

Fixation probabilities in evolutionary dynamics under weak selection

Alex McAvoy^{1,2,3,*} Benjamin Allen^{4,†}

¹Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138

²Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104

³Center for Mathematical Biology, University of Pennsylvania, Philadelphia, PA 19104

amcavoy@sas.upenn.edu

⁴Department of Mathematics, Emmanuel College, Boston, MA 02115

allenb@emmanuel.edu

Abstract

In evolutionary dynamics, a key measure of a mutant trait’s success is the probability that it takes over the population given some initial mutant-appearance distribution. This “fixation probability” is difficult to compute in general, as it depends on the mutation’s effect on the organism as well as the population’s spatial structure, mating patterns, and other factors. In this study, we consider weak selection, which means that the mutation’s effect on the organism is small. We obtain a weak-selection perturbation expansion of a mutant’s fixation probability, from an arbitrary initial configuration of mutant and resident types. Our results apply to a broad class of stochastic evolutionary models, in which the size and spatial structure are arbitrary (but fixed). The problem of whether selection favors a given trait is thereby reduced from exponential to polynomial complexity in the population size, when selection is weak. We conclude by applying these methods to obtain new results for evolutionary dynamics on graphs.

1 Introduction

Many studies of stochastic evolutionary dynamics concern the competition of two types (traits) in a finite population. Through a series of births and deaths, the composition of the population changes over time. Absent recurring mutation, one of the two types will eventually become fixed

*ORCID: <https://orcid.org/0000-0002-9110-4635>

†ORCID: <https://orcid.org/0000-0002-9746-7613>

17 and the other will go extinct. Such models may incorporate frequency-dependent selection as well
18 as spatial structure or other forms of population structure. The fundamental question is to identify
19 the selective differences that favor the fixation of one type over the other.

20 This question is typically answered by computing a trait's fixation probability (Haldane, 1927;
21 Moran, 1958; Kimura, 1962; Patwa and Wahl, 2008; Traulsen and Hauert, 2010; Der et al., 2011;
22 Hindersin and Traulsen, 2014; McCandlish et al., 2015; Hindersin et al., 2016) as a function of
23 the initial configuration of the two types. Direct calculation of a mutant's fixation probability
24 is possible in simple models of well-mixed populations (Moran, 1958; Taylor et al., 2004) or
25 spatially structured populations that are highly symmetric (Lieberman et al., 2005; Broom and
26 Rychtář, 2008; Hindersin and Traulsen, 2014) or small (Hindersin and Traulsen, 2015; Cuesta
27 et al., 2018; Möller et al., 2019; Tkadlec et al., 2019). For large populations, fixation probabilities
28 can sometimes be approximated using diffusion methods (Kimura, 1962; Roze and Rousset, 2003;
29 Ewens, 2004; Chen, 2018).

30 When selection is weak, perturbative methods can be applied to the computation of fixation
31 probabilities (Haldane, 1927; Nowak et al., 2004; Lessard and Ladret, 2007). The first-order effects
32 of selection on fixation probabilities provide information about whether selection favors one trait
33 over another, and, if so, by how much. This perturbative approach is often paired with methods
34 from coalescent theory (Rousset, 2003; Chen, 2013; Van Cleve, 2015; Chen et al., 2016; Allen
35 et al., 2017, 2020).

36 Our aim in this work is to generalize the weak-selection method for computing fixation probability
37 to a broad class of evolutionary models. Our main result is a first-order weak-selection
38 expansion of a mutant's fixation probability from any initial condition. This result applies to ar-
39bitrary forms of spatial structure and frequency-dependent selection, and the expansion can be
40 computed for any particular model and initial configuration by solving a system of linear equa-
41tions. Under conditions that apply to most models of interest, the size of this system—and hence
42 the complexity of computing this expansion—exhibits polynomial growth in the population size.

43 Our approach is based on a modeling framework developed by Allen and Tarnita (2014) and
44 Allen and McAvoy (2019), which is described in Section 2. This framework describes stochastic
45 trait transmission in a population of fixed size, N , and spatial structure. This setup leads to a finite
46 Markov chain model of selection. Special cases of this framework include the Moran (Moran,
47 1958) and Wright-Fisher models (Fisher, 1930; Wright, 1931; Imhof and Nowak, 2006), as well as
48 evolutionary games in graph-structured populations (Ohtsuki et al., 2006; Szabó and Fáth, 2007;
49 Nowak et al., 2009; Allen et al., 2017). We use this framework to define the *degree* of an evolu-
50 tionary process, which later plays an important role in determining the computational complexity
51 of calculating fixation probabilities.

52 In Section 3, we establish a connection between sojourn times and stationary probabilities.
53 Specifically, we compare the original Markov chain, which is absorbing, to an amended Markov
54 chain, in which the initial configuration ξ can be re-established from the all- A and all- B states
55 with some probability, u . This amended Markov chain is recurrent, and it has a unique stationary
56 distribution. We show that sojourn times for transient states of the original Markov chain are equal
57 to u -derivatives, at $u = 0$, of stationary probabilities in the amended chain. We also define a
58 set-valued coalescent process that is used in the proof of our main results.

59 Section 4 proves our main result regarding fixation probabilities. We consider the fixation
 60 probability, $\rho_A(\xi)$, of type A in a population whose initial configuration of A and B is ξ . The
 61 intensity of selection, δ , which quantifies selective differences between the two types, is assumed
 62 to be sufficiently weak, meaning $\delta \ll 1$. Our main result is a formula for calculating $\rho_A(\xi)$ to
 63 first order in the selection intensity δ . This formula depends on the first-order effects of selection
 64 on marginal trait-transmission probabilities together with a set of sojourn times for neutral drift.
 65 The latter can be evaluated by solving a linear system of size $O(N^{D+1})$, where D is the degree of
 66 the process. This linear system is what bounds the complexity in N of calculating the first-order
 67 coefficient, $\frac{d}{d\delta} \Big|_{\delta=0} \rho_A(\xi)$.

68 In Section 5, we extend our main result to the case that the initial configuration of A and B
 69 is stochastic rather than deterministic. We derive a formula for $\frac{d}{d\delta} \Big|_{\delta=0} \mathbb{E}_{\mu_A}[\rho_A]$, where μ_A is an
 70 arbitrary distribution over initial configurations of A and B (and which can also depend on δ).
 71 Section 6 considers relative measures of evolutionary success (Tarnita and Taylor, 2014) obtained
 72 by comparing $\mathbb{E}_{\mu_A}[\rho_A]$ to $\mathbb{E}_{\mu_B}[\rho_B]$ when A and B each have their own initial distributions, μ_A
 73 and μ_B .

74 Finally, we apply our results to several well-known questions in evolutionary dynamics, partic-
 75 ularly on graph-structured populations. Section 7 discusses the case of constant fecundity, wherein
 76 the reproductive rate of an individual depends on only its own type. A large body of research
 77 (Lieberman et al., 2005; Broom and Rychtář, 2008; Broom et al., 2011; Voorhees, 2013; Monk
 78 et al., 2014; Hindersin and Traulsen, 2015; Kaveh et al., 2015; Cuesta et al., 2017; Pavlogiannis
 79 et al., 2018; Möller et al., 2019; Tkadlec et al., 2019) aims to understand the effects of graph
 80 structure on fixation probabilities in this context. Our results provide efficient recipes to calculate
 81 fixation probabilities under weak selection. Section 8 turns to evolutionary game theory. For a
 82 particular prisoner’s dilemma game (the “donation game”; Sigmund, 2010), we derive a formula
 83 for the fixation probability of cooperation from any starting configuration on an arbitrary weighted
 84 graph, generalizing and unifying a number of earlier results (Ohtsuki et al., 2006; Taylor et al.,
 85 2007; Chen, 2013; Allen and Nowak, 2014; Chen et al., 2016; Allen et al., 2017).

86 2 Modeling evolutionary dynamics

87 We employ a framework previously developed by Allen and Tarnita (2014) and Allen and McAvoy
 88 (2019) to represent an evolving population with arbitrary forms of spatial structure and frequency
 89 dependence. In addition to being described below, all of the notation and symbols we use are
 90 outlined in Table 1. Although we will use the language of a haploid asexual population, our
 91 formalism applies equally well to diploid, haplodiploid, or other populations by considering the
 92 alleles to be asexual replicators (the “gene’s-eye view”), as described in Allen and McAvoy (2019).

93 As a source of motivation and a tool to illustrate the general model, we consider the Moran pro-
 94 cess (Moran, 1958) as a running example. The Moran process models evolution in an unstructured
 95 population consisting of two types, a mutant (A) and a resident (B), of relative fecundity (repro-
 96 ductive rate) r and 1, respectively. In a population consisting of i individuals of type A and $N - i$
 97 individuals of type B , the probability that type A is selected to reproduce is $ir / (ir + N - i)$. With

98 probability $(N - i) / (ir + N - i)$, type B is selected to reproduce. The offspring, which inherits
 99 the type of the parent, then replaces a random individual in the population. Throughout our discus-
 100 sion of the framework below, we return to this simple example repeatedly (with more sophisticated
 101 examples following in later sections).

102 2.1 Modeling assumptions

103 We consider competition between two alleles, A and B , in a population of finite size, N . The state
 104 of the population is given by $\mathbf{x} \in \{0, 1\}^N$, where $x_i = 1$ (resp. $x_i = 0$) indicates that individual i
 105 has type A (resp. B).

106 Since we are mainly concerned with the probability of fixation rather than the timescale, we
 107 may assume without a loss of generality that the population evolves in discrete time. However, the
 108 results reported here can also be applied to continuous-time models in a straightforward manner.
 109 In what follows, we assume that the population's state is updated in discrete time steps via replace-
 110 ment events. A replacement event is a pair, (R, α) , where $R \subseteq \{1, \dots, N\}$ is the set of individuals
 111 who are replaced in a given time step and $\alpha : R \rightarrow \{1, \dots, N\}$ is the offspring-to-parent map. For
 112 a fixed replacement event, (R, α) , the state of the population at time $t + 1$, \mathbf{x}^{t+1} , is obtained from
 113 the state of the population at time t , \mathbf{x}^t , by letting

$$x_i^{t+1} = \begin{cases} x_{\alpha(i)}^t & i \in R, \\ x_i^t & i \notin R. \end{cases} \quad (1)$$

114 We can express such a transition more concisely by defining the extended mapping

$$\begin{aligned} \tilde{\alpha} : \{1, \dots, N\} &\longrightarrow \{1, \dots, N\} \\ : i &\longmapsto \begin{cases} \alpha(i) & i \in R, \\ i & i \notin R. \end{cases} \end{aligned} \quad (2)$$

115 We then have $\mathbf{x}^{t+1} = \mathbf{x}_{\tilde{\alpha}}^t$, where $\mathbf{x}_{\tilde{\alpha}}$ is the vector whose i th component is $x_{\tilde{\alpha}(i)}$.

116 In state \mathbf{x} , we denote by $\{p_{(R, \alpha)}(\mathbf{x})\}_{(R, \alpha)}$ the distribution from which the replacement event
 117 is chosen. We call this distribution (as a function of \mathbf{x}) the *replacement rule*. We assume that
 118 this replacement rule depends on an underlying parameter $\delta \geq 0$ that represents the intensity of
 119 selection. Neutral drift corresponds to $\delta = 0$, and weak selection is the regime $\delta \ll 1$.

120 *Example: Moran process.* In the Moran process, a slightly advantageous mutant has fecundity
 121 $r = 1 + \delta$ for $\delta \ll 1$. The probability that replacement event (R, α) is chosen is

$$p_{(R, \alpha)}(\mathbf{x}) = \begin{cases} \frac{x_{\alpha(i)}r + 1 - x_{\alpha(i)}}{\sum_{j=1}^N (x_jr + 1 - x_j)} \frac{1}{N} & R = \{i\}, \\ 0 & |R| \neq 1. \end{cases} \quad (3)$$

122 That is, assuming $R = \{i\}$, the probability that $\alpha(i)$ reproduces is proportional to $x_{\alpha(i)}r + 1 -$
 123 $x_{\alpha(i)}$ (which is r if $\alpha(i)$ has type A and 1 otherwise). The constant of proportionality is the
 124 reciprocal of the total population fecundity, $\sum_{j=1}^N (x_jr + 1 - x_j)$. If $\alpha(i)$ reproduces, then the
 125 probability that the offspring replaces i is simply $1/N$.

126 For brevity, we write $\mathbb{B} := \{0, 1\}$. Each replacement rule defines a Markov chain on \mathbb{B}^N ,
 127 according to Eq. (1). We let $P_{\mathbf{x} \rightarrow \mathbf{y}}$ be the probability of transitioning from state \mathbf{x} to state \mathbf{y} in this
 128 Markov chain.

129 We make three assumptions on the replacement rule. The first is that for every δ , there exists
 130 at least one individual who can generate a lineage that takes over the entire population. We state
 131 this assumption as an axiom:

132 *Fixation Axiom.* There exists $i \in \{1, \dots, N\}$, $m \geq 1$, and a sequence $\{(R_k, \alpha_k)\}_{k=1}^m$ with

- 133 • $p_{(R_k, \alpha_k)}(\mathbf{x}) > 0$ for every $k \in \{1, \dots, m\}$ and $\mathbf{x} \in \mathbb{B}^N$;
- 134 • $i \in R_k$ for some $k \in \{1, \dots, m\}$;
- 135 • for every $j \in \{1, \dots, N\}$, we have $\tilde{\alpha}_1 \circ \tilde{\alpha}_2 \circ \dots \circ \tilde{\alpha}_m(j) = i$.

136 The requirement that $i \in R_k$ for some $k \in \{1, \dots, m\}$ guarantees that the individual at i cannot
 137 live forever, since otherwise no evolution would occur (Allen and McAvoy, 2019). Allen and
 138 Tarnita (2014) showed that, under the Fixation Axiom, this Markov chain has two absorbing states:
 139 the state **A** in which $x_i = 1$ for every i (all- A), and the state **B** in which $x_i = 0$ for every i (all- B).
 140 All other states are transient. We denote the set of all transient states by $\mathbb{B}_T^N := \mathbb{B}^N - \{\mathbf{A}, \mathbf{B}\}$.

