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Abstract 

We describe and benchmark the quasi-four-component (Q4C) approach to relativistic density 
functional simulations of molecules and solids, using precise, numerically tabulated atom-centered 
orbital (NAO) basis sets to discretize Dirac’s Equation. The Q4C approach initially projects the 
atomic solution to (electron-only) positive-energy states and eventually deals with only two 
components but retains the precision of traditional four-component relativistic methods. While Q4C 
inherently reduces the dimension of the Hamiltonian matrix in diagonalization, the adoption of 
localized NAO basis functions in solids further limits the computational demand in real space 
operations, promising a pathway to investigate large and complex systems containing heavy 
elements with the precision of a four-component method. Here, we first perform validation and 
benchmark calculations for cohesive properties of a set of diatomic molecules and of previously 
established periodic model systems (i.e., silver halides). Then, we report Q4C relativistic energy 
band structure benchmarks for a series of 103 periodic materials, including chemical elements up to 
Bi, and providing quantitative comparisons to more approximate scalar-relativistic and spin-orbit 
coupled treatments. Finally, we demonstrate the applicability of the method to band structure 
calculations of simple and complex hybrid organic-inorganic (HOIP) perovskites containing Pb and 
Bi, i.e. Cs2AgBiCl6 and a larger system (containing 94 atoms per unit cell), (4-FPEA)2PbI4. The 
effect of full Q4C, compared to scalar relativity, on binding energies can be significant even for 
relatively light p-orbital bonded main group elements such as Br and I – i.e., 0.3 eV and 0.6 eV for 
Br2 and I2 binding energies, respectively. 
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I. Introduction 

Introductory quantum mechanics is often rationalized by the non-relativistic (NR) Schrödinger 
equation, but relativistic effects occur in any material or molecule, albeit at different scales. In the 
light-element material graphene (i.e., carbon, Z=6), high-precision measurements are needed to 
reveal a spin-orbit coupling gap of 42.2 μeV.[1] Towards heavier elements, the importance of 
relativistic effects increases drastically with the atomic number Z. In the energy band structures of 
intermediate-Z semiconductors such as Ge, GaAs, or InSb, relativistic effects can no longer be 
neglected for a qualitatively correct understanding[2, 3] of their electronic properties. In compounds 
including heavy main-group elements such as Bi and Pb, relativistic effects on energy band 
structures can reach the order of several eV.[4] A host of other significant properties shaped by 
relativity – e.g., famously, a ~10% lattice contraction of gold as well as its golden color – is well 
documented in other materials containing heavy elements.[5-8] The level of theory commonly 
considered to be mathematically sufficient to capture all relevant relativistic effects in chemistry 
and materials physics is the Dirac equation, in which the wave function is a vector of four scalar 
components, which are functions of space and time. The first two scalar component functions are 
conventionally grouped together as a two-dimensional vector, together called the "large component". 
Similarly, the third and fourth scalar component functions, grouped together as a second two-
dimensional vector, are called the "small component". Traditional four-component (4C) schemes 
including the Dirac-Kohn-Sham (DKS) method[9-11] (i.e., relativistic density functional theory 
(DFT)) or the 4C coupled cluster [12, 13] method have long been in existence. DFT[14, 15] is today 
the main available first-principles method for solids at a 4C relativistic level. Relativistic all-electron 
DFT calculations in solids can be carried out, e.g., using the relativistic Korringa-Kohn-Rostoker 
(KKR)[16, 17], the relativistic augmented plane wave (RAPW)[18] scheme or the full-potential 
linear muffin-tin orbital approach[19]. 4C DKS codes for periodic systems have also been reported 
using numerical atomic basis sets[20, 21] and Gaussian type orbitals[22], respectively, while 
recently an exact two component (X2C) algorithm based on Slater type orbitals[23] was shown to 
have comparable accuracy. 

From a perspective of accuracy and generality, 4C calculations would be a desirable standard 
in all electronic structure based simulations in materials science and chemistry. However, the 
presence of four components adds some mathematical complexity and, depending on the particular 
implementation, can necessitate additional approximations and/or simply increases the 
computational cost. Instead, a host of simpler approximations were established in the literature, 
typically grouped into scalar relativistic (SR) methods[24-26] (effectively treating one-component 
wave functions or two separate spin components that are only indirectly coupled through the 
exchange-correlation potential) and methods that include spin-orbit coupling (SOC)[26, 27], i.e., 
effective two-component methods. While all these alternative approaches are very well understood, 
their accuracy does depend on the atomic number of the elements involved, as well as on the detailed 
objectives of a particular simulation. Nevertheless, the vast majority of production simulations avoid 
outright 4C treatments. Four-component simulations are typically applied to relatively small 
systems but are much less (if at all) available for larger, more complex systems in production quality. 
Similarly, much of the functionality that is now well established in scalar-relativistic electronic 
structure codes is harder to access in its four-component variants. 
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In this paper, we take a step towards affordable relativistic density functional theory for 
production simulations of large, complex systems by combining the quasi four-component (Q4C) 
method for relativity and the numeric atom-centered orbital (NAO) basis set approach. The FHI-
aims code[28, 29] is used for the practical implementation of the method. In the context of SR and 
SR+SOC electronic structure theory, this NAO-based code already offers high precision[4, 30, 31] 
and can be applied to large, complex systems at affordable computational cost. Q4C, in analogy to 
the exact two-component (X2C) method[23, 32, 33], is a two-component formalism that was first 
developed for molecules[32-37]; the latter was later extended to periodic systems in a previous 
study[23]. As in other approaches, the objective of Q4C and X2C is to separate the treatments of 
the large and small components and therefore simplify the four-component representation to a two-
component one for the majority of the computation. However, Q4C and X2C retain access to the 
small component through practically exact, atomic-like approximations and can therefore achieve 
comparable precision to a fully 4C method.[32, 37] We here demonstrate high precision and 
accuracy of our approach for a broad range of closed-shell molecules and solids. The NAO basis 
sets used here contain, as a subset, all the basis functions (large and small components) generated 
by solving the four-component Dirac equation for atoms[38]. With this choice, Q4C turns out to be 
a simple and effective way to match the precision of the X2C approach. 

Alternative and commonly employed, approximate effective one- and two-component schemes 
for electronic structure theory include the zero-order regular approximation (ZORA)[39-41] method 
and its more practically usable gauge-invariant versions (e.g., atomic ZORA as implemented in the 
FHI-aims code[28] used here), the Douglas-Kroll-Hess (DKH)[42-45] method and its 
generalization to different orders[24, 46-49]. Relativistic versions of the widely used (linearized) 
augmented plane wave ((L)APW) method[27, 50] also constitute a precise framework to capture 
the main relativistic effects in solids[51, 52]. In these implementations, SOC is often treated as a 
correction term[26, 27] added to a preceding, SR calculation: One first diagonalizes a SR 
Hamiltonian to obtain the eigenvalues and eigenvectors, then truncates them and generates a new 
basis set for diagonalizing the full Hamiltonian (including the SOC term). This approach typically 
reduces the size of the full Hamiltonian matrix, e.g., by imposing an energy cutoff for unoccupied 
SR states to be included. A limitation is that the SR basis set used in the first step could be 
insufficient to represent the actual shape of SR+SOC orbitals, particularly p1/2 derived ones that do 
not occur in SR theory at all.[53] Thus, one may face convergence problems especially when dealing 
with systems with p-type valence states and/or with extended core states[53, 54]. This situation was 
later improved by adding p1/2 local orbitals as basis functions.[55] For energy band structures, non-
self-consistent and self-consistent SOC correction schemes have been benchmarked extensively in 
reference[4]. The SOC correction scheme can also be combined with the GW method[56] and has 
been applied to extended systems such as lead chalcogenides[57], mercury chalcogenides[58] and 
perovskites[59-63]. Finally, the most widely used way of avoiding a direct treatment of the small 
component as well as of any other strong relativistic effects near a nucleus involves employing 
pseudopotentials[64-66], effective core potentials[67] or “pseudoized” parameterized effective 
orbitals (in the context of the projector-augmented wave methods[68]), e.g., in plane-wave based 
codes[69-72]. All of the latter approaches replace the details of the near-nuclear region, where 
relativistic effects matter most, with effective parameterized treatments based on different, much 
smoother orbitals. The parameterization can be performed based on relativistic all-electron 
calculations[73], leaving only the two scalar components of the “large component” as explicit 
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ingredients of an electronic structure calculation but complicating the ability to directly recover core 
state properties and other physical quantities that arise near the nucleus when desirable. 

One further objective of this paper is to validate and benchmark the present Q4C+NAO 
approach in comparison to selected approximate SR and SOC treatments. Specifically, we include 
the SR atomic ZORA treatment, which has already been shown to closely match a wide variety of 
other SR treatments (both all-electron and pseudoized) for the cohesive properties of simple 
solids[30]. We also include a NAO based SR plus non-selfconsistent SOC treatment of electronic 
band structures that has been subject to a previous broad benchmark covering 103 solids from light 
to heavy (Pb and Bi) elements in a past paper[4], as well as the self-consistent SR+SOC LAPW+p1/2 
treatment mentioned above, as implemented in the WIEN2k code, a benchmark method that shows 
close agreement with the Q4C+NAO approach. The NR and atomic ZORA SR methods are 
furthermore compared to benchmarks of cohesive properties for molecular dimers, solid silver 
halides and heavy-element solids containing late 5d elements and Pb, Bi and Po. Band structures 
are finally compared for two larger, more complex systems, i.e. a 96-atom layered hybrid organic-
inorganic perovskite (HOIP) unit cell at the NR SR, SR+SOC, and Q4C levels of theory, as well as 
the Cs2AgBiCl6[74, 75] double perovskite. 

The remainder of the paper is organized as follows. Section II introduces relativistic electronic 
structure theory for the case of DFT and outlines the quasi four-component method. Section III 
presents important implementation details. In section IV, we first provide benchmarks for diatomic 
molecules. We then compare benchmark results for AgCl, AgBr, and AgI to previous studies and we 
report a series of benchmarks for a set of 103 compounds already used to quantify the precision of 
different approaches to SOC[4]. Section V provides conclusions and additional technical details are 
reported in an appendix. 

II. Theory 

A. Four-Component Dirac-Kohn-Sham Theory 

We begin with the one-electron Dirac equation 

   (1) 

where  and  are the large and small components of the four-component Dirac wave 

function. In our work, the Dirac-Coulomb Hamiltonian[76] is employed, i.e., the non-relativistic 
Coulomb interaction is used for electron-nuclear and electron-electron interactions in Eq. (1), and 
orbital current terms are already neglected [19]. Although we do not pursue them here, corrections 
to the nonrelativistic Coulomb interaction can be derived from quantum electrodynamics; for 
example, Chapter 4 of reference [77] provides an extensive discussion of such corrections and how 
they can be included in atomic and molecular computations. From the second row of Eq. (1) one 
obtains the relation between the large and small components by an exact rewrite: 
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.        (2b) 

In Dirac-Kohn-Sham theory, Veff stands for the effective potential, composed of the Hartree potential 
VH, the electron-nuclear attraction VN, and the exchange correlation potential Vxc. εi is the eigenvalue 

associated with orbital i;  and  are the Pauli matrices and the momentum operator, 

respectively. The total energy of the many-electron system is then calculated from 

,   (3) 

where fi denotes the occupation number of state i, n(r) denotes the electron density, and EN-N denotes 
the internuclear repulsion energy, as in the nonrelativistic and scalar-relativistic Kohn-Sham 
formalism. However, the four-component electronic density in relativistic theory should contain the 
contribution from both large and small components, and is usually calculated as the sum of large 
component density and small component density: 

.   (4) 

The foregoing equations are valid for both non-periodic and periodic systems. For periodic 
systems, all matrices and orbitals can be evaluated separately for different crystal momenta k. The 
electron density can then be generated by integration over the reciprocal space. Unless otherwise 
stated, the derivations in section II and section III are suitable for both periodic and non-periodic 
systems, though we are using the non-periodic expression for a briefer presentation. We refer to the 
nonrelativistic and scalar-relativistic version of FHI-aims[28] for more details. 

Physically, Eqs. (2a) and (2b) reveal that the small component functions are only of appreciable 

size in the spatial regions and/or for states where 𝑅!(�⃗�) is large and in which the gradient of  

is large (via the momentum operator). For filled states and for reasonably low-energy conduction 
states, these conditions are met in regions where Veff becomes very negative (attractive) and for 
states that are very localized, i.e., in regions near the nucleus and/or for core states. In the region 
near the nucleus, the relatively small potential differences (compared to the electron rest mass 
energy, mc2) imposed by chemical environment changes are typically unimportant. This implies that 
𝑅!(𝑟) and thus the relationship between the large and small components are not much affected by 
the molecular field but, instead, remain rather similar to the relation for the same atom and state in, 
say, the isolated free atom in vacuum. 

