
Distributed Computation of Persistent Homology

from Partitioned Big Data

Nicholas O. Malott, Rishi R. Verma, Rohit P. Singh, and Philip A. Wilsey

Dept. of EECS, University of Cincinnati, Cincinnati, OH 45221, USA

Email: malottno@mail.uc.edu, verma.rishiraj@gmail.com, singh2ro@mail.uc.edu, philip.wilsey@uc.edu

Abstract—Topological Data Analysis is a machine learning
method that summarizes the topological features of a space.
Persistent Homology (PH) can identify these topological features
as they persist within a point cloud; persisting in respect to
the connectedness of the point cloud at increasing distances. The
utility of PH is apparent in several fields including bioinformatics,
network security, and object classification. However, the memory
complexity of PH limits the application to relatively small point
clouds for low-dimensional topological feature identification. For
this reason, numerous approaches to optimize and approximate
the PH have been introduced for providing results over large
point clouds. One solution, Partitioned Persistent Homology (PPH),
has shown favorable approximation on a single node with
significant performance improvement. However, the single-node
approach is limited by the available system memory, leading to
the need for a distributed approach for additional (especially
memory) resources. This paper studies a distributed version of
PPH for use with large point clouds over a high-performance
compute cluster. Experimental results of the distributed algo-
rithm against previous studies is presented along with scalability
of the distributed library.

Index Terms—topological data analysis; persistent homology;
data partitioning; distributed data mining; distributed computing

I. INTRODUCTION

Topological Data Analysis (TDA) provides methods to

analyze and classify data based on the shape of manifolds

in a manner resilient to noise and deformation [1]–[3]. One

of the primary tools of TDA is Persistent Homology (PH). PH

provides a scalar view of the topological features of a point

cloud [1], [4]–[7]. The approach is to identify the change in

topological features — components, loops, holes, and voids

of the space — as the connectedness of the point cloud in-

creases. PH produces persistence intervals that summarize the

topological features for classification and machine learning.

While the technique is straightforward, the worst-case time

and space complexity of computing PH is O(n2.376
K ) [7] and

O(n2
K) [8] respectively, where nk is the total number of

simplices in the complex. For the Vietoris-Rips complex, the

complex type most commonly used in computing PH, the

worst case number of simplices is n!/(d + 1)!(n − d − 1)!,
where n is the number of points and d is the dimension

of homology to compute up to [9]. As a result (and unless

Support for this work was provided in part by the National Science
Foundation under grant IIS–1909096. In addition, this research was supported
in part through research cyberinfrastructure resources and services provided
by the Advanced Research Computing (ARC) center at the University of
Cincinnati, Cincinnati, OH, USA.

otherwise constrained), the computation of PH is limited to

small data-sets of only a few thousand points in R
3.

Several advances are being made to compute PH on larger

point clouds. These include reduction of the simplicial com-

plex [10]–[15] and optimization of the reduction algorithm

[16]–[19]. Unfortunately these approaches have not yet pro-

vided the boost necessary to compute PH over big data in

a manner that preserves both large and small topological

features of the point cloud. There are several specific data

analysis problems for which both large and small topological

features have been shown to be important [20]–[22], making

the preservation of both desirable.

One alternative approach for approximation of PH on very

large point clouds involves: (i) partitioning to compute small

topological features, and (ii) data reduction to locate the

large features [23]. The method requires the construction of

ghost cells [24] such that the PH computations can identify

small topological features that lie on the boundary between

partitions. Large features can be located in the reduced point

cloud and refined using upscaling. This technique is called

Partitioned Persistent Homology (PPH).

This paper extends the technical approach outlined by Mal-

ott and Wilsey for computing PPH on big data and explores the

implementation on a distributed cluster. The key advantage of

this work over that of [23] is the exploitation of the multiplicity

of memory resources to permit the efficient computation of

PPH on big data. That is, in the worst case, the single compute

node may require sequential execution of the PH computation

for each partition (when a partition has space requirements

equal to the RAM capacity of the compute node).

Distributed PPH is developed into the Lightweight Ho-

mology Framework (LHF) [25] open source software library.

The solution uses an MPI-based communication structure to

distribute the computational workloads and merge results.

In order to demonstrate the effectiveness of the distributed

approach, several traditional data-set examples [10], [12],

[21], [23] are examined and their performance profiled. The

scalability of the approach is evaluated with respect to the MPI

implementation in LHF. Results show significant improvement

in the memory footprint of the approach, enabling PH approx-

imation for larger data and in higher dimensions.

The remainder of this paper is organized as follows. Section

II contains background on TDA and specifically PH. Section

III identifies work related to the high performance computation

of PH. Section IV describes the technical approach for dis-



tributing PPH computation. Section V details the development

and implementation of distributed PPH. Section VI presents

experimental results and relates the findings back to the

method presented in this paper. Finally, Section VII remarks

on the experimental study and future work with PPH.

II. BACKGROUND

This section provides a brief introduction to PH along with

distributed approaches for computing persistence intervals

over large point clouds. Details on the sequential computation

of PH are available at [4], [6], [7], [26], [27].

The output of PH is a set of persistence intervals Hd at each

dimension d. H0 persistence intervals represent connected

components, H1 represent loops, H2 represent voids, and so

on. Each persistence interval is a 2-tuple, < ǫbirth, ǫdeath >,

that describes when that unique topological feature appears

(ǫbirth) and disappears (ǫdeath). The distance between ǫbirth
and ǫdeath denotes the persistence of the feature, with larger

distances typically indicating more significant features.

A set of persistence intervals characterizes the unique

topological structure within a given point cloud. Two sets of

persistence intervals are compared using a distance metric,

such as the Bottleneck, Wasserstein, or Kernel metrics to

enable classification and modeling. These comparisons may

be carried out on a subset of the persistence intervals, such

as those filtered by a persistence threshold or of a certain

topological dimension of interest.

Several computationally expensive steps are necessary to

extract persistence intervals from the input point cloud. No-

tably, construction of the filtered simplicial complex and subse-

quent boundary matrix reduction are the primary contributors

to the time and space complexity of the algorithm. These

complexities scale from the number of simplices, which grow

exponentially in higher dimensions.

Distributed approaches can utilize the larger memory of

a cluster to compute PH. Exploration of distributed PH is

recent and has identified algorithmic improvements to compute

the exact persistent homology [28], [29]. The approaches

still suffer from the ever-increasing number of simplices in

higher dimensions and the reliance of the boundary matrix

to be reduced atomically, from left to right. This dependency

limits the extension of the sequential approach to moderate

performance improvements with distributed systems.

