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Abstract. Scientific Machine Learning (SciML) is a new multidisci-
plinary methodology that combines the data-driven machine learning
models and the principle-based computational models to improve the
simulations of scientific phenomenon and uncover new scientific rules
from existing measurements. This article reveals the experience of using
the SciML method to discover the nonlinear dynamics that may be hard
to model or be unknown in the real-world scenario. The SciML method
solves the traditional principle-based differential equations by integrat-
ing a neural network to accurately model the nonlinear dynamics while
respecting the scientific constraints and principles. The paper discusses
the latest SciML models and apply them to the oscillator simulations
and experiment. Besides better capacity to simulate, and match with the
observation, the results also demonstrate a successful discovery of the
hidden physics in the pendulum dynamics using SciML.

Keywords: Scientific Machine Learning, Scientific Simulation, Compu-
tational Science, Nonlinear Dynamics

1 Introduction

Scientific Machine Learning (SciML) [1] has recently emerged as a new method
to solve the scientific computing problems using machine learning models. The
method leverages the success of traditional scientific computational models and
the advances in data-driven machine learning models to augment the efficiency
and accuracy of scientific simulation and inversion. Moreover, it facilitates the
scientific discovery by modeling both well-known scientific rules and the unknown
patterns based on observed data.

Traditional scientific computational models are mostly developed to simulate
the physics, chemistry, biology and other scientific phenomenons by using various
numerical methods, such as the finite difference or finite element methods, to solve
a variety of differential equations. These methods can achieve highly accurate
simulation results; however, they are also notoriously expensive in consuming
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computational resources. It is why scientific computing is typically conducted on
the supercomputers using complex programming models. Moreover, the scientific
computing highly depends on our understanding of the theoretical principles,
which do not fully represent the complexity and nonlinear dynamics in many
real-world phenomenons. Many times, the parameters and other constraints are
not well known and simulation scientists have nothing better to rely on other
than educated guesses.

In theory, SciML combines the deterministic scientific principles with the
universal approximation of machine learning to thus provide a more efficient
yet reliable and explainable model-based data-driven solution. SciML provides a
sound scientific theoretic foundation to unveil the new scientific governing rules
with a collection of data and models. For example, SciML may integrate a deep
learning model into a partial differential equation (PDE) to fit the observed data,
which models the well-known principles using the PDE and models the unknown
portion such as noise and friction using the deep learning model.

The latest theoretical and practical advances in machine learning, especially
deep learning, dramatically increase the capacity and accuracy of the universal
approximation of nonlinear functions. Despite the progress, it is still not reliable
and explainable to learn a complex system with nonlinear dynamics or chaos using
deep learning along. Moreover, it requires mostly unrealistic big data sets to train
a deep learning model to cover all possible features. Even if we can successfully
train a deep learning-based surrogate model, the model’s extrapolation is not
questionable. It would be much more reliable and explainable if we can embed
the physical principles to determine the nonlinear dynamics, and only leave the
unknown functions to machine learning. SciML converges the computational
science and data science disciplines powers to improve the accuracy, performance,
and interpretability in scientific simulation. Moreover, it may unveil scientific
rules hidden inside the nonlinear dynamics learned by the machine learning
models.

In this paper, we present the latest four SciML models using a couple of
physics experiments to report our experience, the benefits, and limitations of the
SciML method. Section 2 describes the state-of-art of SciML models; section 3
shows the physics experiments, simulation, and data collection; section 4 discusses
the results of the SciML models; and the section 5 concludes the findings of the
paper.

2 Scientific Machine Learning Models

SciML is developed to facilitate the scientific computation either by developing
a surrogate model to replace the numerical model or combine the data-driven
model to achieve better accuracy and performance. In this paper, we applies
the Physics-Informed Neural Networks (PINNs) [2], the Universal Differential
Equation (UDE) method [3], the Hamiltonian Neural Networks (HNNs) [4], and
the Neural Ordinary Differential Equation (NODE) [5] to learn the nonlinear
dynamics in several physics experiments.
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2.1 Physics-Informed Neural Networks

PINNs is one of the SciML solutions that solves the differential equations by
modeling the latent solution u(t, x) directly with a deep learning model and
solves the differential equation by taking advantage of automatic differentiation
functionalities [6] in machine learning (ML) software. The solution u(t, x) is
replaced by a neural network or other ML model and its derivatives satisfy the
definition of the governing differential equation.

