(z, L)?

8.4 K a(Br(x)? = B L (x.r)? = inf — —= =4
B PuaBr)®:=fupCer)” = il g | T k@)
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where Vak stands for the collection of k-dimensional affine sets of R”. The beta
coefficients are meant to measure in a scale invariant way how far a measure is
from being flat, in this case in the L? distance, although other L? versions have
been used in the literature for 1 < p < oo quite often, dating back to [30]] (for the
L version) and David-Semmes [[12]] (for the L# version).

If we control the size of the ﬂk ’s we can conclude size and structure estimates
on the measure w. The following theorem says exactly this and represents a major
technical achievement. It differs (importantly) from prior work in this area by
the lack of a priori assumptions on the upper or lower densities of the measure
involved.

THEOREM 8.13 (Discrete-Reifenberg Theorem; see [32, theorem 3.4]). Let
{Br,(q)}q be a collection of disjoint balls, with ¢ € B1(0) and 0 < rqg < 1,
and let |1 be the packing measure = Zq ré‘ 84, where 84 stands for the Dirac

delta at q. There exist constants tpr, Cpr > 0 depending only on the dimension
such that if

2r d
f / ﬂﬁz(z,s)z du(z)—s < tprr®  forevery x € B1(0), 0 <r <1,
0 JB(x) §

then
1(B1(0)) = Y rf < Cpg.
q

To obtain the packing estimates required for the Discrete-Reifenberg theorem,
we need to control the beta coefficients. The key estimate of this entire framework
lies in the following theorem, which shows the drop in monotonicity at a given
point and that a given scale controls the beta coefficient at a comparable scale.

THEOREM 8.14. Let € > 0 be given. There exist §(n, o, €) and c(n, o, €) such that
for every u € HB(Bs,) minimizing J in Bs,(x) with x € F(u) and

(8.5) u is (0, §)-symmetric in B4y (x),

u is not (k + 1, €)-symmetric in Ba,(x),
and every Borel measure |, we have that
c(n,o,€)
66 Bha 2 = D [ () - wEw)duw).
r By (x)
We follow the proof of [22, theorem 5.1] closely. First, the authors give an

explicit formula for the beta coefficients.

LEMMA 8.15. Let X be the center of mass of a Borel measure |t on B = B, (x).
Let {A;}}_, be the decreasing sequence of eigenvalues of the nonnegative bilinear
form

Q. w) := fB(v (2= X)) (w - (z - X))dp(2).
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and let {v;}?_, be a corresponding orthonormal sequence of eigenvectors, that is,
vi - v; = 8 and Q(v;,v) = A;jv; - v. Then

1 [ dist(z, L¥)? W(B) gy + -+ An)
ﬁlkL,z(B)zzr_k/l;r—ZdM(Z): e

where L¥ .= X + span{vy,..., Ug).
Next we find a relation between the eigenvalues of () and Allen-Weiss’ energy.

LEMMA 8.16. Under the hypothesis of Lemma|8.15, for every u € HP(Bs,) min-
imizing J in Bs,(x) and everyi < n, we have that

2
Ai Fnt+2 [4 |J’|I3(Ui - Du(2))?dz
2r,3r (X

(8.7)
=cf (W)~ W)t

PROOF. The argument follows as in [22} (18) and below]. In formula (18) one

needs to change u(z) by cu(z), which can be done with exactly the same argument.
g

Finally, using compactness, we bound the left-hand side of (8.16) from below.

LEMMA 8.17. Let € > 0 be given. There exists a §(n,«, €) and c¢(n, o, €) such
that, for every orthonormal basis {v;}7_, and every u € HP? (Bs,) minimizing J
in Bsy(x) with x € F(u) and satisfying (8.5), we have that

1 k+1
8.8) LI r_”/ V1B S i - Du(2)? dz.
C(n’a’é) Aoy 3r(x) i=1
PROOF. The proof follows that of [22| (19)] and we omit it. O

PROOF OF THEOREM [8.14. By Lemmas[8.15,[8.17, and [8.16 we get that

BB < 0~ B

k+1

B Ai
- Mf" o= boctn . ; iz [, W Duy?
c(n,a,€) " g
= r—"/B,(x> (Wi, (w) — W (w))du(w). O

Appendix A Relation with the Nonlocal Bernoulli Problem

As in [20, lemma 2.1], we see that the study of minimizers of J includes the
study of minimizers of J.
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PROPOSITION A.1. If f is a minimizer of J in the unit ball of R", then f x Py is
a minimizer of J in every ball B such that B’ € Bj.

Ifu = f x Py is a minimizer of J, then f is a minimizer for J. In particular, if
u is a minimizer of J in every ball, positive outside the hyperplane {y = 0}, and
u(x,y) = O(|(x, y)|%), then u|rnxgoy is a minimizer for J in every ball.

We follow [20, lemma 2.1]; that is, we use the following result from [6, sec. 7].

LEMMA A.2. Let f, g satisfy that Jo(f, B1) and Jo(g, B1) < oo, and suppose
that | — g is compactly supported in By C R". Then we have that

Jo(g. B1) = Jo(f. B1) = ¢p,a inf[g P (Vo) = [V (f % Py ()P,

where the infimum is taken among all the symmetric bounded Lipschitz domains €2
with the property that 2 N (R" x {0}) C By and among all symmetric functions v
with trace g satisfying that v — f % Py, is compactly supported on Q.