Partitioned Persistent Homology (PPH) provides a piece-

wise approach that both reduces the overall memory footprint

and exploits distributed memory for computing PH over larger

point clouds and in higher dimensions. The first step of

this technique involves decomposing the point cloud into

overlapping regional partitions.1 The partitions are analyzed

separately to locate the smaller topological features in the

point cloud. In addition to computing PH on the partitions, the

centroids of the partitions are used to approximate the large

persistent topological features that exist across the partitions

1The overlap is required to ensure that topological features on the boundary
between the partitions are also identified.

of the point cloud. Once the separate PH computations are

computed, the results are merged to form a characterization

of the topological features in the entire point cloud. With this

piece-wise technique, each of the PH computations can be

performed concurrently and independently.

In addition, PPH can be applied as a general wrapper to

alternative complex structures, approximations of the space,

and boundary reduction optimizations. Utilization of the tech-

nique demonstrates the capability to further extend the size

and dimensionality of point clouds examined by PH.

III. RELATED WORK

Computational PH has only recently become feasible, no-

tably after the work of Carlsson et al [30]. Attempts to reduce

the complexity of PH have been studied in several general

areas: complex storage [31], [32], complex filtration and

reduction [16], [19], [33], [34], complex approximation [11],

[35], and general data reduction techniques [10], [12]–[15].

These optimizations have enabled PH for low-dimensional,

moderately sized data-sets. Parallel execution of PH on GPG-

PUs has been explored in [36]. The GPU approach accelerates

run-time, but provides no assistance to alleviate the more

significant problem of memory pressure for computing PH.

Variations of the sequential persistent homology algorithm

are common for optimizations and alternative approaches to

computing PH. The implementation described in this paper uti-

lizes the Vietoris–Rips filtration of the complex [37], computes

the cohomology [38], and employs the twist and clear [19]

and emergent pairs [18] optimizations. Implicit representation

of the boundary matrix [18] is also implemented to provide

compact representations and reduced memory footprints of

each PH computation. While there are many additional op-

timizations, complex structures, and reduction techniques that

can be paired with PPH, the above methods represent some

of the best performance options currently available.

One method of distributed PH computation was introduced

by Bauer et al [17] and implemented in DiPHA. The DiPHA

library provides chunking and distribution of the boundary

matrix to perform a distributed reduction step. While DiPHA

has achieved notable performance improvements, it still suffers

from the memory constraints of its internal representation

of the boundary matrix [18]. Memory complexity has been

targeted more recently with implicit representation models for

Vietoris–Rips complexes [18] but have not yet been applied

to a distributed approach.

Partitioned Persistent Homology (PPH) has several parallels

to the witness complex [14], in which a set of landmark

points is used to represent regions of the space with witness

points locally similar to the landmarks. This representation

results in a reduced complex with error bounded by the

stability of persistence diagrams [39]. A similar approach

using random samples of the point cloud to approximate the

PH was introduced by Chazal et al [10]. These ideas were

built upon by Moitra et al in the single-pass approximation

of the large topological features using nano-clusters [12] and



reconstruction of the smaller topological features from parti-

tions developed by Malott et al [23]. Unfortunately, each of

these approaches result in some loss of the smaller topological

features. PPH leverages the same sampling techniques of these

approaches and utilizes the computation of PH on partitions

of the data to recover the persistence intervals for the smaller

topological features.

IV. OVERVIEW OF THE APPROACH

The distributed computation of PH enables TDA on larger

data-sets where generated simplicial complexes grow beyond

memory limits of a single node. DiPHA’s distributed approach

continues to build the complex for the original point cloud;

thus, it still suffers from the exponential memory growth that

prevents the computation of PH for big data. PPH operates

on subsets of the original point cloud and thus, reduces

the memory footprints of the simplicial complexes that are

constructed for each partition. Previous results [12], [23], [40]

have shown favorable approximations using PPH.

The PPH technique is intended to approximate PH on

big data and in high dimensions. Partitions and centroid

representations of the point cloud are analyzed to characterize

the persistence intervals of data beyond current limitations. In

the remainder of this paper the following symbols are used to

describe the approach with respect to the partitions and their

representative centroids:

• P , the point cloud,

• P̂ , the partitions,

• n
P̂i

, the size (number of points) of each partition,

• P ′, the centroids,

• ri, the distance from the partition centroid, P ′

i ∈ P ′, to the

most distant point in that partition, and

• rmax = max(ri), the maximum ri of all the partitions.

Distributed PPH requires an understanding of (i) the parti-

tioning, (ii) approximation of the persistence intervals from

the partitioned point cloud, (iii) the effects of the partitioning

algorithm and number of generated partitions on the accuracy

and performance of the distributed approach, and (iv) merging

of partitioned persistence intervals into a singular set of

persistence intervals. A high level outline of the steps of this

paper are:

1) Partition the point cloud P such that each point is

assigned to a single partition. The number of partitions

generated should be scaled to fit within the memory

bounds of the system; generally this bound can be

estimated by the number of points and dimension of

homology to compute. The targeted number of partitions

for this step is bounded by M , the maximum number of

points in R
d at homology dimension Hmax that PH can

be performed.

There is an obvious trade-off between the number of

partitions, k, and the size of each of those partitions,

n
P̂i

. When k is increased with a static number of input

points, the value of n
P̂i

will decrease. A larger k will

also preserve more of the salient topological features of

the space [12]. This effect is described in Section IV-A.

2) Compute the PH of the centroid-replaced point cloud

P ′. The PH from the reduced data space will provide

approximated persistence intervals bounded by an error

of 2rmax [12]. Persistent topological features are thus

preserved in the approximated point cloud. These ap-

proximated intervals can be further refined using the

original point cloud and partition mapping (Section

IV-B).

3) For each partition defined in Step 1, compute PH on a

region of points within and around the partition (these

PH computations can occur in parallel among each other

and concurrently to Step 2). In particular, the size of this

region is slightly larger than the points in the contained

partition to ensure identification of features spanning

multiple partitions (Section IV-A).

4) Due to the expansion of the partition boundaries for

computing regional PH, the computations may produce

duplicate persistence intervals from the overlapping re-

gions between the partitions. Any duplicate features

found by the regional PH computations can be elimi-

nated by creating an arbitrary total order on the points

in the original data-set. Each regional computation then

reports only < ǫbirth, ǫdeath > intervals for topological

features where the lowest ordered point in the convex

hull of that feature is a member of that regional partition.

