Discovering Nonlinear Dynamics Through Scientific Machine Learning

Lei Huang¹, Daniel Vrinceanu², Yunjiao Wang², Nalinda Kulathunga², and Nishath Ranasinghe¹

¹ Department of Computer Science, Prairie View A&M University, Prairie View, TX 77446, USA, lhuang@pvamu.edu,

WWW home page: https://computinglab.wixsite.com/computinglab

² Texas Southern University, Houston, TX 77004, USA,

Abstract. Scientific Machine Learning (SciML) is a new multidisciplinary methodology that combines the data-driven machine learning models and the principle-based computational models to improve the simulations of scientific phenomenon and uncover new scientific rules from existing measurements. This article reveals the experience of using the SciML method to discover the nonlinear dynamics that may be hard to model or be unknown in the real-world scenario. The SciML method solves the traditional principle-based differential equations by integrating a neural network to accurately model the nonlinear dynamics while respecting the scientific constraints and principles. The paper discusses the latest SciML models and apply them to the oscillator simulations and experiment. Besides better capacity to simulate, and match with the observation, the results also demonstrate a successful discovery of the hidden physics in the pendulum dynamics using SciML.

Keywords: Scientific Machine Learning, Scientific Simulation, Computational Science, Nonlinear Dynamics

1 Introduction

Scientific Machine Learning (SciML) [1] has recently emerged as a new method to solve the scientific computing problems using machine learning models. The method leverages the success of traditional scientific computational models and the advances in data-driven machine learning models to augment the efficiency and accuracy of scientific simulation and inversion. Moreover, it facilitates the scientific discovery by modeling both well-known scientific rules and the unknown patterns based on observed data.

Traditional scientific computational models are mostly developed to simulate the physics, chemistry, biology and other scientific phenomenons by using various numerical methods, such as the finite difference or finite element methods, to solve a variety of differential equations. These methods can achieve highly accurate simulation results; however, they are also notoriously expensive in consuming computational resources. It is why scientific computing is typically conducted on the supercomputers using complex programming models. Moreover, the scientific computing highly depends on our understanding of the theoretical principles, which do not fully represent the complexity and nonlinear dynamics in many real-world phenomenons. Many times, the parameters and other constraints are not well known and simulation scientists have nothing better to rely on other than educated guesses.

In theory, SciML combines the deterministic scientific principles with the universal approximation of machine learning to thus provide a more efficient yet reliable and explainable model-based data-driven solution. SciML provides a sound scientific theoretic foundation to unveil the new scientific governing rules with a collection of data and models. For example, SciML may integrate a deep learning model into a partial differential equation (PDE) to fit the observed data, which models the well-known principles using the PDE and models the unknown portion such as noise and friction using the deep learning model.

The latest theoretical and practical advances in machine learning, especially deep learning, dramatically increase the capacity and accuracy of the universal approximation of nonlinear functions. Despite the progress, it is still not reliable and explainable to learn a complex system with nonlinear dynamics or chaos using deep learning along. Moreover, it requires mostly unrealistic big data sets to train a deep learning model to cover all possible features. Even if we can successfully train a deep learning-based surrogate model, the model's extrapolation is not questionable. It would be much more reliable and explainable if we can embed the physical principles to determine the nonlinear dynamics, and only leave the unknown functions to machine learning. SciML converges the computational science and data science disciplines powers to improve the accuracy, performance, and interpretability in scientific simulation. Moreover, it may unveil scientific rules hidden inside the nonlinear dynamics learned by the machine learning models.

In this paper, we present the latest four SciML models using a couple of physics experiments to report our experience, the benefits, and limitations of the SciML method. Section 2 describes the state-of-art of SciML models; section 3 shows the physics experiments, simulation, and data collection; section 4 discusses the results of the SciML models; and the section 5 concludes the findings of the paper.

2 Scientific Machine Learning Models

SciML is developed to facilitate the scientific computation either by developing a surrogate model to replace the numerical model or combine the data-driven model to achieve better accuracy and performance. In this paper, we applies the Physics-Informed Neural Networks (PINNs) [2], the Universal Differential Equation (UDE) method [3], the Hamiltonian Neural Networks (HNNs) [4], and the Neural Ordinary Differential Equation (NODE) [5] to learn the nonlinear dynamics in several physics experiments.

2.1 Physics-Informed Neural Networks

PINNs is one of the SciML solutions that solves the differential equations by modeling the latent solution u(t,x) directly with a deep learning model and solves the differential equation by taking advantage of automatic differentiation functionalities [6] in machine learning (ML) software. The solution u(t,x) is replaced by a neural network or other ML model and its derivatives satisfy the definition of the governing differential equation.

For example, the harmonic pendulum differential equation is defined as the equation (1).

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\sin(\theta) = 0\tag{1}$$

where g is the gravity, L is the length of the pendulum and θ is the angle with respect to the vertical in radians.