For example, the harmonic pendulum differential equation is defined as the
equation (1).

d2θ

dt2
+
g

L
sin(θ) = 0 (1)

where g is the gravity, L is the length of the pendulum and θ is the angle with
respect to the vertical in radians.

PINNs redefines the equation by substitute its solution f(t) with a neural
network Np(t), where N is the neural network and p is its trainable parameters.
The new equation is depicted as the equation (2).

N
′′

p (t) +
g

L
sin(θ) = 0 (2)

By creating a loss function to minimize the equation (2), PINNs utilizes the
automatic differentiation capability in ML software to calculate the second order
derivatives of Np(t) and optimize the loss function. As a result, the Np(t) is an
approximation of the solution of equation (1).

Furthermore, PINNs can be effectively used to solve the forward problem as
well as the inverse problem with minimum modifications to computational codes
[7]. Additionally, a Petrov-Galerkin [8] version of PINNs have been employed to
solve variational form of PDEs to reduce the training cost [9]. Likewise, modified
versions of PINNs have been employed to solve fractional differential equations
[10] and stochastic differential equations [11]. As a method to address lack of
uncertainty quantification in PINNs, Zhang et al. [12] put forward the idea of
using multiple deep neural networks to quantify the parametric uncertainty and
dropouts to model the uncertainty stemming from the approximations resulting
from the neural networks. As an effort to develop a theoretical basis of PINNs,
Shin et al.[13] studied the convergence of the sequence of minimizers generated
from PINNs corresponding to the sequence of neural networks to the solution
of the given PDE. They found sequence of the minimizers strongly converges to
the PDE solution in L2 space as well as each minimizer satisfies both initial and
boundary conditions.

2.2 Universal Differential Equations

UDE method has some similarities with the PINN method: both rely on the
scientific principles represented as differential equations to guide the computation
and impose constraints. However, UDE is more flexible to model the unknown
functions and combine them with existing scientific knowledge. UDE relies on
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the numerical differential equation solvers to solve the problem while learning
the unknown functions during the calculation.

The pendulum equation using UDE is depicted as the equation (3), which
introduces a neural network Np that represents the unknown function is the
experiment, such as the friction and/or the external force. As the result, the
UDE solution better fits with the observed experiment results as described in
Section 3.

d2θ

dt2
+
g

L
sin(θ) + Np(u) = 0 (3)

The method designs a machine learning model representing unknown physical
functions while computing the ODE numerically using the ODE solver. The
benefit of using the UDE method is that the neural network does not learn
the full dynamics, which may be extremely hard or even impossible due to the
nonlinear dynamics in chaotic systems. The approximation caused by the neural
network may much diverge the long-term prediction results if we simply use
the data-driven statistics-based machine learning model. It is hard to believe
that a neural network’s universal approximation can be accurate enough for
nonlinear dynamics prediction. The physical principles in dynamics need to be
honored during the calculation. The UDE method applies the powerful universal
approximation capacity in machine learning and respects physical constraints
such as symmetry, invariance, and conservation.

2.3 Hamiltonian Neural Networks

In classical mechanics, Hamiltonian equations are widely adopted to model
continuous time evolution of dynamic systems with physically conserved quantities
such as energy and they can be effectively used to predict the phase space
of dynamic system’s using the current state of the generalized position and
momentum. Additionally, Hamiltonian mechanics are smooth, time reversible and
provide integral paths that conserve certain physical quantities such as energy.
Greydanus et al. [4] HNN by incorporating Hamiltonian equations into the loss
function of the neural network to learn the Hamiltonian of a simple system with
noisy phase space data. Additionally, Toth et al.[14] used a generative model to
infer the Hamiltonian from dynamic systems using high dimension data (pixels).
Matteakis et al. [15] embedded physical constraints into the structure of a neural
network using the Hamiltonian equations deviating from other studies using the
HNN method. The L2 loss function in HNN method can be given as [4];

LHNN = ||∂Hθ

∂pi
− ∂qi

∂t
||2 + || −

∂Hθ

∂qi
− ∂pi

∂t
||2

(4)

where Hθ is the learned Hamiltonian, (qi, pi) are inputs of the HNN network,
and denote the position and momentum.