A final step is to remove duplicate < ǫbirth, ǫdeath > in-

tervals returned from the centroid based PH computation

that are also discovered in a regional PH computation.

The regionally computed < ǫbirth, ǫdeath > interval

is preserved as it will generally have a more precise

computation of the feature < ǫbirth, ǫdeath > interval

than the centroid based PH computation (Section IV-D).

The remainder of this section describes the general steps to

distribute PPH; details on their experimental implementation

is provided in Section V.

A. Data Partitioning

PPH attempts to work on regional partitions of the original

point cloud to identify smaller persistence intervals. These

regional results are merged with an estimate of the larger

topological features in the data using a representative point

from each partition. In general, a partitioning assigns every

point to a singular centroid. Formally, P̂ = {p | p ⊂ P} is

defined to be a partitioning of P if ∀p, q ∈ P̂ | p 6= q, then

p ∩ q = ∅ and ∪
p∈P̂

p = P .

Centroid-based clustering algorithms work surprisingly well

in this scheme [40]. Classification with k-means++ [41]

preserves both dense and sparse topological structures in

point clouds up to a significant amount of reduction and can

reasonably approximate the target persistence intervals in the

approach.

The data partitions distributed for PH computation include

not just the points in the partition mapped by k-means++ but



additional points within the error bound of the persistence in-

tervals (as shown by Moitra et al [12]). Partitions are organized

into distributable units by enumerating the points within the

partition identified by k-means++, then subsequently adding

points to the partition that are within some radius of the

centroid of the partition. In particular, 2rmax provides an upper

bound on the lost features shared between two partitions. This

set of fuzzy partitions is referred to as P̂ ′.

Unfortunately, with a large rmax, this upper bound can

significantly increase the size of the partition to be distributed.

For this reason scaling rmax to control partition size with a

scale factor 0 ≤ S ≤ 2 is explored in this work. When S = 0
no additional points will be added to the partition; at S = 2, all

points within a radius of 2rmax will be added to the partition.

A smaller scalar will result in smaller partitions but they may

miss features that form up to 2rmax.

B. Centroid Approximated Persistent Homology

The results of k-means++ are a set of centroids representing

the geometric center of each partition. These representative

points, P ′, provide an approximation that preserves the gen-

eral shape of the original point cloud. Dense areas of the

point cloud are thinned significantly, while sparse areas are

preserved. This effect comes from the variance of points that

are included in each partition when k-means++ attempts to

minimize the inter-class variance, related to ri and rmax.

By choosing an algorithm that inherently minimizes the error

induced in the persistence intervals, the approximate space

can preserve the salient topological features of the space with

a large degree of reduction.

Previous study of the centroid approximated PH has deter-

mined the resultant shift of the persistence interval to be no

more than 2rmax [12]. This can be derived from the stability of

persistence intervals examined by Chazal [42]. The theorem is

adapted to the notation for partitions, and uses DgP and DgP′

to represent the persistence intervals obtained from the original

point cloud and centroid approximated cloud, respectively.

W∞(DgP,DgP′) ≤ 2H(P,P′) (1)

where the Hausdorff distance, H(P,P′) represents the max-

imum distance from any point in the original space to the

nearest neighbor in the centroid approximated space and the

Wasserstein distance, W∞(DgP,DgP′), codifies the ‘distance’

or error between the persistence intervals. With a spherical

clustering algorithm such as k-means++, the nearest centroid

to any point is the assigned centroid; thus the maximum

distance of any one point to respective centroid is rmax.

Replacement into the stability theorem yields:

W∞(DgP,Dg
P̂
) ≤ 2 rmax. (2)

This upper bound can be utilized to identify persistence

intervals smaller than 2rmax within the individual partitions

in most cases. Experimental results [12], [23], [40] show that

large topological features, specifically when the feature is

born after rmax, can be identified with significant reduction.

In some cases, centroid approximations reducing the original

point cloud by 95% still identify the large topological features.

Balancing the number of partitions, k, and the error induced

becomes intuitive; with a larger k, the larger topological fea-

tures will be identified with more accurate bounds. However,

the use of boundary upscaling can permit the use of a smaller

value of k [23]. With the mapping of centroids back to their

constituent points in the original point cloud, generators [43]

of the persistence intervals identified in the approximated

space can be evaluated to refine the larger topological feature

persistence intervals. This refinement of boundaries from the

centroid map is an open area of study for the distributed

structure, but presents significant memory requirements with

larger and higher-dimensional topological features.

Iterative refinement, the process of continuously refining

the larger topological features while balancing the available

memory space, extends beyond the scope of this study but

can utilize the distributed structure demonstrated. Additional

details of iterative refinement are provided in Section VI-C3.

C. Distributed Computation

The distributed computation of persistence intervals for each

of the partitions, P̂i, relies only on the data of each fuzzy par-

tition. Persistence intervals identified within the partition are

not identified in the approximated point cloud, P ′. Each fuzzy

partition and the set of centroids are distributed as independent

units of work. The resulting persistence intervals are returned

from each process. In this step it is necessary that generators

[43] of identified topological features are computed by the

distributed workers. Generators of the persistence intervals

provide a method to compare results from the concurrent PH

computations and remove duplicates. Each distributed partition

reports the generators mapped into the original data indexing

to enable merging of the distributed persistence intervals.

Fuzzy partitions require an additional step. Features may

span multiple partitions, and thus each worker must filter the

persistences intervals locally before reporting intervals for the

backend merge step to prevent duplicates. When distributing

the fuzzy partitions, the points belonging to the original

partition P̂i need to be identified. This enables filtering out

instances when the generator xmin /∈ P̂i for a persistence

interval. The given interval will thus only be reported by the

P̂i containing xmin, the minimum generator of the interval.

Once all partitions and the centroid set are evaluated, the

persistence intervals are merged (see Section IV-D). The result

of the distributed approach is a single set of persistence inter-

vals that characterizes both the regional and large topological

features of the point cloud.

D. Merging of Results

Merging the regional results with the centroid-approximated

persistence intervals is fairly straightforward with proper

mapping between the partitions, centroids, and an arbitrary

total ordering of points. In this work, points are ordered

based on their corresponding partition. Centroids are mapped

to a separate partition for processing. Persistence intervals





0 200 400 600 800 1000 1200 1400

1

10

100

1000

10000

100000

1000000
LHF Memory Performance

H_0

H_1

H_2

H_3

H_4

Number of Points (N)

M
a
x
R

e
s
id

e
n
t 
M

e
m

o
ry

 (
M

B
)

Fig. 2. Limitations of LHF based on the number of points on a single compute
node with 128GB of memory. Each series represents the maximum dimension
of homology to compute up to, Hmax.