B. Four-Component Basis Set Expansion 

In relativistic electronic structure theory, the orbitals need to be expanded in a suitable basis set. We 
here employ a form that is directly inspired by Eq. (2): 
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,    (5b) 

,    (5c) 

where { } is the set of large component basis functions and { } is the set of small 

component basis functions. In Eq. (5), there is precisely one small-component basis function for 
each large-component basis function. Eq. (5c) confines the choice of the small component basis 

according to the chosen large component basis. In some implementations, the operator 𝐾+ = "
#$%

σ..⃗ ∙

�⃗�, i.e., setting 𝑅𝑖(�⃗�) in Eq. (2b) to its non-relativistic constant limit, i.e., one, a choice known as 
the kinetically balanced form.[78] This choice, however, usually requires a relatively larger basis 
set (for convergence) and the large- and small-component coefficients need to be optimized 
separately in the diagonalization. One can finally obtain the eigenvalues for both positive and 
negative energy states. In order to retain well-defined precision and to retain limited basis set size, 
it would be nice if each small component basis function could be mathematically linked directly to 
each large-component basis function, using a mathematical relationship that is as close to exact as 
possible for each state, like Eq. (2a). In this case, the large and small components would share the 
same basis set coefficients 𝐶'() = 𝐶'(* . 

While this exact relation cannot be obtained for all states at once (the factor 𝑅𝑖(�⃗�) in Eq. (2b) 
is state-dependent through the eigenvalue, whereas the operator 𝐾+ in Eq. (5c) is state-independent), 
it is nevertheless interesting to look at the dependence of 𝑅!(𝑟) in Eq (2) on the distance from the 
position to the nucleus. In a previous study[32], the 𝑅!(𝑟) of several atomic orbitals (1s, 2s, 2p, 
and 6s) of a Rn atom was discussed and shows an interesting conclusion: the values of 𝑅!(𝑟) vary 
rapidly in the close vicinity of the nucleus, but become constants beyond some critical points (say, 
0.01 Bohr – roughly the radial expectation values of 2s and 2p of Rn). This is mathematically 
unsurprising if one looks into Eq. (2b): the radial potential is quite steep near the nucleus but tends 
to be flat at a larger r, and more importantly, the difference (the numerator) between the eigenvalue 
(a fixed value for each atomic orbital) and the flat radial potential is nearly a constant compared to 
the large value of 2𝑚𝑐#. This implies that 𝑅!(𝑟) and thus the relationship between the large and 
small components are not much affected by the molecular field. As described in more detail below, 
we here therefore rely on two different choices for the operator 𝐾$ in our approach, depending on 
the basis functions. (1) For basis functions derived directly from solving the free-atom problem, we 
will use the exact, state-dependent form 𝑅!(𝑟) of Eq. (2) directly. Core orbitals in chemically 
bonded structures remain practically unchanged from their shape in the free atom and so for these 
largest energy contributions, the choice of a state-dependent 𝑅!(𝑟) will translate into a practically 
exact small-component representation. We call this choice of 𝐾+ "atomic balance"[79]. (2) Basis 
functions other than free-atom eigenfunctions largely contribute to the description of the valence 
electrons. For these basis functions, we use a state-independent form of 𝑅!(𝑟) in 𝐾+, by using the 
Veff(r) for the free atom in the construction of 𝐾+ and setting the eigenvalue εi = 0. This choice is 
similar in spirit to the successful atomic ZORA for scalar relativity[28] but here restricted to only 
the construction of the small component and, for valence electrons, practically exact near the 
nucleus. We will come back to (1) and (2) below. 
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C. Quasi Four-Component (Q4C) Algorithm with Numerical Atomic Basis 

As noted in Sec. IIA, Eqs. (2a) and (2b) show that the small component is only of appreciable 
magnitude very close to a nucleus, the only region in which Veff(r) becomes numerically relevant 
compared to the term 2mc2 and where the shape of the overall wave function is practically the same 
as that of a free atom, essentially unaffected by small changes to the chemical environment. Thus, 
in practice, multi-atom calculations of electron-like states can be carried out with high precision[33, 
34, 80-82] while fixing the ratio between the small and large components to the known and 
precomputed relation between the small and large components in spherical free atoms. This logic is 
behind the use of atomic-like transformations between the small and large components at the exact 
two-component (X2C) level, showing comparable precision as traditional four-component methods, 
for both molecules[32, 83] and solids[23]. 

The Q4C approach adopts this logic in cases where free-atom-like basis functions (practically 
exact near the nucleus) are available in the basis set used to expand the wave function in a multi-
atom electronic structure calculation. Specifically, the relevant molecular four-component spinors 
𝜙!  (in the Dirac equation) can then be expanded with high precision in a set of atomic four-
component spinors that share the same coefficients for small- and large-component basis functions: 

.    (6) 

Here, the large and small components are linked by the relation in Eq. (2). If the atomic-like basis 
functions are chosen to be electron-like states associated with free atoms, this constraint physically 
amounts to projecting the four-component Hamiltonian onto the relativistic positive energy states 
only. 

In the FHI-aims code[28] which we here use for our implementation, Eq. (6) is convenient 
since the code employs NAO basis functions obtained from free atoms (more details will be given 
in section III A) as the so-called “minimal basis” part of its default basis sets. We use the dftatom 
code[38] to solve the radial equation for spherical free atoms on a dense, high-precision one-
dimensional grid, prior to a density-functional calculation for a polyatomic system in a basis set. 
dftatom yields output radial functions for the minimal basis that are already projected onto the 
positive energy states and thus only describes electrons. Table 1 gives an example of the basis set 
used for Si, with functions included up to the “second tier” (or "level") of basis functions in the 
terminology used in FHI-aims. The notation of basis functions beyond the minimal basis (see 
caption of Table 1) follows that of reference [28]. The radial functions are defined by the same basis-
defining potentials as the scalar relativistic basis functions tabulated in FHI-aims' standard basis 
sets, except the Dirac versions are used here. 
 
Basis set level Atomic orbitals used 
Minimal [Ne] + 2s2p 
First tier H(2p, 1.4), H(3d, 4.2), H(4f, 6.2), Si2+(3s) 
Second tier H(1s, 0.65), H(3d, 9), H(4p, 4), H(5g, 9.4) 
Table 1. The “second tier” FHI-aims basis set for Si. In the Q4C case, the minimal basis corresponds 
to the free-atom Dirac radial functions (noble gas configuration of the core and quantum numbers 
of the additional valence radial functions). “H(nl, z)” denotes a hydrogen-like basis function for the 
bare Coulomb potential z/r, including its radial and angular momentum quantum numbers, n and l. 
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Si2+(3s) denotes a 3s Dirac radial function of a free ion Si2+. The hydrogen-like and ionic basis sets 
are also generated by solving a radial Dirac equation (more details will be given in section III A). 

 
Substituting Eq. (6) into Eq. (1) leads to a two-component matrix that describes electrons only: 

.    (7) 
The corresponding matrix elements are: 

, (8a) 

,       (8b) 

.     (8c) 

E+ is the diagonal matrix of eigenvalues. The eigenvalue problem can be solved routinely in parallel, 
e.g., using the solvers available in the ELSI infrastructure[84, 85]. 

In Eq. (8c), the four-component electron density is the sum of the large- and small-component 
densities. However, in practical calculations, one can apply the following strategy to obtain the four-
component density instead of updating the small-component density at each self-consistent field 
(SCF) iteration: 

.    (9) 

nL,SCF denotes the density contribution due to the large components only. The sum over A runs over 
all atoms and can be obtained from a superposition of free atom densities nA and the analogous 
large-component free-atom densities nLA that can be pre-computed. The free-atom density 
components do not need to be updated in the SCF iterations of a multi-atom computation in a basis 
set, where only the first term (the large-component density) is updated. As mentioned above, this 
approach is practically exact in calculations for chemical problems because the small-component 
density is always highly localized, shaped almost exclusively by the nearby nucleus, and changes 
very little in the SCF iterations. 

D. Reference Methods: X2C Approach in BDF and Self-Consistent Spin-Orbit 
Coupled Augmented Plane Wave Approach in WIEN2k 

As a comparison based on a completely independent code and implementation, we provide some 
reference values from the BDF code[23, 86, 87], using Slater-type orbital (STO) basis functions and 
the X2C method [23, 33] for the reference calculations. Since the X2C approach has been described 
extensively elsewhere, we only summarize the essential differences to the Q4C approach below: 

The X2C method defines an X matrix that links the large- and small-component wave functions 
(viz. ) in the space of basis functions and decouples the positive and negative energy 
states through a unitary transformation (the corresponding U matrix can be generated using X) that 
is applied to the Hamiltonian matrix. The key difference between X2C and Q4C is that there is no 
minimal basis of exact atomic radial functions in X2C. On the positive side, this allows for the use 
of general basis sets such as STOs, for which appropriate X matrices can still be constructed from 
exact free-atom solutions. However, unlike the atomic radial solutions in Q4C, the basis functions 
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in X2C do not allow one to construct a practically exact, known atomic balance (derived from Eq. 
(2) when it describes an atomic system)[79] for each individual core function from the free-atom 
limit. In practice, general-shape basis functions such as STOs do not necessarily contribute only to 
a single core function, so that the eigenvalue in the atomic balance condition to be used would not 
be unique. Thus, in X2C, one needs the aforementioned matrix transformation, whereas in Q4C we 
can basically write down the atomic balance directly for the core radial functions. 

In the BDF reference calculations, uncontracted STO QZ4P basis sets are used. The basis sets 
in question are summarized in Table S1. 

As a second point of reference, widely employed in the solid-state physics community, we 
utilize the self-consistent spin-orbit coupling approach based on augmented plane wave (APW) 
basis functions and including p1/2 basis functions (called APW+p1/2) as implemented in the WIEN2k 
code[88, 89]. In WIEN2k, the atomic core is treated by the full Dirac equation, ensuring that the core 
states and density, where relativistic effects are strongest, are essentially treated exactly from a 
relativistic point of view. We note that our present Q4C approach technically covers the same 
physics for the core states but should provide somewhat higher accuracy for the semicore and 
valence states, since radial basis functions with the asymptotically correct l+1/2 and l-1/2 behavior 
near the nucleus are included for all l channels, not just l=1 (i.e., p-type functions). 

III. Implementation Details 

In this section, we define specifics for two technical issues: the integration of relativistic matrix 
elements and the atomic basis set it needs. Other technicalities that are not that pertinent to relativity 
have been described earlier for the nonrelativistic and scalar relativistic version of FHI-aims[28]. 

A. Relativistic Numeric Atom-Centered Basis 

The nonrelativistic and scalar relativistic NAO basis functions can be written in the following 
form[28, 90-94]: 

.    (10) 

𝑌+$(𝛺) here denotes the real parts (m = 0, …, l) and imaginary parts (m = -l, …, -1) of complex 
spherical harmonics, with l, m being the azimuthal quantum number and magnetic quantum number, 
respectively. The radial function 𝑢!(𝑟) is numerically tabulated on a logarithmically spaced radial 
grid as a cubic spline function and is therefore fully flexible in its shape. A logarithmic grid is 
generally defined as 𝑟(𝑖 + 1) = 𝛼 ∙ 𝑟(𝑖) for grid points i, with 𝑟(0) close to the nucleus and α an 
increasing factor slightly greater than 1. We use 𝑟(0) = 10,-/𝑍 Bohr radii, α=1.0123 and a grid 
that extends out to 100 Bohr radii. As an example, this choice leads to just below 1,500 logarithmic 
grid points for the heavy element Bi. This dense grid is only used for one-dimensionally constructed 
and tabulated radial functions, but does not influence production calculations of three-dimensional 
molecules or solids, in which the basis functions are merely spline-evaluated on a much sparser grid 
for three-dimensional integrations.[28, 29] 

For the relativistic case, we adopt the open source, four-component Dirac-Kohn-Sham atom 
solver dftatom[38] for spherical atoms, on a one-dimensional logarithmic grid. According to the 
Dirac equation, the large and small components have different radial functions, and the separation 
of the radial and angular part should be written as 

( )( ) ( )i
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,    (11) 

in which P and Q are the radial large and small components of the orbital and YL and YS are the 
angular large- and small-component parts. The imaginary number i keeps the radial component Q 
real-valued. Substituting this expression into the Dirac equation for a spherical potential, one obtains 
a pair of coupled radial equations[76] 

,    (12a) 

.    (12b) 

Vbasis here denotes the radial potential of the free atom or atom-like system. n is the principal 
quantum number, and κ is determined by the angular momentum l and spin state s: 

.    (13) 

The normalization of 𝑃(. and 𝑄(. obeys the condition 

.     (14) 

After calling dftatom as a subroutine to solve the Dirac equation on the logarithmic radial grid, the 
numerically tabulated large- and small-component radial functions of the minimal basis, as well as 
of the additional basis functions used in this work, are available within FHI-aims. 

All basis functions are generated using the dftatom solver with a confining potential designed 
to eliminate extended but numerically irrelevant near-zero components far away from the atom to 
which they correspond. Specifically, Vbasis in Eq. (12) includes an additional confining potential 
𝑉%/0, following Eq. (9) in reference [28]. This confinement potential is extended enough to avoid a 
strong shape influence on the resulting radial functions, aiming only to suppress any spatially 
extended, slow-decaying radial function tails. To ensure a smooth decay of all basis functions and 
their derivatives to zero, 𝑉%/0  comprises three smooth analytical parts: for 0 ≤ r ≤ 𝑟1(230 , no 
confining potential is imposed; for 𝑟𝑜𝑛𝑠𝑒𝑡 ≤ r ≤ 𝑟𝑐𝑢𝑡, a smoothly gradually increasing confining 
potential is applied until r reaches 𝑟𝑐𝑢𝑡, where the confining potential becomes infinite and the wave 
functions are exactly zero. We currently adopt the same 𝑉%/0 for both nonrelativistic and relativistic 
calculations and have found good performance in all tested systems. For most chemical elements, 
the default "light" settings of FHI-aims employ 𝑟𝑜𝑛𝑠𝑒𝑡 = 	3.5	Å and a standard width (𝑟𝑐𝑢𝑡 −
𝑟𝑜𝑛𝑠𝑒𝑡 = 1.5	Å). Tight settings employ (𝑟𝑜𝑛𝑠𝑒𝑡 = 	4.0	Å) and (𝑟𝑐𝑢𝑡 − 𝑟𝑜𝑛𝑠𝑒𝑡 = 2.0	Å) for all but a 
few largest atoms. 