Discovering Nonlinear Dynamics 5

2.4 Neural Ordinary Differential Equations (Neural ODE)

Since it was first observed by Weinan E [16], the relation between ResNet [17]
and dynamical systems has been widely explored and utilized to increase the
capability and stability of deep networks [18,19,20,21,22,23]. Connecting deep
networks with ODE was largely inspired by the success of ResNet, whose network
architecture is strikingly similar to the well-known Euler method for differential
equations. With this observation, a natural idea is to generalize existing numerical
methods to deep networks [24,22]. Neural ODE, proposed by Chen et al. [23],
went one step further: it replaces deep networks such as ResNet with existing
efficient ODE solvers.

One key difference between solving ODE and training deep networks is that
their goals are different. The goal of training deep networks is to find functions
that fit the data while numerical ODE is to approximate solutions of the ODE.
The idea of the dynamical systems approach for deep networks is to tune the
vector field so that its flow map can reproduce nonlinear functions needed to fit
the data [16]. More specifically, consider

dz

dt
= f(z, t, θ), z(0) = x (5)

Let z(t, x, p) be the solution to the initial value problem(5), let T > 0 be a fixed
time and p be a set of parameters. The flow map

x→ z(T, x, θ)

defines a function from input to output, which is generally nonlinear[16]. Here f
could be a neural network to model vector fields.

Neural ODE uses existing solvers to solve the ODE (5) for a given set of
parameter and input values. The step after solving the ODE is to adjust the
values of p and repeat the process to find optimal values for p so that the flow
map fits the data best. Just as regular optimization, this process requires to
compute the gradient of a designed loss function with respect to p. A beautiful
benefit coming out of Neural ODE approach is that the computation of gradient
is easier and independent of the solver and can be carried out by the classical
adjoint sensitivity method [25]. Another benefit of this method is that Neural
ODE can naturally used for time dependent data as the pendulum data discussed
in this paper.

A computational disadvantage is that ODE solver often requires a larger
number of evaluations than in a standard deep network, which tends to get worse
over the training [26].

3 Physical Experiments

3.1 Quadruple-spring-mass system

A quadruple-springs-mass system allowed to move in a 2-D frictionless surface
(Fig.1) can exhibit simple harmonic motion as well as non-linear dynamic motion.
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The motion depends on the initial conditions of the system and also on the
physical properties of the springs (i.e. spring constants and unstretched lengths
of the springs). For simplicity, here we only consider massless springs.

The time independent Hamiltonian of the quadruple-springs-mass system can
be given using generalized positions(x, y) and momentums(px, py) as;

H =
p2x + p2y
2m

+
1

2

n=4∑
i=1

ki(li − ai)2 (6)

where: ai = un-stretched lengths of the springs,
li = stretched lengths of the springs,
ki = springs constants,
m = mass of the particle in the middle

Fig. 1: Quadruple-springs-mass system

Motion type Unstretched length Spring const. Init. pos. Init. moment mass
Parameters a1, a2, a3, a4 k1, k2, k3, k4 x0, y0 Px0, Py0 m

SHM 1,1,1,1 1,1,1,1 -0.2,-0.2 0.1, 0.1 1.0
Nonlinear dynamics 1, 2, 3, 4 4, 3, 2, 1 −0.2, 0.1 0.1,−0.2 1.0

Table 1: Initial conditions for the simple harmonic motion and non-linear dynamic
motion

Where, l1 =
√
(a1 + x)2 + y2, l2 =

√
(a2 − x)2 + y2, l3 =

√
(a3 − y)2 + x2

and l4 =
√
(a4 + y)2 + x2. We simulate one instance of simple harmonic motion

and another instance of non-linear dynamic motion of the quadruple-springs-
mass system by solving the Hamiltonian equations (eq.2.3) while utilizing the
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Hamiltonian given in 6. Initial conditions for the simple harmonic motion and
the non-linear dynamic motion are given in table 1. The data generated for a
period of 5π from the two experiments.