PINNs redefines the equation by substitute its solution f(t) with a neural network $N_p(t)$, where N is the neural network and p is its trainable parameters. The new equation is depicted as the equation (2).

$$N_p''(t) + \frac{g}{L}\sin(\theta) = 0 \tag{2}$$

By creating a loss function to minimize the equation (2), PINNs utilizes the automatic differentiation capability in ML software to calculate the second order derivatives of $N_p(t)$ and optimize the loss function. As a result, the $N_p(t)$ is an approximation of the solution of equation (1).

Furthermore, PINNs can be effectively used to solve the forward problem as well as the inverse problem with minimum modifications to computational codes [7]. Additionally, a Petrov-Galerkin [8] version of PINNs have been employed to solve variational form of PDEs to reduce the training cost [9]. Likewise, modified versions of PINNs have been employed to solve fractional differential equations [10] and stochastic differential equations [11]. As a method to address lack of uncertainty quantification in PINNs, Zhang et al. [12] put forward the idea of using multiple deep neural networks to quantify the parametric uncertainty and dropouts to model the uncertainty stemming from the approximations resulting from the neural networks. As an effort to develop a theoretical basis of PINNs, Shin et al. [13] studied the convergence of the sequence of minimizers generated from PINNs corresponding to the sequence of neural networks to the solution of the given PDE. They found sequence of the minimizers strongly converges to the PDE solution in L2 space as well as each minimizer satisfies both initial and boundary conditions.

2.2 Universal Differential Equations

UDE method has some similarities with the PINN method: both rely on the scientific principles represented as differential equations to guide the computation and impose constraints. However, UDE is more flexible to model the unknown functions and combine them with existing scientific knowledge. UDE relies on

(4)

the numerical differential equation solvers to solve the problem while learning the unknown functions during the calculation.

The pendulum equation using UDE is depicted as the equation (3), which introduces a neural network N_p that represents the unknown function is the experiment, such as the friction and/or the external force. As the result, the UDE solution better fits with the observed experiment results as described in Section 3.

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\sin(\theta) + N_p(u) = 0 \tag{3}$$

The method designs a machine learning model representing unknown physical functions while computing the ODE numerically using the ODE solver. The benefit of using the UDE method is that the neural network does not learn the full dynamics, which may be extremely hard or even impossible due to the nonlinear dynamics in chaotic systems. The approximation caused by the neural network may much diverge the long-term prediction results if we simply use the data-driven statistics-based machine learning model. It is hard to believe that a neural network's universal approximation can be accurate enough for nonlinear dynamics prediction. The physical principles in dynamics need to be honored during the calculation. The UDE method applies the powerful universal approximation capacity in machine learning and respects physical constraints such as symmetry, invariance, and conservation.

2.3 Hamiltonian Neural Networks

In classical mechanics, Hamiltonian equations are widely adopted to model continuous time evolution of dynamic systems with physically conserved quantities such as energy and they can be effectively used to predict the phase space of dynamic system's using the current state of the generalized position and momentum. Additionally, Hamiltonian mechanics are smooth, time reversible and provide integral paths that conserve certain physical quantities such as energy. Greydanus et al. [4] HNN by incorporating Hamiltonian equations into the loss function of the neural network to learn the Hamiltonian of a simple system with noisy phase space data. Additionally, Toth et al. [14] used a generative model to infer the Hamiltonian from dynamic systems using high dimension data (pixels). Matteakis et al. [15] embedded physical constraints into the structure of a neural network using the Hamiltonian equations deviating from other studies using the HNN method. The L_2 loss function in HNN method can be given as [4];

$$L_{HNN} = ||\frac{\partial H_{\theta}}{\partial p_i} - \frac{\partial q_i}{\partial t}||_2 + || - \frac{\partial H_{\theta}}{\partial q_i} - \frac{\partial p_i}{\partial t}||_2$$

where H_{θ} is the learned Hamiltonian, (q_i, p_i) are inputs of the HNN network, and denote the position and momentum.

2.4 Neural Ordinary Differential Equations (Neural ODE)

Since it was first observed by Weinan E [16], the relation between ResNet [17] and dynamical systems has been widely explored and utilized to increase the capability and stability of deep networks [18,19,20,21,22,23]. Connecting deep networks with ODE was largely inspired by the success of ResNet, whose network architecture is strikingly similar to the well-known Euler method for differential equations. With this observation, a natural idea is to generalize existing numerical methods to deep networks [24,22]. Neural ODE, proposed by Chen et al. [23], went one step further: it replaces deep networks such as ResNet with existing efficient ODE solvers.