As noted in Table 1, in addition to the minimal basis set (obtained by solving free atoms), two 
further types of radial functions are used to create numerically precise basis sets in this work: the 
radial functions of (1) free ions and of (2) hydrogen-like atoms with a variable nuclear potential -
Z/r (with Z in the range of 0.1-20 for light atoms before the 21st element, and up to 60 for the f, g, 
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and h functions of heavy atoms). For basis functions beyond the minimal basis, the atomic balance 
condition between large and small components requires some attention. In the construction of each 
radial basis function, Eq. (12) can be directly applied, but for hydrogen-like functions, Vbasis now 
denotes the radial potential of the given hydrogen-like atom (simply -Z/r in this case) instead of the 
potential Veff of the actual nucleus at this site as defined in Eq. (2). This raises a question regarding 
the atomic balance condition to be adopted to define the small-component part of the four-
component basis functions from a given set of large-component part for a later, self-consistent 
calculation using the basis set defined for a given element. As defined in Eq. (12) and for Vbasis=-
Z/r, where Z is simply a parameter to define a given radial function, the atomic balance for a given 
hydrogenic radial function would correspond to a hydrogen-like atom with effective nuclear charge 
Z. In contrast, in a self-consistent calculation, the same radial function pair would be attached to a 
given chemical element with a potentially very different nuclear charge Zatom, leading to a very 
different actual atomic balance as defined in Eq. (2). We will come back to the choice of atomic 
balance below. 

B. Relativistic Integrals 

According to Eq. (8) in Section II C and in molecular (non-periodic) systems, the following set of 
matrix elements is needed for constructing the final secular equation: 

 

In periodic boundary conditions, the notation changes since the matrix elements are defined for 
infinitely extended Bloch basis functions, a sum over basis functions localized in each unit cell and 
with appropriate phase factors (defined by way of reciprocal-space vectors or crystal momenta k in 
the first Brillouin zone): 

.     (15) 

As written in Eq. (15), the sum over localized basis functions runs over the entire crystal and is 
therefore not yet normalizable. However, expressed in matrix elements, all terms can be rephrased 
in entities that are normalized over the volume of a single unit cell, as outlined in detail in Eqs. (27-
31) in reference [95] and in Fig. 1 of that reference. The resulting expressions (analogous to Eq. (31) 
in reference [95]) for the matrix elements in periodic boundary conditions needed in this work are: 

,    (16a) 

,    (16b) 

,    (16c) 

,    (16d) 
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,    (16e) 

.    (16f) 

Here, the real-space basis functions 𝜒',<=  and 𝜒>,<!
=  (X=L,S) are centered in different real-space 

unit cells associated with translation vectors 𝑇.⃗<  and 𝑇.⃗ <! . The integrals denoted <...>unit cell are 
performed only over the volume of only a single unit cell (e.g., the unit cell labeled "0" in real space). 
The sums over unit cells N and N' are now restricted only to those Ncells unit cells in which localized 
basis functions are centered that touch the specific unit cell selected as the integration volume. In 
mathematical terms and for a given operator , the respective integrals read[28, 96]: 

.   (17) 

This is the same procedure as used in the scalar-relativistic formalism and visualized in Fig. 1 of 
reference [95]. For further implementation details, see also reference [28] and reference [96]. The 
only difference here is that the basis functions are relativistic large- and small-component spinors. 

Technically, the expressions for the overlap and potential matrices seem straightforward, but 
in practice and in a naive approach to integration, significant precision issues can arise due to the 
Coulomb singularity and associated singularity of Dirac radial functions[38, 76] at the nucleus of 
each atom. The singularity of the radial functions could be avoided by introducing higher-order 
quantum-electrodynamic terms[76], an approach not pursued in the present work. Another way of 
alleviating this issue is to introduce a finite nucleus model (see reference [97] and Chapter 5.4 of 
reference [77]) and therefore smoothen the radial potential near to the nucleus, although we did not 
pursue this avenue in the present work.  

Instead, our approach is based upon exploiting the specific shape of the free-atom like NAO 
radial functions that account for the bulk of the electron density in the relativistic regions near the 
nuclei also in chemically bonded structures, and that are already accurately reflected in the single 
free-atom solutions available to us from the dftatom code. For free-atom like orbitals and following 
the Dirac equation Eq. (1), we have: 

,    (18a) 

.    (18b) 

Here, μ denotes the atomic orbitals. For an SCF converged atom, the radial potential and eigenvalues 
are fixed values and therefore can be obtained precisely on a set of dense logarithmic grids. 
Therefore, the right parts of the two equations can be generated precisely and can then be saved as 
the large- and small-component kinetic energy basis functions on the left side (no need for explicit 
differentiation). When performing the real space integrations on the sparser grids for three-
dimensional integration (for molecules/solids), the functions in Eq. (18) can be directly used for the 
kinetic energy matrix integrations in Eqs. (16a) and (16b). For hydrogen-like functions, the 
hydrogen like eigenvalues and potential are instead used in Eq. (18), and analogous for ionic radial 
functions. 
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Next, if we were to directly integrate Eqs. (16c) and (16d) on an affordable, three-dimensional 
integration grid appropriate for a multi-atom calculation, we would incur a large numerical 
inaccuracy due to the finite integration grid density and the very steep potential near the nucleus. In 
the literature, this problem is sometimes alleviated by the generalized transition state (GTS) 
method[98], in which the energy difference (instead of the total energy) between the real system and 
a model system (e.g., the superposition of neutral, spherical and unpolarized atoms) is calculated.[86, 
87] Instead, we here adopt a much simpler strategy. If one combines the local term of the matrix 
integration Eq. (16a) with that of Eq. (16c) and uses Eq. (18a), the following sum of integrals can 
be obtained: 

.    (19a) 

Similarly, we may combine Eqs. (16b) and (16d) and use Eq. (18b): 

.    (19b) 

Here, Vatom denotes the radial potential of the corresponding free atom, and Veff is the potential in 
the molecular/solid potential field. Both of them are steep functions near the nuclei, with essentially 
the same shape. Their steep, peaked parts therefore cancel, yielding high precision for the final total 
energy of the unit cell or molecule, compared to a direct integration of the heavily peaked potential 
and kinetic energy contributions on their own. Note that εi is calculated on the dense logarithmic 
grid and therefore numerically precise.  

Lastly, although not needed if Eqs. (19a) and (19b) are used, we might still want to calculate 
the two kinetic energy matrices 𝑇) and 𝑇*, which are defined as the large- and small-component 
kinetic energy matrices, respectively. Because the direct integration over the σ..⃗ ∙ 𝑝  operator is 
usually a thorny issue, we provide a direct integration method for the σ..⃗ ∙ �⃗� in Appendix (B). 

C. Numerical Construction of Radial Functions and Atomic Balance Condition 

In our implementation of the above real-space integrals, we typically need four types of 

precomputed functions: the large component part  (of the four-component basis), the small 

component part  (of the four-component basis), , and  (see Eqs. (18) 

and (19)). The procedure to generate them is as follows: 

1. Technically, { } can be defined at the outset. This set can in principle accommodate any 

type of radial function, including: The minimal basis functions associated with free atoms, Slater 
type orbitals (STOs), Gaussian type orbitals (GTOs), or (in the standard NAO basis sets associated 
with the FHI-aims code) the hydrogen-like and free-ionic radial functions obtained by solving 
separate radial Dirac equations as described in Section IIIA. 

2. To generate the corresponding small component part , we use Eq. (2) but we replace the 

basis-generating potential Veff with the radial potential of the free atom with the same nucleus to 
which each basis function is attached in the multi-atom calculation. For radial functions other than 
the minimal basis, εi is set to 0 since, in principle, such radial functions could contribute to more 
than one eigenstate of the multi-atom calculation. This approach assumes that the radial functions 
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beyond the minimal basis set do not contribute significantly to core states in the actual, extended 
multi-atom calculation, for which the eigenvalues could be appreciable in magnitude compared to 
mc2. In contrast, for valence and semicore-like states, εi is negligibly small compared to mc2 in the 
denominator of Eq. (2b). Eventually, for any basis function other than the free-atom like minimal 
basis, we use the following atomic balance condition to define the small component part (of the 
four-component basis function): 

.      (20) 

3. Since  is exact, the corresponding  can be easily generated by applying 

 onto . See Eqs. (18a) and (18b) for radial functions derived from their own Dirac-like 

form. Appendix (B) shows how to deal with the  operator for fixed-form radial functions such 
as STOs and GTOs. 

4. Similarly, with Eq. (20) at hand, we can generate the  by operating  onto 

. The mathematical details are provided in Appendix (C). 

 

Fig. 1. Comparison of the LDA-VWN 1s radial functions associated with a free Xe atom (Z=54) 
and a hydrogen-like atom with Z=54, for two different choices of the effective potential used to 
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define the atomic balance (AB) condition that links the small component to the large component. 
The black curve denotes the radial 1s orbital of the free Xe atom; the red curve denotes the radial 1s 
orbital of the hydrogen-like atom, with the atomic balance condition in Eq. (2), i.e., including the 
1s eigenvalue of the radial function. For comparison, the blue curve denotes the radial 1s orbital of 
the hydrogen-like atom but with the atomic balance condition in Eq. (20), in which the radial 
potential V comes from the free Xe atom instead of the hydrogen-like atom itself and in which the 

1s eigenvalue is not included in the denominator. For (A)  and (D) , there is no 

difference between the two hydrogen-like functions since no atomic balance condition is needed in 

generating these functions. For (B)  and (C) , the results for the two different 

atomic balance conditions agree closely. 
 

To test the impact of the different atomic balance conditions in Eq. (2) vs. Eq. (20), we compare 
the basis function components associated with the 1s orbital of Xe (Z=54) and the 1s orbital of a 
hydrogen-like atom with Z=54. Since these are very deep core orbitals, largely unaffected by 
screening effects of the other electrons, the radial potentials generating these basis functions are 
very similar. However, for the hydrogen-like function, we know the analytically exact shape and 1s 

eigenvalue (-1519.4736 Ha). In short, the corresponding , , , and  

functions of the 1s orbitals are plotted and compared in Fig. 1, showing close agreement between 
all parts and thus indicate a negligible impact of the approximate atomic balance condition used in 
Eq. (20). 

 
 Hydrogen-like KB Free atom KB 
Energy for Au atom (Ha) -19037.5712418 -19037.5712897 
Energy for Au2 (Ha) -38075.2580525 -38075.2581532 
Binding energy (Ha) 0.1155689 0.1155738 
Table 2. LDA-VWN total energies and binding energies (unit: Hartree) for Au atom and Au2 with 
the two different atomic balance conditions shown in Eqs. (2) and (20). The binding distance of the 
Au2 dimer is 2.447Å. 

 
We also see that for a gold dimer (Au2) testcase, the Vosko-Wilk-Nusair[99] (VWN) local-

density approximation (LDA) binding energy difference (using a tier 2 basis set, see Table S2 in the 
Appendix) between the two atomic balance conditions is ~0.00013 eV (see Table 2 for the energy 
values). This confirms that the two different atomic balance conditions impact the valence orbitals 
very little. An exemplary hydrogen-like basis function H(4f , Z=7.4) used as a part of the Au basis 
set, is plotted in Fig. 2, showing negligible difference between the radial wavefunctions (black and 
red curves) generated with the two atomic balance conditions. In fact, from our tests (on all the 
compounds reported in section IV), the difference in the SCF converged eigenvalues is less than 
~0.00001 eV for valence orbitals and is less than ~0.01 eV for the innermost orbital (viz. 1s). 
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Fig. 2. The corresponding (A) , (B) , (C) , and (D)  functions of the 

hydrogen-like basis function H(4f , Z=7.4) for Au, which is a valence-type basis function found in 
FHI-aims’ standard NAO basis sets for Au. The black curve denotes the radial orbital of the 
hydrogen-like atom, with the atomic balance (AB) condition in Eq. (2); the red curve denotes the 
radial 1s orbital of the hydrogen-like atom, with the atomic balance condition in Eq. (20), which 
means the radial potential V comes from the free Au atom instead of the hydrogen-like atom itself. 
The curves are visually identical. One key point to note is that the valence basis functions shown 
here are non-zero only much further away from the nucleus than the core functions shown in Fig, 1. 
They are therefore not numerically affected by the region in which the atomic-like potential is deep 
enough to have a significant numerical effect via the exact atomic balance condition. 