Prior to executing the PPH pipeline on any of the data-

sets, the size of the generated simplicial complex must be

evaluated. This analysis determines a suitable value for k, the

number of partitions, that creates partitions of size less than

or equal to the maximum memory bounds for the system. In

the distributed case, each process must not exceed the system

memory, which is directly tied to the number of points being

evaluated in the partition. Figure 2 depicts the limitations of

LHF using 128GB of memory at varying homology dimen-

sions, Hd. The memory limitations of the system constrict the

size of the generated simplicial complex as the dimension of

homology to compute up to, Hmax, increases

A. Dissimilarity Analysis of Persistence Landscapes

Comparison of persistence intervals from the triangulated

mesh data-set has been studied previously [10], [12], [23]. The

triangulated mesh data-sets represent several different mesh

representations of animals in R
3 of varying point cloud sizes

from n = 5, 000 to n = 50, 000. Computing the PH up to

H2 to identify voids in the triangulated mesh point clouds is

beyond the limitations of the traditional approach. Previous

studies have used only a subset of sample points from the

full point cloud to approximate the persistence intervals of the

point cloud. These studies have shown favorable results.

For distributed PPH computation of the triangulated mesh

data-sets, a heterogeneous cluster of four compute nodes is

used. Three nodes have Intel(R) Xeon(R) CPU E5-1620 v2 @

3.70GHz with 4-cores and 64GB of RAM. The fourth node is

an AMD Ryzen Threadripper 1950X 16-Core Processor with

128GB of RAM. Throughout the experiments 5 processes are

executed concurrently, one on each of the Xeon(R) machines

and two on the AMD machine to allow each process up to

64GB of addressable memory. When the total number of parti-

tions exceeds 5, the additional processes are scheduled round-

robin to the nodes. Values of k were chosen independently

for each data-set to ensure the partition sizes do not exceed

available system memory per node.

The use of a dissimilarity matrix provides a general level of

difference between structural components in point clouds. In

the case of PH, there are several interesting structures that

can be compared including the H0 connected components,

the H1 loops in the point cloud, the H2 voids, and higher

dimensional structures that may provide greater differentiation.

For this reason, the analysis separates the dimensional features

identified from each of the point clouds to examine the

dissimilarity of H1 and H2 features between each of the

triangulated mesh models.

The k-centroid subsamples of each point cloud are used as

input to the sequential PH method to establish a baseline of

comparison because conventional PH tools cannot compute H2

homologies at the scale of these test cases. Features identified

in the centroid-approximated approach will be identical to

the PPH approach, with additional features being identified in

PPH due to the regional reconstruction of smaller persistence

intervals. This allows determination of the improvement in

dissimilarity between the models using the base case of

centroid-approximated PH.

The dissimilarity plots for the centroid-approximated and

PPH approaches using the Sliced-Wasserstein (SW) distance

[45] are shown in Figure 3. The first row of plots shows

results using the conventional PH algorithm; the second row

shows results using PPH; and the third row show results

using PPH with a fuzzy partition scale of S = 0.5. The

first column compares all Hd persistence intervals, while the

other two columns show, respectively, the dissimilarities of H1

and H2 features (H0 is not shown due to space constraints,

but the results are consistent with the others). A larger value

of dissimilarity is represented by a larger SW distance —

indicating that the persistence diagrams between the compared

row and column data-sets are less similar. Lower values of

dissimilarity indicate the generated persistence intervals are a

closer match.

The results of Figure 3 show that PPH provides significantly

better dissimilarity between the triangulated mesh models. A

majority of this improvement is the result of the regional

reconstruction where smaller persistence intervals are iden-

tified. In higher dimensions such as H1 and H2, the regional

reconstruction with PPH also improves the overall dissimilar-

ity between the models indicating structural differences that

can provide greater insight into classification. This result is

significant for classification, pattern, and object recognition in

machine learning applications. A slight increase in dissimilar-

ity can be observed with the addition of partition overlap with

S = 0.5, which may be useful for additional discernment in

some applications if desired.

B. Regional Reconstruction of Brain Artery Trees

Topological data analysis is one technique that has been

used to analyze brain artery trees. In particular, Bendich et al

[21] studied brain artery tree data-sets describing 98 patient

MRA paths in R
3 using the H0 and H1 features of PH.

Interestingly, PH has been shown to provide correlations with

the age and gender of the patients in that study. However,

several of the correlations are constructed on the subsampled

brain artery tree data; the sizes of the scans exceed 105



CamelFlamingoElephantLion

Camel

Flamingo

Elephant

Lion

0.00004.62668.72315.1756

4.62660.000011.91670.8239

8.723111.91670.000012.1764

5.17560.823912.17640.0000

ALL SW Centroid Dissimilarity

CamelFlamingoElephantLion

Camel

Flamingo

Elephant

Lion

0.00001.05461.32311.1756

1.05460.00001.91860.2780

1.32311.91860.00002.0156

1.17560.27802.01560.0000

H_1 SW Centroid Dissimilarity

CamelFlamingoElephantLion

Camel

Flamingo

Elephant

Lion

0.00000.09040.11920.1214

0.09040.00000.16630.1004

0.11920.16630.00000.1939

0.12140.10040.19390.0000

H_2 SW Centroid Dissimilarity

CamelFlamingoElephantLion

Camel

Flamingo

Elephant

Lion

0.000015.601068.836434.1596

15.60100.000079.245926.5032

68.836479.24590.0000101.7179

34.159626.5032101.71790.0000

ALL SW PPH Dissimilarity

CamelFlamingoElephantLion

Camel

Flamingo

Elephant

Lion

0.00002.24789.92703.6175

2.24780.000011.26212.7574

9.927011.26210.000012.8570

3.61752.757412.85700.0000

H_1 SW PPH Dissimilarity

CamelFlamingoElephantLion

Camel

Flamingo

Elephant

Lion

0.00000.17880.20890.1708

0.17880.00000.23070.1520

0.20890.23070.00000.2580

0.17080.15200.25800.0000

H_2 SW PPH Dissimilarity

CamelFlamingoElephantLion

Camel

Flamingo

Elephant

Lion

0.000015.538969.278533.9275

15.53890.000079.513726.1614

69.278579.51370.0000101.7170

33.927526.1614101.71700.0000

ALL SW PPH Dissimilarity (s=0.5)

CamelFlamingoElephantLion

Camel

Flamingo

Elephant

Lion

0.00002.39429.89323.8528

2.39420.000011.27832.8730

9.893211.27830.000012.8217

3.85282.873012.82170.0000

H_1 SW PPH Dissimilarity (s=0.5)

CamelFlamingoElephantLion

Camel

Flamingo

Elephant

Lion

0.00000.19260.21080.1746

0.19260.00000.23340.1658

0.21080.23340.00000.2566

0.17460.16580.25660.0000

H_2 SW PPH Dissimilarity (s=0.5)

Fig. 3. Dissimilarity plots for the triangulated mesh point clouds.

points and are too large to compute with existing tools. In

their approach, the brain artery trees are each subsampled to

3, 000 points and evaluated to find H1 loops within the point

cloud. PPH can improve this recognition of small H1 features

embedded in the subsampling that provides more clarity to the

reported results.