One key difference between solving ODE and training deep networks is that their goals are different. The goal of training deep networks is to find functions that fit the data while numerical ODE is to approximate solutions of the ODE. The idea of the dynamical systems approach for deep networks is to tune the vector field so that its flow map can reproduce nonlinear functions needed to fit the data [16]. More specifically, consider

$$\frac{dz}{dt} = f(z, t, \theta), \quad z(0) = x \tag{5}$$

Let z(t, x, p) be the solution to the initial value problem (5), let T > 0 be a fixed time and p be a set of parameters. The flow map

$$x \to z(T, x, \theta)$$

defines a function from input to output, which is generally nonlinear [16]. Here f could be a neural network to model vector fields.

Neural ODE uses existing solvers to solve the ODE (5) for a given set of parameter and input values. The step after solving the ODE is to adjust the values of p and repeat the process to find optimal values for p so that the flow map fits the data best. Just as regular optimization, this process requires to compute the gradient of a designed loss function with respect to p. A beautiful benefit coming out of Neural ODE approach is that the computation of gradient is easier and independent of the solver and can be carried out by the classical adjoint sensitivity method [25]. Another benefit of this method is that Neural ODE can naturally used for time dependent data as the pendulum data discussed in this paper.

A computational disadvantage is that ODE solver often requires a larger number of evaluations than in a standard deep network, which tends to get worse over the training [26].

3 Physical Experiments

3.1 Quadruple-spring-mass system

A quadruple-springs-mass system allowed to move in a 2-D frictionless surface (Fig.1) can exhibit simple harmonic motion as well as non-linear dynamic motion.

The motion depends on the initial conditions of the system and also on the physical properties of the springs (i.e. spring constants and unstretched lengths of the springs). For simplicity, here we only consider massless springs.

The time independent Hamiltonian of the quadruple-springs-mass system can be given using generalized positions (x, y) and momentums (p_x, p_y) as;

$$H = \frac{p_x^2 + p_y^2}{2m} + \frac{1}{2} \sum_{i=1}^{n=4} k_i (l_i - a_i)^2$$
 (6)

where: $a_i = \text{un-stretched lengths of the springs}$,

 l_i = stretched lengths of the springs,

 $k_i = \text{springs constants},$

m =mass of the particle in the middle

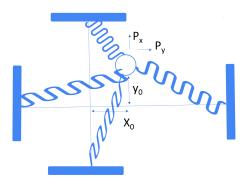


Fig. 1: Quadruple-springs-mass system

Motion type	Unstretched length	Spring const.	Init. pos.	Init. moment	mass
Parameters	a_1, a_2, a_3, a_4	k_1, k_2, k_3, k_4	x_0, y_0	P_{x0}, P_{y0}	m
SHM	1,1,1,1	1,1,1,1	-0.2,-0.2	0.1, 0.1	1.0
Nonlinear dynamics	1, 2, 3, 4	4, 3, 2, 1	-0.2, 0.1	0.1, -0.2	1.0

Table 1: Initial conditions for the simple harmonic motion and non-linear dynamic motion $\,$

Where, $l_1 = \sqrt{(a_1 + x)^2 + y^2}$, $l_2 = \sqrt{(a_2 - x)^2 + y^2}$, $l_3 = \sqrt{(a_3 - y)^2 + x^2}$ and $l_4 = \sqrt{(a_4 + y)^2 + x^2}$. We simulate one instance of simple harmonic motion and another instance of non-linear dynamic motion of the quadruple-springsmass system by solving the Hamiltonian equations (eq.2.3) while utilizing the

Hamiltonian given in 6. Initial conditions for the simple harmonic motion and the non-linear dynamic motion are given in table 1. The data generated for a period of 5π from the two experiments.

3.2 Pendulum

The pendulum motion is a classical physical phenomenon that can be use as an example to study the dynamics of the periodic motion. Figure 7 shows a simple gravity pendulum with angle (θ) and the length of slender rod L, the mass of pendulum bob m, and its angular velocity $\omega = \frac{d\theta}{dt}$.

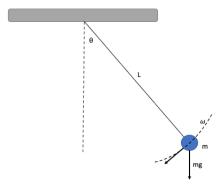


Fig. 2: Pendulum Motion

The simple gravity pendulum [27] is a harmonic motion without any friction or external forces, which is governed by the simple second-order differential equation 1.

For equation(1), we may use numerical methods to solve the ODE by specifying a small-enough time step. The results are a sequence of the angles θ and the angular velocities $\frac{d\theta}{dt}$ for each time step during the pendulum simulation time span.

The differential equation (1) is changed by adding the air resistance or friction component to simulate a damping harmonic pendulum, linear or nonlinear, depending on the scenario. Equation (7) shows linear air resistance/ friction integrated into the motion to slow the pendulum down gradually.

$$\frac{d^2\theta}{dt^2} + \mu \frac{d\theta}{dt} + \frac{g}{L}\sin(\theta) = 0 \tag{7}$$

where: $\mu \frac{d\theta}{dt} =$ the linear air resistance or friction.