141 Our second assumption is that when $\delta = 0$ (neutral drift), the replacement rule does not depend
 142 on the state, \mathbf{x} . In this case, we denote the replacement rule by $\{p_{(R, \alpha)}^\circ\}_{(R, \alpha)}$. Note that we have
 143 removed the dependence on \mathbf{x} . This assumption arises because, under neutral drift, the competing
 144 alleles are interchangeable, and so the probabilities of replacement should not depend on how
 145 these alleles are distributed among individuals. More generally, in the quantities derived from the
 146 replacement rule below (e.g. birth rates and death probabilities), we use the superscript \circ to denote
 147 their values under neutral drift.

148 Our third assumption is that for every $\mathbf{x} \in \mathbb{B}^N$ and every replacement event (R, α) , $p_{(R, \alpha)}(\mathbf{x})$
 149 is a smooth function of δ in a small neighborhood of $\delta = 0$. This assumption enables a perturbation
 150 expansion in the selection strength, δ .

151 *Example: Moran process.* Smoothness in δ is evident from Eq. (3) whenever r is itself a smooth
 152 function of δ .

153 2.2 Quantifying selection

154 Having outlined the class of models under consideration, we now define quantities that characterize
 155 natural selection in a given population state $\mathbf{x} \in \mathbb{B}^N$. For any i and j in $\{1, \dots, N\}$, let $e_{ij}(\mathbf{x})$ be

156 the marginal probability that i transmits its offspring to j in state \mathbf{x} , i.e.

$$e_{ij}(\mathbf{x}) := \sum_{\substack{(R, \alpha) \\ j \in R, \alpha(j)=i}} p_{(R, \alpha)}(\mathbf{x}). \quad (4)$$

157 The birth rate (expected offspring number) of i is $b_i(\mathbf{x}) := \sum_{j=1}^N e_{ij}(\mathbf{x})$ and the death probability
 158 of i is $d_i(\mathbf{x}) := \sum_{j=1}^N e_{ji}(\mathbf{x})$. Using these quantities, we can write the expected change in the
 159 frequency of A due to selection as (Tarnita and Taylor, 2014; Allen and McAvoy, 2019)

$$\Delta_{\text{sel}}(\mathbf{x}) := \sum_{i=1}^N x_i (b_i(\mathbf{x}) - d_i(\mathbf{x})). \quad (5)$$

160 Any real-valued function on \mathbb{B}^N is called a *pseudo-Boolean function* (Hammer and Rudeanu,
 161 1968). Since $e_{ij}(\mathbf{x})$ and its derivative with respect to δ at $\delta = 0$ are pseudo-Boolean functions,
 162 for every i and j there is a unique multi-linear polynomial representation (Hammer and Rudeanu,
 163 1968; Boros and Hammer, 2002),

$$\left. \frac{d}{d\delta} \right|_{\delta=0} e_{ij}(\mathbf{x}) = \sum_{I \subseteq \{1, \dots, N\}} c_I^{ij} \mathbf{x}_I, \quad (6)$$

164 where the c_I^{ij} are a collection of real numbers (Fourier coefficients) indexed by the subsets $I \subseteq$
 165 $\{1, \dots, N\}$, and $\mathbf{x}_I := \prod_{i \in I} x_i$. Note that \mathbf{x}_I is a scalar, not a state, with $\mathbf{x}_I = 1$ if and only
 166 if $x_i = 1$ for each $i \in I$. This representation includes the constant term c_{\emptyset}^{ij} , linear terms of the
 167 form $c_{\{k\}}^{ij} x_k$, quadratic terms of the form $c_{\{h, k\}}^{ij} x_h x_k$, and so on up through $c_{\{1, \dots, N\}}^{ij} x_1 \cdots x_N$. The
 168 coefficients c_I^{ij} quantify how genetic assortment among sets of individuals affects the probability
 169 that i 's offspring replaces j , under weak selection.

170 We let D_{ij} denote the degree of the above representation, defined as the degree of the highest-
 171 order nonzero term:

$$D_{ij} := \max \left\{ k : c_I^{ij} \neq 0 \text{ for some } I \subseteq \{1, \dots, N\} \text{ with } |I| = k \right\}. \quad (7)$$

172 (In the trivial case that $c_I^{ij} = 0$ for every $I \subseteq \{1, \dots, N\}$, we set $D_{ij} = 0$.)

173 For $I \subseteq \{1, \dots, N\}$, let $\mathbf{1}_I \in \mathbb{B}^N$ denote the state in which $x_i = 1$ for $i \in I$ and $x_i = 0$
 174 for $i \notin I$. By applying a Möbius transform to Eq. (6) (Grabisch et al., 2000), we can express the
 175 coefficients c_I^{ij} as

$$c_I^{ij} = \left. \frac{d}{d\delta} \right|_{\delta=0} \sum_{J \subseteq I} (-1)^{|I|-|J|} e_{ij}(\mathbf{1}_J). \quad (8)$$

176 This expression provides a recipe for calculating the coefficients c_I^{ij} directly from $e_{ij}(\mathbf{x})$ for a given
 177 process (see Section 8).

178 We define the degree of the overall evolutionary process, under weak selection, to be the max-
 179 imal degree in Eq. (6) as i and j run over all pairs of sites:

180 **Definition 1.** The *degree* of the process under weak selection is $D := \max_{1 \leq i, j \leq N} D_{ij}$.

181 *Example: Moran process.* In this particular process, we have

$$e_{ij}(\mathbf{x}) = \frac{x_i r + 1 - x_i}{\sum_{k=1}^N (x_k r + 1 - x_k)} \frac{1}{N}. \quad (9)$$

182 If $r = r(\delta)$ is a smooth function of δ with $r(0) = 1$, then

$$\left. \frac{d}{d\delta} e_{ij}(\mathbf{x}) \right|_{\delta=0} = \frac{1}{N^2} r'(0) \left(x_i - \frac{1}{N} \sum_{k=1}^N x_k \right). \quad (10)$$

183 The degree of the Moran process is thus $D = 1$, with $c_{\emptyset}^{ij} = 0$ and

$$c_{\{k\}}^{ij} = \begin{cases} \frac{1}{N^2} \left(1 - \frac{1}{N} \right) r'(0) & k = i, \\ -\frac{1}{N^3} r'(0) & k \neq i. \end{cases} \quad (11)$$

184 Beyond this linear example, in a degree-two process, $\left. \frac{d}{d\delta} e_{ij}(\mathbf{x}) \right|_{\delta=0}$ can be represented as a 185 quadratic function of x_1, \dots, x_N , with terms only of the form c_{\emptyset}^{ij} , $c_{\{k\}}^{ij} x_k$, or $c_{\{h,k\}}^{ij} x_h x_k$. In this case, 186 replacement probabilities under weak selection depend on only pairwise statistics of assortment 187 and not on higher-order associations.

188 We turn now to fixation probabilities. For $\xi \in \mathbb{B}^N$, let $\rho_A(\xi)$ (resp. $\rho_B(\xi)$) be the probability 189 that the state **A** (resp. **B**) is eventually reached after starting in state ξ . Since states **A** and **B** are 190 absorbing and all other states are transient, we have $\rho_B(\xi) = 1 - \rho_A(\xi)$ for each $\xi \in \mathbb{B}^N$.

191 In the case of neutral drift ($\delta = 0$), we let π_i be the probability of fixation for type **A** when 192 starting from state $\mathbf{1}_{\{i\}}$; that is, $\pi_i = \rho_A(\mathbf{1}_{\{i\}})$ when $\delta = 0$. Equivalently, π_i is the probability, 193 under neutral drift, that i is eventually the ancestor of the entire population. These site-specific 194 fixation probabilities are the unique solution to the system of equations (Allen et al., 2015, Theorem 195 2; Allen and McAvoy, 2019, Theorem 7)

$$\sum_{j=1}^N e_{ij}^\circ \pi_j = \sum_{j=1}^N e_{ji}^\circ \pi_i \quad (1 \leq i \leq N); \quad (12a)$$

$$\sum_{i=1}^N \pi_i = 1. \quad (12b)$$

196 The quantity π_i can be interpreted as the *reproductive value (RV)* of site i (Fisher, 1930; Taylor, 197 1990; Maciejewski, 2014; Allen and McAvoy, 2019), in that it quantifies the expected contribution 198 of site i to the future gene pool, under neutral drift. For any state $\mathbf{x} \in \mathbb{B}^N$, the RV-weighted 199 frequency, $\hat{x} := \sum_{i=1}^N \pi_i x_i$, is equal to the probability that **A** becomes fixed under neutral drift 200 when the process starts in state \mathbf{x} (Allen and McAvoy, 2019, Theorem 7).

201 *Example: Moran process.* The reproductive value of every location is $1/N$ due to the fact that the
 202 population is unstructured. In a state with i mutants, the fixation probability of A is thus i/N .

203 In later examples, we will see that this distribution need not be uniform when the population is
 204 spatially structured.

205 Reproductive values provide a natural weighting for quantities characterizing selection; for ex-
 206 ample, we define the RV-weighted birth rates and death probabilities to be $\hat{b}_i(\mathbf{x}) := \sum_{j=1}^N e_{ij}(\mathbf{x}) \pi_j$
 207 and $\hat{d}_i(\mathbf{x}) := \sum_{j=1}^N e_{ji}(\mathbf{x}) \pi_j$, respectively. In state \mathbf{x} , the change in reproductive-value-weighted
 208 frequency of A due to selection, in one step of the process, is

$$\hat{\Delta}_{\text{sel}}(\mathbf{x}) := \sum_{i=1}^N x_i (\hat{b}_i(\mathbf{x}) - \hat{d}_i(\mathbf{x})) = \sum_{i=1}^N \pi_i \sum_{j=1}^N (x_j - x_i) e_{ji}(\mathbf{x}) \quad (13)$$

209 (Allen and McAvoy, 2019). Since $\hat{b}_i^\circ = \hat{d}_i^\circ$ for $i = 1, \dots, N$, it follows that $\hat{\Delta}_{\text{sel}}^\circ(\mathbf{x}) = 0$ for every
 210 $\mathbf{x} \in \mathbb{B}^N$.

211 3 Stationary distributions, sojourn times, and coalescence

212 We are ultimately interested in quantifying (to first order in δ) the probability $\rho_A(\xi)$ that type
 213 A reaches fixation from initial state ξ . To do so, we will need to quantify the frequency with
 214 which the Markov chain visits a given state $\mathbf{x} \in \mathbb{B}^N$ prior to absorption in state \mathbf{A} or \mathbf{B} . We will
 215 describe this frequency in two ways: using sojourn times and using the stationary distribution of
 216 an amended Markov chain. These two notions are closely connected, as we prove in Proposition 1
 217 below.

218 We define the sojourn time $t_\xi(\mathbf{x})$, for $\mathbf{x} \in \mathbb{B}^N$, to be the expected number of visits to \mathbf{x} prior to
 219 hitting $\{\mathbf{A}, \mathbf{B}\}$ when the process begins in state $\xi \in \mathbb{B}_\top^N$. These sojourn times $t_\xi(\mathbf{x})$ are uniquely
 220 determined by the recurrence relation

$$t_\xi(\mathbf{x}) = \begin{cases} 0 & \mathbf{x} \in \{\mathbf{A}, \mathbf{B}\}, \\ 1 + \sum_{\mathbf{y} \in \mathbb{B}^N} t_\xi(\mathbf{y}) P_{\mathbf{y} \rightarrow \mathbf{x}} & \mathbf{x} = \xi, \\ \sum_{\mathbf{y} \in \mathbb{B}^N} t_\xi(\mathbf{y}) P_{\mathbf{y} \rightarrow \mathbf{x}} & \mathbf{x} \notin \{\mathbf{A}, \mathbf{B}, \xi\}. \end{cases} \quad (14)$$

221 Since the transition probabilities are continuously differentiable in δ in a neighborhood of $\delta =$
 222 0, so is $t_\xi(\mathbf{x})$.

223 It is also helpful to consider an amended Markov chain that can “reset” in state $\xi \in \mathbb{B}_\top^N$ after
 224 one of the monoallelic states, \mathbf{A} or \mathbf{B} , is reached. We introduce a new parameter $u > 0$, and define,

225 for $\mathbf{x}, \mathbf{y} \in \mathbb{B}^N$, the amended transition probabilities

$$P_{\mathbf{x} \rightarrow \mathbf{y}}^{\circlearrowleft(\xi)} := \begin{cases} u & \mathbf{x} \in \{\mathbf{A}, \mathbf{B}\}, \mathbf{y} = \xi, \\ (1 - u) P_{\mathbf{x} \rightarrow \mathbf{y}} & \mathbf{x} \in \{\mathbf{A}, \mathbf{B}\}, \mathbf{y} \neq \xi, \\ P_{\mathbf{x} \rightarrow \mathbf{y}} & \mathbf{x} \notin \{\mathbf{A}, \mathbf{B}\}. \end{cases} \quad (15)$$

226 Above, $P_{\mathbf{x} \rightarrow \mathbf{y}}$ refers to the transition probability in the original Markov chain. Thus the amended
227 chain has the same transition probabilities except that, from either of the monoallelic states \mathbf{A} or
228 \mathbf{B} , there is probability u to transition to state ξ (see Fig. 1). Since ξ can be any polymorphic
229 state, and since ξ is the only polymorphic state that can follow \mathbf{A} or \mathbf{B} , any interpretation of u as
230 a “mutation” is likely tenuous from a biological standpoint. However, this amended chain plays
231 an integral technical role in deriving our main results, which in turn do apply under much more
232 realistic assumptions of mutant appearance (discussed in Section 5). In particular, the amended
233 chain is clearly aperiodic, and it follows from the Fixation Axiom that it has a single closed com-
234 municating class, and all states not in this class are transient. The amended chain therefore has a
235 unique stationary distribution, which we denote by $\{\pi_{\circlearrowleft(\xi)}(\mathbf{x})\}_{\mathbf{x} \in \mathbb{B}^N}$, the notation $\circlearrowleft(\xi)$ indicat-
236 ing regeneration into state ξ .