3.2 Pendulum

The pendulum motion is a classical physical phenomenon that can be use as an
example to study the dynamics of the periodic motion. Figure 7 shows a simple
gravity pendulum with angle (θ) and the length of slender rod L, the mass of
pendulum bob m, and its angular velocity ω = dθ

dt .

Fig. 2: Pendulum Motion

The simple gravity pendulum [27] is a harmonic motion without any friction
or external forces, which is governed by the simple second-order differential
equation 1.

For equation(1), we may use numerical methods to solve the ODE by specifying
a small-enough time step. The results are a sequence of the angles θ and the
angular velocities dθ

dt for each time step during the pendulum simulation time
span.

The differential equation (1) is changed by adding the air resistance or friction
component to simulate a damping harmonic pendulum, linear or nonlinear,
depending on the scenario. Equation (7) shows linear air resistance/ friction
integrated into the motion to slow the pendulum down gradually.

d2θ

dt2
+ µ

dθ

dt
+
g

L
sin(θ) = 0 (7)

where: µdθdt = the linear air resistance or friction.
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The air resistance / friction may also be nonlinear represented as a polynomial
function such as: µ2(

dθ
dt )

2 + µ1
dθ
dt , then the equation (7) is changed to equation

(8).

d2θ

dt2
+

(
µ2

(
dθ

dt

)2

+ µ1
dθ

dt

)
+
g

L
sin(θ) = 0 (8)

Besides the gravity and resistance, an external force may interfere with the
pendulum motion, which creates a non-harmonic oscillator. The external force
f(θ) can be a motor or wind that varies based on the pendulum’s radiant. The
differential equation (8) is expanded to become a non-homogeneous differential
equation (9) including the external force in the equation (10).

d2θ

dt2
+

(
µ2

(
dθ

dt

)2

+ µ1
dθ

dt

)
+
g

L
sin(θ) = f(θ) (9)

and
f(θ) =

6

mL2
cos(θ) (10)

where m is the mass of pendulum bob and f is the external force driven by a wind
or a motor. In Section 3.3, we assume that the external force f(θ) is independent
of time. However, it could be time-dependent as f(t, θ), as the example detailed
in Section 3.4, or even stochastic.

3.3 Simulated Pendulum

It is challenging or impossible to analytically solve the nonlinear dynamics equa-
tion since it is tough to simplify or divide-and-conquer the problem. Fortunately,
we can solve the problem approximately using the numerical method using the
finite difference method (FDM), the finite element method (FEM), or the finite
volume method (FVM).

These differential equations described in Section 3.2 can be solved using the
ODE numerical solvers implemented in SciPy or Julia. There are many numerical
algorithms for these ODE solvers to choose to solve these equations that simulate
the temporal behavior of the pendulum dynamics concerning the pendulum’s
angle (θ) and its angular velocity (ω) during a time frame.

The work uses the Julia [28] programming environment and its Differen-
tialEQuations.jl package [29] to solve these ODEs for pendulum simulations.
Julia provides a high-level programming interface similar to Matlab/Python with
scalable performance on both CPUs and GPUs. It includes a rich set of compu-
tational packages such as differential equations of ODEs/PDEs, linear algebra,
optimizations, automatic differentiation, dynamical systems, and data science
packages such as its machine learning package Flux and Boltzmann Machines.

The Julia code that defines the pendulum ODE and initial values is listed
in Figure 3. The ODE solver uses the Tsit5 algorithm - the Tsitouras 5/4
Runge-Kutta method with the free fourth-order interpolant, which is efficient
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and accurate in solving the pendulum ODE equation. The code defines a non-
homogeneous differential equation with an external force and polynomial friction.
The initial θ value is π/2 and the velocity ω is 0. The period is set from 0 to
10 seconds, with 0.1 seconds as the time step. It generates 101 samples of (θ, ω)
after the calculation.