The air resistance / friction may also be nonlinear represented as a polynomial function such as: $\mu_2(\frac{d\theta}{dt})^2 + \mu_1 \frac{d\theta}{dt}$, then the equation (7) is changed to equation (8).

$$\frac{d^2\theta}{dt^2} + \left(\mu_2 \left(\frac{d\theta}{dt}\right)^2 + \mu_1 \frac{d\theta}{dt}\right) + \frac{g}{L}\sin(\theta) = 0 \tag{8}$$

Besides the gravity and resistance, an external force may interfere with the pendulum motion, which creates a non-harmonic oscillator. The external force $f(\theta)$ can be a motor or wind that varies based on the pendulum's radiant. The differential equation (8) is expanded to become a non-homogeneous differential equation (9) including the external force in the equation (10).

$$\frac{d^2\theta}{dt^2} + \left(\mu_2 \left(\frac{d\theta}{dt}\right)^2 + \mu_1 \frac{d\theta}{dt}\right) + \frac{g}{L}\sin(\theta) = f(\theta) \tag{9}$$

and

$$f(\theta) = \frac{6}{mL^2}\cos(\theta) \tag{10}$$

where m is the mass of pendulum bob and f is the external force driven by a wind or a motor. In Section 3.3, we assume that the external force $f(\theta)$ is independent of time. However, it could be time-dependent as $f(t,\theta)$, as the example detailed in Section 3.4, or even stochastic.

3.3 Simulated Pendulum

It is challenging or impossible to analytically solve the nonlinear dynamics equation since it is tough to simplify or divide-and-conquer the problem. Fortunately, we can solve the problem approximately using the numerical method using the finite difference method (FDM), the finite element method (FEM), or the finite volume method (FVM).

These differential equations described in Section 3.2 can be solved using the ODE numerical solvers implemented in SciPy or Julia. There are many numerical algorithms for these ODE solvers to choose to solve these equations that simulate the temporal behavior of the pendulum dynamics concerning the pendulum's angle (θ) and its angular velocity (ω) during a time frame.

The work uses the Julia [28] programming environment and its Differential EQuations. Julia provides a high-level programming interface similar to Matlab/Python with scalable performance on both CPUs and GPUs. It includes a rich set of computational packages such as differential equations of ODEs/PDEs, linear algebra, optimizations, automatic differentiation, dynamical systems, and data science packages such as its machine learning package Flux and Boltzmann Machines.

The Julia code that defines the pendulum ODE and initial values is listed in Figure 3. The ODE solver uses the Tsit5 algorithm - the Tsitouras 5/4 Runge-Kutta method with the free fourth-order interpolant, which is efficient

and accurate in solving the pendulum ODE equation. The code defines a non-homogeneous differential equation with an external force and polynomial friction. The initial θ value is $\pi/2$ and the velocity ω is 0. The period is set from 0 to 10 seconds, with 0.1 seconds as the time step. It generates 101 samples of (θ, ω) after the calculation.

```
\theta_0 = pi/2
                                                  # initial angular deflection [rad]
    \omega_0 = 0.0
                                                  # initial angular velocity [rad/s]
    \mathbf{u}_0 = [\theta_0, \omega_0]
                                                  # initial state vector
     tspan = (0.0, 10.0)
    \Delta t = 0.1
                                                  # time interval
    M = \theta \rightarrow 2.0*\cos(\theta)
                                                  # external torque [Nm]
     function pendulum!(du,u,p,t)
                                               \# \theta'(t) = \omega(t)
       du[1] = u[2]
       du[2] = poly_friction(du[1]) - (g/L)*sin(u[1]) + 3/(m*L^2)*p(u[1])
10
       \#\ \omega'(t) = friction(\omega(t)) - g/(L)sin\ \theta(t) + 3/(ml^2)M(\theta(t))
11
12
13
    prob = ODEProblem(pendulum!,u0,tspan,M)
14
    sol = solve(prob, Tsit5(), saveat=\Deltat)
15
```

Fig. 3: Pendulum Motion ODE Code

Figure 4(a) shows the phase space of the pendulum dynamics based on the θ and the ω for 10 seconds motion with nonlinear friction and external torque. Figure 4(b) illustrates the pendulum angles θ and the angular velocity ω temporal changes during the 10 seconds of pendulum motion simulation. Due to the external torque and friction, the motion is non-harmonic, leaning toward its right-hand side gradually.

3.4 Simulation of wind forced pendulum

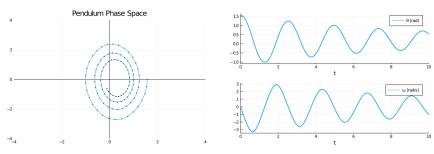
In this simulation (Figure 5) a quick air flow is used to start the oscillations of pendulum. The goal of the experiment is to infer the time profile of the air flow pulse from the simulated measurements of the angular position of the pendulum.