In this paper the H1 features are identified using PPH to

reconstruct the smaller loops embedded in the partitions. These

loops represent the loops within brain artery paths of the MRA

point clouds; the birth of the loop represents when a feature

was first formed over the point cloud and the death represents

the coverage of the feature. The Bendich study has indicated an

inverse relationship between the persistence (ǫdeath−ǫbirth) of

the longest intervals and the age of the subject. The experiment

in this paper attempts to re-evaluate the correlation of the

reconstructed H1 persistence intervals using PPH against the

subsampled method studies.

PPH results were compared to a centroid-approximated PH

of k = 3, 000. The persistence intervals for all 98 patients were

computed to evaluate the Pearson Correlation Coefficient of

the first principal component (PCA1) of persistence intervals

Measurement Corr(P ′) Corr(PPH)
Top 150 H1 ǫbirth 0.24 0.12
Top 150 H1 ǫdeath 0.43 0.63
Top 150 H1 persistence 0.61 0.56

Top 150 to 250 H1 ǫbirth 0.27 0.63
Top 150 to 250 H1 ǫdeath 0.07 0.61
Top 150 to 250 H1 persistence 0.60 0.61

TABLE I
PEARSON CORRELATION COEFFICIENTS AND THE FIRST PRINCIPAL

COMPONENT (PCA1) BETWEEN AGE AND VARIOUS SUBSETS OF THE

PERSISTENCE INTERVALS.

against age and sex. Coefficients of greater magnitude indicate

stronger correlations. Significant results for age are shown

in Table I. PPH provides similar age correlation as the H1

persistences demonstrated by Bendich. The set of persistence

intervals between 150 and 250 when ordered by persistence

also demonstrate significant correlation with the age of the pa-

tients. Importantly, other factors had a much more significant

correlation with age, such as the H1 ǫbirth and ǫdeath times

from the PPH results, indicating a substantial improvement

over the subsampled approach.



0 102030405060708090
Start of Range

0
10

20
30

40
50

60
70

80
90

En
d 

of
 R

an
ge

Centroids

0 102030405060708090
Start of Range

PPH

0.2

0.3

0.4

0.5

0.6

Correlation(Average H1 persistence, Age)

Fig. 4. Centroid approximated and PPH reconstructed H1 Correlation (PCA1,
Age). Higher values indicate a greater correlation between the patient’s age
and the range of persistences (x, y).

0 102030405060708090
Start of Range

0
10

20
30

40
50

60
70

80
90

En
d 

of
 R

an
ge

Centroids

0 102030405060708090
Start of Range

PPH

0.10

0.15

0.20

0.25

0.30

Correlation(Average H1 persistence, Sex)

Fig. 5. Centroid approximated and PPH reconstructed H1 Correlation (PCA1,
Sex). Higher values indicate a greater correlation between the patient’s sex
and the range of persistences (x, y).

Measurement p(P ′) p(PPH)
Top 100 H1 ǫbirth 0.36 0.00
Top 100 H1 ǫdeath 0.48 0.00
Top 100 H1 persistence 0.73 0.06

TABLE II
P-VALUES FOR THE PERMUTATION TEST BETWEEN MALES AND FEMALES

FOR TOP 100 H1 FEATURES IN THE CENTROID AND PPH RESULTS.

The comparison was also evaluated for the p-values for a

permutation test between males and females, as performed

by Bendich et al [21]. The top 100 H1 persistence intervals

show a dramatic decrease in the p-value for determining sex

of the individual from the brain artery tree data, indicating

statistically significant results as depicted in Table II. This

indicates that the PPH approach, which includes granular detail

of the connections from the regional reconstruction step, can

provide additional differentiating information with the smaller

persistence intervals. This information is useful in studies

to provide a fine-grained analysis of the topological features

present in big data.

Figures 4 and 5 show heatmaps comparing the first principal

component of ranges of H1 features against patient age and sex

for centroid sampling and PPH. The range (x, y) selects the

top xth to yth barcodes when ordered by persistence. Results

show an increase in the correlation for the largest 50 barcodes

over the subsampled approach. This indicates more granularity

and a greater determined relationship between the PPH per-

sistences of patients and the sex of the patient. While these

results confirm Bendich’s initial findings of the correlation of

the H1 persistences, PPH provides better recognition due to

regional reconstruction of small persistence intervals.

The findings in this section reaffirm the claims by Ben-

dich et al [21] that the top H1 persistence intervals have a

significant relationship with the age and sex of the patients.

Reconstruction of the regional persistence intervals through

PPH amplify the significance of the relationship and provide

detailed recognition of the represented topological features.

C. Performance

The performance of the distributed approach can only be

analyzed from a scalability perspective; that is, the ground

truths for larger datasets are not available and cannot be

computed with current tools. For this reason the aim of the

performance experiments are to characterize the impact of

parameter selection and data-set size on both the time and

space complexity of the approach. A study of the distributed

implementation and performance scalability of PPH relies on

several parameters:

• k, the number of partitions (clusters) to generate,

• Hmax, the max dimension of homology to compute,

• np, the number of processes utilized, and

• n, the number of points in the original data-set.

The input parameters to distributed PPH will have several

effects on the overall performance. The number of partitions,

k, describes how many partitions will be created in the first

step. This controls the number of partitions distributed, the size

of each of those partitions, and the number of points used to

estimate large topological features. Naturally, the number of

partitions will affect rmax and, when fuzzy partitions are used,

the number of additional points brought into each partition for

identifying features spanning multiple partitions.