237 Consider now the Markov chain on the monoallelic states whose transition matrix is

$$\Lambda := \begin{matrix} & \mathbf{A} & \mathbf{B} \\ \mathbf{A} & \left(\begin{matrix} \rho_A(\xi) & \rho_B(\xi) \\ \rho_A(\xi) & \rho_B(\xi) \end{matrix} \right) \\ \mathbf{B} & & \end{matrix}. \quad (16)$$

238 This chain describes the process in which transitions are first from \mathbf{A} or \mathbf{B} to ξ , deterministically,
239 and then from ξ to \mathbf{A} with probability $\rho_A(\xi)$ and to \mathbf{B} with probability $\rho_B(\xi)$. This chain is
240 “embedded” in the amended chain in the sense that when u is small, the amended chain spends
241 most of its time in $\{\mathbf{A}, \mathbf{B}\}$, but occasionally it transitions to ξ before returning to $\{\mathbf{A}, \mathbf{B}\}$ according
242 to the fixation probabilities. More formally, on a state-by-state basis, the stationary distribution of
243 the embedded chain coincides with $\pi_{\circlearrowleft(\xi)}$ on the monoallelic states in the limit $u \rightarrow 0$ (Fudenberg
244 and Imhof, 2006, Theorem 2), i.e.

$$\lim_{u \rightarrow 0} \pi_{\circlearrowleft(\xi)}(\mathbf{x}) = \begin{cases} \rho_A(\xi) & \mathbf{x} = \mathbf{A}, \\ \rho_B(\xi) & \mathbf{x} = \mathbf{B}, \\ 0 & \mathbf{x} \notin \{\mathbf{A}, \mathbf{B}\}. \end{cases} \quad (17)$$

245 The following result, which is key to our methodology, shows that sojourn times of the original
246 chain coincide with the u -derivative, at $u = 0$, of the stationary distribution for the amended chain:

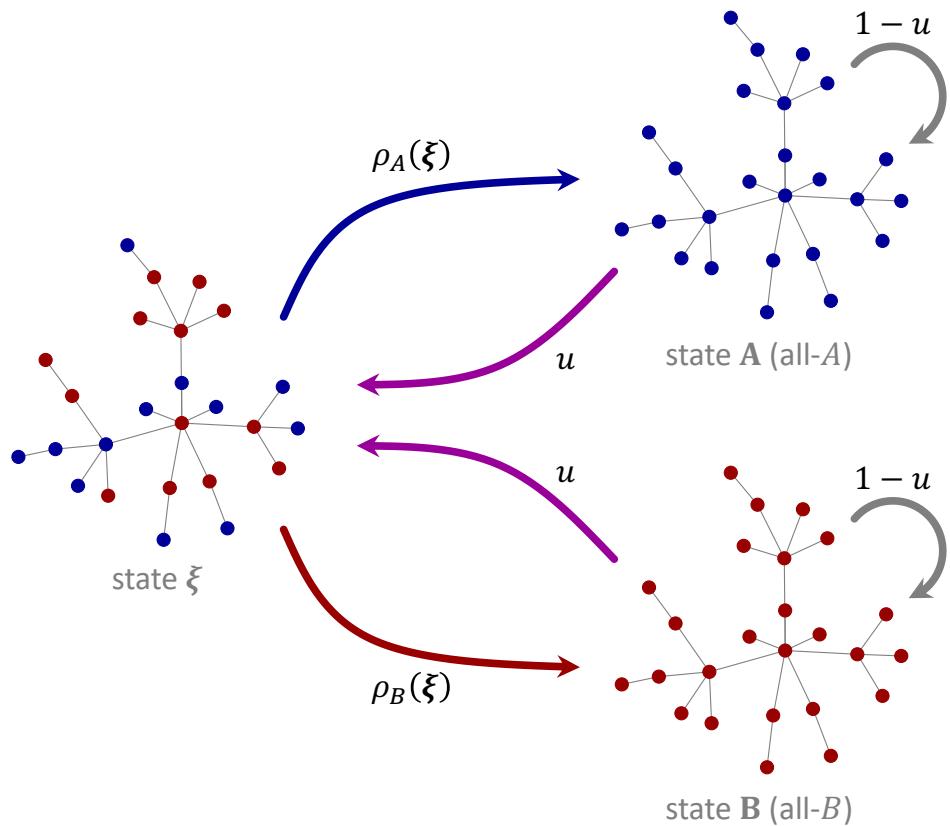


Figure 1: Transitions into a fixed transient state, ξ , following absorption. When starting from a non-monomorphic state, the process will eventually reach one of the two absorbing states (all- A or all- B) by the Fixation Axiom. From each absorbing state, the process transitions to ξ with probability $u \geq 0$. This “artificial” mutation allows one to focus on the fixation probabilities when the process is started in a fixed initial configuration, ξ , of A and B .

²⁴⁷ **Proposition 1.** For every non-monoallellic state $\mathbf{x} \in \mathbb{B}_T^N$,

$$\frac{d}{du} \bigg|_{u=0} \pi_{\circlearrowleft(\xi)}(\mathbf{x}) = t_{\xi}(\mathbf{x}). \quad (18)$$

²⁴⁸ *Proof.* For $\mathbf{x} \in \mathbb{B}_T^N$, stationarity implies

$$\begin{aligned} \pi_{\circlearrowleft(\xi)}(\mathbf{x}) &= \sum_{\mathbf{y} \in \mathbb{B}^N} \pi_{\circlearrowleft(\xi)}(\mathbf{y}) P_{\mathbf{y} \rightarrow \mathbf{x}}^{\circlearrowleft(\xi)} \\ &= \sum_{\mathbf{y} \in \mathbb{B}_T^N} \pi_{\circlearrowleft(\xi)}(\mathbf{y}) P_{\mathbf{y} \rightarrow \mathbf{x}} + u \delta_{\mathbf{x}, \xi} \left(\pi_{\circlearrowleft(\xi)}(\mathbf{A}) + \pi_{\circlearrowleft(\xi)}(\mathbf{B}) \right), \end{aligned} \quad (19)$$

²⁴⁹ where the Kronecker symbol $\delta_{\mathbf{x}, \xi}$ is equal to 1 if $\mathbf{x} = \xi$ and 0 otherwise. Taking the u -derivative
²⁵⁰ at $u = 0$, and noting that $\lim_{u \rightarrow 0} \left(\pi_{\circlearrowleft(\xi)}(\mathbf{A}) + \pi_{\circlearrowleft(\xi)}(\mathbf{B}) \right) = 1$ by Eq. (17), we obtain

$$\frac{d}{du} \bigg|_{u=0} \pi_{\circlearrowleft(\xi)}(\mathbf{x}) = \sum_{\mathbf{y} \in \mathbb{B}_T^N} \frac{d}{du} \bigg|_{u=0} \pi_{\circlearrowleft(\xi)}(\mathbf{y}) P_{\mathbf{y} \rightarrow \mathbf{x}} + \delta_{\mathbf{x}, \xi}. \quad (20)$$

²⁵¹ We observe that $\frac{d}{du} \bigg|_{u=0} \pi_{\circlearrowleft(\xi)}(\mathbf{x})$ satisfies the same recurrence relation, Eq. (14), as $t_{\xi}(\mathbf{x})$. Since
²⁵² this recurrence relation uniquely defines the times $t_{\xi}(\mathbf{x})$, we have Eq. (18). \square

²⁵³ It follows immediately from Proposition 1 that $t_{\xi}(\mathbb{B}_T^N)$, the expected time to absorption when
²⁵⁴ starting from state ξ , is equal to $\lim_{u \rightarrow 0} \pi_{\circlearrowleft(\xi)}(\mathbb{B}_T^N) / u$. With $\mathbb{E}_{\circlearrowleft(\xi)}[\cdot]$ denoting expectation with
²⁵⁵ respect to $\pi_{\circlearrowleft(\xi)}$, we have the following result:

²⁵⁶ **Corollary 1.** For any function $\varphi : \mathbb{B}^N \rightarrow \mathbb{R}$ with $\varphi(\mathbf{A}) = \varphi(\mathbf{B}) = 0$,

$$\frac{d}{du} \bigg|_{u=0} \mathbb{E}_{\circlearrowleft(\xi)}[\varphi] = \sum_{t=0}^{\infty} \mathbb{E} \left[\varphi(\mathbf{x}^t) \mid \mathbf{x}^0 = \xi \right], \quad (21)$$

²⁵⁷ and the sum on the right-hand side converges absolutely.

²⁵⁸ *Proof.* $\sum_{t=0}^{\infty} |\mathbb{E}[\varphi(\mathbf{x}^t) \mid \mathbf{x}^0 = \xi]|$ is bounded by $t_{\xi}(\mathbb{B}_T^N) \max_{\mathbf{x} \in \mathbb{B}_T^N} |\varphi(\mathbf{x})|$, so the right-hand
²⁵⁹ side of Eq. (21) converges absolutely. We may therefore rearrange this summation to obtain

$$\begin{aligned} \sum_{t=0}^{\infty} \mathbb{E} \left[\varphi(\mathbf{x}^t) \mid \mathbf{x}^0 = \xi \right] &= \sum_{t=0}^{\infty} \sum_{\mathbf{x} \in \mathbb{B}_T^N} \mathbb{P} \left[\mathbf{x}^t = \mathbf{x} \mid \mathbf{x}^0 = \xi \right] \varphi(\mathbf{x}) \\ &= \sum_{\mathbf{x} \in \mathbb{B}_T^N} \varphi(\mathbf{x}) \sum_{t=0}^{\infty} \mathbb{P} \left[\mathbf{x}^t = \mathbf{x} \mid \mathbf{x}^0 = \xi \right] \end{aligned}$$

$$\begin{aligned}
&= \sum_{\mathbf{x} \in \mathbb{B}_T^N} \varphi(\mathbf{x}) t_{\xi}(\mathbf{x}) \\
&= \frac{d}{du} \Bigg|_{u=0} \mathbb{E}_{\circlearrowleft(\xi)} [\varphi],
\end{aligned} \tag{22}$$

260 as desired. \square

261 In light of Corollary 1, we define the operator $\langle \cdot \rangle_{\xi}$, acting on state functions $\varphi : \mathbb{B}^N \rightarrow \mathbb{R}$ with
262 $\varphi(\mathbf{A}) = \varphi(\mathbf{B}) = 0$, by

$$\langle \varphi \rangle_{\xi} := \frac{d}{du} \Bigg|_{u=0} \mathbb{E}_{\circlearrowleft(\xi)} [\varphi] = \sum_{t=0}^{\infty} \mathbb{E} [\varphi(\mathbf{x}^t) \mid \mathbf{x}^0 = \xi]. \tag{23}$$

263 We will use the notation $\langle \cdot \rangle_{\xi}^{\circ}$ to indicate that the above expectations are taken under neutral drift
264 ($\delta = 0$).

265 For any function $\varphi : \mathbb{B}^N \rightarrow \mathbb{R}$ and any $\tilde{\alpha} : \{1, \dots, N\} \rightarrow \{1, \dots, N\}$, we define $\varphi_{\tilde{\alpha}} : \mathbb{B}^N \rightarrow \mathbb{R}$
266 by $\varphi_{\tilde{\alpha}}(\mathbf{x}) = \varphi(\mathbf{x}_{\tilde{\alpha}})$. If $\varphi(\mathbf{A}) = \varphi(\mathbf{B}) = 0$, then

$$\begin{aligned}
\langle \varphi \rangle_{\xi}^{\circ} &= \varphi(\xi) + \sum_{t=0}^{\infty} \mathbb{E}^{\circ} [\varphi(\mathbf{x}^{t+1}) \mid \mathbf{x}^0 = \xi] \\
&= \varphi(\xi) + \sum_{t=0}^{\infty} \sum_{(R, \alpha)} p_{(R, \alpha)}^{\circ} \mathbb{E}^{\circ} [\varphi(\mathbf{x}_{\tilde{\alpha}}^t) \mid \mathbf{x}^0 = \xi] \\
&= \varphi(\xi) + \sum_{(R, \alpha)} p_{(R, \alpha)}^{\circ} \langle \varphi_{\tilde{\alpha}} \rangle_{\xi}^{\circ},
\end{aligned} \tag{24}$$

267 which gives the following lemma:

268 **Lemma 1.** *For any state function $\varphi : \mathbb{B}^N \rightarrow \mathbb{R}$ with $\varphi(\mathbf{A}) = \varphi(\mathbf{B}) = 0$,*

$$\langle \varphi \rangle_{\xi}^{\circ} = \varphi(\xi) + \sum_{(R, \alpha)} p_{(R, \alpha)}^{\circ} \langle \varphi_{\tilde{\alpha}} \rangle_{\xi}^{\circ}. \tag{25}$$

269 Allen and McAvoy (2019) introduced the *rare-mutation conditional (RMC)* distribution, de-
270 fined for a state \mathbf{x} as $\lim_{u \rightarrow 0} \mathbb{P}_{\circlearrowleft(\xi)} [\mathbf{X} = \mathbf{x} \mid \mathbf{x} \in \mathbb{B}_T^N]$, where $\mathbb{P}_{\circlearrowleft(\xi)} [\cdot]$ denotes probability with
271 respect to $\pi_{\circlearrowleft(\xi)}$. Here, we show that this distribution can be equated to the fraction of time spent
272 in state \mathbf{x} out of all transient states:

273 **Corollary 2.** *For each $\mathbf{x} \in \mathbb{B}_T^N$*

$$\lim_{u \rightarrow 0} \mathbb{P}_{\circlearrowleft(\xi)} [\mathbf{X} = \mathbf{x} \mid \mathbf{x} \in \mathbb{B}_T^N] = \frac{t_{\xi}(\mathbf{x})}{t_{\xi}(\mathbb{B}_T^N)}. \tag{26}$$

274 *Proof.* For $\mathbf{x} \in \mathbb{B}_\top^N$,

$$\begin{aligned}
\lim_{u \rightarrow 0} \mathbb{P}_{\circ(\xi)} \left[\mathbf{X} = \mathbf{x} \mid \mathbf{x} \in \mathbb{B}_\top^N \right] &= \lim_{u \rightarrow 0} \frac{\pi_{\circ(\xi)}(\mathbf{x})}{\pi_{\circ(\xi)}(\mathbb{B}_\top^N)} \\
&= \frac{\lim_{u \rightarrow 0} \pi_{\circ(\xi)}(\mathbf{x}) / u}{\lim_{u \rightarrow 0} \pi_{\circ(\xi)}(\mathbb{B}_\top^N) / u} \\
&= \frac{t_\xi(\mathbf{x})}{t_\xi(\mathbb{B}_\top^N)}, \tag{27}
\end{aligned}$$

275 by Proposition 1. \square

276 Finally, we introduce a set-valued Markov chain that will be used in the proof of our main result.
277 The states of this Markov chain are subsets of $\{1, \dots, N\}$. From a given state $I \subseteq \{1, \dots, N\}$, a
278 new state I' is determined by choosing a replacement event (R, α) according to the neutral proba-
279 bilities $p_{(R, \alpha)}^\circ$, and setting $I' = \tilde{\alpha}(I)$. This Markov chain, which we denote \mathcal{C} , can be understood
280 as a coalescent process (Kingman, 1982; Liggett, 1985; Cox, 1989; Wakeley, 2016). At each time-
281 step, \mathcal{C} transitions from a set of individuals $I \subseteq \{1, \dots, N\}$ to the set $\tilde{\alpha}(I)$ of parents of these
282 individuals. (In the case that an individual $i \in I$ is not replaced, the “parent” is i itself; that is,
283 $\tilde{\alpha}(i) = i$.) Thus, with $\mathcal{C}_0 = \{1, \dots, N\}$, the state of the process after t steps can be understood as
284 the set of ancestors of the current population, at time t before the present.