We assume that the drag force that acts on the pendulum is proportional to the relative velocity of the pendulum with respect to the air, according to Stoke's law:

$$\vec{F}_d = b(\vec{u} - \vec{v})$$

where the drag coefficient is $b=6\pi\eta r$ for a spherical object of radius r, and η is the viscosity. The air flow is assumed to be uniform, and oriented along the x-axis $\vec{u}=u(t)\hat{x}$. Under these assumptions, the differential equation for the pendulum is

$$\frac{d^2\theta}{dt^2} = -\frac{g}{L}\sin\theta - \frac{b}{m}\frac{d\theta}{dt} + \frac{b}{mL}u(t)\cos\theta \tag{11}$$



(a) Pendulum Phase Space in 10 Seconds (b)

(b) Pendulum Motion Simulation in 10 Seconds

Fig. 4: Pendulum Motion Simulation Shown in the Phase Space

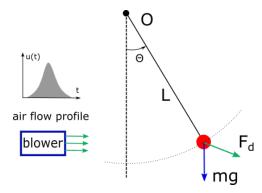


Fig. 5: A pendulum forced to oscillate by a quick air blow of wind

with initial conditions: $\theta(0) = d\theta/dt(0) = 0$. The solution $\theta(t)$ depends on the airflow profile u(t) and the drag coefficient b as external parameters, while gravity g and length L of the pendulum are assumed to be known.

Given a set of measurements of time and angular position ($\{t_k, \theta_k\}$, k = 1, 2, ..., N), the unknown airflow profile, as well as the drag coefficient, can be inferred by minimizing the loss function

$$L(u(t), b) = \frac{1}{2} \sum_{k=1}^{N} (\theta(t_k) - \theta_k)^2$$

This can be obtained by using a Conjugate Gradient Descent method where better candidates for b and u(t) are calculated at each iteration as

$$b \to b' = b - \eta \frac{\partial L}{\partial b}$$
 , $u(t_k) \to u'(t_k) = u(t_k) - \eta \frac{\partial L}{\partial u(t_k)}$

where η is a small learning rate chosen appropriately and the airflow profile is discretized at the same temporal points t_k , for convenience. The partial derivatives of L with respect to b and $u(t_k)$ are obtained in turn as

$$\frac{\partial L}{\partial b} = \sum_{k=1}^{N} (\theta(t_k) - \theta_k) \frac{\partial \theta}{\partial b}(t_k)$$

and

$$\frac{\partial L}{\partial u(t_k)} = \sum_{k=1}^{N} \left(\theta(t_k) - \theta_k\right) \frac{\partial \theta}{\partial u(t_k)}(t_k)$$

The sensitivities of the ODE solution $\partial\theta/\partial b$ and $\partial\theta/\partial u(t_k)$ can be calculated in several ways [30]. For our example, we used forward differentiation package ForwardDiff [31], that employs dual numbers [32] during the iterative calculation of the solution of equation (11). Each time step during the iterative calculation is calculated according to Heun's modification of Euler's method [33]. At the start of integration all parameters are set as dual numbers with zero dual part, except the parameter for which the sensitivity is required, which is set with 1. The solution obtained at the grid points t_k will in turn be dual numbers that represent the solution, as the main part, and the sensitivity of the solution with respect to the chosen parameter, as its dual part. The advantage of this approach is that all calculations are done in place with modest memory requirements.

Figure 6 show the results of our experiment. We simulated a 1.0 kg pendulum of length 1.0 m that has a drag coefficient of b=0.25 kg/s. The pendulum is forced to oscillate by a short gaussian blow pulse of amplitude 4.0 m/s, centered around t=2.8, with standard deviation of 0.2 s. Starting from random guesses for b and u(t), the procedure converges toward the anticipated values. At every time step, only positive values of u(t) are allowed. The convergence is slow, but it can be accelerated by using more refined strategies, like ADAM or RMSProp [34].

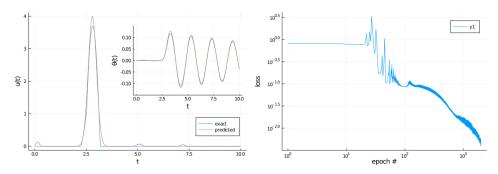
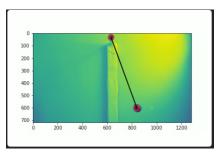


Fig. 6: Left panel: Comparison between the exact and calculated airflow profiles, and angle vs. time (inset). Right panel: Convergence of the loss function.

3.5 Physical Experimental Pendulum

Besides the simulation, we also recorded a one-minute video for the pendulum experiment shown in Figure 7(a). In the experiment, we measured the mass of the pendulum bob and the length of the pendulum. The angle θ and angular velocity ω were calculated based on a image processing algorithm. The friction is unknown in the experiment.