PROOF OF PROPOSITION[A.I. Let f be a minimizer of J in the unit ball of R”
and let B be a ball such that B, € B]. We want to show that u := f % Py isa
minimizer of 7 in B;.

Letv:R*! - Rsothatv = uinR?*1\ B, andv € H'(B, B,). Let g be
the trace of v in R” x {0}. By Lemma[A.2 we have that

AD  Jolg, Br)— Jo(f Br) < c/B BV — [VuP)
r+e

for every € > 0.
Since g|(p’yc = 0, g is an admissible competitor for f and J(f, B1) < J(g, B1),
ie.,
Jo(g. B1) — Jo(f. B1) = —m({g > 0} N By) +m({f > 0} N By)
=m({u >0} N B.) —m({v>0}N B)).
The proposition follows combining (A.1) and (A.2) and letting ¢ — 0.

The converse follows the same sketch: every global minimizer can be expressed
as the Poisson extension of its restriction to the hyperplane by Proposition[B.1} O

(A2)

As a consequence of the previous proposition, all the results that we have proven
for minimizers of 7 also apply to minimizers of J:

COROLLARY A3. Ifu : R® — R is a minimizer to J in By C R" and 0 €
F(u), then ||ulcep,) < C, it satisfies the nondegeneracy condition u(x) >
C dist(x, F(u))¥ for x € Bi, the positive phase satisfies the corkscrew condi-
tion, every blowup limit is «-homogeneous, and the boundary condition in is
satisfied at Fieq(u).

Moreover, the positive phase {u > 0} By is a set of finite perimeter, the singular
set is an (n — 3)-rectifiable set, it is discrete whenever n = 3, and it is empty if
n <2

All the constants depend only on n and «.
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Appendix B Uniqueness of Extensions

In Proposition|[A.T we have used the following result, included in [7} prop. 3.1].
Here we provide a proof that is different than the one appearing in [[7].

PROPOSITION B.1. Lete € (0,1) and p = 1 — 20, and set Lu = — div(|y|# Vu)
in R Suppose that v : R’iﬂ — R is nonnegative outside R", and it is a
solution to Lv = 0 in R’rrl withv(x’,0) = 0 forall x’ € R" and |v(x)| < C|x|*.
Thenv = 0.

PROOF. First, since |y|# is C* away from the hyperplane R”, v € Ce R’i+1).
Letnowi € {1,...n}, and set

ocC

1 . p—
Jm(x) = v+ "_f/e;z v(x).

Let B, = B,(x’,0) be a ball centered at (x’,0) € R” x {0} with radius r, and let
B>, be its double ball. Set also w(x) = w(x’, y) = y# for y > 0. Since f;, is a
solution of £ f,, = 0in Bf = BN R”+1, [26, theorem 2.4.3] shows that

n;zix|fm(X)|§C< )/ |fm|2>

r

From convergence of difference quotients (similarly to [23, theorem 3, p. 277]), if
ve HY(B, B ), the last estimate will imply that fp, is uniformly bounded in B;
by a constant C, Therefore, from the boundary Caccioppoli estimate [26, (2.4. 2)]
we have that

C
[ 19mPw= 5 [ b= 5 [ G < G < 0

r/2
hence { f;,} is bounded in H ' (B, B /2) From weak compactness, a subsequence

of { f;n} converges to a solution of Lu = 0in B 72,

we obtain that d;v is an H (B, B ) solution in BJ;Z Hence 9d;v is a solution to
Lu =0in R’_frl.

Now, for x = (x/, y) € R'_’ﬁl, let R = |x|. We distinguish between two cases:
y > R/16and y < R/16.

In the first case, set By to be the ball of radius R, centered at x. Note then that
Briie © R'_frl. Then, from [26, theorem 2.3.1], Caccioppoli’s estimate, and the
assumption |v(x)| < Clx|%,

C C C
0;v(x)|* < ———— 80w < ——2/ v[w
U)(BR/32) Br/32 U)(BR/32)R Br/16

C B
< w( R/16) sup || <CR2a 2
R2 w(BRr/32) Brrs

and since f, — 0d; v pointwise,
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In the second case, let Br be the ball centered at (x’,0) with radius R, and
denote B; = Br N RZ_ZH. Then x € B;/S; therefore from [26, theorem 2.4.3]
and the boundary Caccioppoli estimate,

C C C
ool = [ oPe s [l
w(Bgs) /B s w(Bg/s) R* /B,

+
Cc w(Bg,,)
< ﬁ—im sup |v] < CR**2.
w(BR/S) B,
So, in all cases, |[d;v(x)| < C|x|*~!. Letting R — oo and using the maximum
principle, we find that d;v = O forany i = 1,...,n. Therefore v does not depend
on the first n variables, so v(x’, y) = v(y). Hence, in RTFI,

0=—div(PVu(y) = -0, 6PV () = Yy =7
for some constant ¢. From [26, theorem 2.4.6], v is Holder continuous up to the
boundary; therefore, for any y > 0,

y y~ _ C _
o) = v v = [ = [CaPas=
0 0 _:B
which implies that

@ = A=)l = A=F)yP T u (0. ) = A-B)yP Ty = 1)y~
for any y > 0. Letting y — oo we obtain that ¢ = 0; hence v'(y) = 0 as

well, which implies that v is a constant. Since v vanishes on R”, this implies that
v=0. g
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