285 By the Fixation Axiom, \mathcal{C} has a single closed communicating class consisting only of single-
286 ton subsets. (In biological terms, the population’s ancestry eventually converges on a common
287 ancestor. The event that \mathcal{C} first reaches a singleton set is called *coalescence*, and the vertex in this
288 singleton set represents the location of the population’s most recent common ancestor.) It follows
289 that \mathcal{C} has a unique stationary distribution concentrated on the singleton subsets. In this stationary
290 distribution, the probability of the singleton set $\{i\}$ in this stationary distribution is given by the
291 reproductive value π_i .

292 4 Fixation probabilities

293 We now prove our main results regarding fixation probabilities. First, we show that the weak-
294 selection expansion of a trait’s fixation probability has a particular form:

295 **Theorem 1.** *For any fixed initial configuration $\xi \in \mathbb{B}_\top^N$,*

$$\rho_A(\xi) = \widehat{\xi} + \delta \left\langle \frac{d}{d\delta} \Bigg|_{\delta=0} \widehat{\Delta}_{\text{sel}} \right\rangle_\xi^\circ + O(\delta^2). \tag{28}$$

296 Theorem 1 generalizes earlier results of Rousset (2003), Lessard and Ladret (2007), Chen
297 (2013), and Van Cleve (2015).

298 *Proof.* In the chain defined by Eq. (15), the expected change in the reproductive-value-weighted
299 frequency of A in state \mathbf{x} , in one step of the process, is given by

$$\widehat{\Delta}_{\circ(\xi)}(\mathbf{x}) = \begin{cases} -u(1 - \widehat{\xi}) & \mathbf{x} = \mathbf{A}, \\ u\widehat{\xi} & \mathbf{x} = \mathbf{B}, \\ \widehat{\Delta}_{\text{sel}}(\mathbf{x}) & \mathbf{x} \notin \{\mathbf{A}, \mathbf{B}\}. \end{cases} \quad (29)$$

300 Averaging this expected change out over the distribution $\pi_{\circ(\xi)}$ gives

$$\begin{aligned} 0 &= \mathbb{E}_{\circ(\xi)} \left[\widehat{\Delta}_{\circ(\xi)} \right] \\ &= \mathbb{E}_{\circ(\xi)} \left[\widehat{\Delta}_{\text{sel}} \right] - u\pi_{\circ(\xi)}(\mathbf{A})(1 - \widehat{\xi}) + u\pi_{\circ(\xi)}(\mathbf{B})\widehat{\xi}. \end{aligned} \quad (30)$$

301 Differentiating both sides of this equation with respect to u at $u = 0$, applying Eq. (17), and
302 rearranging, we obtain

$$\rho_A(\xi) = \widehat{\xi} + \left\langle \widehat{\Delta}_{\text{sel}} \right\rangle_\xi. \quad (31)$$

303 Since $\widehat{\Delta}_{\text{sel}}^\circ(\mathbf{x}) = 0$ for every $\mathbf{x} \in \mathbb{B}^N$, and since the replacement rule is a smooth function of δ
304 around 0, we have

$$\begin{aligned} \left\langle \widehat{\Delta}_{\text{sel}} \right\rangle_\xi &= \delta \frac{d}{d\delta} \bigg|_{\delta=0} \left\langle \widehat{\Delta}_{\text{sel}} \right\rangle_\xi + O(\delta^2) \\ &= \delta \left\langle \frac{d}{d\delta} \bigg|_{\delta=0} \widehat{\Delta}_{\text{sel}} \right\rangle_\xi^\circ + O(\delta^2). \end{aligned} \quad (32)$$

305 The interchange of the $\langle \cdot \rangle_\xi^\circ$ operator with the δ -derivative is justified by Corollary 1. Combining
306 this equation with Eq. (31) completes the proof. \square

307 Alternatively, Theorem 1 can be established by writing

$$\begin{aligned} \rho_A(\xi) &= \lim_{t \rightarrow \infty} \mathbb{E} \left[\widehat{x}^t \mid \mathbf{x}^0 = \xi \right] \\ &= \widehat{\xi} + \sum_{t=0}^{\infty} \mathbb{E} \left[\widehat{x}^{t+1} - \widehat{x}^t \mid \mathbf{x}^0 = \xi \right] \\ &= \widehat{\xi} + \sum_{t=0}^{\infty} \mathbb{E} \left[\widehat{\Delta}_{\text{sel}}(\mathbf{x}^t) \mid \mathbf{x}^0 = \xi \right] \\ &= \widehat{\xi} + \left\langle \widehat{\Delta}_{\text{sel}} \right\rangle_\xi. \end{aligned} \quad (33)$$

³⁰⁸ This calculation recovers Eq. (31), and the rest of the proof follows as above.

³⁰⁹ Our second main result provides a systematic way to compute the first-order term of the weak-
³¹⁰ selection expansion, Eq. (28):

³¹¹ **Theorem 2.** *For any fixed initial configuration $\xi \in \mathbb{B}_\top^N$,*

$$\rho_A(\xi) = \hat{\xi} + \delta \left(\sum_{i=1}^N \pi_i \sum_{j=1}^N \sum_{\substack{I \subseteq \{1, \dots, N\} \\ 0 \leq |I| \leq D_{ji}}} c_I^{ji} (\eta_{\{i\} \cup I}^\xi - \eta_{\{j\} \cup I}^\xi) \right) + O(\delta^2), \quad (34)$$

³¹² where η^ξ is the unique solution to the equations

$$\eta_I^\xi = \hat{\xi} - \xi_I + \sum_{(R, \alpha)} p_{(R, \alpha)}^\circ \eta_{\alpha(I)}^\xi \quad (1 \leq |I| \leq D+1); \quad (35a)$$

$$\sum_{i=1}^N \pi_i \eta_{\{i\}}^\xi = 0. \quad (35b)$$

³¹³ The term D appearing in this system is the degree of the process under weak selection; see
³¹⁴ Definition 1. To simplify notation, in what follows we occasionally drop the bracket notation
³¹⁵ when using η (e.g. η_i^ξ instead of $\eta_{\{i\}}^\xi$).

³¹⁶ *Proof.* Let us define

$$\eta_I^\xi := \langle \hat{x} - \mathbf{x}_I \rangle_\xi^\circ. \quad (36)$$

³¹⁷ From Theorem 1 and Eqs. (6) and (13), we have

$$\begin{aligned} \frac{d}{d\delta} \bigg|_{\delta=0} \rho_A(\xi) &= \left\langle \frac{d}{d\delta} \bigg|_{\delta=0} \hat{\Delta}_{\text{sel}} \right\rangle_\xi^\circ \\ &= \sum_{i=1}^N \pi_i \sum_{j=1}^N \sum_{\substack{I \subseteq \{1, \dots, N\} \\ 0 \leq |I| \leq D_{ji}}} c_I^{ji} \langle (x_j - x_i) \mathbf{x}_I \rangle_\xi^\circ \\ &= \sum_{i=1}^N \pi_i \sum_{j=1}^N \sum_{\substack{I \subseteq \{1, \dots, N\} \\ 0 \leq |I| \leq D_{ji}}} c_I^{ji} (\eta_{\{i\} \cup I}^\xi - \eta_{\{j\} \cup I}^\xi), \end{aligned} \quad (37)$$

³¹⁸ which proves Eq. (34). Eq. (35b) follows immediately from the definition of η_I in Eq. (36). To
³¹⁹ obtain Eq. (35a) we apply Lemma 1:

$$\eta_I^\xi = \langle \hat{x} - \mathbf{x}_I \rangle_\xi^\circ$$

$$\begin{aligned}
&= \widehat{\xi} - \xi_I + \sum_{(R,\alpha)} p_{(R,\alpha)}^\circ \left\langle \widehat{x}_{\widetilde{\alpha}} - \mathbf{x}_{\widetilde{\alpha}(I)} \right\rangle_{\xi}^\circ \\
&= \widehat{\xi} - \xi_I + \sum_{(R,\alpha)} p_{(R,\alpha)}^\circ \left\langle \widehat{x} - \mathbf{x}_{\widetilde{\alpha}(I)} \right\rangle_{\xi}^\circ \\
&= \widehat{\xi} - \xi_I + \sum_{(R,\alpha)} p_{(R,\alpha)}^\circ \eta_{\widetilde{\alpha}(I)}^\xi,
\end{aligned} \tag{38}$$

320 where the penultimate line follows from the fact that \widehat{x} is a martingale under neutral drift (Allen
321 and McAvoy, 2019, Theorem 7).

322 To prove uniqueness of the solution to Eq. (35), we consider the coalescent Markov chain \mathcal{C}
323 defined in the previous section. Let \mathbf{C} be the transition matrix for \mathcal{C} , and let \mathbf{p} be its stationary
324 distribution in vector form, which satisfies $\mathbf{p}(I) = \pi_i$ if $I = \{i\}$ and $\mathbf{p}(I) = 0$ if $|I| \neq 1$.
325 By uniqueness of the stationary distribution, \mathbf{C} has a simple unit eigenvalue, with corresponding
326 one-dimensional left and right eigenspaces spanned by \mathbf{p}^T and $\mathbf{1}$, respectively. We observe that
327 Eq. (35a) can be written in the form $(\mathbf{I} - \mathbf{C})\mathbf{y} = \mathbf{b}$, where \mathbf{y} has entries η_I^ξ and \mathbf{b} has entries
328 $\widehat{\xi} - \xi_I$. We have already exhibited a solution for \mathbf{y} in Eq. (36); call this solution \mathbf{y}_0 . By the above
329 remarks about \mathbf{C} , the most general solution is $\mathbf{y} = \mathbf{y}_0 + K\mathbf{1}$ for an arbitrary scalar K . Now we
330 impose Eq. (35b), which can be written $\mathbf{p}^T\mathbf{y} = 0$. Since $\mathbf{p}^T\mathbf{y}_0 = 0$ and $\mathbf{p}^T\mathbf{1} = 1$, we must have
331 $K = 0$, which leaves $\mathbf{y} = \mathbf{y}_0$ as the unique solution. \square

332 **Remark 1.** For a process of degree D , calculating $\left. \frac{d}{d\delta} \right|_{\delta=0} \rho_A$ involves solving a linear system of
333 size $O(N^{D+1})$ (Eq. (35)). The complexity of solving for π_i and c_I^{ij} is negligible in comparison.
334 Since the complexity of solving a linear system of n equations is $O(n^3)$, it follows that calculating
335 $\left. \frac{d}{d\delta} \right|_{\delta=0} \rho_A$ is $O(N^{3(D+1)})$.

336 Since the quantities η_I arise as the solution to a system of equations related to the coalescent
337 Markov chain \mathcal{C} , it is natural to ask whether the η_I have a coalescent-theoretic interpretation. We
338 show in the following sections that, in some cases when the initial state is chosen from a particular
339 probability distribution, the η_I have a natural interpretation as coalescence times or as branch
340 lengths of a coalescent tree. However, these interpretations do not appear to extend to the case of
341 fixation from an arbitrary initial state ξ .

342 5 Stochastic mutant appearance

343 Having obtained (in Theorems 1 and 2) a weak-selection expansion for fixation probabilities from
344 a particular state ξ , we now generalize to the case that the initial state is sampled from a probability
345 distribution. Specifically, we introduce the probability measures μ_A and μ_B , on \mathbb{B}_T^N , to describe
346 the state of the process after type A or B , respectively, has been introduced into the population. We
347 refer to μ_A and μ_B as *mutant-appearance distributions*, although the initial state could just as well
348 arise by some mechanism other than mutation (migration, experimental manipulation, etc.). These

349 distributions can depend on the intensity of selection, δ , and we assume that they are differentiable
 350 at $\delta = 0$.

351 Two mutant-appearance distributions often considered in evolutionary models are *uniform initialization* (a single mutant appears at a uniformly chosen site; Lieberman et al., 2005; Adlam
 352 et al., 2015) and *temperature initialization* (a single mutant appears at a site chosen proportionally
 353 to the death rate d_i ; Allen et al., 2015; Adlam et al., 2015). To define these formally, we define the
 354 *complement* $\bar{\mathbf{x}}$ of a state $\mathbf{x} \in \mathbb{B}^N$ by $\bar{x}_i := 1 - x_i$ for $i = 1, \dots, N$.

Example 1 (Uniform initialization).

$$\mu_A(\mathbf{1}_i) = \mu_B(\bar{\mathbf{1}}_i) = \frac{1}{N} \quad (1 \leq i \leq N). \quad (39)$$

Example 2 (Temperature initialization).

$$\mu_A(\mathbf{1}_i) = \frac{d_i(\mathbf{B})}{\sum_{j=1}^N d_j(\mathbf{B})} \quad (1 \leq i \leq N); \quad (40a)$$

$$\mu_B(\bar{\mathbf{1}}_i) = \frac{d_i(\mathbf{A})}{\sum_{j=1}^N d_j(\mathbf{A})} \quad (1 \leq i \leq N). \quad (40b)$$

356 Unlike uniform initialization, temperature initialization opens up the possibility that the mutant-
 357 appearance distributions depend on the intensity of selection, δ .

358 We call a mutant-appearance distribution *symmetric* if it does not distinguish between the two
 359 types:

360 **Definition 2.** We say that μ_A and μ_B are *symmetric* if $\mu_A(\bar{\boldsymbol{\xi}}) = \mu_B(\boldsymbol{\xi})$ for every $\boldsymbol{\xi} \in \mathbb{B}_T^N$.