- (a) Experimental Pendulum Video
- (b) Labeled Experimental Pendulum Video

Fig. 7: Pendulum Experiment Recorded in Video

To process the experiment video, we first extract the frames out of the video that is recorded with a rate of 60 frames per seconds. The Blob detection algorithm from the Scikit-image image processing package, which detects the coordinates of the pendulum bob and center was applied. The Difference of Hessian (DoH) algorithm in Blob detection gives us the best performance and less false positives. Figure 7(b) shows the detected coordinates of the top of the pendulum and the center of the bob. These coordinates detected are used to compute the angle θ and angular velocity ω based on the geometry and the prior state. This resulted in a collection of 3600 angular positions and angular velocity states in one minute with 1/60 second for each time step.

4 Learning the Nonlinear Dynamics with Scientific Machine Learning

In Section 3, the paper shows the simulation results pendulum nonlinear dynamics with assumptions of known functions of the friction and external torque. Can SciML augment the scientific machine learning by using the collected data set? For real-world experiment, we may not know some of these functions, but we can collect the motion data (θ and ω) based on the experiments mention in 3.5. The question is if the SciML model can learn the unknown nonlinear dynamics hidden in these systems?

4.1 What do these SciML models Learn?

In the pendulum study, we knew that the simple harmonic pendulum's motion is governed by the equation (1). The initial conditions include the pendulum angle, the angular velocity, the length, the mass, and the constant of gravity. All of them can be measured to determine the motion. In reality, what we do not know at the beginning is the friction and the external force in the equation (9) and (10). The SciML model only models the friction and external force functions using a neural network and learns the two functions through the recorded data. The ODE solver calculates the harmonic motion.

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\sin(\theta) = N_p(\frac{d\theta}{dt}, m, L)$$
(12)

The equations (9) and (10) are revised as the new equation (12), in which the $N_p(\frac{d\theta}{dt},m,L)$ is a neural network with four inputs and one output that learns the friction and external torque. The N_p is a four-layer fully connected neural network with 4-64-64-1 neurons in each layer, and it uses the hyperbolic tangent (tanh) as its activation function.

The software package used in here is one of the SciML packages named DiffEqFlux implemented in Julia software stack. The neural network is trained by using a small data set from the pendulum simulation with a time span of [0,10] and a time step 0.1, which gives us 101 samples. The training starts with the Adam optimizer[34] for the first 100 iterations and then switch to the BFGS optimizer after the 100th iteration. Figure 8 shows the loss values of using these two optimizers. In this experiment, the BFGS optimizer learns the function faster than Adam optimizer.

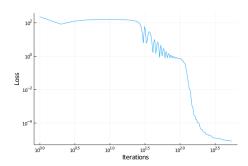
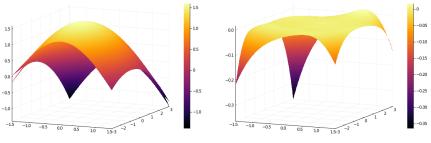


Fig. 8: Loss values during the UDE training

Once the loss value becomes small enough ($< 10^{-4}$), the neural network approximates the friction and torque functions well. It is interesting to understand what the neural network learned and compares it with the ground-truth friction and torque functions. Figure 9a shows the overlay graph of the neural network and the ground-truth friction and torque functions. The figure shows that the

14 Lei Huang et al.

neural network and ground-truth functions are close enough at most input spaces. Some minor differences are showing in the boundary areas of the input space. Figure 9b illustrates the differences between these two functions.



- (a) The overlay plot of Neural Network and the ground-truth
- (b) Differences between Neural Network and the ground-truth

Fig. 9: A comparison of the trained neural network and the ground-truth function

For the experiment pendulum in Section 3.5, the friction is unknown. The SciML UDE models the friction as part of the differential equation of pendulum dynamics. After training to fit with the collected coordinates and angular velocity from the video, the SciML UDE discovers the friction exerted on the pendulum as shown in the Figure 10. Note that the SciML UDE may produce multiple solutions of the friction that fits the observed data well. We believe that the friction should has the property of odd symmetry where f(x) = -f(-x). We selected Figure 10 as the correct solution.

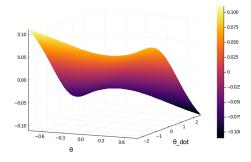
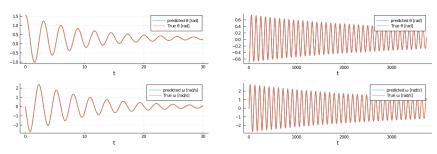


Fig. 10: The Friction learned by SciML in the experimental pendulum

4.2 Can SciML Predict the Future?

In this experiment, the neural network training data was generated using a time interval of 0.1 seconds, which is sampled with a low frequency and generates sparse data points. Can the neural network be trained using the small data set and generalize well to predict the high-frequency data? It is a question about the capacity of the neural network's interpolation.