IV. Results 

A. Diatomic Molecules 

We first investigate several typical diatomic molecules and report their relativistic molecular 
properties, viz. the optimized bond lengths and vibrational frequencies. These dimers (i.e. F2, Cl2, 
Br2, I2, At2, AgH, AuH, Ag2, Au2, Pb2, Bi2, and Po2) have been studies in the past at various levels of 
theory such as relativistic Hartree-Fock, coupled cluster theory, Møller-Plesset perturbation theory, 
pseudopotential, Dirac Kohn Sham theory.[10-12, 83, 100-108] Here, we report the NR, SR, and 
Q4C results from FHI-aims[4, 28], and the X2C results from BDF[86, 87]. The basis sets used are 
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the tier 2 NAO basis functions in FHI-aims with really tight setting and the STO QZ4P basis 
functions in BDF. All calculations are done using the VWN LDA functional[99] so as to be 
comparable to previous studies. 

To optimize the bond length of each molecule, we use seven points around the equilibrium 
with an equidistant separation of 0.05 Å. We perform a 6th order polynomial fitting (the fitted curve 
is checked visually to rule out any unexpected oscillations due to the polynomial fitting technique) 
for these chosen bond lengths and the corresponding energies and obtain the optimized bond length 
at the energy minimum. As for the frequency calculations for the molecular ground state, the 
molecular oscillation can be taken as a harmonic oscillation and is thus subjected to Hooke’s law. 
Specifically, a parabola is fitted using all available energy points. 

The Q4C (X2C) relativistic LDA bond lengths, vibrational frequencies and binding energies 
calculated by FHI-aims (BDF) are plotted in Fig. 3, with more detailed data listed in Table S3. Good 
agreement between the Q4C results of FHI-aims and the X2C results of BDF can be observed for 
F2, Cl2, Br2, I2, At2, AgH, AuH, Ag2, and Au2. Fig. 4 and Tables S4-S15 compare the same quantities 
for different levels of relativity available in FHI-aims. For the scalar-relativistic (SR) calculations, 
atomic ZORA as defined in reference [28] is used. For the light-element dihalogens F2, Cl2, Br2, 
and I2, relativity only has a minor influence on bond lengths (< 0.01 Å) and frequencies (< 4%). For 
these two observables, even the nonrelativistic calculations can give good predictions, which is in 
accordance with Visscher and Dyall’s HF, MP2, CISD, CCSD, and CCSD(T) results.[105] For 
binding energies, the difference between non- or scalar-relativistic values on the one hand and Q4C 
relativistic values on the other hand is still low for F2 and Cl2, but becomes more pronounced for 
Br2 and I2. This is not unexpected since the primary difference between scalar and Q4C relativity is 
the self-consistent inclusion of spin-orbit coupling terms, which are especially pronounced for the 
p orbitals that serve as the primary bonding orbitals in the dihalogens. Here, the SOC splittings 
between 4(Br) and 5(I) p1/2 and p3/2 valence orbitals are quite significant and, correspondingly, the 
bonding orbitals in the free atoms and dimers inherit different orderings in the scalar- vs. fully-
relativistic cases. The magnitude of the effect of Q4C, compared to scalar relativity, on dimer 
binding energies as light as Br2 and I2 is noteworthy, given that many practical computations of total 
energies of main-group element containing molecules and solids in this atomic number range 
neglect effects of spin-orbit coupling in practice. For the much heavier halide dimer At2, both scalar 
relativistic effects and SOC effect become significant. 

Turning next to Ag2, Au2, AgH, and AuH, there is a much more pronounced difference between 
the non-relativistic results on the one hand and scalar- or Q4C-relativistic results on the other. In 
contrast, for these four systems, we see that the SOC effect is in fact not that pronounced; therefore, 
the SR calculations already provide reasonable descriptions. This observation is attributed to the 
fact that the primary bonding orbitals have s character, which are particularly affected by scalar-
relativistic orbital contraction effects but which are not themselves much affected by spin-orbit 
splitting.[40] 
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Fig. 3. Q4C and X2C (A) relativistic optimized LDA bond lengths (in Å), (B) predicted vibrational 
frequencies (in cm-1) and (C) binding energies (in eV) of several diatomic molecules. FHI-aims 
calculations (really tight setting and tier 2 basis set) used the Q4C approach whereas the X2C 
approach was used in BDF. 
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Fig. 4. (A) optimized bond lengths (in Å), (B) vibrational frequencies (in cm-1), and (C) binding 
energies (eV) of several diatomic molecules at the nonrelativistic, scalar relativistic, and Q4C levels 
of theory, respectively. The FHI-aims really tight setting and tier 2 basis set were used. 
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Finally, the heavy 6p main group metal atom dimers Pb2, Bi2, and Po2 show very pronounced 
effects of full relativity compared to non- or scalar-relativistic treatments, especially on the binding 
energies. Again, this is due to the fact that the primary bonding orbitals are p-derived, showing the 
qualitatively strongest spin-orbit splittings. Additionally, we also note that this group of dimers is 
known to be heavily affected by multireference effects that are not well captured by the simple 
density functional applied in the present work. More sophisticated correlation treatments should be 
adopted for dimers in this row of the periodic table (e.g., reference [107] for the Tl2 dimer, which is 
not included in Figs. 3 and 4 and for which the BDF and FHI-aims implementations compared here 
lead to different self-consistent single-reference states). Here, our focus rests on elucidating the 
effects of relativity in the kinetic energy operator in the presence of an otherwise consistent, but not 
necessarily exact correlation term. Thus, we simply provide a qualitative NR, SR, and FR outcome 
within the DFT framework for reference, which is expected to still reflect the effects of relativity in 
a qualitatively correct fashion. This is confirmed by comparing to a recent CAS-SCF study of heavy 
dimers including Pb2 and PbPo by Martens et al[109], which shows the same significant binding 
energy reduction upon including the SOC effects as that observed by us for Pb2, Bi2, and Po2. 

B. Benchmark Results for Silver Halide Systems 

To test the validity of the implemented code for extended systems, we perform calculations on a 
series of model systems (i.e. AgCl, AgBr, and AgI in the rocksalt structure) and compare the results 
to previous benchmark studies by some of us[23]. Nonrelativistic, scalar relativistic, and Q4C 
calculations were conducted with both LDA[99] and PBE[110] functionals. The reported properties 
include: equilibrium lattice constant, bulk modulus, and predicted Kohn-Sham band gap. The “really 
tight” setting for precision and the “second tier” setting for the basis set of FHI-aims were adopted 
for the basis set and real space integrations; as for the reciprocal space integration, 7×7×7 k points 
(with respect to the 2-atom Bravais cell) are used for each system. The equilibrium lattice constants 
and bulk moduli are obtained from the Birch-Murnaghan equation of state[111], fitted to seven 
points around the minimum-energy lattice parameter with an equidistant separation of 0.05 Å. 

Silver halides are systems containing elements of intermediate atomic number. They are chosen 
as test systems here and in past work[23]) since literature data on relativistic effects are already 
available for comparison.[23, 112-117] The predicted structural properties of AgCl, AgBr, and AgI 
are listed in Tables 3-5 and are compared with X2C results from BDF[33] and with APW + p1/2 self-
consistent SOC results from the WIEN2k code[88, 89]. 

As has long been known, these systems show indirect band gaps with the valence band 
maximum (VBM) locates at L point (of the reciprocal space) and the conduction band minimum 
(CBM) locates at the Г point for AgCl and AgBr but at the X point for AgI. This is mainly due to the 
strong p-d hybridization between the 4d orbital of Ag and the p-valence orbitals of the halogens: for 
all these silver halides, the Ag 4d orbitals in the energy region of the top of the valence bands are 
nearly degenerate with the p-valence orbitals of the halogens, and they are therefore intimately 
mixed, leading to some complexity and large band widths in the valence bands.[118] The indirect 
band gap character can be seen from Tables 3-5, which are in agreement with other theoretical and 
experimental results. 
 
Functional Method a B0 L-L Γ-Γ X-X L-Γ 
LDA NR 5.419 62.7 4.07 3.74 5.16 1.39 
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  (0.000) (-0.8) (-0.02) (-0.02) (0.00) (-0.02) 
  [-0.001] [-0.3] [-0.01] [-0.01] [0.00] [0.00] 
 SR 5.354 69.2 3.66 3.39 4.09 0.64 
  (0.001) (-1.3) (-0.03) (-0.02) (-0.01) (-0.02) 
  [0.002] [-0.1] [0.00] [-0.02] [0.00] [-0.01] 
 Q4C 5.351 70.0 3.59 3.33 3.91 0.57 
  (0.003) (-2.0) (-0.01) (-0.01) (0.00) (0.01) 
  [0.006] [-0.6] [0.03] [-0.01] [0.01] [0.03] 

PBE NR 5.691 37.4 4.74 3.45 5.29 1.68 
  (0.001) (-0.4) (-0.02) (-0.01) (0.00) (-0.01) 
  [0.009] [-2.5] [0.02] [-0.01] [0.00] [0.01] 
 SR 5.613 41.8 4.34 3.10 4.24 0.93 
  (0.000) (-0.4) (-0.03) (-0.01) (-0.01) (-0.01) 
  [-0.004] [-2.5] [0.00] [-0.01] [0.00] [0.00] 
 Q4C 5.606 43.5 4.27 2.99 4.03 0.86 
  (0.006) (-2.0) (0.00) (0.00) (0.00) (0.02) 
  [0.002] [-3.8] [0.03] [0.03] [0.01] [0.03] 

Expt.  5.550 51.4  5.2  3.0 
Table 3. Minimum-energy lattice parameters a (in Å), bulk moduli B0 (in GPa), direct energy gaps 
(L-L, Γ-Γ, and X-X, in eV), and indirect energy gaps (L-Γ, in eV) of AgCl. All the results are obtained 
using the nonrelativistic (NR), scalar relativistic (SR), and Q4C methods with the FHI-aims code 
and basis sets. The differences between the results from BDF and the present ones are listed in 
parentheses; the differences between the results of WIEN2k (as obtained from reference [23]) and 
the present ones are given in square brackets. The experiment values of equilibrium lattice 
constant[119], bulk modulus[120], Γ-Γ direct energy gap[118], and L-Γ indirect energy gap[121] 
are listed for reference only. 
 
Functional Method a B0 L-L Γ-Γ X-X L-Γ 
LDA NR 5.659 56.5 3.73 3.21 4.74 1.32 
  (0.002) (-0.4) (-0.03) (-0.01) (0.00) (-0.01) 
  [0.001] [-0.2] [-0.02] [-0.01] [0.00] [0.00] 
 SR 5.584 63.1 3.28 2.63 3.74 0.39 
  (0.002) (-0.5) (-0.04) (-0.01) (-0.01) (-0.02) 
  [0.000] [-0.2] [-0.02] [-0.01] [0.00] [-0.01] 
 Q4C 5.583 63.1 3.14 2.43 3.56 0.26 
  (0.003) (-0.6) (0.01) (0.00) (0.00) (0.03) 
  [0.004] [0.3] [0.02] [-0.01] [0.01] [0.04] 

PBE NR 5.934 33.9 4.34 2.97 4.81 1.58 
  (0.003) (-0.2) (-0.03) (0.00) (0.00) (-0.01) 
  [0.010] [1.5] [0.01] [-0.01] [-0.02] [0.00] 
 SR 5.842 38.6 3.90 2.44 3.87 0.69 
  (0.001) (-0.2) (-0.03) (-0.01) (0.00) (-0.01) 
  [0.007] [-0.9] [0.00] [-0.02] [0.00] [0.00] 
 Q4C 5.845 37.7 3.76 2.26 3.67 0.57 
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  (-0.002) (1.0) (0.01) (-0.01) (0.00) (0.03) 
  [0.002] (-0.6] [0.04] [-0.02] [0.01] [0.04] 

Expt.  5.774   4.3  2.5 
Table 4. Minimum-energy lattice parameters a (in Å), bulk moduli B0 (in GPa), direct energy gaps 
(L-L, Γ-Γ, and X-X, in eV), and indirect energy gaps (L-Γ, in eV) of AgBr. All the results are obtained 
using the nonrelativistic (NR), scalar relativistic (SR), and Q4C methods with the FHI-aims code 
and basis sets. The differences between the results from BDF and the present ones are listed in 
parentheses; the differences between the results of WIEN2k (as obtained from reference [23]) and 
the present ones are given in square brackets. The experiment values of equilibrium lattice 
constant[122], Γ-Γ direct energy gap[123], and L-Γ indirect energy gap[121] are listed for reference 
only. 
 