361 Uniform initialization (Example 1) gives symmetric μ_A and μ_B by definition. If mutant initial-
 362 ization is temperature-based (Example 2), then μ_A and μ_B are symmetric when $d_i(\mathbf{A}) = d_i(\mathbf{B})$
 363 for $i = 1, \dots, N$. This condition is obviously satisfied under neutral drift ($\delta = 0$) but could be
 364 violated when $\delta > 0$.

365 The expected fixation probabilities for A and B , initialized according to μ_A and μ_B , respec-
 366 tively, are

$$\mathbb{E}_{\mu_A}[\rho_A] = \sum_{\boldsymbol{\xi} \in \mathbb{B}_T^N} \mu_A(\boldsymbol{\xi}) \rho_A(\boldsymbol{\xi}); \quad (41a)$$

$$\mathbb{E}_{\mu_B}[\rho_B] = \sum_{\boldsymbol{\xi}' \in \mathbb{B}_T^N} \mu_B(\boldsymbol{\xi}') \rho_B(\boldsymbol{\xi}'). \quad (41b)$$

367 Since $\rho_A^\circ(\boldsymbol{\xi}) = \hat{\xi}$ and $\rho_B^\circ(\boldsymbol{\xi}) = 1 - \hat{\xi}$ when $\delta = 0$, we have $\mathbb{E}_{\mu_A}^\circ[\rho_A^\circ] = \mathbb{E}_{\mu_A}^\circ[\hat{\xi}]$ and $\mathbb{E}_{\mu_B}^\circ[\rho_B^\circ] =$
 368 $1 - \mathbb{E}_{\mu_B}^\circ[\hat{\xi}]$. More generally, we have $\mathbb{E}_{\mu_B}[\rho_B] = 1 - \mathbb{E}_{\mu_B}[\rho_A]$.

369 As an immediate consequence of Theorem 2, we obtain the following result for the fixation
 370 probability of a given type from a given mutant appearance distribution:

³⁷¹ **Corollary 3.** If μ_A is a mutant-appearance distribution for A , then

$$\frac{d}{d\delta} \Bigg|_{\delta=0} \mathbb{E}_{\mu_A} [\rho_A] = \frac{d}{d\delta} \Bigg|_{\delta=0} \mathbb{E}_{\mu_A} \left[\widehat{\xi} \right] + \sum_{i=1}^N \pi_i \sum_{j=1}^N \sum_{\substack{I \subseteq \{1, \dots, N\} \\ 0 \leq |I| \leq D_{ji}}} c_I^{ji} \left(\eta_{\{i\} \cup I}^{\mu_A} - \eta_{\{j\} \cup I}^{\mu_A} \right), \quad (42)$$

³⁷² where η^{μ_A} is the unique solution to the equations

$$\eta_I^{\mu_A} = \mathbb{E}_{\mu_A}^{\circ} \left[\widehat{\xi} - \xi_I \right] + \sum_{(R, \alpha)} p_{(R, \alpha)}^{\circ} \eta_{\tilde{\alpha}(I)}^{\mu_A} \quad (1 \leq |I| \leq D+1); \quad (43a)$$

$$\sum_{i=1}^N \pi_i \eta_i^{\mu_A} = 0. \quad (43b)$$

³⁷³ Similarly, since $\frac{d}{d\delta} \Big|_{\delta=0} \mathbb{E}_{\mu_B} [\rho_B] = -\frac{d}{d\delta} \Big|_{\delta=0} \mathbb{E}_{\mu_B} [\rho_A]$, we have

$$\frac{d}{d\delta} \Bigg|_{\delta=0} \mathbb{E}_{\mu_B} [\rho_B] = -\frac{d}{d\delta} \Bigg|_{\delta=0} \mathbb{E}_{\mu_B} \left[\widehat{\xi} \right] - \sum_{i=1}^N \pi_i \sum_{j=1}^N \sum_{\substack{I \subseteq \{1, \dots, N\} \\ 0 \leq |I| \leq D_{ji}}} c_I^{ji} \left(\eta_{\{i\} \cup I}^{\mu_B} - \eta_{\{j\} \cup I}^{\mu_B} \right), \quad (44)$$

³⁷⁴ where η^{μ_B} is the unique solution to the equations

$$\eta_I^{\mu_B} = \mathbb{E}_{\mu_B}^{\circ} \left[\widehat{\xi} - \xi_I \right] + \sum_{(R, \alpha)} p_{(R, \alpha)}^{\circ} \eta_{\tilde{\alpha}(I)}^{\mu_B} \quad (1 \leq |I| \leq D+1); \quad (45a)$$

$$\sum_{i=1}^N \pi_i \eta_i^{\mu_B} = 0. \quad (45b)$$

³⁷⁵ In the case of uniform initialization (Example 1), we have $\mathbb{E}_{\mu_A} [\xi_i] = 1/N$ for all $i \in \{1, \dots, N\}$. In particular, $\mathbb{E}_{\mu_A}^{\circ} \left[\widehat{\xi} - \xi_i \right] = 0$ for every i . Since $\eta_i^{\mu_A} = 0$ for $i = 1, \dots, N$ is ³⁷⁶ then a solution to Eq. (43a), and since this solution satisfies Eq. (43b), it must be the unique solution to Eq. (43) in the case that $|I| = 1$ (see the proof of Theorem 2). (This argument is used ³⁷⁷ repeatedly in later examples.) Furthermore, $\mathbb{E}_{\mu_A} [\xi_I] = 0$ for all $|I| \geq 2$. Eq. (43) then simplifies ³⁷⁸ to

$$\eta_I^{\mu_A} = \begin{cases} \frac{1}{N} + \sum_{(R, \alpha)} p_{(R, \alpha)}^{\circ} \eta_{\tilde{\alpha}(I)}^{\mu_A} & 2 \leq |I| \leq D+1, \\ 0 & |I| = 1. \end{cases} \quad (46)$$

³⁸¹ In this case, $\eta_I^{\mu_A}$ is equal to $1/N$ times the expected number of steps for the coalescent Markov ³⁸² chain \mathcal{C} to reach a singleton set from initial set I . In biological terms, $N\eta_I^{\mu_A}$ is the expected time ³⁸³ for the lineages of the individuals in set I to coalesce at a most recent common ancestor.

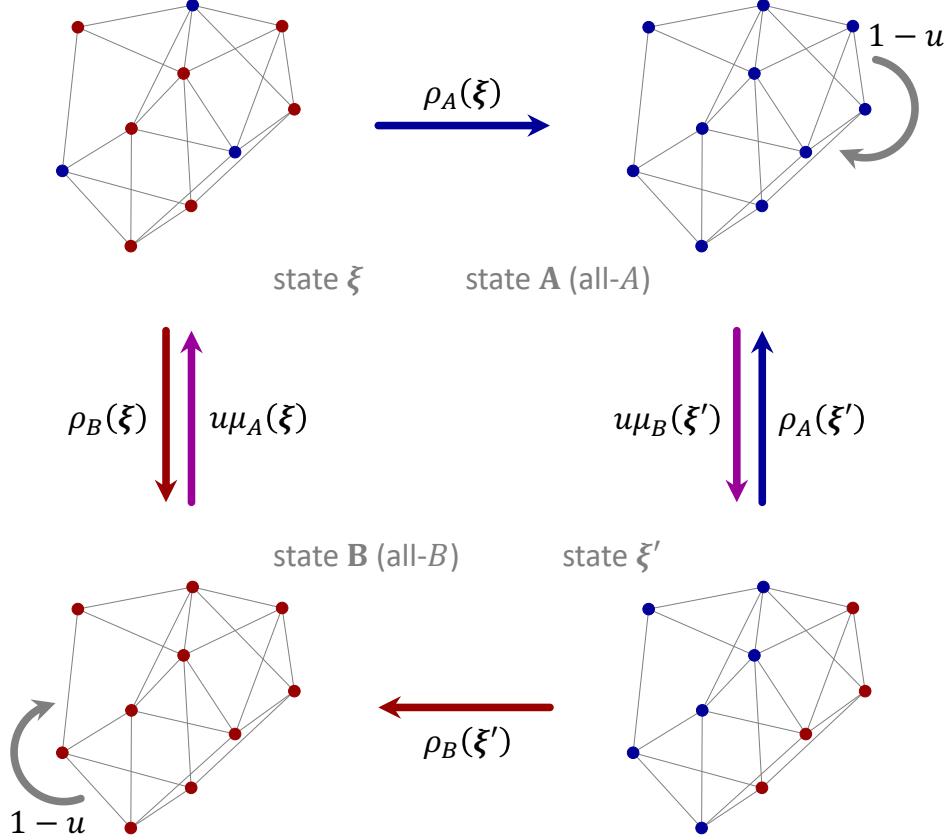


Figure 2: Mutant appearance and fixation in a structured population. In the all- B state, mutants of type A appear based on the mutant-appearance distribution μ_A . In the all- A state, mutants of type B appear based on μ_B . Once the process transitions into a non-monomorphic state, it will eventually reach one of the two monomorphic states.

384 The overall weak-selection expansion of a trait's fixation probability, in the case of uniform
 385 initialization, becomes

$$\mathbb{E}_{\mu_A} [\rho_A] = \frac{1}{N} + \delta \sum_{i=1}^N \pi_i \sum_{j=1}^N \sum_{\substack{I \subseteq \{1, \dots, N\} \\ 0 \leq |I| \leq D_{ji}}} c_I^{ji} \left(\eta_{\{i\} \cup I}^{\mu_A} - \eta_{\{j\} \cup I}^{\mu_A} \right) + O(\delta^2). \quad (47)$$

386 6 Comparing fixation probabilities

387 When evaluating which of two competing types is favored by selection, it is common to com-
 388 pare their fixation probabilities. Specifically, the success of A relative to B is often quantified
 389 by whether $\mathbb{E}_{\mu_A} [\rho_A] > \mathbb{E}_{\mu_B} [\rho_B]$ (A is favored) or $\mathbb{E}_{\mu_A} [\rho_A] < \mathbb{E}_{\mu_B} [\rho_B]$ (B is favored) (Nowak
 390 et al., 2004; Allen and Tarnita, 2014; Tarnita and Taylor, 2014). This comparison is natural when
 391 the mutant-appearance distributions, μ_A and μ_B , are symmetric.

392 When μ_A and μ_B are not symmetric, however, it is less natural to compare $\mathbb{E}_{\mu_A} [\rho_A]$ to $\mathbb{E}_{\mu_B} [\rho_B]$
 393 directly. We therefore derive an alternative measure of success for the asymmetric case. As in Sec-

394 tion 3, we find it helpful to work with an amended Markov chain that possesses a unique stationary
 395 distribution. To this end, we suppose that, from the monomorphic state \mathbf{B} , with probability u the
 396 next state is chosen from the distribution μ_A ; otherwise, with probability $1 - u$, the state stays
 397 \mathbf{B} . Similarly, from the monomorphic state \mathbf{A} , with probability u the next state is chosen from the
 398 distribution μ_B ; otherwise, with probability $1 - u$, the state stays \mathbf{B} . The structure of this amended
 399 Markov chain is depicted in Fig. 2. Provided $u > 0$, this process has a unique stationary dis-
 400 tribution. In analogy to our analysis of mutations into a fixed state in Section 3, we denote this
 401 stationary distribution by $\pi_{\circlearrowleft(\mu_A, \mu_B)}$.

402 We now turn to the limit of low mutation. Applying standard results on stationary distributions
 403 in this limit (Fudenberg and Imhof, 2006, Theorem 2), we have

$$\lim_{u \rightarrow 0} \pi_{\circlearrowleft(\mu_A, \mu_B)}(\mathbf{x}) = \begin{cases} \frac{\mathbb{E}_{\mu_A}[\rho_A]}{\mathbb{E}_{\mu_A}[\rho_A] + \mathbb{E}_{\mu_B}[\rho_B]} & \mathbf{x} = \mathbf{A}, \\ \frac{\mathbb{E}_{\mu_B}[\rho_B]}{\mathbb{E}_{\mu_A}[\rho_A] + \mathbb{E}_{\mu_B}[\rho_B]} & \mathbf{x} = \mathbf{B}, \\ 0 & \text{otherwise.} \end{cases} \quad (48)$$

404 Intuitively, for small but positive mutation rates, the process is almost always in state \mathbf{A} or \mathbf{B} , with
 405 the fraction of time spent in \mathbf{A} converging to $\mathbb{E}_{\mu_A}[\rho_A] / (\mathbb{E}_{\mu_A}[\rho_A] + \mathbb{E}_{\mu_B}[\rho_B])$.

406 We say that weak selection favors A over B if the fraction of time spent in state A is greater
 407 under weak selection than it is in the neutral case:

408 **Definition 3.** Weak selection favors A over B if

$$\frac{\mathbb{E}_{\mu_A}[\rho_A]}{\mathbb{E}_{\mu_A}[\rho_A] + \mathbb{E}_{\mu_B}[\rho_B]} > \frac{\mathbb{E}_{\mu_A}^\circ[\rho_A^\circ]}{\mathbb{E}_{\mu_A}^\circ[\rho_A^\circ] + \mathbb{E}_{\mu_B}^\circ[\rho_B^\circ]} \quad (49)$$

409 (or, equivalently, $\mathbb{E}_{\mu_A}[\rho_A] / \mathbb{E}_{\mu_B}[\rho_B] > \mathbb{E}_{\mu_A}^\circ[\rho_A^\circ] / \mathbb{E}_{\mu_B}^\circ[\rho_B^\circ]$) for all sufficiently small $\delta > 0$.