Our paper answers the question by testing the SciML solution for the same period [0, 10] but reduce the time interval by ten times to 0.01. The result shows that the SciML solution with the trained neural network can predict the high-frequency data with a time step of 0.01. The interpolation and generalization capacity is well preserved in the SciML solution.



- (a) Prediction of the Simulated Pendulum Motion for 30 Seconds
- (b) Prediction of the Experiment Pendulum Motion for 60 Seconds

Fig. 11: A comparison of the trained neural network and the ground-truth function

One weakness of machine learning is that it does not perform well on extrapolation. In particular, if the problem is not periodic, it is very challenging or even impossible to predict the future without gaining the full data covering the entire problem space. By using the SciML methodology, the extrapolation is feasible since the neural network is embedded in the ODE models as a time-independent function. The ODE solver calculates all time-related dynamics. The combination of ODE and neural network works well on extrapolation in predicting the nonlinear pendulum dynamics.

Figure 11a shows the results of the simulated pendulum motion prediction for 30 seconds with a time interval of 0.01. The neural network was trained using 10 seconds of data with a time interval of 0.1. The figure shows a complete overlay of the prediction and the ground-truth data, which indicates that the prediction matches the real data very well. Note that the prediction is performed to generate much higher-frequency data than the training data, which also proves that both interpolation and extrapolation work well using SciML.

Figure 11b shows the results of the experiment pendulum motion prediction for one minute with a time interval of 1/60. The neural work trained to learn the friction and the results fit well with the observed data. Note that the figure actually shows both observed and predicted θ and ω , which overlap too well to distinguish them.

4.3 Can HNN solve complex dynamic problems?

The both simple harmonic motion and the non-linear dynamic motion of the quadruple-springs-mass system (fig.1) are also simulated using HNN method described by Mattheakis et~al.~[35]. We used four parametric solutions in the form of $\hat{z}(t) = z(0) + f(t)(N(t) - z(0))$ to solve for the four generalized coordinates [36]. We choose a parametric function f(t) = 1 - exp(-t) and a symmetric activation function of sin following Mattheakis et~al.~[35]. We used six layer neural network with ten neurons for the HNN. We also used a learning rate of 0.0001.

The HNN based simulation of the simple harmonic motion agrees well with the ground truth trajectories as shown in the figure 12a and 12b. But, the energy does not seems to be conserved. However, the simulation of the non-linear dynamic system using HNN fails to produce the desired results (13a, 13b). The loss functions for the both systems are shown in the figure 14a and 14b. The loss value of the simple harmonic motion is much lower than the non-linear dynamic system. The HNN method requires to incorporate more physical constraints such as symmetry [15] to the neural network to improve the simulations of complex non-linear motions.

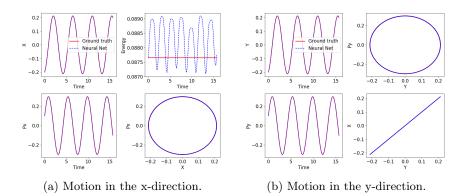


Fig. 12: A simulation of the simple harmonic motion of the quadruple-springs-mass system using the HNN method.

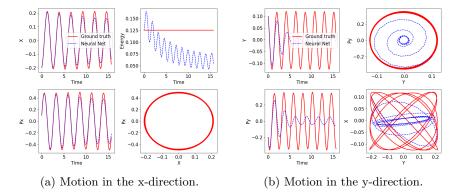


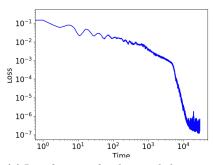
Fig. 13: A simulation of the non-linear dynamic motion of the quadruple-springsmass system using HNN method.

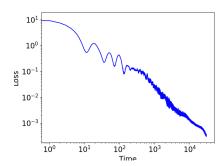
5 Conclusion

SciML is a new method that combines the scientific principle-based solutions and the data-driven machine learning models, which creates a new set of tools for scientists to understand the scientific rules using existing theories and learning from data directly. The combination equips scientists with additional flexibility in modeling a scientific problem with partially known knowledge and limited data sets. The requirement of big data for machine learning may be relaxed to learn a scientific phenomenon since only the unknown portion is approximated with machine learning, while other portions are still governed by the existing deterministic scientific principles, which dramatically reduces the training complexity in machine learning.

References

- Nathan Baker, Frank Alexander, Timo Bremer, Aric Hagberg, Yannis Kevrekidis, Habib Najm, Manish Parashar, Abani Patra, James Sethian, Stefan Wild, Karen Willcox, and Steven Lee. Workshop report on basic research needs for scientific machine learning: Core technologies for artificial intelligence.
- M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, 378:686– 707, 2019.
- 3. Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar, Dominic Skinner, and Ali Ramadhan. Universal differential equations for scientific machine learning. arXiv preprint arXiv:2001.04385, 2020.
- 4. Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks, 2019





- (a) Loss function for the simple harmonic motion.
- (b) Loss function for the non-linear dynamic system.