Functional Method a B0 L-L Γ-Γ X-X L-X 
LDA NR 5.993 49.2 3.41 3.53 3.66 1.06 
  (-0.005) (-0.3) (-0.03) (-0.01) (0.00) (0.00) 
  [-0.001] [-0.2] [-0.02] [0.01] [0.01] [-0.01] 
 SR 5.901 55.5 2.90 2.56 3.14 0.16 
  (0.005) (-1.3) (-0.02) (-0.03) (-0.01) (0.01) 
  [-0.001] [-0.2] [-0.01] [-0.02] [0.00] [-0.01] 
 Q4C 5.911 56.4 2.61 2.16 2.83 -0.13 
  (-0.010) (-2.8) (0.01) (0.01) (0.01) (0.05) 
  [-0.006] [-1.1] [0.03] [-0.01] [-0.01] [0.04] 

PBE NR 6.275 29.6 3.94 3.15 3.56 1.60 
  (0.005) (-0.2) (-0.03) (-0.01) (0.00) (0.00) 
  [0.006] [-1.3] [-0.02] [-0.02] [-0.02] [-0.02] 
 SR 6.161 34.6 3.45 2.26 3.05 0.74 
  (0.004) (-0.2) (-0.03) (0.01) (0.02) (0.00) 
  [-0.001] [-0.8] [-0.02] [0.00] [-0.01] [-0.03] 
 Q4C 6.179 32.5 3.16 1.91 2.75 0.46 
  (-0.010) (1.4) (0.01) (-0.01) (0.01) (0.03) 
  [-0.018] [1.3] [0.02] [0.00] [0.00] [0.01] 

Expt.  6.067 50.0     
Table 5. Minimum-energy lattice parameters a (in Å), bulk moduli B0 (in GPa), direct energy gaps 
(L-L, Γ-Γ, and X-X, in eV), and indirect energy gaps (L-X, in eV) of AgI. All the results are obtained 
using the nonrelativistic (NR), scalar relativistic (SR), and Q4C methods with the FHI-aims code 
and basis sets. The differences between the results from BDF and the present ones are listed in 
parentheses; the differences between the results of WIEN2k (as obtained from reference [23]) and 
the present ones are given in square brackets. The experiment values of equilibrium lattice 
constant[124] and bulk modulus[125] are listed for reference only. 
 

As can be seen from Tables 3-5, all properties reported here match well with BDF and 
WIEN2k’s results at all relativistic levels: for scalar relativistic calculations, FHI-aims uses the 
specific version of the atomic ZORA approximation as defined in reference [28], which is in 
principle at the same level with the BDF X1C[23] treatment; the Q4C algorithm is considered to be 
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equivalent to the BDF X2C algorithm. Likewise, the “scalar relativity plus self-consistent SOC, 
with additional p1/2 basis functions” approach available in WIEN2k shows good performance for the 
present fifth row elements. 

Reference [23] has already provided detailed analyses for the test systems used here. One issue 
to comment on is that the BDF results are based on a series of specially designed QZ4P Slater type 
orbital (STO) basis set denoted as rQZ4P. The reason for the modifications is that such large basis 
sets (QZ4P), designed originally for atoms and molecules, can result in severe linear dependence 
for condensed-phase periodic systems. To avoid this, the most diffuse valence s and p functions 
were deleted from the QZ4P basis functions used in BDF. Analogous findings were also reported 
for Gaussian type orbitals (GTOs) by Kadek et al.[22] The linear scaling performance of these codes 
also benefits from removing the diffuse functions, as the real space integration (Eq. (17)) in this 
case will involve fewer cells: the numbers N and N’ are significantly reduced. Still, the extent of the 
remaining STO-rQZ4P functions can be ~15 Å for medium heavy elements like Ag and I; as for 
GTOs, this value is reported to be ~12 Å for the DZ basis if not significantly truncated[22], and a 
higher-quality basis will bring in a much larger radius. In this respect, the present Q4C theory 
benefits from the confined NAOs with an extension of only 6 Å for Ag, Cl, Br, and I while showing 
comparable precision. We note that the basis set parameters used in FHI-aims, which correspond to 
high precision settings, did not need any modification to conduct the present work. It is also 
important to re-emphasize that the confinement applied to the NAO radial functions (see Sec. IIIA, 
with overall radial extents to 6 Å or larger) is chosen large enough to only remove mathematically 
irrelevant tails, ensuring that the numerical convergence of total energies and other quantities is not 
impacted in any significant way (see reference [28] for a more detailed discussion, including a 
visualization of radial function tails and their magnitude). 

C. Energy Band Structure Benchmarks for 103 Materials: Comparison Between 
the Nonrelativistic (NR), Scalar Relativistic (SR), Scalar Relativistic with Spin-
Orbit Correction (SR+SOC) and Quasi Four-Component (Q4C) Methods 

In addition to the Q4C method described in the present paper, FHI-aims also offers atomic 
ZORA[28] as a scalar relativistic approach and a non-self-consistent SOC correction method for 
energy band structures based on an initial self-consistent scalar-relativistic set of eigenstates (called 
SR+SOC in the following). This non-self-consistent approach avoids computationally expensive 
operations such as additional density and (for hybrid density functionals) exchange matrix 
evaluations that would be required in a self-consistent treatment. In a previous study of energy band 
structures[4] the accuracy of the non-self-consistent SOC scheme for band structures was shown to 
be essentially exact for elements up to Cd (Z=48), very reasonable for 5p and 5d elements 
(deviations to the APW+p1/2 scheme within about 0.1 eV) and qualitatively correct even for 6p 
elements including Pb, Bi, and Po. 

For the Q4C approach, we here provide a thorough comparison to the NR, SR, and SR+SOC 
treatments of the band structures of the same 103 materials considered in reference [4], combining 
chemical elements from lithium to polonium in the periodic table. This set of materials covers 10 
typical crystal structures: face-centered cubic (FCC), body-centered cubic (BCC), simple cubic 
(SCC), hexagonal close-packed (HCP), graphite (GRA), diamond (DIA), cubic zincblende (ZB), 
wurtzite (WUR), rocksalt (RS), and cesium chloride (CSCL). They are divided into three subsets: 
compound semiconductors (37 materials), elemental materials (45 materials), and alkali halides (21 
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materials), as listed below in Table 6. 
 
Family Materials 

Compound 
semiconductors 

C (DIA), MgO (RS), AlN (WUR), AlN (ZB), SiC (ZB), BP (ZB), AlP 
(ZB), MgS (RS), ZnO (WUR), ZnS (WUR), ZnS (ZB), GaN (WUR), 
GaN (ZB), GaP (ZB), BAs (ZB), AlAs (ZB), GaAs (ZB), MgSe (RS), 
ZnSe (ZB), CdS (WUR), CdS (ZB), CdSe (WUR), CdSe (ZB), InN 
(WUR), InP (ZB), InAs (ZB), AlSb (ZB), GaSb (ZB), InSb (ZB), ZnTe 
(ZB), CdTe (ZB), HgS (ZB), HgSe (ZB), HgTe (ZB), PbS (RS), PbSe 

(RS), and PbTe (RS) 
Elemental 
materials 

Be (HCP), C (GRA), Ne (FCC), Mg (HCP), Al (FCC), Si (DIA), Ca 
(FCC), Sc (HCP), Ti (HCP), V (BCC), Cr (BCC), Mn (FCC), Fe (BCC), 
Co (HCP), Ni (FCC), Cu (FCC), Zn (HCP), Ge (DIA), Sr (FCC), Y 
(HCP), Zr (HCP), Nb (BCC), Mo (BCC), Tc (HCP), Ru (HCP), Rh 
(FCC), Pd (FCC), Ag (FCC), Cd (HCP), Sn (DIA), Xe (FCC), Ba 
(BCC), Lu (HCP), Hf (HCP), Ta (BCC), W (BCC), Re (HCP), Os 

(HCP), Ir (FCC), Pt (FCC), Au (FCC), Tl (HCP), Pb (FCC), Bi (BCC), 
and Po (SCC) 

Alkali halides LiF (RS), NaF (RS), LiCl (RS), NaCl (RS), KF (RS), KCl (RS), LiBr 
(RS), NaBr (RS), KBr (RS), RbF (RS), RbCl (RS), RbBr (RS), LiI (RS), 
NaI (RS), KI (RS), RbI (RS), CsF (RS), CsCl (CSCL), CsCl (RS), CsBr 

(CSCL), and CsI (CSCL) 
Table 6. Materials used in this study, grouped by type. 
 

For the band structure benchmark, we use the same computational settings for tightly 
converged computations using PBE functional[110] as in reference [4]. The supplementary material 
of reference [4] includes detailed computational settings regarding the lattice parameters[126-128], 
k grids, basis set, etc. 

For the 37 compound semiconductors, 21 alkali halides, and 4 nonmetal elemental materials 
(Ne, Si, Ge, Xe) which show observable band gaps, we summarize their NR, SR, SR+SOC, and Q4C 
predicted PBE band gaps in Tables S16, S17, and S18, respectively. For the 41 metal systems 
without band gaps, we present in Table S19 the amplitude of the same SOC splittings as reference 
[4] at selected k points, so as to assess the gradually increasing SOC effect. 
 

The band gap is one of the most widely studied properties of materials. Therefore, we first 
display in Fig. 5 the summary of the band gap results calculated at different levels of theory with 
PBE functional: 
1. Nonrelativistic (NR) results calculated by FHI-aims. 
2. Scalar relativistic (SR) results calculated by FHI-aims. 
3. The non-self-consistent SOC corrected results (SR+SOC n.s.c) calculated by FHI-aims. 
4. The self-consistent SOC corrected results with (L)APW+lo basis set including the Dirac p1/2 

orbitals (APW+p1/2 s.c.), calculated by WIEN2k. 
5. The Q4C results calculated by FHI-aims. 

From the band gaps presented in Fig. 5, we see that the self-consistent SOC corrected results 
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(APW+p1/2, WIEN2k, yellow dots) match the Q4C results very well, with deviations less than 0.03 
eV. The non-self-consistent SOC correction method (the red dots) can actually provide qualitatively 
excellent results even for very heavy elements, in line with the previous study.[4] The SOC effect 
typically reduces band gaps due to the splitting of valence orbitals. But this is not always true for 
scalar relativistic effects: for certain systems (e.g. PbTe (RS) and CsCl (CSCL)), it is interesting to 
see that scalar relativistic effects enlarge the band gaps while SOC reduces them. Therefore, the 
nonrelativistic calculations sometimes provide seemingly acceptable band gap results in a few cases 
due to error cancellation. 
 

 

Fig. 5. Deviations of the NR, SR, SR+SOC n.s.c., and APW+p1/2 s.c. band gaps from the Q4C band 
gaps. The (A) 37 semiconductor compounds and (B) 21 alkali halide compounds listed on the 
horizontal axis are ordered according to their maximum atomic number Zmax. 
 

To quantify the band structure differences in somewhat more detail, we follow the “band delta” 
(or △band) concept proposed previously[4], which is defined as a root-mean-square deviation 

defined on the energy levels of two band structures and within a given energy 

window [−𝜀! , 𝜀"]: 

1, [ ]n ike
!

2, [ ]n ike
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.   (21) 

Nk is the number of unique k points calculated along the k path; NE is the total number of energy 

eigenvalues counted across all 𝑘.⃗ !  that lie within the energy window [−𝜀! , 𝜀"]; 𝜀#,%[𝑘'⃗ &] and 

𝜀',%[𝑘'⃗ &] are the energy eigenvalues of the two band structures being compared at the k point 𝑘-⃗ 𝑖. In 

practice, we choose the range of valence bands [VBM-10 eV, VBM] and conduction bands [CBM, 
CBM+5 eV] as the energy windows to quantify the band delta between different relativistic 
approaches (for metals, the Fermi level is taken as the VBM and CBM). The results are plotted in 
Fig. 6. 

It is not surprising that the scalar relativistic results show significant deviations from Q4C 
benchmarks especially for materials with Zmax > 31 (Zmax denotes the maximum atomic number in 
the compound), for which SOC effects start to become notable. However, there are still several 
metals (i.e. Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ba, and Hf) and semiconductors (i.e. InN and InP) 
with larger Zmax, for which the SR calculations in fact give a relatively good description (△band < 
0.07 eV), which indicates that the SOC effect in these materials are not that strong. From Fig. 6(B) 
we see that the deviations of the conduction bands are often (but not always) smaller than that of 
the valence bands in the set of compounds considered here. 

As for the non-self-consistent SR+SOC calculations, the Q4C benchmarks show that this 
computationally cheap non-self-consistent approach can already provide very accurate band 
structures for materials with Zmax ≤ 50, for which the valence △band < 0.015 eV and the conduction 
△band < 0.037 eV. From Zmax=51 (Sb) to Zmax=75 (Re), the non-self-consistent SR+SOC treatment 
can still safely serve to capture any qualitatively relevant band-structure effects, with elevated 
valence △band values up to 0.082 eV (Zmax=71, Lu) and conduction △band values up to 0.136 eV 
(Zmax=75, Re). For the heaviest materials with Zmax ≥ 76, in which the conduction and/or valence 
bands probed here include 6p shells (which are strongly affected by SOC[129, 130]), △band can be 
as large as 0.206 eV (Zmax=83, Bi) for valence bands and 0.320 eV (Zmax=85, Po) for conduction 
bands. Nevertheless, as noted previously[4], the relative error of the non-self-consistent SOC 
correction is still within only 11% of the overall magnitude of SOC effect, justifying the use of non-
self-consistent SR+SOC treatment for qualitative analyses of band structures even for very heavy 
elements. 