The maximum dimension of homologies to compute, Hmax,

determines the size of the complex generated from the point

cloud alongside the complexity of extracting the persistence

intervals. Each distributed process receives several partitions

and Hmax; the process computes PH up to Hmax and returns

the relevant persistence intervals. The master process then

merges the results from each partition to report the persistence

intervals computed by the distributed PPH algorithm.

The number of points, n, will also play a significant role

in measuring the performance of the distributed system. As n
increases, the number of points per partition will increase. The

inclusion of points within a radius of 2rmax in each partition

will duplicate points between different partitions while the



number of partitions, k, remains constant. This indicates the

system can serve two purposes: a large master node that

computes with a large k, with smaller partitions distributed

to worker nodes, or a smaller k used for the master node and

larger partitions distributed to worker nodes for evaluation.

Collectively, the k, Hmax, and n directly affect the gen-

erated number of simplices in the simplicial complex. In the

sequential approach with a Vietoris–Rips complex, the number

of generated simplices is O(nHmax+1). Storing, filtering, and

reducing the boundary matrix from such a large number of

simplices is not possible on a single node. However, partition-

ing and separating the larger complex into smaller complexes

enables the distributed approach presented in this study with

a significantly reduced memory footprint for increasingly

smaller complex reductions in PH computation.

A larger compute cluster was used to evaluate the scalability

of the approach. The ARCC High Performance cluster offers

up to 36 total nodes, each with an Intel Xeon Gold 6148

CPU and 192GB RAM with an Omnipath Networking infras-

tructure. In the scalability experiments, the MPI-enabled PPH

approach was evaluated up to 16 compute nodes for speedup

results and 32 nodes for a large-scale example.

The remainder of this section is organized as follows.

Section VI-C1 approaches the scalability of the system by

first identifying the memory limits of PPH and measured

parallel speedup. The speedup is then analyzed in terms of

sequential overhead for partitioning and merging of results in

Section VI-C2. Finally a brief summary of Iterative PPH for

further partitioning and refinement of topological features is

provided in Section VI-C3. Each of these experiments utilizes

synthetic d-spheres generated at different sizes and dimensions

to characterize the overall performance of distributed PPH.

1) PPH Memory Limits: Serial execution of LHF for

memory and runtime performance was previously presented in

Figure 2. On a single node the limiting factor is the available

amount of memory; if the maximum available memory is

exceeded, PPH fails. With each partition being treated as a

single unit of work, if the size of any partition exceeds the

memory limitations, the approach will also fail. In a distributed

memory approach, each partition must be sized appropriately

to fit within any of the nodes of the cluster.

Figure 6 presents the partition size limitation based on

available system memory to demonstrate the effect of the

minimum node’s memory space. Any individual partition can

be assigned to any node; if the largest partition is assigned to

a node with insufficient memory, PPH will fail. Fortunately an

iterative application of PPH on an individual partition can be

performed to address this problem.

In the most extreme case of PPH, each of the k partitions

contains M points, where k ≤ M . In practice, the sizes of the

partitions vary significantly and we therefore achieve slightly

less scale for the parallel speedup. This indicates that with a

maximum partition size of M in a partitioning where k = M
and n

P̂i
= M ∀P̂i ∈ P̂ , the maximum point cloud size that

PPH can perform on is of size M2. Standard PPH enables

the distributed PH of point clouds beyond 100k points, and

0 20000 40000 60000 80000 100000 120000 140000

0

500

1000

1500

2000

2500

3000

3500
Partition Memory Limits

H_0 Max

H_1 Max

H_2 Max

H_3 Max

H_4 Max

System Memory (MB)

M
a
x
im

u
m

 P
a
rt

it
io

n
 S

iz
e
 (

M
)

Fig. 6. Measured maximum partition point size (M ) based on available
system memory of a single node, up to M=3000.

1 3 5 7 9 11 13 15

0

2

4

6

8

10

12
Distributed PPH Speedup

H_0

H_1

H_2

H_3

H_4

Nodes (np)

S
p
e
e
d
u
p

Fig. 7. Measured parallel speedup of distributed PPH based on number of
nodes executed on.

1 6 11 16 21 26 31

1

2

3

4

5

Distributed PPH Speedup for 100K Points

Nodes (np)

S
p
e
e
d
u
p

Fig. 8. Distributed PPH speedup for 100k points up to H2 based on number
of nodes. A seeded k-means++ with k = 1200 was used to generate partitions
and scalar S = 0.5 was utilized for regional reconstruction.

in some cases beyond 1m points. An iterative PPH, described

in Section VI-C3, can extend this limit even further. This is a

significant step towards computing PH on big data.

Parallel speedup from the PPH approach is intuitive; each

partition is distributed to one of the np nodes and concurrently

executed. Figure 7 presents the parallel speedup from a multi-

node distributed approach on synthetically generated data. In

higher dimensions the system RAM limitation constrains the

maximum data size for PH and consequently the speedup



k-means++ PPH MPI Overhead
n k Hmax (s) (s) (s) (%)

20000 250 1 191.65 336.60 4.16 36.78
20000 250 2 189.50 9580.35 18.26 2.12
10000 250 2 112.45 5789.67 16.72 2.18
5000 250 3 26.97 18639.82 9.31 0.19
1000 100 4 1.55 2134.13 12.21 0.64

TABLE III
A SAMPLING OF SEQUENTIAL TIMES FOR COMPUTING k-MEANS++,

RUNNING PPH COMPUTATIONS, AND MPI OVERHEAD FOR DISTRIBUTION

AND MERGING OF PARTITIONS. ALL TIMES WERE TAKEN FROM A

SYNTHETIC D-SPHERE OF DIMENSION 8.

attained. Evaluation with larger system memory on more

distributed nodes will provide additional scalability as the size

of the point cloud increases in higher dimensions.

Figure 8 explores the runtime of PPH up to H2 with

100, 000 points using different node configurations. This size

of data is well beyond the limitations of current PH approaches

in reasonable space-time complexity. Additional nodes and

RAM can continue to expand the capabilities for higher dimen-

sions and larger point clouds. Distributed PPH demonstrates

significant improvement in both memory space and runtime

over the single-node approach and enables approximate topo-

logical data analysis on big data beyond current limitations of

the exact approach as demonstrated in this scalability study.

2) Distributed Overhead: Distributed PPH exploits the in-

dependence of each generated partition to compute the persis-

tent homology by parts. As indicated in Figure 1, the parallel

portion that benefits from distributed processing includes the

individual PH computations and partition-local filtering and

remapping of identified intervals. Sequential functions of the

system, such as partitioning of the input data-set, distribution

of the partitioned sets, and merging of results can potentially

limit the scalability of the system.