410 When μ_A° and μ_B° are symmetric (e.g. temperature or uniform initialization), we have $\mathbb{E}_{\mu_A}^\circ[\rho_A^\circ] =$
 411 $\mathbb{E}_{\mu_B}^\circ[\rho_B^\circ]$, and weak selection favors A relative to B if and only if $\mathbb{E}_{\mu_A}[\rho_A] > \mathbb{E}_{\mu_B}[\rho_B]$ for all suf-
 412 ficiently small $\delta > 0$. For general mutant-appearance distributions, μ_A and μ_B , weak selection
 413 favors A if

$$\frac{d}{d\delta} \left|_{\delta=0} \frac{\mathbb{E}_{\mu_A}[\rho_A]}{\mathbb{E}_{\mu_A}[\rho_A] + \mathbb{E}_{\mu_B}[\rho_B]} \right| > 0. \quad (50)$$

414 The left-hand side above has the sign of

$$\mathbb{E}_{\mu_B}^\circ[\rho_B^\circ] \frac{d}{d\delta} \left|_{\delta=0} \mathbb{E}_{\mu_A}[\rho_A] - \mathbb{E}_{\mu_A}^\circ[\rho_A^\circ] \frac{d}{d\delta} \right|_{\delta=0} \mathbb{E}_{\mu_B}[\rho_B]. \quad (51)$$

415 Applying Corollary 3, we obtain the condition

$$\begin{aligned} & \mathbb{E}_{\mu_B}^{\circ} [\rho_B^{\circ}] \frac{d}{d\delta} \Bigg|_{\delta=0} \mathbb{E}_{\mu_A} \left[\widehat{\xi} \right] + \mathbb{E}_{\mu_A}^{\circ} [\rho_A^{\circ}] \frac{d}{d\delta} \Bigg|_{\delta=0} \mathbb{E}_{\mu_B} \left[\widehat{\xi} \right] \\ & + \sum_{i=1}^N \pi_i \sum_{j=1}^N \sum_{\substack{I \subseteq \{1, \dots, N\} \\ 0 \leq |I| \leq D_{ji}}} c_I^{ji} \left(\eta_{\{i\} \cup I}^{\mu_{AB}} - \eta_{\{j\} \cup I}^{\mu_{AB}} \right) > 0, \end{aligned} \quad (52)$$

416 where $\eta_I^{\mu_{AB}} := \mathbb{E}_{\mu_B}^{\circ} [\rho_B^{\circ}] \eta_I^{\mu_A} + \mathbb{E}_{\mu_A}^{\circ} [\rho_A^{\circ}] \eta_I^{\mu_B}$ satisfies the system of equations

$$\begin{aligned} \eta_I^{\mu_{AB}} &= \mathbb{E}_{\mu_A}^{\circ} [\rho_A^{\circ}] \left(1 - \mathbb{E}_{\mu_B}^{\circ} [\xi_I] \right) - \mathbb{E}_{\mu_B}^{\circ} [\rho_B^{\circ}] \mathbb{E}_{\mu_A}^{\circ} [\xi_I] \\ &+ \sum_{(R, \alpha)} p_{(R, \alpha)}^{\circ} \eta_{\alpha(I)}^{\mu_{AB}} \quad (1 \leq |I| \leq D+1); \end{aligned} \quad (53a)$$

$$\sum_{i=1}^N \pi_i \eta_i^{\mu_{AB}} = 0. \quad (53b)$$

417 Eq. (53a) is due to the facts that $\mathbb{E}_{\mu_A}^{\circ} [\rho_A^{\circ}] = \mathbb{E}_{\mu_A}^{\circ} [\widehat{\xi}]$ and $\mathbb{E}_{\mu_B}^{\circ} [\rho_B^{\circ}] = 1 - \mathbb{E}_{\mu_B}^{\circ} [\widehat{\xi}]$.

418 **Example 3.** Consider the case of fixation from a single mutant. Suppose that the initial mutant is
419 located at site i with probability μ_i in both monomorphic states **A** and **B**. That is,

$$\mu_A (\mathbf{1}_i) = \mu_B (\bar{\mathbf{1}}_i) = \mu_i \quad (1 \leq i \leq N). \quad (54)$$

420 All states not of the form $\mathbf{1}_i$ for $i \in \{1, \dots, N\}$ have probability zero in μ_A , and states not of the
421 form $\bar{\mathbf{1}}_i$ have probability zero in μ_B . Then we have $\mathbb{E}_{\mu_A}^{\circ} [\xi_i] = \mu_i$ and $\mathbb{E}_{\mu_B}^{\circ} [\xi_i] = 1 - \mu_i$. For
422 non-singleton I , we have $\mathbb{E}_{\mu_A}^{\circ} [\xi_I] = 0$ and $\mathbb{E}_{\mu_B}^{\circ} [\xi_I] = 1 - \sum_{i \in I} \mu_i$. We also have $\mathbb{E}_{\mu_A}^{\circ} [\rho_A^{\circ}] =$
423 $\mathbb{E}_{\mu_B}^{\circ} [\rho_B^{\circ}]$ by symmetry, and both $\mathbb{E}_{\mu_A} \left[\widehat{\xi} \right]$ and $\mathbb{E}_{\mu_B} \left[\widehat{\xi} \right]$ are independent of δ . In this case, weak
424 selection favors **A** if

$$\sum_{i=1}^N \pi_i \sum_{j=1}^N \sum_{\substack{I \subseteq \{1, \dots, N\} \\ 1 \leq |I| \leq D_{ji}}} c_I^{ji} \left(\eta_{\{i\} \cup I}^{\mu_{AB}} - \eta_{\{j\} \cup I}^{\mu_{AB}} \right) > 0, \quad (55)$$

425 where the $\eta_I^{\mu_{AB}}$ (upon rescaling by $1 / \mathbb{E}_{\mu_A}^{\circ} [\rho_A^{\circ}]$) satisfy the simplified recurrence relation

$$\eta_I^{\mu_{AB}} = \begin{cases} \sum_{i \in I} \mu_i + \sum_{(R, \alpha)} p_{(R, \alpha)}^{\circ} \eta_{\alpha(I)}^{\mu_{AB}} & 2 \leq |I| \leq D+1, \\ 0 & |I| = 1. \end{cases} \quad (56)$$

426 7 Application to constant fecundity

427 Constant (or frequency-independent) fecundity refers to the case in which the fecundity (repro-
 428 ductive rate) of an individual depends on only its type and not on the composition of the rest of
 429 the population. A common setup has a mutant (A) of reproductive rate $r > 0$ competing against
 430 a resident (B) of reproductive rate 1 (Lieberman et al., 2005; Broom and Rychtář, 2008; Broom
 431 et al., 2011; Voorhees, 2013; Monk et al., 2014; Hindersin and Traulsen, 2015; Kaveh et al., 2015;
 432 Cuesta et al., 2017; Pavlogiannis et al., 2018; Möller et al., 2019; Tkadlec et al., 2019). The fixa-
 433 tion probability of the mutant type is then a function of r , which we can write as $\rho_A(r; \xi)$, where
 434 $\xi \in \mathbb{B}_+^N$ is the initial configuration of the mutant and resident.

435 A common feature of these models is that the fecundity is interpreted in a relative sense, mean-
 436 ing that r quantifies the reproductive rate of A relative to B . Consequently, the fixation probabilities
 437 of both types are invariant under rescaling the reproductive rates of all individuals. In particular,
 438 the fixation probability of a mutant of reproductive rate r competing against a resident of repro-
 439 ductive rate 1 is equal (upon dividing by r) to the fixation probability of a mutant of reproductive
 440 rate 1 competing against a resident of reproductive rate r^{-1} . By interchanging the roles of A and
 441 B , we see that fixation probabilities satisfy the duality

$$\rho_A(r; \xi) = 1 - \rho_A(r^{-1}; \bar{\xi}). \quad (57)$$

442 For r close to 1, meaning that the mutation has only a small effect on fecundity, a trait's fixation
 443 probability can be analyzed using weak-selection methods such as those considered here (Allen
 444 et al., 2020). To apply these methods, we define the mutant's *selection coefficient* as $s = r - 1$.
 445 We then obtain an expansion of the fixation probability, $\rho_A(1 + s; \xi)$, around $s = 0$. The selection
 446 coefficient s plays a similar role to the selection intensity δ in the foregoing sections, except that s
 447 can also be negative, indicating a disadvantageous mutant.

448 Taking the s -derivative of both sides of Eq. (57) at $s = 0$, it follows that

$$\begin{aligned} \frac{d}{ds} \bigg|_{s=0} \rho_A(1 + s; \xi) &= \frac{d}{ds} \bigg|_{s=0} \rho_A(1 + s; \bar{\xi}) \\ &= \frac{1}{2} \frac{d}{ds} \bigg|_{s=0} (\rho_A(1 + s; \xi) + \rho_A(1 + s; \bar{\xi})). \end{aligned} \quad (58)$$

449 Applying Theorem 2 (with s in place of δ), we have the following weak-selection expansion for
 450 ρ_A :

$$\rho_A(1 + s; \xi) = \widehat{\xi} + \frac{s}{2} \sum_{i=1}^N \pi_i \sum_{j=1}^N \sum_{\substack{I \subseteq \{1, \dots, N\} \\ 0 \leq |I| \leq D_{ji}}} c_I^{ji} \left(\widehat{\eta}_{\{i\} \cup I}^\xi - \widehat{\eta}_{\{j\} \cup I}^\xi \right) + O(s^2), \quad (59)$$

451 where $\tilde{\eta}_I^\xi := \eta_I^\xi + \eta_I^{\bar{\xi}}$. These $\tilde{\eta}_I^\xi$ are the unique solution to the recurrence relation

$$\tilde{\eta}_I^\xi = \begin{cases} 1 - (\xi_I + \bar{\xi}_I) + \sum_{(R,\alpha)} p_{(R,\alpha)}^\circ \tilde{\eta}_{\tilde{\alpha}(I)}^\xi & 2 \leq |I| \leq D+1, \\ 0 & |I| = 1. \end{cases} \quad (60)$$

452 Note that $\xi_I + \bar{\xi}_I$ is equal to 1 if all individuals in I have the same type in ξ (i.e. $\xi_i = \xi_j$ for all
453 $i, j \in I$) and 0 otherwise. In particular, $\xi_i + \bar{\xi}_i = 1$ for all $i = 1, \dots, N$, which is why $\tilde{\eta}_I^\xi = 0$ for
454 $|I| = 1$.

455 If the initial state ξ is drawn from a mutant-appearance distribution, μ_A , we then have

$$\frac{d}{ds} \Big|_{s=0} \mathbb{E}_{\mu_A} [\rho_A] = \frac{d}{ds} \Big|_{s=0} \mathbb{E}_{\mu_A} [\tilde{\xi}] + \frac{1}{2} \sum_{i=1}^N \pi_i \sum_{j=1}^N \sum_{\substack{I \subseteq \{1, \dots, N\} \\ 0 \leq |I| \leq D_{ji}}} c_I^{ji} \left(\tilde{\eta}_{\{i\} \cup I}^{\mu_A} - \tilde{\eta}_{\{j\} \cup I}^{\mu_A} \right), \quad (61)$$

456 where

$$\tilde{\eta}_I^{\mu_A} = \begin{cases} 1 - \mathbb{E}_{\mu_A}^\circ [\xi_I + \bar{\xi}_I] + \sum_{(R,\alpha)} p_{(R,\alpha)}^\circ \tilde{\eta}_{\tilde{\alpha}(I)}^{\mu_A} & 2 \leq |I| \leq D+1, \\ 0 & |I| = 1. \end{cases} \quad (62)$$

457 In particular, for the mutant-appearance distribution in Example 3, in which the initial state has a
458 single mutant whose location i is chosen with probability μ_i (independent of r), we have

$$\mathbb{E}_{\mu_A} [\rho_A] = \sum_{i=1}^N \pi_i \mu_i + \frac{s}{2} \sum_{i=1}^N \pi_i \sum_{j=1}^N \sum_{\substack{I \subseteq \{1, \dots, N\} \\ 0 \leq |I| \leq D_{ji}}} c_I^{ji} \left(\tilde{\eta}_{\{i\} \cup I}^{\mu_A} - \tilde{\eta}_{\{j\} \cup I}^{\mu_A} \right) + O(s^2), \quad (63)$$

459 where, owing to the fact that $\mathbb{E}_{\mu_A}^\circ [\xi_I + \bar{\xi}_I] = \mathbb{E}_{\mu_A}^\circ [\bar{\xi}_I] = 1 - \sum_{i \in I} \mu_i$ when $|I| > 1$,

$$\tilde{\eta}_I^{\mu_A} = \begin{cases} \sum_{i \in I} \mu_i + \sum_{(R,\alpha)} p_{(R,\alpha)}^\circ \tilde{\eta}_{\tilde{\alpha}(I)}^{\mu_A} & 2 \leq |I| \leq D+1, \\ 0 & |I| = 1. \end{cases} \quad (64)$$

460 Eq. (64) is identical to the recurrence relation for $\eta_I^{\mu_A}$ in Eq. (56).

461 7.1 Constant fecundity on graphs

462 Let us now suppose that the population structure is represented by an undirected, unweighted
463 graph. Each vertex is occupied by one individual. As above, we consider a mutant type, A , of fe-
464 cundity $r = 1 + s$, competing against a resident type, B , of fecundity 1. A robust research program

465 aims to elucidate the effects of graph structure on the mutant's fixation probability (Lieberman
466 et al., 2005; Broom and Rychtář, 2008; Broom et al., 2011; Voorhees, 2013; Monk et al., 2014;
467 Hindersin and Traulsen, 2015; Kaveh et al., 2015; Cuesta et al., 2017; Pavlogiannis et al., 2018;
468 Möller et al., 2019; Tkadlec et al., 2019).

469 The edge weight between vertices i and j is denoted w_{ij} ($= w_{ji}$). We define the *weighted*
470 *degree* of vertex i as $w_i := \sum_{j=1}^N w_{ij}$. One can define a natural random walk on this graph, moving
471 from vertex i to vertex j with probability $p_{ij}^{(1)} := w_{ij}/w_i$ (where the superscript indicates that this
472 probability is for one step in the random walk). More generally, the probability of moving from
473 i to j in n steps of this random walk is $p_{ij}^{(n)} := (p^{(1)})_{ij}^n$, i.e. entry (i, j) of the n th power of the
474 transition matrix $p^{(1)}$.

475 7.1.1 death-Birth updating

476 Under the *death-Birth* process (Ohtsuki et al., 2006; Hindersin and Traulsen, 2015; Allen et al.,
477 2020; Tkadlec et al., 2020), an individual is first chosen, uniformly-at-random from the population,
478 to be replaced ("death"). A neighbor is then chosen, with probability proportional to the product
479 of edge weight and fecundity, to produce an offspring that fills the vacancy ("Birth"). The term
480 "Birth" is capitalized here to emphasize the fact that selection influences this step (Hindersin and
481 Traulsen, 2015).