Fig. 14: The Loss functions for the HNN method

- Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31, pages 6571–6583. Curran Associates, Inc., 2018.
- Atundefinedlundefinedm Günes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic differentiation in machine learning: A survey. J. Mach. Learn. Res., 18(1):5595–5637, January 2017.
- Lu Lu, Xuhui Meng, Zhiping Mao, and George E. Karniadakis. Deepxde: A deep learning library for solving differential equations. CoRR, abs/1907.04502, 2019.
- Thomas-Peter Fries and Hermann G. Matthies. Review of petrov-galerkin stabilization approaches and an extension to meshfree methodsa. 2004.
- 9. E. Kharazmi, Z. Zhang, and G. E. Karniadakis. Variational physics-informed neural networks for solving partial differential equations, 2019.
- Guofei Pang, Lu Lu, and George Em Karniadakis. fpinns: Fractional physicsinformed neural networks. SIAM Journal on Scientific Computing, 41(4):A2603– A2626, 2019.
- 11. Liu Yang, Dongkun Zhang, and George Em Karniadakis. Physics-informed generative adversarial networks for stochastic differential equations. SIAM J. Scientific Computing, 42:A292–A317, 2020.
- 12. Dongkun Zhang, Lu Lu, Ling Guo, and George Em Karniadakis. Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. *Journal of Computational Physics*, 397:108850, 2019.
- 13. Yeonjong Shin, Jerome Darbon, and George Em Karniadakis. On the convergence and generalization of physics informed neural networks, 2020.
- Peter Toth, Danilo Jimenez Rezende, Andrew Jaegle, Sébastien Racanière, Aleksandar Botev, and Irina Higgins. Hamiltonian generative networks, 2020.
- M. Mattheakis, P. Protopapas, D. Sondak, M. Di Giovanni, and E. Kaxiras. Physical symmetries embedded in neural networks, 2020.
- 16. Weinan E. A proposal on machine learning via dynamical systems. *Commun. Math. Stat.*, 5:1–11, 2017.

- 17. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision ECCV 2016, pages 630–645, Cham, 2016. Springer International Publishing.
- B. Chang, L. Meng, E. Haber, Lars Ruthotto, David Begert, and E. Holtham. Reversible architectures for arbitrarily deep residual neural networks. In AAAI, 2018.
- Bo Chang, Lili Meng, Eldad Haber, Frederick Tung, and David Begert. Multi-level residual networks from dynamical systems view. conference ICLR, 2018.
- Zhen Li and Zuoqiang Shi. Deep residual learning and pdes on manifold. CoRR, abs/1708.05115, 2017.
- 21. Sho Sonoda and Noboru Murata. Double continuum limit of deep neural networks. *ICML Workshop Principled Approaches to Deep Learning*, 2017.
- 22. Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks: Bridging deep architectures and numerical differential equations. Proceedings of the 35th International Conference on Machine Learning, 2018.
- Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential equations, 2019.
- 24. Xingcheng Zhang, Zhizhong Li, Chen Change Loy, and Dahua Lin. Polynet: A pursuit of structural diversity in very deep networks. *CoRR*, abs/1611.05725, 2016.
- 25. L. S. Pontryagin, E. F. Mishchenko, V. G. Boltyanskii, and R. V. Gamkrelidze. *The mathematical theory of optimal processes*. New York: Wiley, 1962.
- Zico Kolter, David Duvenaud, and Matt Johnson. Deep implicit layers neural odes, deep equilibirum models, and beyond.
- Pirooz Mohazzabi and Siva P. Shankar. Damping of a simple pendulum due to drag on its string. *Journal of Applied Mathematics and Physics*, 05(01):122–130, 2017.
- 28. Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to numerical computing. *SIAM review*, 59(1):65–98, 2017.
- 29. Christopher Rackauckas and Qing Nie. Differential equations.jl—a performant and feature-rich ecosystem for solving differential equations in julia. *Journal of Open Research Software*, 5(1), 2017.
- 30. Linda Petzold, Shengtai Li, Yang Cao, and Radu Serban. Sensitivity analysis of differential-algebraic equations and partial differential equations. *Computers Chemical Engineering*, 30(10):1553 1559, 2006.
- 31. J. Revels, M. Lubin, and T. Papamarkou. Forward-mode automatic differentiation in Julia. arXiv:1607.07892 [cs. MS], 2016.
- 32. Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Second Edition. SIAM, Philadelphia, 2008
- 33. David F. Mayers Endre Süli. An Introduction to Numerical Analysis. Cambridge University Press, Cambridge, 2003.
- 34. Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- 35. Hamiltonian neural networks for solving differential equations. In Preparation.
- Alessandro Paticchio, Tommaso Scarlatti, Marios Mattheakis, Pavlos Protopapas, and Marco Brambilla. Semi-supervised neural networks solve an inverse problem for modeling covid-19 spread, 2020.