Table III provides the sequential processing time over sev-

eral workloads with distributed PPH. The k-means++ and MPI

portions represent the partitioning and sequential distribution

steps. The PPH time is the total execution time of PH on the

partitions. The overhead percentage is the percentage of total

processing time in the k-means++ or MPI modes.

In general the sequential overhead portions of the technique

are minimal compared to the persistent homology computa-

tions required for analysis. This is a result of the implemen-

tation only broadcasting the partitioned data at startup and

gathering after each process has finished their set of workloads.

A majority of the processing time for higher dimensional

persistent homology, especially as Hmax exceeds 2, is spent on

PH computations for each of the partitions. In low dimensions,

such as H0, the overhead significantly limits scalability.

Notably the O(nkd) runtime complexity of k-means++ is

significant in the larger datasets, such as the 100k d-sphere in

Figure 8. Alternate partitioners such as distributed k-means++

may be employed to take advantage of multiple nodes during

the partitioning step.

3) Distributed Iterative PPH: While the method utilized

in the scalability studies of this paper focuses on a single

partitioning and distribution of units of work to worker nodes,

an additional method has been previously introduced in [23]

to iteratively repartition distributed sets when the number

of points exceeds system memory limits. This Distributed

Iterative PPH has been implemented into the LHF library;

workloads of each worker node are repartitioned accordingly

when space does not permit a full reporting of results.

In the distributed iterative PPH scheme any partition such

that n > M where n is the source number of points and M is

the maximum number of points for PH in dimension Hmax can

be further partitioned and reconstructed. The iteration follows

the same steps as the standard approach requiring partitioning,

PH computation, remapping, and merging for any partition that

requires further reduction to fit into system memory.

VII. CONCLUSIONS

The exponential memory complexity of computing PH in-

hibits the use of Topological Data Analysis on large data-sets.

While attempts to approximate or distribute the computation of

PH have been studied, few have successfully exploited speedup

through the multiplicity of memory resources to permit the

efficient computation of PH on big data. The partitioning and

approximation of PPH has demonstrated significant reduction

of the memory footprint and functions as a wrapper to the

PH algorithm and future optimizations in the computation. By

piece-wise approximation of the data-set and merging of the

results, PPH permits the computation of PH on significantly

larger data-sets. The lack of incremental communication by

the regional PH computations permits the deployment on large

compute clusters that scales efficiently.

Furthermore, a remapping of the spaces rectifies lost persis-

tence intervals, providing an improved approximation beyond

the current memory limitations. Merging and upscaling of

partitioned persistence intervals as described in this paper is

a significant step towards the complete identification of the

topological features in the space. This continues to be an

active area of study and may uncover the ability to completely

recreate the persistence intervals from partitioned datasets.

While k-means++ was used in this study, the approach has

been shown to work with other partitioning algorithms such

as agglomerative, DBScan, and Mean-shift [40]. Depending

on the underlying structure of the data there may be features

identified with some partitioners that are lost with others.

Performance becomes a concern as the method is extended

into the big data scope, which may require a more efficient or

distributed partitioning algorithm. However, k-means++ scales

well and, in general, provides very good results.

The results in this paper show promise for the piece-wise ap-

proximation to reduce the overall memory limitations for PH.

This study has characterized the accuracy and performance

for several synthetic and real-world data-sets and explored

synthetic data-sets beyond the current limitations of exact PH

libraries. Improvements to the iterative refinement of large

topological features and merging of higher dimensional persis-

tence intervals provide a framework for further improvement

of the persistence intervals, should that be desired.



REFERENCES

[1] G. Carlsson, “Topology and data,” Bulletin of the American Mathemat-

ical Society, vol. 46, no. 3, pp. 255–308, Apr. 2009.

[2] P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson,
M. Alagappan, J. Carlsson, and G. Carlsson, “Extracting insights from
the shape of complex data using topology,” Scientific Reports, vol. 3,
Feb. 2013.

[3] R. Ghrist, “Barcodes: The persistent topology of data,” Bulletin of the

American Mathematical Society, vol. 45, no. 1, pp. 61–75, 2008.

[4] F. Chazal and B. Michel, “An introduction to topological data analysis:
Fundamental and practical aspects for data scientists,” ArXiv e-prints,
Oct. 2017.

[5] H. Edelsbrunner and J. Harer, “Persistent homology — a survey,”
Surveys on Discrete and Computational Geometry, vol. 453, pp. 257–
282, 2008.

[6] C. S. Pun, K. Xia, and S. X. Lee, “Persistent-homology-based machine
learning and its applications – a survey,” Nov. 2018.

[7] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington,
“A roadmap for the computation of persistent homology,” EPJ Data

Science, vol. 6, no. 1, Aug. 2017.

[8] T. K. Dey, D. Shi, and Y. Wang, “SimBa: An efficient tool for
approximating rips-filtration persistence via simplicial batch collapse,”
ACM Journal of Experimental Algorithmics, vol. 24, pp. 1.5:1–1.5:16,
Jan. 2019.

[9] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington,
“A roadmap for the computation of persistent homology,” arXiv preprint

arXiv:1506.08903, Aug. 2015.

[10] F. Chazal, B. T. Fasy, F. Lecci, B. Michel, A. Rinaldo, and L. Wasser-
man, “Subsampling methods for persistent homology,” in International

Conference on Machine Learning, ser. ICML 2015, Lille, France, Jul.
2015.

[11] T. K. Dey, D. Shi, and Y. Wang, “Simba: An efficient tool for approx-
imating rips-filtration persistence via simplicial batch-collapse,” 24th

Annual European Symposium on Algorithms (ESA 2016), 2016.

[12] A. Moitra, N. Malott, and P. A. Wilsey, “Cluster-based data reduction
for persistent homology,” in 2018 IEEE International Conference on Big

Data, ser. Big Data 2018, Dec. 2018, pp. 327–334.

[13] D. R. Sheehy, “The persistent homology of distance functions under
random projection,” in Proceedings of the Thirtieth Annual Symposium

on Computational Geometry, ser. SOCG’14. New York, NY, USA:
ACM, 2014, pp. 328–334.

[14] V. de Silva and G. Carlsson, “Topological estimation using witness
complexes,” in Eurographics Symposium on Point-Based Graphics, ser.
SPBG ’04, M. Gross, H. Pfister, M. Alexa, and S. Rusinkiewicz, Eds.
The Eurographics Association, 2004.