482 For this process, the probability that the offspring of i replaces the occupant of j is

$$483 e_{ij}(1+s; \mathbf{x}) = \frac{1}{N} \frac{w_{ij}((1+s)x_i + 1 - x_i)}{\sum_{k=1}^N w_{kj}((1+s)x_k + 1 - x_k)} = \frac{p_{ji}^{(1)}}{N} \frac{1 + sx_i}{1 + s \sum_{k=1}^N p_{jk}^{(1)} x_k}. \quad (65)$$

483 Differentiating this expression with respect to s at $s = 0$ gives

$$484 \frac{d}{ds} \bigg|_{s=0} e_{ij}(1+s; \mathbf{x}) = \sum_{k=1}^N c_k^{ij} x_k, \quad (66)$$

484 where

$$485 c_k^{ij} = \begin{cases} \frac{p_{ji}^{(1)}}{N} (1 - p_{ji}^{(1)}) & k = i, \\ -\frac{p_{ji}^{(1)}}{N} p_{jk}^{(1)} & \text{otherwise.} \end{cases} \quad (67)$$

485 This process therefore has degree $D = 1$.

486 Under neutral drift, $e_{ij}^0 = p_{ji}^{(1)}/N$, and solving Eq. (12) yields $\pi_i = w_i / \sum_{j=1}^N w_j$ as the
487 reproductive value of vertex i under death-Birth updating (see also Maciejewski, 2014; Allen et al.,
488 2017; Allen and McAvoy, 2019). Using Eq. (59) and the reversibility property $\pi_i p_{ij}^{(1)} = \pi_j p_{ji}^{(1)}$, a
489 series of simplifications gives the following result:

490 **Proposition 2.** For the death-Birth process on a weighted graph, with constant mutant fecundity
491 $r = 1 + s$, the fixation probability from arbitrary starting configuration ξ can be expanded under
492 weak selection as

$$\rho_A(1 + s; \xi) = \widehat{\xi} + \frac{s}{2N} \sum_{i,j=1}^N \pi_i p_{ij}^{(2)} \tilde{\eta}_{ij}^\xi + O(s^2), \quad (68)$$

493 where the terms $\tilde{\eta}_{ij}^\xi$ arise as the unique solution to the recurrence relation

$$\tilde{\eta}_{ij}^\xi = \begin{cases} \frac{N}{2} (\xi_i + \xi_j - 2\xi_i \xi_j) + \frac{1}{2} \sum_{k=1}^N (p_{ik}^{(1)} \tilde{\eta}_{kj}^\xi + p_{jk}^{(1)} \tilde{\eta}_{ik}^\xi) & i \neq j, \\ 0 & i = j. \end{cases} \quad (69)$$

494 The factor of 2 above is related to the fact that we focus on only those replacement events that
495 influence i and j .

496 For a single mutant initialized randomly as in Example 3, Eq. (63) becomes

$$\mathbb{E}_{\mu_A} [\rho_A] = \sum_{i=1}^N \pi_i \mu_i + \frac{s}{2N} \sum_{i,j=1}^N \pi_i p_{ij}^{(2)} \tilde{\eta}_{ij}^{\mu_A} + O(s^2), \quad (70)$$

497 where

$$\tilde{\eta}_{ij}^{\mu_A} = \begin{cases} N \left(\frac{\mu_i + \mu_j}{2} \right) + \frac{1}{2} \sum_{k=1}^N (p_{ik}^{(1)} \tilde{\eta}_{kj}^{\mu_A} + p_{jk}^{(1)} \tilde{\eta}_{ik}^{\mu_A}) & i \neq j, \\ 0 & i = j. \end{cases} \quad (71)$$

498 Eqs. (70)–(71) generalize a result of Allen et al. (2020), which pertained to the case of uniform
499 initialization, i.e. $\mu_i = 1/N$ for all i .

500 7.1.2 Birth-death updating

501 In the *Birth-death* process (Lieberman et al., 2005; Hindersin and Traulsen, 2015), also known as
502 the *invasion process* (Antal et al., 2006), an individual i is selected to reproduce with probability
503 proportional to fecundity; the offspring of i replaces j with probability $p_{ij}^{(1)}$.

504 Letting $|\mathbf{x}| := \sum_{i=1}^N x_i$ denote the abundance of type A in state \mathbf{x} , the probability that i replaces
505 j in this state is

$$e_{ij}(1 + s; \mathbf{x}) = \frac{(1 + s)x_i + 1 - x_i}{\sum_{k=1}^N ((1 + s)x_k + 1 - x_k)} p_{ij}^{(1)} = \frac{1 + sx_i}{N + s|\mathbf{x}|} p_{ij}^{(1)}. \quad (72)$$

506 Differentiating this expression with respect to s at $s = 0$ gives

$$\frac{d}{ds} \bigg|_{s=0} e_{ij} (1 + s; \mathbf{x}) = \sum_{k=1}^N c_k^{ij} x_k, \quad (73)$$

507 where

$$c_k^{ij} = \begin{cases} \frac{N-1}{N^2} p_{ij}^{(1)} & k = i, \\ -\frac{1}{N^2} p_{ij}^{(1)} & \text{otherwise.} \end{cases} \quad (74)$$

508 Under neutral drift, $e_{ij}^o = p_{ij}^{(1)} / N$, and Eq. (12) yields a reproductive value of $\pi_i = w_i^{-1} / \sum_{j=1}^N w_j^{-1}$
 509 for Birth-death updating (see also Maciejewski, 2014; Allen et al., 2017; Allen and McAvoy, 2019).
 510 A series of simplifications based on Eq. (59) and the relation $\pi_i p_{ji}^{(1)} = \pi_j p_{ij}^{(1)}$ gives the following
 511 result:

512 **Proposition 3.** *For the Birth-death process on a weighted graph, with constant mutant fecundity
 513 $r = 1 + s$, the fixation probability from arbitrary starting configuration ξ can be expanded under
 514 weak selection as*

$$\rho_A (1 + s) = \widehat{\xi} + \frac{s}{2N} \sum_{i,j=1}^N \pi_i p_{ji}^{(1)} \tilde{\eta}_{ij}^\xi + O(s^2), \quad (75)$$

515 where the terms $\tilde{\eta}_{ij}^\xi$ arise as the unique solution to

$$\tilde{\eta}_{ij}^\xi = \begin{cases} \frac{N(\xi_i + \xi_j - 2\xi_i \xi_j) + \sum_{k=1}^N (p_{ki}^{(1)} \tilde{\eta}_{kj}^\xi + p_{kj}^{(1)} \tilde{\eta}_{ik}^\xi)}{\sum_{k=1}^N (p_{ki}^{(1)} + p_{kj}^{(1)})} & i \neq j, \\ 0 & i = j. \end{cases} \quad (76)$$

516 The factor $\sum_{k=1}^N (p_{ki}^{(1)} + p_{kj}^{(1)})$ is analogous to the factor of 2 in the corresponding expression
 517 for death-Birth updating (due to considering the effects of a replacement rule on only i and j).
 518 However, death is not necessarily uniform under Birth-death updating, which results in a slightly
 519 more complicated scaling factor.

520 For the mutant-appearance distribution of Example 3, Eq. (63) simplifies to

$$\mathbb{E}_{\mu_A} [\rho_A] = \sum_{i=1}^N \pi_i \mu_i + \frac{s}{2N} \sum_{i,j=1}^N \pi_i p_{ji}^{(1)} \tilde{\eta}_{ij}^{\mu_A} + O(s^2), \quad (77)$$

521 where

$$\tilde{\eta}_{ij}^{\mu_A} = \begin{cases} \frac{N(\mu_i + \mu_j) + \sum_{k=1}^N (p_{ki}^{(1)} \tilde{\eta}_{kj}^{\mu_A} + p_{kj}^{(1)} \tilde{\eta}_{ik}^{\mu_A})}{\sum_{k=1}^N (p_{ki}^{(1)} + p_{kj}^{(1)})} & i \neq j, \\ 0 & i = j. \end{cases} \quad (78)$$

522 8 Application to evolutionary game theory

523 We now move from constant fecundity to evolutionary games (frequency-dependent fecundity) in
 524 structured populations (Blume, 1993; Nowak and May, 1992; Ohtsuki et al., 2006; Szabó and Fáth,
 525 2007; Nowak et al., 2009). In this setting, individuals interact with one another and receive a net
 526 payoff based on the types (strategies) of those with whom they interact. In state $\mathbf{x} \in \mathbb{B}^N$, we let
 527 $u_i(\mathbf{x})$ denote the payoff (or utility) of player i . This payoff is converted into relative fecundity,
 528 F_i , by letting $F_i(\mathbf{x}) = \exp\{\delta u_i(\mathbf{x})\}$, where $\delta > 0$ is the selection intensity parameter. (An
 529 alternative convention, $F_i(\mathbf{x}) = 1 + \delta u_i(\mathbf{x})$, is equivalent under weak selection, since both satisfy
 530 $F_i(\mathbf{x}) = 1 + \delta u_i(\mathbf{x}) + O(\delta^2)$.) The replacement rule then depends directly on the fecundity
 531 vector, $\mathbf{F} \in (0, \infty)^N$, i.e. $e_{ij}(\mathbf{x}) = e_{ij}(\mathbf{F}(\mathbf{x}))$. Furthermore, under weak selection, there is no loss
 532 of generality in assuming that the state-to-fecundity mapping, $\mathbf{x} \mapsto \mathbf{F}(\mathbf{x})$, is deterministic (see
 533 McAvoy et al., 2020). Therefore, for every $i, j = 1, \dots, N$, we can write

$$\frac{d}{d\delta} \bigg|_{\delta=0} e_{ij}(\mathbf{x}) = \sum_{k=1}^N \left(\frac{\partial}{\partial F_k} \bigg|_{\mathbf{F}=\mathbf{1}} e_{ij}(\mathbf{F}) \right) u_k(\mathbf{x}). \quad (79)$$

534 Since the fecundity derivative $\frac{\partial}{\partial F_k} \bigg|_{\mathbf{F}=\mathbf{1}} e_{ij}(\mathbf{F})$ does not depend on \mathbf{x} , the degree of the process under
 535 weak selection is controlled by the utility functions $\{u_i(\mathbf{x})\}_{i=1}^N$. Let $m_k^{ij} := \frac{\partial}{\partial F_k} \bigg|_{\mathbf{F}=\mathbf{1}} e_{ij}(\mathbf{F})$ be
 536 the marginal effect of the fecundity of k on i replacing j (McAvoy et al., 2020), and suppose that
 537 individual k 's payoff is $u_k(\mathbf{x}) = \sum_{I \subseteq \{1, \dots, N\}} p_I^k \mathbf{x}_I$. We then have

$$\frac{d}{d\delta} \bigg|_{\delta=0} e_{ij}(\mathbf{x}) = \sum_{k=1}^N m_k^{ij} u_k(\mathbf{x}) = \sum_{I \subseteq \{1, \dots, N\}} \left(\sum_{k=1}^N m_k^{ij} p_I^k \right) \mathbf{x}_I, \quad (80)$$

538 which, by the uniqueness of the representation of Eq. (6), gives $c_I^{ij} = \sum_{k=1}^N m_k^{ij} p_I^k$. Therefore,
 539 generically, the degree of the process coincides with the maximal degree of the payoff functions
 540 when each payoff function is viewed as a multi-linear polynomial in x_1, \dots, x_N (see also Ohtsuki,
 541 2014; McAvoy and Hauert, 2016).

542 8.1 Additive games

543 Additive games are a special class of games for which the conditions to be favored by selection
 544 can be written in a simplified form. An evolutionary game is additive if its payoff function, $u_i(\mathbf{x})$,

545 is of degree one (linear) in \mathbf{x} for every $i = 1, \dots, N$. In this case we can write

$$\frac{d}{d\delta} \bigg|_{\delta=0} e_{ij}(\mathbf{x}) = c_0^{ij} + \sum_{k=1}^N c_k^{ij} x_k \quad (81)$$

546 for some collection of constants c_k^{ij} with $i, j, k \in \{1, \dots, N\}$. If we further assume that the all- B
547 state has the same replacement probabilities as the neutral process—that is, $p_{(R,\alpha)}(\mathbf{B}) = p_{(R,\alpha)}^\circ$
548 for all (R, α) and all $\delta > 0$ —it then follows that $c_0^{ij} = 0$ for all i, j . In this case, Theorem 2 gives

$$\frac{d}{d\delta} \bigg|_{\delta=0} \mathbb{E}_{\mu_A} [\rho_A] = \frac{d}{d\delta} \bigg|_{\delta=0} \mathbb{E}_{\mu_A} [\tilde{\xi}] + \sum_{i,j,k=1}^N \pi_i c_k^{ji} (\eta_{ik}^{\mu_A} - \eta_{jk}^{\mu_A}), \quad (82)$$

549 where the terms $\eta_{ij}^{\mu_A}$ arise as the unique solution to the equations

$$\eta_{ij}^{\mu_A} = \mathbb{E}_{\mu_A}^\circ [\tilde{\xi} - \xi_i \xi_j] + \sum_{(R,\alpha)} p_{(R,\alpha)}^\circ \eta_{\tilde{\alpha}(i)\tilde{\alpha}(j)}^{\mu_A} \quad (1 \leq i, j \leq N); \quad (83a)$$

$$\sum_{i=1}^N \pi_i \eta_{ii}^{\mu_A} = 0. \quad (83b)$$

550 Let us now consider the mutant-appearance distributions of Example 3; i.e. a single mutant
551 appears at site i with probability μ_i . The weak-selection fixation probability of type A can then be
552 calculated as

$$\mathbb{E}_{\mu_A} [\rho_A] = \sum_{i=1}^N \pi_i \mu_i + \delta \sum_{i,j,k=1}^N \pi_i c_k^{ji} (\eta_{ik}^{\mu_A} - \eta_{jk}^{\mu_A}) + O(\delta^2), \quad (84)$$

553 with $\eta_{ij}^{\mu_A}$ as above. Furthermore, the condition for weak selection to favor A , Eq. (55), becomes

$$\sum_{i,j,k=1}^N \pi_i c_k^{ji} (\eta_{ik}^{\mu_{AB}} - \eta_{jk}^{\mu_{AB}}) > 0, \quad (85)$$

554 where the terms $\eta_{ij}^{\mu_{AB}}$ arise as the unique solution to

$$\eta_{ij}^{\mu_{AB}} = \begin{cases} \mu_i + \mu_j + \sum_{(R,\alpha)} p_{(R,\alpha)}^\circ \eta_{\tilde{\alpha}(i)\tilde{\alpha}(j)}^{\mu_{AB}} & i \neq j, \\ 0 & i = j. \end{cases} \quad (86)$$

555 8.2 Graph-structured populations with death-Birth updating

556 Evolutionary games on a graphs provide well-known models for social interactions in structured
 557 populations (Santos and Pacheco, 2005; Ohtsuki et al., 2006; Taylor et al., 2007; Szabó and Fáth,
 558 2007; Santos et al., 2008; Chen, 2013; Débarre et al., 2014; Allen et al., 2017, 2019; McAvoy et al.,
 559 2020). As in Section 7.1, we suppose that the population structure is represented by a weighted,
 560 undirected graph with adjacency matrix $(w_{ij})_{i,j=1}^N$. We adopt the notation of Section 7.1 for the
 561 weighted degree $w_i := \sum_{j=1}^N w_{ij}$ and the step probability $p_{ij}^{(1)} := w_{ij}/w_i$.