Fig. 3: Pendulum Motion ODE Code

Figure 4(a) shows the phase space of the pendulum dynamics based on the
θ and the ω for 10 seconds motion with nonlinear friction and external torque.
Figure 4(b) illustrates the pendulum angles θ and the angular velocity ω temporal
changes during the 10 seconds of pendulum motion simulation. Due to the external
torque and friction, the motion is non-harmonic, leaning toward its right-hand
side gradually.

3.4 Simulation of wind forced pendulum

In this simulation (Figure 5) a quick air flow is used to start the oscillations of
pendulum. The goal of the experiment is to infer the time profile of the air flow
pulse from the simulated measurements of the angular position of the pendulum.

We assume that the drag force that acts on the pendulum is proportional to
the relative velocity of the pendulum with respect to the air, according to Stoke’s
law:

~Fd = b(~u− ~v)

where the drag coefficient is b = 6πηr for a spherical object of radius r, and η is
the viscosity. The air flow is assumed to be uniform, and oriented along the x-axis
~u = u(t)x̂. Under these assumptions, the differential equation for the pendulum
is

d2θ

dt2
= − g

L
sin θ − b

m

dθ

dt
+

b

mL
u(t) cos θ (11)
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(a) Pendulum Phase Space in 10 Seconds (b) Pendulum Motion Simulation in 10
Seconds

Fig. 4: Pendulum Motion Simulation Shown in the Phase Space

Fig. 5: A pendulum forced to oscillate by a quick air blow of wind

with initial conditions: θ(0) = dθ/dt(0) = 0. The solution θ(t) depends on the
airflow profile u(t) and the drag coefficient b as external parameters, while gravity
g and length L of the pendulum are assumed to be known.

Given a set of measurements of time and angular position ({tk, θk}, k =
1, 2, . . . , N), the unknown airflow profile, as well as the drag coefficient, can be
inferred by minimizing the loss function

L(u(t), b) =
1

2

N∑
k=1

(θ(tk)− θk)2

This can be obtained by using a Conjugate Gradient Descent method where
better candidates for b and u(t) are calculated at each iteration as

b→ b′ = b− η ∂L
∂b

, u(tk)→ u′(tk) = u(tk)− η
∂L

∂u(tk)
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where η is a small learning rate chosen appropriately and the airflow profile is
discretized at the same temporal points tk, for convenience. The partial derivatives
of L with respect to b and u(tk) are obtained in turn as

∂L

∂b
=

N∑
k=1

(θ(tk)− θk)
∂θ

∂b
(tk)

and
∂L

∂u(tk)
=

N∑
k=1

(θ(tk)− θk)
∂θ

∂u(tk)
(tk)

The sensitivities of the ODE solution ∂θ/∂b and ∂θ/∂u(tk) can be calculated
in several ways [30]. For our example, we used forward differentiation package
ForwardDiff [31], that employs dual numbers [32] during the iterative calculation
of the solution of equation (11). Each time step during the iterative calculation
is calculated according to Heun’s modification of Euler’s method [33]. At the
start of integration all parameters are set as dual numbers with zero dual part,
except the parameter for which the sensitivity is required, which is set with 1.
The solution obtained at the grid points tk will in turn be dual numbers that
represent the solution, as the main part, and the sensitivity of the solution with
respect to the chosen parameter, as its dual part. The advantage of this approach
is that all calculations are done in place with modest memory requirements.

Figure 6 show the results of our experiment. We simulated a 1.0 kg pendulum
of length 1.0 m that has a drag coefficient of b = 0.25 kg/s. The pendulum is
forced to oscillate by a short gaussian blow pulse of amplitude 4.0 m/s, centered
around t = 2.8, with standard deviation of 0.2 s. Starting from random guesses
for b and u(t), the procedure converges toward the anticipated values. At every
time step, only positive values of u(t) are allowed. The convergence is slow, but
it can be accelerated by using more refined strategies, like ADAM or RMSProp
[34].