[15] K. N. Ramamurthy, K. R. Varshney, and J. J. Thiagarajan, “Computing
persistent homology under random projection,” in IEEE Workshop on

Statistical Signal Processing, Jun. 2014, pp. 105–108.

[16] U. Bauer, M. Kerber, and J. Reininghaus, “Clear and compress: Com-
puting persistent homology in chunks,” in Topological Methods in Data

Analysis and Visualization III, P. T. Bremer, I. Hotz, V. Pascucci, and
R. Peikert, Eds. Springer International Publishing, Mar. 2014, pp. 103–
117.

[17] ——, “Distributed computation of persistent homology,” in 2014 Pro-

ceedings of the Meeting on Algorithm Engineering and Experiments

(ALENEX). SIAM, 2014, pp. 31–38.

[18] U. Bauer, “Ripser: efficient computation of vietoris-rips persistence
barcodes,” 2019.

[19] C. Chen and M. Kerber, “Persistent homology computation with a twist,”
in Proceedings 27th European Workshop on Computational Geometry

(EuroCG’11), 2011, pp. 197–200.

[20] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman,
S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier, “Persistence
images: A stable vector representation of persistent homology,” Journal

of Machine Learning Research, vol. 18, no. 1, pp. 218–252, Jan. 2017.

[21] P. Bendich, J. S. Marron, E. Miller, A. Pieloch, and S. Skwerer,
“Persistent homology analysis of brain artery trees,” The Annals of

Applied Statistics, vol. 10, no. 1, pp. 198–218, Mar. 2016.

[22] P. Bubenik, M. Hull, D. Patel, and B. Whittle, “Persistent homology
detects curvature,” Inverse Problems, vol. 36, no. 2, Jan. 2020.

[23] N. O. Malott and P. A. Wilsey, “Fast computation of persistent homology
with data reduction and data partitioning,” in 2019 IEEE International

Conference on Big Data, ser. Big Data 2019, Dec. 2019, pp. 880–889.

[24] J. M. Patchett, B. Nouanesengesy, J. Pouderoux, J. Ahrens, and H. Ha-
gen, “Parallel multi-layer ghost cell generation for distributed unstruc-
tured grids,” in 2017 IEEE 7th Symposium on Large Data Analysis and

Visualization (LDAV), Oct. 2017, pp. 84–91.
[25] Researchers at The High Performance Computing Laboratory. (2020)

LHF: Lightweight homology framework. The University of Cincinnati.
[Online]. Available: https://github.com/wilseypa/lhf

[26] U. Fugacci, S. Scaramuccia, F. Iuricich, and L. D. Floriani, “Persistent
homology: a step-by-step introduction for newcomers.” in Smart Tools

and Apps for Graphics – Eurographics Italian Chapter Conference,
G. Pintore and F. Stanco, Eds. The Eurographics Association, 2016,
pp. 1–10.

[27] X. Zhu, “Persistent homology: An introduction and a new text represen-
tation for natural language processing,” in IJCAI, 2013, pp. 1953–1959.

[28] D. Morozov and A. Nigmetov, “Towards lockfree persistent homology,”
in Proceedings of the 32nd ACM Symposium on Parallelism in Algo-

rithms and Architectures, ser. SPAA ’20, Jul. 2020, pp. 555–557.
[29] S. Zhang, M. Xiao, C. Guo, L. Geng, H. Want, and X. Zhang, “HYPHA:

A framework based on separation of parallelisms to accelerage persistent
homology matrix reduction,” in Proceedings of the ACM International

Conference on Supercomputing, ser. ICS ’19. New York, NY, USA:
ACM, Jun. 2019, pp. 69–81.

[30] G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, “On the
local behavior of spaces of natural images,” International Journal of

Computer Vision, vol. 76, no. 1, pp. 1–12, Jan. 2008.
[31] J.-D. Boissonnat and C. Maria, “The simplex tree: An efficient data

structure for general simplicial complexes,” Algorithmica, vol. 70, no. 3,
pp. 406–427, Nov. 2014.

[32] J.-D. Boissonnat, T. K. Dey, and C. Maria, “The compressed
annotation matrix: an efficient data structure for computing persistent
cohomology,” CoRR, vol. abs/1304.6813, 2013. [Online]. Available:
http://arxiv.org/abs/1304.6813

[33] M. Mrozek and B. Batko, “Coreduction homology algorithm,” Discrete

& Computational Geometry, vol. 41, no. 1, pp. 96–118, Jan. 2009.
[34] U. Bauer. (2018) Ripser. The Technical University of Munich. [Online].

Available: http://www.cs.umd.edu/mount/ANN/
[35] J. A. Barmak and E. G. Minian, “Strong homotopy types, nerves and

collapses,” Discrete & Computational Geometry, vol. 47, no. 2, pp. 301–
328, Mar. 2012.

[36] S. Zhang, M. Xiao, and H. Wang, “Gpu-accelerated computation of
vietoris-rips persistence barcodes,” arXiv preprint arXiv:2003.07989,
2020.

[37] A. Zomorodian, “Fast construction of the vietoris–rips complex,” Com-

puter and Graphics, pp. 263–271, 2010.
[38] V. de Silva, D. Morozov, and M. Vejdemo-Johansson, “Dualities in

persistent (co)homology,” Inverse Problems, vol. 27, no. 12, 2011.
[39] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, “Stability of persis-

tence diagrams,” Discrete & computational geometry, vol. 37, no. 1, pp.
103–120, 2007.

[40] N. O. Malott, A. Sens, and P. A. Wilsey, “Topology preserving data re-
duction for computing persistent homology,” in International Workshop

on Big Data Reduction, 2020.
[41] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful

seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, ser. SODA ’07. New Orleans, Louisiana:
Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[42] F. Chazal, V. de Silva, M. Glisse, and S. Oudot, “The structure and
stability of persistence modules,” arXiv preprint arXiv:1207.3674, 2012.

[43] O. Busaryev, T. K. Dey, and Y. Wang, “Tracking a generator by
persistence,” in Computing and Combinatorics (COCOON), ser. Lecture
Notes in Computer Science, vol. 6196. Berlin, Heidelberg: Springer
Verlag, 2010, pp. 278–287.

[44] R. W. Sumner and J. Popovic, “Mesh data from deformation
transfer for triangle meshes,” 2004. [Online]. Available: https:
//people.csail.mit.edu/sumner/research/deftransfer/data.html

[45] M. Carriere, M. Cuturi, and S. Oudot, “Sliced wasserstein kernel for
persistence diagrams,” arXiv preprint arXiv:1706.03358, 2017.