Finally, from Figs. 6(E) and 6(F) we see that the self-consistent SOC corrected results from 
WIEN2k (known as a benchmark-quality code[30]) show yet better agreement with the Q4C band 
structures: the deviations are roughly within 0.030 eV for valence bands and 0.05 eV for conduction 
bands. Note that, with a few exceptions, the deviations for light elements and heavy elements are 
generally at the same level, implying that the associated slight uncertainty should come from 
technical aspects like basis set effect, numerical errors, etc. However, there are notable outliers in 
the heavy-element part, especially metals, such as: Os (Zmax=76, valence △ band = 0.026 eV, 
conduction △band = 0.154 eV), Ir (Zmax=77, valence △band = 0.046 eV, △band = 0.122 eV), and Pt 
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(Zmax=78, valence △band = 0.027 eV, conduction △band = 0.094 eV). A possible reason is that 
WIEN2k adopts additional p1/2 orbitals only for 6p orbitals but misses the 5d3/2 orbitals, which might 
contribute somewhat to the quantitative result. However, this does not lead to fundamental 
differences (between FHI-aims and WIEN2k) in the overall band structures, as can be seen from the 
band structure comparison in Fig. S1. 

 

Fig. 6. Band delta between (A) SR and Q4C valence bands, (B) SR and Q4C conduction bands, (C) 
non-self-consistent SR+SOC and Q4C valence bands, (D) non-self-consistent SR+SOC and Q4C 
conduction bands, (E) self-consistent APW+p1/2 and Q4C valence bands, (F) self-consistent 
APW+p1/2 and Q4C conduction bands. The 103 materials are ordered according to their maximum 
atomic number Zmax. 



28 
 

As a final point of this section, we chose twelve heavy-element based materials for a 
comparison of predicted NR, SR and FR equilibrium lattice constants and bulk moduli, as plotted 
in Fig. 7 and listed in Table S20. It can be seen that the relativistic effects (both SR and SOC) 
typically reduce the bond lengths of compounds (this is true for both the silver halides and 
semiconductors reported in Tables 3-5 and Table S20). However, for Pb, SOC in fact enlarges the 
lattice parameter slightly. 

 
Fig. 7. The optimized lattice constants (in Å) and bulk moduli (in GPa) of several heavy-element 
based compounds at NR, SR, and Q4C levels, respectively. 

D. Larger Perovskite Systems Containing Up to 94 Atoms 

Hybrid organic-inorganic perovskites (HOIPs)[131, 132] have been found to be promising for solar 
energy and other semiconductor applications and have received significant attention both in  
experiments and in computations. The heavy elements (e.g. I, Pb, Bi) often involved in these 
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structures feature strong relativistic effects that mainly manifest in the form of SOC. While self-
consistent scalar relativity followed by hybrid density functional theory and non-self-consistent 
SOC has yielded remarkably good qualitative results in past work by some of us[75, 133-135], the 
capability to handle these large systems in a four-component way is expected to contribute to further 
improved computational predictions for these materials. While support for total-energy gradients 
("forces") and hybrid density functionals is not yet available in the present work, the qualitative 
impact of non-self-consistent SOC vs. self-consistent Q4C can already be studied at the level of 
DFT-PBE. We choose a typical perovskite system 4-fluorophenethylammonium (4-FPEA) lead 
iodide, (4-FPEA)2PbI4[136, 137], containing 94 atoms. The crystal structure is shown in Fig. 8 
(figures are made by the open source software VESTA[138]). 
 

 
Fig. 8. The structure of (4-FPEA)2PbI4 which consists of 2 lead atoms, 8 iodine atoms, 4 fluorine 
atoms, 4 nitrogen atoms, 32 carbon atoms, and 44 hydrogen atoms in a unit cell. Each unit cell 
contains 4 organic molecules that is shown in (B). (C), (D), and (E) show the sideview of the unit 
cell along different axes. The unit cell lengths are: a = 8.513 Å, b = 8.767 Å, c = 16.684 Å. The angle 
between a and b is α = 89.978°, the angle between b and c is β = 100.256°, the angle between a and 
c is γ = 90.005°. 
 

Band structure calculations using nonrelativistic (NR), atomic ZORA[28] scalar relativistic 
(SR), non-self-consistent scalar relativistic with SOC correction (SR+SOC), and Q4C methods, 
respectively, were performed using the PBE functional. Tight setting of FHI-aims and a k-space grid 
of 3×3×2 k-points for reciprocal space integrals during the self-consistent field cycle were used. 
The plotted band structures are shown in Fig. 9. 

For the present system with a large band gap, it can be seen that while NR and SR calculations 
give a wrong description, the non-self-consistent SR+SOC recipe can actually provide a quite 
reliable qualitative account of the band structure. Strong SOC splitting effect can be observed in the 
conduction bands (significantly impacted by the Pb 6p states): taking the energy levels at the 
Gamma point as an example, the CBM is lowered while the CBM+1 is significantly moved upwards. 
On the other hand, the valence bands (mainly contributed by the I atoms) change relatively little due 
to their much weaker SOC. The deviation of SR+SOC from Q4C in the present case is mainly 
reflected in the band gap, which is narrowed by 0.21 eV. 
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Fig. 9. Band structures of (4-FPEA)2PbI4 calculated by nonrelativistic (NR), atomic ZORA scalar 
relativistic (SR), scalar relativistic with non-self-consistent SOC correction (SR+SOC), and Q4C 
methods. The Brillouin zone is also depicted for reference. 
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We finally consider the band structure of another exemplary (double) perovskite system 
containing bismuth, i.e. Cs2AgBiCl6. The lattice constant of the conventional unit cell used is 
10.957Å; tight setting of FHI-aims and 5×5×5 k points are adopted. We plot the SR+SOC bands 
and the Q4C bands in one figure for comparison, as shown in Fig. S2. It can be seen that the non-
self-consistent SR+SOC recipe provides a good description for the valence band, and therefore the 
main difference comes from the conduction band: the (indirect) band gap is reduced from 1.81 eV 
(SR+SOC) to 1.51 eV (Q4C). This matches a similar observation for the same system, compared to 
WIEN2k’s APW+p1/2 self-consistent approach, shown in Figure S5 of reference [75]. 

V. Conclusions and Perspectives 

In this paper, an efficient quasi-four-component (Q4C) relativistic method (maintaining the exact 
two-component regime) based on numerically tabulated atom-centered basis sets is developed. In 
our implementation, the following choices are made: 

• We rely on the self-consistent Dirac-Coulomb Operator Eq. (1)[76, 77] in a form that 
neglects orbital current terms[19] but which still improves significantly over simpler scalar-
relativistic or non-self-consistent spin-orbit coupled schemes by (1) including spin-orbit 
coupling self-consistently for all orbitals, (2) including basis functions with the correct 
numerical shape for the Dirac-Coulomb operator towards each nucleus, and (3) including 
an explicit representation of the small-component density and orbitals (i.e., considering all 
four components).  

• The key point of the Q4C approach is that, for each large-component radial basis function 
in a multi-atom structure, one includes a specific small-component radial basis function, 
the shape of which is mathematically tied exactly to the large-component radial basis 
function from which it is derived. For each Dirac-Kohn-Sham orbital, the basis set 
coefficients for each small-component basis function are constrained to be exactly the same 
as for the corresponding large-component basis function (see Eq. (6)), i.e., the small 
component has no variational flexibility of its own. The net result is an effective two-
component method, i.e., the two scalar component functions of the large component can 
vary independently, but the shape of the corresponding small component then follows from 
the large component with no further flexibility. 

• Crucially, the Q4C prescription includes numerically exact radial solutions to spherically 
symmetric free atoms, obtained independently by the four-component Dirac-Coulomb 
method, as "minimal" basis functions. This choice captures the radial behavior of all basis 
functions towards the nucleus (where relativistic effects matter most and where the small 
component is numerically significant) practically exactly also in multi-atom systems. For 
the small component radial basis functions of the "minimal" basis, the atomic balance 
condition in Eq. (2) can be used to relate them to the large-component radial basis functions, 
a condition that is expected to yield practically exact Dirac-Coulomb results for the near-
nuclear behavior in multi-atom systems as well. 

• For all other radial basis functions associated with a particular atom, the approximate 
atomic balance condition Eq. (20), which is appropriate for the valence electron regime, 
can be used, building on the expectation that the core electrons of a multi-atom structure 
will be represented almost exclusively by the core radial functions of the "minimal" basis 
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of Dirac-Kohn-Sham radial functions of free atoms. 
• The same underlying approximation of a fixed atomic-like reference solution for the small 

component can be applied in the construction of the electron density, in which a 
superposition of free-atom small-component densities is used to represent the multi-atom 
small-component density. 

The present paper reports benchmark results for a set of systems including dimers and over 100 
different solids, including complex organic-inorganic perovskites with up to 96 atoms/unit cell. We 
show that the Q4C strategy summarized above provides essentially the same precision as the "exact 
two-component" (X2C) approach as implemented in the Beijing Density Functional (BDF) code[23, 
86, 87] and as the "Dirac core plus self-consistent spin-orbit coupled valence" all-electron 
implementation in the benchmark-quality WIEN2k code[88, 89], when including p1/2 orbitals in the 
basis set; in fact, the precision of the present Q4C approach may be slightly better, when used with 
general high-quality basis sets, since it includes radial basis functions with the correct Dirac-
Coulomb behavior for all other angular momenta as well. Importantly, the Q4C band structure of a 
large perovskite system demonstrates the ability of the method to treat complex systems with many 
heavy atoms in a unit cell. 
 One of the anonymous reviewers of this work raised the very interesting question of what is 
the "worst case scenario" for the validity of the Q4C approximation as we employ it here. In fact, 
for general multiatom structures and assuming standard basis sets in which the core levels of a given 
atom are represented by nearly exact free-atom derived Dirac-Coulomb radial functions centered at 
the same atom, we expect uniformly high accuracy throughout. From a numerical perspective, a 
breakdown of the method could only occur if, e.g., a core orbital centered at one atom were 
numerically significantly represented by one or more basis functions centered at another atom, a 
highly unlikely scenario even for large NAO basis sets as long as they remain well conditioned. 
Likewise, one might imagine that the validity of the atomic balance condition Eq. (2) for free-atom 
radial functions deteriorates if neutral free-atom basis functions were used to model a constrained 
electronic system with a core hole; however, this practical deficiency would easily be cured by 
including the Dirac-Coulomb radial functions of a free atom with a core hole in the set of minimal 
basis functions instead. In our view, a true worst-case scenario would arise only if the near-nuclear 
potential of an atom in a multiatom structure were substantially altered away from the free-atom-
like near-nuclear potential, e.g., in a high-energy nuclear collision that places two heavy nuclei in 
very close proximity. In this case, the atomic balance condition of Eq. (2) and, in fact, the reliance 
on a free-atom derived minimal basis set for multiatom calculations in the first place, would no 
longer furnish a good numerical foundation for the overall multi-atom problem. However, in the 
scenario of a nuclear collision, the application of time-independent ground-state density functional 
theory itself (as done in this work) becomes questionable, i.e., a very different overall approach to 
the electronic structure of the problem might need to be employed. 
 Regarding the use of the Dirac-Coulomb Hamiltonian itself, we note that this model is based 
on several further approximations, which could easily be relaxed in a future extension of this work 
since corresponding, well established textbook expressions are known[77]. We specifically mention 
quantum electrodynamic (QED) vacuum fluctuations near the nucleus (e.g., Lamb shift, 
spontaneous emission). Likewise, the use of a finite-nucleus model (see reference[97] and Chapter 
5.4 of reference [77]), more physical and actually numerically simpler than the electron-nuclear 
Coulomb singularity, is not yet pursued in the present work. Finally, the electron-electron 
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interaction in QED theory is also more complex than the simple Coulomb interaction and well-
known correction terms exist. 
 We emphasize that the present work focuses on the numerical accuracy of the Q4C method in 
the NAO framework. This is the core objective of this paper. The present implementation allows 
one to routinely address the energetics and energy band structures of rather complex molecules and 
solids, but significant potential remains to extend the reach of the method in future work. For 
example, it should be straightforward to combine the approach with an efficient hybrid density 
functional implementation[139] or many-body methods beyond density functional theory, an avenue 
that we plan to pursue in future work. Likewise, we have not yet included open-shell systems or 
total energy gradients ("forces") with respect to nuclear positions in this paper, two further important 
extensions that will be critical for practical applications and that we will pursue. Finally, the present 
implementation exploits computational parallelism, but unlike the scalar-relativistic parts of the 
underlying code[28, 84, 85, 96], has not yet been fully optimized for or benchmarked on massively 
parallel computing platforms or GPU-based accelerator architectures[96, 140] expected to power 
the next generation of exascale-capable computing platforms. Extending the present code to become 
a much more capable high-performance computing implementation should be straightforward and 
is expected to truly unlock 4C treatments even for very large, complex problems in the future. 