Fig. 6: Left panel: Comparison between the exact and calculated airflow profiles,
and angle vs. time (inset). Right panel: Convergence of the loss function.
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3.5 Physical Experimental Pendulum

Besides the simulation, we also recorded a one-minute video for the pendulum
experiment shown in Figure 7(a). In the experiment, we measured the mass of
the pendulum bob and the length of the pendulum. The angle θ and angular
velocity ω were calculated based on a image processing algorithm. The friction is
unknown in the experiment.

(a) Experimental Pendulum Video (b) Labeled Experimental Pendulum
Video

Fig. 7: Pendulum Experiment Recorded in Video

To process the experiment video, we first extract the frames out of the video
that is recorded with a rate of 60 frames per seconds. The Blob detection algorithm
from the Scikit-image image processing package, which detects the coordinates
of the pendulum bob and center was applied. The Difference of Hessian (DoH)
algorithm in Blob detection gives us the best performance and less false positives.
Figure 7(b) shows the detected coordinates of the top of the pendulum and the
center of the bob. These coordinates detected are used to compute the angle θ
and angular velocity ω based on the geometry and the prior state. This resulted
in a collection of 3600 angular positions and angular velocity states in one minute
with 1/60 second for each time step.

4 Learning the Nonlinear Dynamics with Scientific
Machine Learning

In Section 3, the paper shows the simulation results pendulum nonlinear dynamics
with assumptions of known functions of the friction and external torque. Can
SciML augment the scientific machine learning by using the collected data set?
For real-world experiment, we may not know some of these functions, but we
can collect the motion data (θ and ω) based on the experiments mention in 3.5.
The question is if the SciML model can learn the unknown nonlinear dynamics
hidden in these systems ?
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4.1 What do these SciML models Learn?

In the pendulum study, we knew that the simple harmonic pendulum’s motion
is governed by the equation (1). The initial conditions include the pendulum
angle, the angular velocity, the length, the mass, and the constant of gravity. All
of them can be measured to determine the motion. In reality, what we do not
know at the beginning is the friction and the external force in the equation (9)
and (10). The SciML model only models the friction and external force functions
using a neural network and learns the two functions through the recorded data.
The ODE solver calculates the harmonic motion.

d2θ

dt2
+
g

L
sin(θ) = Np(

dθ

dt
,m,L) (12)

The equations (9) and (10) are revised as the new equation (12), in which
the Np(dθdt ,m,L) is a neural network with four inputs and one output that learns
the friction and external torque. The Np is a four-layer fully connected neural
network with 4-64-64-1 neurons in each layer, and it uses the hyperbolic tangent
(tanh) as its activation function.

The software package used in here is one of the SciML packages named
DiffEqFlux implemented in Julia software stack. The neural network is trained
by using a small data set from the pendulum simulation with a time span of
[0,10] and a time step 0.1, which gives us 101 samples. The training starts with
the Adam optimizer[34] for the first 100 iterations and then switch to the BFGS
optimizer after the 100th iteration. Figure 8 shows the loss values of using these
two optimizers. In this experiment, the BFGS optimizer learns the function faster
than Adam optimizer.

Fig. 8: Loss values during the UDE training

Once the loss value becomes small enough (< 10−4), the neural network
approximates the friction and torque functions well. It is interesting to understand
what the neural network learned and compares it with the ground-truth friction
and torque functions. Figure 9a shows the overlay graph of the neural network
and the ground-truth friction and torque functions. The figure shows that the
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neural network and ground-truth functions are close enough at most input spaces.
Some minor differences are showing in the boundary areas of the input space.
Figure 9b illustrates the differences between these two functions.

(a) The overlay plot of Neural Network
and the ground-truth

(b) Differences between Neural Network
and the ground-truth

Fig. 9: A comparison of the trained neural network and the ground-truth function

For the experiment pendulum in Section 3.5, the friction is unknown. The
SciML UDE models the friction as part of the differential equation of pendulum
dynamics. After training to fit with the collected coordinates and angular velocity
from the video, the SciML UDE discovers the friction exerted on the pendulum
as shown in the Figure 10. Note that the SciML UDE may produce multiple
solutions of the friction that fits the observed data well. We believe that the
friction should has the property of odd symmetry where f(x) = −f(−x). We
selected Figure 10 as the correct solution.