In summary, with numeric atomic orbital basis sets, the Q4C theory allows one to perform self-
consistent relativistic calculations, reflecting all four components, for systems containing a large 
number of heavy elements and therefore promises to place some formerly unaffordable application 
areas within reach. Since the SOC effect can here be treated precisely, we expect the present 
development to open the possibility to studying large periodic systems containing heavy elements, 
especially strong SOC systems such as heavy-element containing perovskites, topological insulators, 
and similar materials. 
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Appendix 

(A) Basis sets 

Element STO functions used 
H 1s (3.3, 2.0, 1.4, 1.0, 0.71), 2p (2.0, 1.0), 3d (2.5,1.5) 
F 1s (17.3, 10.05, 7.6), 2s (6.6, 4.45, 2.7, 1.8, 0.9), 2p (6.55, 3.65, 1.95, 1.15), 3d 

(2.5, 1.5), 4f (4.0, 2.0) 
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Cl 1s (64.0, 20.6, 15.35), 2s (15.5, 6.85, 5.05), 3s (4.75,3.15, 2.1, 1.5, 0.75), 2p 
(12.05, 7.05, 4.7), 3p (3.1, 2.45, 1.65, 1.06), 3d (4.0, 2.0, 1.0), 4f (2.5, 1.25) 

Br 1s (520.0, 135.0, 47.2, 33.75), 2s (30.15, 15.65, 12.5), 3s (12.05, 7.35, 5.3), 4s 
(3.95, 2.85, 2.05, 1.55), 2p (110.0, 36.3, 18.0, 12.8), 3p (9.8, 6.6, 4.65), 4p (4.4, 
2.8, 1.75, 1.13), 3d (18.6, 9.7, 5.55, 3.35), 4d (2.3, 1.15), 4f (4.0, 2.0, 1.0) 

Ag 1s (1950.0, 480.0, 160.0, 65.3, 46.5), 2s (40.4, 22.4, 18.3), 3s (13.8, 10.4, 8.2), 4s 
(7.4, 5.05, 3.6), 5s (2.75, 1.8, 1.2, 0.82), 2p (480.0, 160.0, 47.8, 24.85, 18.3), 3p 
(13.9, 10.3, 7.9), 4p (6.35, 4.3, 2.95), 5p (2.5, 1.5, 0.82), 3d (18.3, 10.95, 7.25), 
4d (5.45, 3.35, 2.0, 1.2), 4f (4.0, 2.0, 1.0) 

I 1s (2250.0, 550.0, 185.0, 76.5, 53.25), 2s (46.4, 25.9, 21.3), 3s (17.0, 12.75, 
10.1), 4s (9.05, 6.35, 4.75), 5s (3.5, 2.4, 1.7, 1.0), 2p (550.0, 185.0, 59.6, 29.1, 
21.3), 3p (15.2, 11.7, 9.2), 4p (8.0, 5.6, 4.05), 5p (3.25, 2.2, 1.45, 1.02), 3d (21.5, 
13.1, 9.0), 4d (7.8, 5.6, 4.0, 2.75), 5d (1.5), 4f (4.0, 2.0, 1.0) 

Au 1s (9750.0, 2180.0, 695.0, 270.0, 125.0, 85.45), 2s (73.75, 42.8, 35.85), 3s (30.0, 
22.95, 18.4), 4s (16.25, 11.9, 9.2), 5s (7.15, 5.15, 3.85), 6s (3.35, 2.35, 1.6, 1.07), 
2p (2180.0, 600.0, 190.0, 78.35, 44.05, 34.15), 3p (37.4, 21.85, 17.1), 4p (16.65, 
11.15, 8.3), 5p (6.5, 4.5, 3.15), 6p (2.5, 1.7, 1.1), 3d (67.5, 31.3, 20.9, 15.6), 4d 
(14.3, 9.65, 6.85), 5d (4.9, 3.05, 1.9, 1.2), 4f (20.45, 12.3, 7.3, 4.35), 5f (2.7, 1.35) 

Tl 1s (10250.0, 2300.0, 730.0, 280.0, 131.0, 88.3), 2s (76.4, 44.25, 37.05), 3s (31.0, 
23.8, 19.1), 4s (17.9, 12.7, 9.8), 5s (7.65, 5.55, 4.15), 6s (3.3, 2.3, 1.65, 1.2), 2p 
(2300.0, 620.0, 200.0, 81.8, 45.6, 35.25), 3p (37.0, 23.0, 17.65), 4p (17.5, 11.7, 
8.75), 5p (6.8, 4.75, 3.4), 6p (2.5, 1.6, 1.05, 0.67), 3d (67.75, 31.8, 21.4, 16.05), 
4d (15.05, 10.15, 7.25), 5d (6.15, 4.15, 2.7, 1.75), 6d (1.25), 4f (22.45, 13.45, 
8.05, 4.95), 5f (3.0, 1.5) 

Pb 1s (10500.0, 2350.0, 745.0, 285.0, 133.0, 89.75), 2s (77.8, 45.0, 37.7), 3s (32.0, 
24.2, 19.4), 4s (17.8, 12.9, 9.95), 5s (7.8, 5.7, 4.3), 6s (3.35, 2.35, 1.7, 1.25), 2p 
(2350.0, 630.0, 200.0, 83.3, 46.3, 35.8), 3p (39.5, 22.9, 18.0), 4p (18.0, 11.95, 
8.95), 5p (7.05, 5.0, 3.6), 6p (2.55, 1.65, 1.1, 0.73), 3d (69.25, 32.35, 21.75, 
16.35), 4d (15.45, 10.45, 7.45), 5d (6.3, 4.3, 2.85, 1.95), 6d (1.25), 4f (22.8, 
13.75, 8.35, 5.2), 5f (3.2, 1.6) 

Bi 1s (10750.0, 2410.0, 765.0, 295.0, 136.0, 91.2), 2s (79.2, 45.75, 38.3), 3s (33.0, 
24.6, 19.8), 4s (17.75, 13.1, 10.2), 5s (8.05, 5.95, 4.5), 6s (3.5, 2.5, 1.75, 1.25), 2p 
(2410.0, 640.0, 205.0, 85.0, 47.1, 36.35), 3p (40.25, 23.3, 18.3), 4p (18.45, 12.2, 
9.2), 5p (7.25, 5.2, 3.75), 6p (2.9, 2.0, 1.35, 0.91), 3d (71.9, 33.15, 22.25, 16.7), 
4d (15.85, 10.7, 7.7), 5d (6.6, 4.6, 3.15, 2.15), 6d (1.3), 4f (23.6, 14.25, 8.7, 5.45), 
5f (3.4, 1.7) 

Po 1s (11000.0, 2460.0, 780.0, 300.0, 139.0, 92.7), 2s (80.7, 46.45, 38.95), 3s (34.0, 
24.95, 20.1), 4s (20.25, 13.65, 10.55), 5s (8.4, 6.2, 4.7), 6s (4.6, 3.3, 2.3, 1.65, 
1.0), 2p (2460.0, 650.0, 210.0, 86.75, 47.9, 36.9), 3p (40.9, 23.65, 18.6), 4p 
(18.85, 12.5, 9.4), 5p (7.5, 5.4, 3.9), 6p (3.6, 2.45, 1.6, 1.05), 3d (74.0, 33.85, 
22.65, 17.05), 4d (16.25, 10.95, 7.9), 5d (6.6, 4.65, 3.25, 2.3), 6d (1.4), 4f (24.4, 
14.7, 9.0, 5.75), 5f (3.6, 1.8) 

At 1s (11250.0, 2520.0, 800.0, 305.0, 142.0, 94.2), 2s (82.1, 47.25, 39.6), 3s (34.0, 
25.4, 20.45), 4s (20.2, 13.85, 10.75), 5s (8.55, 6.35, 4.85), 6s (4.35, 3.25, 2.35, 
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1.75, 1.0), 2p (2520.0, 660.0, 210.0, 88.15, 48.6, 37.45), 3p (41.6, 24.0, 18.95), 
4p (18.85, 12.65, 9.6), 5p (7.7, 5.55, 4.1), 6p (3.45, 2.4, 1.65, 1.12), 3d (76.4, 
34.65, 23.1, 17.4), 4d (16.65, 11.25, 8.15), 5d (6.6, 4.65, 3.25, 2.35), 6d (1.5), 4f 
(25.15, 15.15, 9.35, 6.0), 5f (4.0, 2.0, 1.0) 

Table S1. The QZ4P STO basis sets parameters used in BDF. The Zeta value for each STO basis 
function is listed in the parenthesis. 
 
Basis set level Atomic orbitals used 
Minimal [Xe] + 6s5d4f 
First tier Au2+(6p, 1.4), H(4f, 7.4), Au2+(6s), H(5g, 10), H(6h, 12.8), H(3d, 2.5) 
Second tier H(5f, 14.8), H(4d, 3.9), H(3p, 3.3), H(1s, 0.45) , H(5g, 16.4) , H(6h, 13.6) 
Table S2. The “second tier” FHI-aims basis set for Au. Also see the caption of Table 1 for the 
description of the parameters. 

(B) Integrations Involving the 𝛔--⃗ ∙ 𝒑--⃗  Operator 

σ-⃗ ∙ 𝑝-⃗  is a Hermitian operator that is commonly involved in integrals related to the relativistic 
electronic structure problems. Here, we analyze the effect of applying σ-⃗ ∙ 𝑝-⃗  to an atomic orbital, 
since this could be useful to many of the aforementioned integrations. Some fundamental relations 
used here can be found from Kenneth G. Dyall and Knut Fӕgri, Jr.’s book.[76] 

Since the atomic basis is practically defined as a product of a radial part and an angular part, it 
is necessary to also separate the σ-⃗ ∙ 𝑝-⃗  operator into two terms acting on the radial and angular basis 
functions, respectively. We start from Dyall and Fӕgri’s derivation: 

,    (S1) 

where the radial momentum operator has the form 

,    (S2) 

which can operate on the radial large or small components. 𝜎? is a pure angular operator with an 
important feature: 

.    (S3) 

Eq. (S3) means that this operator transforms the large-component angular function to the small-
component angular function, and vice versa. 

𝐾+ is also a pure angular momentum operator, 

,    (S4) 

which can be applied to the angular momentum basis function and gives: 

.   (S5) 

With all the conditions summarized above, we now observe the consequence of applying σ-⃗ ∙ 𝑝-⃗  
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to a large/small component basis function: 

, 

(S6) 

, 

(S7) 
It is interesting to see that this operator transforms the large-component spherical harmonic 

function to a small-component one (this is due to the feature of the 𝜎? as can be seen from Eq. 
(S3)). And eventually, σ-⃗ ∙ 𝑝-⃗  can be separated into a radial part that operates on the radial basis 
function and an angular part that is expressed as an eigenvalue comprising l and j quantum numbers. 

(C) Generating  

With the  generated from Eq. (20), we see that the  can be devided into two 

terms according to the chain rule: 

. 

(S8) 

As , the second term can be obtained accordingly. 

As for the first term, the  part has been analyzed in Eq. (S6); and the remaining part 

regarding  can be further expanded with the help of Eq. (S1): 

. (S9) 

Note that the  operator equals -1 for the spherical symmetric potential of free atoms. 

(D) Dimers 
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F2 1.384 1075.1 1.385 1062.6 1.416a 920a 
Cl2 1.978 563.1 1.981 559.9 2.019a 544a 
Br2 2.272 338.4 2.278 326.0 2.315a 312a 
I2 2.643 218.3 2.669 211.7 2.717a 206a 
At2 2.927 123.7 2.973 118.2 3.046a 108a 
AgH 1.594 1863.6 1.590 1870.9   
AuH 1.529 2241.9 1.524 2320.1 1.525b 2327.9b 
Ag2 2.478 207.9 2.483 207.6 2.53c 207c 

Au2 2.447 193.9 2.450 197.2 2.454d 196d 
Pb2 2.844 130.6 2.891 120.0 

  

Bi2 2.569 204.5 2.637 184.5   
Po2 2.707 176.4 2.770 162.2 2.797f 151.8f 
       

Table S3. Optimized LDA bond lengths r (in Å) and vibrational frequencies ω (in cm-1) of several 
diatomic molecules. 
a. 4C CCSD (T) by Visscher et al.[105] 
b. 4C DKS (LDA) by Saue et al.[10] 
c. 4C DKS (LDA) by Varga et al.[104] 
d. 4C DKS (LDA) by Liu et al.[141] 
e. Multireference Kramers’ restricted CI by Han et al.[107] 
f. CAS-SCF by Mertens et al.[109] 
 
Property NR SR Q4C 
Bond length 1.384 1.384 1.384 
Vibrational frequency 1064.0 1063.8 1064.1 
Binding Energy 4.21 4.21 4.17 
Table S4. The optimized bond lengths (in Å), vibrational frequencies (in cm-1), and binding energies 
(eV) of the F2 molecule at NR, SR, and Q4C levels, respectively. 
 
Property NR SR Q4C 
Bond length 1.979 1.979 1.978 
Vibrational frequency 563.2 562.2 563.1 
Binding Energy 3.95 3.94 3.86 
Table S5. The optimized bond lengths (in Å), vibrational frequencies (in cm-1), and binding energies 
(eV) of the Cl2 molecule at NR, SR, and Q4C levels, respectively. 
 
Property NR SR Q4C 
Bond length 2.280 2.279 2.272 
Vibrational frequency 352.1 350.2 338.4 
Binding Energy 3.41 3.39 3.06 
Table S6. The optimized bond lengths (in Å), vibrational frequencies (in cm-1), and binding energies 
(eV) of the Br2 molecule at NR, SR, and Q4C levels, respectively. 
 
Property NR SR Q4C 



38 
 

Bond length 2.652 2.645 2.643 
Vibrational frequency 226.9 225.6 218.3 
Binding Energy 3.03 2.97 2.38 
Table S7. The optimized bond lengths (in Å), vibrational frequencies (in cm-1), and binding energies 
(eV) of the I2 molecule at NR, SR, and Q4C levels, respectively. 
 
Property NR SR Q4C 
Bond length 2.858 2.818 2.927 
Vibrational frequency 163.8 162.0 123.7 
Binding Energy 2.75 2.63 1.63 
Table S8. The optimized bond lengths (in Å), vibrational frequencies (in cm-1), and binding energies 
(eV) of the At2 molecule at NR, SR, and Q4C levels, respectively. 
 
Property NR SR Q4C 
Bond length 1.652 1.588 1.594 
Vibrational frequency 1702.1 1873.3 1863.6 
Binding Energy 3.76 4.01 3.97 
Table S9. The optimized bond lengths (in Å), vibrational frequencies (in cm-1), and binding energies 
(eV) of the AgH molecule at NR, SR, and Q4C levels, respectively. 
 
Property NR SR Q4C 
Bond length 1.699 1.523 1.529 
Vibrational frequency 1705.3 2329.6 2241.9 
Binding Energy 3.72 4.87 4.62 
Table S10. The optimized bond lengths (in Å), vibrational frequencies (in cm-1), and binding 
energies (eV) of the AuH molecule at NR, SR, and Q4C levels, respectively. 
 
Property NR SR Q4C 
Bond length 2.554 2.480 2.478 
Vibrational frequency 183.1 207.3 207.9 
Binding Energy 2.34 2.63 2.69 
Table S11. The optimized bond lengths (in Å), vibrational frequencies (in cm-1), and binding 
energies (eV) of the Ag2 molecule at NR, SR, and Q4C levels, respectively. 
 
Property NR SR Q4C 
Bond length 2.675 2.447 2.447 
Vibrational frequency 137.9 196.0 193.9 
Binding Energy 2.38 3.25 3.19 
Table S12. The optimized bond lengths (in Å), vibrational frequencies (in cm-1), and binding 
energies (eV) of the Au2 molecule at NR, SR, and Q4C levels, respectively. 
 
Property NR SR Q4C 
Bond length 2.928 2.878 2.844 
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Vibrational frequency 112.0 127.9 130.6 
Binding Energy 3.56 3.58 1.58 
Table S13. The optimized bond lengths (in Å), vibrational frequencies (in cm-1), and binding 
energies (eV) of the Pb2 molecule at NR, SR, and Q4C levels, respectively. 
 
Property NR SR Q4C 
Bond length 2.676 2.612 2.569 
Vibrational frequency 202.0 208.8 204.5 
Binding Energy 5.99 6.01 3.40 
Table S14. The optimized bond lengths (in Å), vibrational frequencies (in cm-1), and binding 
energies (eV) of the Bi2 molecule at NR, SR, and Q4C levels, respectively. 
 
Property NR SR Q4C 
Bond length 2.763 2.716 2.707 
Vibrational frequency 188.8 188.9 176.4 
Binding Energy 4.44 4.38 3.50 
Table S15. The optimized bond lengths (in Å), vibrational frequencies (in cm-1), and binding 
energies (eV) of the Po2 molecule at NR, SR, and Q4C levels, respectively. 

(E) 103 Compound Benchmark Set 

 

Prototype Material 
Band Gap 
NR 

Band Gap 
SR 

Band Gap 
SR+SOC 

Band Gap 
APW+p1/2 

Band Gap 
Q4C 

DIA C 4.149 4.141 4.137 4.133 4.135 
RS MgO 4.766 4.714 4.702 4.718 4.699 
WUR AlN 4.244 4.208 4.208 4.216 4.208 
ZB AlN 3.314 3.313 3.307 3.312 3.307 
ZB SiC 1.228 1.371 1.367 1.349 1.366 
ZB BP 1.228 1.242 1.228 1.234 1.228 
ZB AlP 1.594 1.582 1.562 1.571 1.561 
RS MgS 2.840 2.778 2.747 2.774 2.768 
WUR ZnO 1.057 0.810 0.790 0.810 0.788 
WUR ZnS 2.436 2.159 2.138 2.136 2.132 
ZB ZnS 2.382 2.109 2.088 2.076 2.079 
WUR GaN 2.099 1.919 1.917 1.917 1.912 
ZB GaN 1.858 1.676 1.673 1.674 1.670 
ZB GaP 1.671 1.600 1.573 1.572 1.560 
ZB BAs 1.197 1.188 1.121 1.119 1.111 
ZB AlAs 1.487 1.443 1.342 1.354 1.343 
ZB GaAs 1.183 0.530 0.415 0.418 0.416 
RS MgSe 1.863 1.784 1.636 1.679 1.670 
ZB ZnSe 1.862 1.300 1.164 1.166 1.168 
WUR CdS 1.670 1.177 1.158 1.169 1.158 
ZB CdS 1.638 1.152 1.134 1.136 1.132 
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WUR CdSe 1.411 0.675 0.544 0.566 0.553 
ZB CdSe 1.387 0.656 0.525 0.540 0.531 
WUR InN 0.252 0.000 0.000 0.002 0.001 
ZB InP 1.228 0.712 0.676 0.666 0.660 
ZB InAs 0.632 0.000 0.000 0.000 0.000 
ZB AlSb 1.256 1.204 0.949 1.016 1.009 
ZB GaSb 0.881 0.127 0.000 0.000 0.000 
ZB InSb 1.188 0.000 0.000 0.000 0.000 
ZB ZnTe 2.284 1.253 0.908 0.956 0.971 
ZB CdTe 1.962 0.787 0.448 0.506 0.514 
ZB HgS 1.164 0.000 0.038 0.109 0.108 
ZB HgSe 0.983 0.000 0.000 0.000 0.000 
ZB HgTe 1.743 0.000 0.000 0.000 0.000 
RS PbS 0.382 0.370 0.113 0.062 0.078 
RS PbSe 0.529 0.307 0.006 0.177 0.193 
RS PbTe 0.254 0.731 0.148 0.088 0.097 

Table S16. For a series of compound semiconductors, the band gaps calculated with nonrelativistic 
(NR), scalar relativistic (SR), scalar relativistic with SOC correction (SR+SOC), and fully 
relativistic (Q4C) methods are presented. All values are given in units of eV. Here, DIA, RS, WUR, 
and ZB denote diamond, rocksalt, wurtzite, and zinc blende structures, respectively. 
 

Prototype Material 
Band Gap 
NR 

Band Gap 
SR 

Band Gap 
SR+SOC 

Band Gap 
APW+p1/2 

Band Gap 
Q4C 

RS LiF 9.195 9.154 9.135 9.137 9.134 
RS NaF 6.389 6.334 6.314 6.349 6.327 
RS LiCl 6.441 6.328 6.287 6.293 6.306 
RS NaCl 5.167 5.088 5.046 5.073 5.048 
RS KF 6.214 6.136 6.116 6.157 6.123 
RS KCl 5.181 5.164 5.124 5.157 5.140 
RS LiBr 5.272 4.930 4.745 4.775 4.755 
RS NaBr 4.412 4.138 3.956 4.002 3.975 
RS KBr 4.647 4.411 4.238 4.292 4.265 
RS RbF 6.010 5.682 5.676 5.723 5.752 
RS RbCl 5.165 4.972 4.928 4.966 4.950 
RS RbBr 4.642 4.348 4.175 4.220 4.193 
RS LiI 4.352 4.276 3.851 3.955 3.939 
RS NaI 4.225 3.627 3.207 3.323 3.298 
RS KI 4.430 3.942 3.543 3.663 3.638 
RS RbI 4.382 3.884 3.492 3.600 3.572 
RS CsF 5.479 5.434 5.388 5.458 5.426 
RS CsCl 5.246 4.877 4.791 4.836 4.828 
CSCL CsCl 5.154 5.270 5.192 5.208 5.202 
CSCL CsBr 4.716 4.529 4.327 4.352 4.343 
CSCL CsI 4.097 3.888 3.562 3.648 3.640 
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Table S17. For a series of alkali halides in rocksalt (RS) or cesium chloride (CSCL) structure, the 
band gaps calculated with nonrelativistic (NR), scalar relativistic (SR), scalar relativistic with SOC 
correction (SR+SOC), and fully relativistic (Q4C) methods are presented. All values are given in 
units of eV. 
 

Prototype Material 
Band Gap 
NR 

Band Gap 
SR 

Band Gap 
SR+SOC 

Band Gap 
Q4C 

FCC Ne 11.659 11.631 11.597 11.593 
DIA Si 0.585 0.570 0.554 0.553 
DIA Ge 0.623 0.049 0.000 0.000 
FCC Xe 6.736 6.264 5.724 5.839 

Table S18. For a series of nonmetal elemental materials in face-centered cubic (FCC) or diamond 
(DIA) structure, the band gaps calculated with nonrelativistic (NR), scalar relativistic (SR), scalar 
relativistic with SOC correction (SR+SOC), and fully relativistic (Q4C) methods are presented. All 
values are given in units of eV. 
 
Prototype Material K-Point SR Energy SO split Q4C SO spit 
HCP Be N/A - - - 
GRA C N/A - - - 
HCP Mg N/A - - - 
FCC Al W -0.836 0.017 0.017 
FCC Ca N/A - - - 
HCP Sc N/A - - - 
HCP Ti N/A - - - 
BCC V Γ 0.413 0.037 0.039 
BCC Cr Γ -0.827 0.051 0.053 
FCC Mn Γ -0.776 0.068 0.071 
BCC Fe H 9.594 0.260 0.257 
HCP Co H -1.024 0.113 0.116 
FCC Ni Γ -1.888 0.140 0.146 
FCC Cu Γ -2.939 0.181 0.187 
HCP Zn N/A - - - 
DIA Ge Γ 0.000 0.294 0.294 
FCC Sr W 0.619 0.051 0.052 
HCP Y Γ 1.736 0.075 0.068 
HCP Zr Γ 1.522 0.111 0.114 
BCC Nb H 9.166 0.635 0.630 
BCC Mo H 9.177 0.730 0.724 
HCP Tc Γ -0.825 0.239 0.242 
HCP Ru Γ -1.980 0.296 0.300 
FCC Rh Γ -3.101 0.253 0.255 
FCC Pd X 0.296 0.288 0.290 
FCC Ag Γ -4.766 0.390 0.394 
HCP Cd N/A - - - 
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DIA Sn Γ 2.179 0.473 0.474 
BCC Ba H 4.190 0.480 0.427 
HCP Lu H 0.346 0.323 0.307 
HCP Hf K -1.797 0.387 0.349 
BCC Ta P -1.180 0.756 0.689 
BCC W H 5.269 0.748 0.726 
HCP Re A -2.327 0.347 0.464 
HCP Os H -1.475 0.667 0.647 
FCC Ir Γ -3.917 0.841 0.831 
FCC Pt Γ -3.800 1.002 0.983 
FCC Au W 6.574 1.448 1.259 
HCP Tl Γ 8.136 1.825 1.212 
FCC Pb Γ 7.386 3.574 3.321 
BCC Bi Γ 6.080 4.581 4.127 
SCC Po R -2.694 2.803 2.562 

Table S19. For a series of metals, the largest spin-orbit split in the energy range [Fermi energy - 10 
eV, Fermi energy + 10 eV] is presented. All values are given in units of eV. HCP, GRA, FCC, BCC, 
and SCC denote hexagonal close-packed, graphite, face-centered cubic, body-centered cubic, 
simple cubic crystal structures, respectively. “N/A” indicates that either the spin-orbit splittings in 
the material are too weak to be visually distinguished in the energy range [VBM - 10 eV, VBM + 
10 eV] or no unambiguous spin-orbit splitting can be visually identified in the energy range. 
 

 
Fig. S1. A comparison of the PBE band structures of Os and Ir calculated using Q4C (in FHI-aims) 
and APW+p1/2 (in WIEN2k). The blue lines denote Q4C results and the red lines denote APW+p1/2 
results. 
 

Material Property NR SR Q4C 

PbS 
a 6.055 6.008 5.935 
B0 49.2 52.4 58.5 

PbSe 
a 6.277 6.217 6.144 
B0 44.9 46.4 54.8 
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PbTe 
a 6.628 6.570 6.479 
B0 36.0 38.4 50.3 

HgS 
a 6.186 5.994 5.962 
B0 47.5 50.2 54.0 

HgSe 
a 6.450 6.262 6.227 
B0 40.6 42.5 46.0 

HgTe 
a 6.872 6.654 6.645 
B0 32.7 34.0 33.8 

Ir 
a 4.022 3.870 3.875 
B0 229.0 345.0 311.6 

Pt 
a 4.174 3.970 3.956 
B0 137.5 247.6 227.5 

Au 
a 4.428 4.156 4.136 
B0 67.7 136.6 122.5 

Pb 
a 5.098 5.037 5.150 
B0 39.4 37.4 33.2 

Bi 
a 4.027 3.987 4.024 
B0 50.9 53.2 41.1 

Po 
a 3.419 3.348 3.353 
B0 40.8 45.4 36.0 

Table S20. Optimized lattice constants a (in Å), bulk moduli B0 (in GPa) at NR, SR, and Q4C levels, 
respectively, for twelve heavy-element containing solids. 

(F) Energy Band Structure of CsAgBiCl6 

 
Fig. S2. The band structure of Cs2AgBiCl6 calculated by scalar relativistic with non-self-consistent 
SOC correction (SR+SOC) and fully relativistic Q4C methods. The lattice constant used for the 
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FCC structure is 5.478 Å. The red dots denote the SR+SOC bands; the blue dots denote the Q4C 
bands. See the appendix of reference [75] for a more detailed discussion. 
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