Fig. 10: The Friction learned by SciML in the experimental pendulum
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4.2 Can SciML Predict the Future?

In this experiment, the neural network training data was generated using a time
interval of 0.1 seconds, which is sampled with a low frequency and generates
sparse data points. Can the neural network be trained using the small data set
and generalize well to predict the high-frequency data? It is a question about the
capacity of the neural network’s interpolation.

Our paper answers the question by testing the SciML solution for the same
period [0, 10] but reduce the time interval by ten times to 0.01. The result
shows that the SciML solution with the trained neural network can predict the
high-frequency data with a time step of 0.01. The interpolation and generalization
capacity is well preserved in the SciML solution.

(a) Prediction of the Simulated Pendu-
lum Motion for 30 Seconds

(b) Prediction of the Experiment Pendu-
lum Motion for 60 Seconds

Fig. 11: A comparison of the trained neural network and the ground-truth function

One weakness of machine learning is that it does not perform well on extrapo-
lation. In particular, if the problem is not periodic, it is very challenging or even
impossible to predict the future without gaining the full data covering the entire
problem space. By using the SciML methodology, the extrapolation is feasible
since the neural network is embedded in the ODE models as a time-independent
function. The ODE solver calculates all time-related dynamics. The combina-
tion of ODE and neural network works well on extrapolation in predicting the
nonlinear pendulum dynamics.

Figure 11a shows the results of the simulated pendulum motion prediction for
30 seconds with a time interval of 0.01. The neural network was trained using 10
seconds of data with a time interval of 0.1. The figure shows a complete overlay
of the prediction and the ground-truth data, which indicates that the prediction
matches the real data very well. Note that the prediction is performed to generate
much higher-frequency data than the training data, which also proves that both
interpolation and extrapolation work well using SciML.
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Figure 11b shows the results of the experiment pendulum motion prediction
for one minute with a time interval of 1/60. The neural work trained to learn
the friction and the results fit well with the observed data. Note that the figure
actually shows both observed and predicted θ and ω, which overlap too well to
distinguish them.

4.3 Can HNN solve complex dynamic problems ?

The both simple harmonic motion and the non-linear dynamic motion of the
quadruple-springs-mass system (fig.1) are also simulated using HNN method
described by Mattheakis et al. [35]. We used four parametric solutions in the form
of ẑ(t) = z(0)+ f(t)(N(t)− z(0) to solve for the four generalized coordinates [36].
We choose a parametric function f(t) = 1− exp(−t) and a symmetric activation
function of sin following Mattheakis et al. [35]. We used six layer neural network
with ten neurons for the HNN. We also used a learning rate of 0.0001.

The HNN based simulation of the simple harmonic motion agrees well with
the ground truth trajectories as shown in the figure 12a and 12b. But, the
energy does not seems to be conserved. However, the simulation of the non-linear
dynamic system using HNN fails to produce the desired results (13a, 13b). The
loss functions for the both systems are shown in the figure 14a and 14b. The loss
value of the simple harmonic motion is much lower than the non-linear dynamic
system. The HNN method requires to incorporate more physical constraints such
as symmetry [15] to the neural network to improve the simulations of complex
non-linear motions.

(a) Motion in the x-direction. (b) Motion in the y-direction.

Fig. 12: A simulation of the simple harmonic motion of the quadruple-springs-mass
system using the HNN method.
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(a) Motion in the x-direction. (b) Motion in the y-direction.

Fig. 13: A simulation of the non-linear dynamic motion of the quadruple-springs-
mass system using HNN method.

5 Conclusion

SciML is a new method that combines the scientific principle-based solutions and
the data-driven machine learning models, which creates a new set of tools for
scientists to understand the scientific rules using existing theories and learning
from data directly. The combination equips scientists with additional flexibility in
modeling a scientific problem with partially known knowledge and limited data
sets. The requirement of big data for machine learning may be relaxed to learn
a scientific phenomenon since only the unknown portion is approximated with
machine learning, while other portions are still governed by the existing deter-
ministic scientific principles, which dramatically reduces the training complexity
in machine learning.
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