562 As in Section 7.1.1, we consider death-Birth updating: an individual is chosen uniformly at
 563 random for death, and then a neighboring individual is chosen, with probability proportional to the
 564 product of fecundity and edge weight, to reproduce into the vacancy. With this update rule, the
 565 marginal probability that i transmits an offspring to j is

$$e_{ij}(\mathbf{x}) = \frac{1}{N} \frac{F_i(\mathbf{x}) w_{ij}}{\sum_{\ell=1}^N F_\ell(\mathbf{x}) w_{\ell j}}. \quad (87)$$

566 Differentiating with respect to δ at $\delta = 0$ gives

$$\begin{aligned} \frac{d}{d\delta} \bigg|_{\delta=0} e_{ij}(\mathbf{x}) &= \frac{1}{N} \frac{u_i(\mathbf{x}) w_{ij} w_j - w_{ij} \sum_{\ell=1}^N u_\ell(\mathbf{x}) w_{\ell j}}{w_j^2} \\ &= \frac{p_{ji}^{(1)}}{N} \left(u_i(\mathbf{x}) - \sum_{\ell=1}^N p_{j\ell}^{(1)} u_\ell(\mathbf{x}) \right). \end{aligned} \quad (88)$$

567 We now focus on a particular game called the *donation game* (Sigmund, 2010), in which type
 568 A pays a cost of c to donate b to every neighbor; type B donates nothing and pays no cost. For
 569 $b > c > 0$, this is a special case of the prisoner's dilemma, with A playing the role of cooperators
 570 and B playing the role of defectors.

571 There are two main conventions for aggregating the payoffs received from these game in-
 572 teractions (Maciejewski et al., 2014). The first is to take the edge-weighted sum of the pay-
 573 offs received from all others; this method is called *accumulated payoffs*, and leads to $u_i(\mathbf{x}) =$
 574 $-w_i c x_i + \sum_{k=1}^N w_{ik} b x_k$. The second is to take the edge-weighted average (i.e. to normalize
 575 the sum by the weighted degree); this method is called *averaged payoffs* and leads to $u_i(\mathbf{x}) =$
 576 $-c x_i + b \sum_{k=1}^N p_{ik}^{(1)} x_k$. In both cases, the game is additive according to the definition of the previ-
 577 ous subsection.

578 Substituting the respective payoff functions into Eq. (88) yields

$$\frac{d}{d\delta} \bigg|_{\delta=0} e_{ij}(\mathbf{x}) = \sum_{k=1}^N c_k^{ij} x_k, \quad (89)$$

579 where

$$c_k^{ij} = \begin{cases} \frac{p_{ji}^{(1)}}{N} \left(-c \left(p_{ik}^{(0)} - p_{jk}^{(1)} \right) + b \left(p_{ik}^{(1)} - p_{jk}^{(2)} \right) \right) & \text{(averaged),} \\ \frac{p_{ji}^{(1)}}{N} \left(-c \left(p_{ik}^{(0)} w_i - p_{jk}^{(1)} w_k \right) + b \left(w_{ik} - \sum_{\ell=1}^N p_{j\ell}^{(1)} w_{\ell k} \right) \right) & \text{(accumulated).} \end{cases} \quad (90)$$

580 Above, we have used $p_{ij}^{(n)}$ to denote the probability that an n -step random walk from i terminates
581 at j ; note in particular that $p_{ij}^{(0)}$ equals 1 if $i = j$ and 0 otherwise. We further define $\eta_{(n)}^{\xi} :=$
582 $\sum_{i,j=1}^N \pi_i p_{ij}^{(n)} \eta_{ij}^{\xi}$ as the expectation of η_{ij}^{ξ} when i and j are sampled from the two ends of a stationary
583 n -step random walk, where $n \geq 0$. We can then state the following result:

584 **Proposition 4.** *For the donation game on an arbitrary weighted, connected graph, with death-
585 Birth updating, the fixation probability of cooperators from an arbitrary configuration ξ can be
586 expanded under weak selection as*

$$\rho_A(\xi) = \widehat{\xi} + \frac{\delta}{N} \left(-c \eta_{(2)}^{\xi} + b \left(\eta_{(3)}^{\xi} - \eta_{(1)}^{\xi} \right) \right) + O(\delta^2), \quad (91)$$

587 for averaged payoffs, and

$$\begin{aligned} \rho_A(\xi) = \widehat{\xi} + \frac{\delta}{N} & \left(-c \sum_{i,j=1}^N \pi_i \left(p_{ij}^{(2)} - p_{ij}^{(0)} \right) w_j \eta_{ij}^{\xi} \right. \\ & \left. + b \sum_{i,j,k=1}^N \pi_i \left(p_{ij}^{(2)} - p_{ij}^{(0)} \right) w_{jk} \eta_{ik}^{\xi} \right) + O(\delta^2), \end{aligned} \quad (92)$$

588 for accumulated payoffs. In both cases, the terms η_{ij}^{ξ} arise as the unique solution to

$$\eta_{ij}^{\xi} = \frac{N}{2} \left(\widehat{\xi} - \xi_i \xi_j \right) + \frac{1}{2} \sum_{k=1}^N \left(p_{ik}^{(1)} \eta_{kj}^{\xi} + p_{jk}^{(1)} \eta_{ik}^{\xi} \right) \quad (i \neq j); \quad (93a)$$

$$\eta_{ii}^{\xi} = N \left(\widehat{\xi} - \xi_i \right) + \sum_{j=1}^N p_{ij}^{(1)} \eta_{jj}^{\xi}; \quad (93b)$$

$$\sum_{i=1}^N \pi_i \eta_{ii}^{\xi} = 0. \quad (93c)$$

589 *Proof.* Theorem 2 gives

$$\rho_A(\xi) = \widehat{\xi} + \delta \sum_{i,j,k=1}^N \pi_i c_k^{ji} \left(\eta_{ik}^{\xi} - \eta_{jk}^{\xi} \right) + O(\delta^2), \quad (94)$$

590 where the η_{ij}^ξ are the unique solution to Eq. (93). The result then follows from applying Eq. (90) and
 591 simplifying using the reversibility property $\pi_i p_{ij}^{(n)} = \pi_j p_{ji}^{(n)}$, noting that $\eta_{(0)}^\xi = \sum_{i=1}^N \pi_i \eta_{ii}^\xi = 0$
 592 by Eq. (93c). \square

593 Proposition 4 generalizes one of the main results of Allen et al. (2017) (who considered only
 594 uniform initialization) to the case of an arbitrary initial state.

595 **8.2.1 Homogeneous (regular) graphs**

596 In the case of a regular graph, we can obtain the weak-selection expansion of fixation probabilities
 597 in closed form. Suppose the graph is unweighted (meaning each edge weight is either 0 or 1), has
 598 no self-loops ($w_{ii} = 0$ for each i) and is regular of degree d ($w_i = d$ for all i). For regular graphs,
 599 accumulated and averaged payoffs are equivalent upon rescaling all payoffs by a factor of d ; we
 600 consider averaged payoffs here.

601 Noting that $\pi_i = 1/N$ for all i , and $\tilde{\xi} = |\xi|/N$, for regular graphs, Eq. (93) for η_{ij}^ξ can be
 602 written as

$$\eta_{ij}^\xi = \frac{1}{2} (|\xi| - N\xi_i \xi_j) + \frac{1}{2} \sum_{k=1}^N (p_{ik}^{(1)} \eta_{kj}^\xi + p_{jk}^{(1)} \eta_{ik}^\xi) \quad (95a)$$

$$+ \frac{\delta_{ij}}{2} \left(|\xi| - N\xi_i + 2 \sum_{k=1}^N p_{ik}^{(1)} (\eta_{kk}^\xi - \eta_{ik}^\xi) \right),$$

$$\sum_{i=1}^N \eta_{ii}^\xi = 0, \quad (95b)$$

603 where δ_{ij} is the Kronecker delta function. Multiplying by $\frac{1}{N} p_{ij}^{(n)}$ and summing over i and j leads
 604 to a recurrence relation for $\eta_{(n)}^\xi$:

$$\eta_{(n+1)}^\xi - \eta_{(n)}^\xi = \frac{1}{2} \sum_{i,j=1}^N p_{ij}^{(n)} \xi_i \xi_j - \frac{1}{2} |\xi|$$

$$+ \frac{1}{2N} \sum_{i=1}^N p_{ii}^{(n)} \left(N\xi_i - |\xi| + 2 \sum_{k=1}^N p_{ik}^{(1)} (\eta_{ik}^\xi - \eta_{kk}^\xi) \right). \quad (96)$$

605 We now let $n \rightarrow \infty$, taking a running average in the case that the random walk is periodic. In this
 606 limit, $p_{ij}^{(n)}$ converges to $\pi_j = 1/N$ for each i and j . Simplifying and applying Eq. (95b), Eq. (96)
 607 then becomes

$$0 = \frac{1}{2N} \sum_{i,j=1}^N \xi_i \xi_j - \frac{1}{2} |\xi| + \frac{1}{2N^2} \sum_{i=1}^N (N\xi_i - |\xi|) + \frac{1}{N^2} \left(\sum_{i,k=1}^N p_{ik}^{(1)} \eta_{ik}^\xi - \sum_{k=1}^N \eta_{kk}^\xi \right)$$

$$= \frac{1}{2N} |\xi|^2 - \frac{1}{2} |\xi| + \frac{1}{N} \eta_{(1)}^\xi, \quad (97)$$

608 which leads to

$$\eta_{(1)}^{\xi} = \frac{1}{2} |\xi| (N - |\xi|). \quad (98)$$

609 Applying Eq. (96), and noting that $p_{ii}^{(2)} = 1/d$ for each i , we see that

$$\eta_{(2)}^{\xi} = \frac{1}{2} \left(|\xi| (N - |\xi| - 1) + \sum_{i,j=1}^N p_{ij}^{(1)} \xi_i \xi_j \right), \quad (99a)$$

$$\eta_{(3)}^{\xi} = \frac{1}{2} \left(|\xi| \left(\frac{d+1}{d} (N - |\xi|) - 2 \right) + \sum_{i,j=1}^N (p_{ij}^{(1)} + p_{ij}^{(2)}) \xi_i \xi_j \right). \quad (99b)$$

610 Substituting into Eq. (91), we obtain the following closed-form result (a corollary to Proposition 4):

611 **Corollary 4.** *For the donation game on an unweighted regular graph with death-Birth updating,*
 612 *the fixation probability of cooperators from arbitrary initial configuration ξ can be expanded under*
 613 *weak selection as*

$$\begin{aligned} \rho_A(\xi) = & \frac{|\xi|}{N} + \frac{\delta}{2N} \left(-c \left(|\xi| (N - |\xi| - 1) + \sum_{i,j=1}^N p_{ij}^{(1)} \xi_i \xi_j \right) \right. \\ & \left. + b \left(|\xi| \left(\frac{N - |\xi|}{d} - 2 \right) + \sum_{i,j=1}^N (p_{ij}^{(1)} + p_{ij}^{(2)}) \xi_i \xi_j \right) \right) + O(\delta^2). \end{aligned} \quad (100)$$

614 Corollary 4 is equivalent to the main result of Chen et al. (2016). In particular, when the
 615 initial state contains only a single type A individual ($|\xi| = 1$), we have $\sum_{i,j=1}^N p_{ij}^{(1)} \xi_i \xi_j = 0$ and
 616 $\sum_{i,j=1}^N p_{ij}^{(1)} \xi_i \xi_j = \sum_{i=1}^N p_{ii}^{(2)} \xi_i = 1/d$, leading to

$$\rho_A(\xi) = \frac{1}{N} + \frac{\delta}{2N} \left(-c (N - 2) + b \left(\frac{N}{d} - 2 \right) \right) + O(\delta^2). \quad (101)$$

617 This result holds regardless of which vertex contains the initial type A individual, as was first
 618 proven by Chen (2013).

619 8.3 Comparing population structures

620 A large body of literature is devoted to the question of whether—and to what extent—population
 621 structure can promote the evolution of cooperation (Nowak and May, 1992; Hauert and Doebeli,
 622 2004; Santos and Pacheco, 2005; Ohtsuki et al., 2006; Taylor et al., 2007; Santos et al., 2008;
 623 Nowak et al., 2009; Tarnita et al., 2009; Débarre et al., 2014; Allen et al., 2017). The donation
 624 game with $b > c > 0$ provides an elegant model for studying this question (Sigmund, 2010):

625 Type A (representing cooperation) pays cost c to give benefit b to its partners; type B pays no
626 costs and gives no benefits. Population structures can then be compared according to whether
627 or not they increase A 's chance of becoming fixed, depending on the benefit, b , and cost, c . Each
628 population structure has a “critical benefit-to-cost ratio,” $(b/c)^*$, such that weak selection increases
629 A 's fixation probability if and only if $(b/c)^* > 0$ and $b/c > (b/c)^*$ (Ohtsuki et al., 2006; Nowak
630 et al., 2009; Allen et al., 2017).

631 A lower critical benefit-to-cost can then be interpreted as “better for the evolution of coopera-
632 tion” (Nathanson et al., 2009). Such quantities have also been used to formally order population
633 structures. For example, Peña et al. (2016) state that “two different models of spatial structure and
634 associated evolutionary dynamics can be unambiguously compared by ranking their relatedness or
635 structure coefficients: the greater the coefficient, the less stringent the conditions for cooperation
636 to evolve. Hence, different models of population structure can be ordered by their potential to
637 promote the evolution of cooperation in a straightforward way.” While there is indeed an unam-
638 biguous comparison of population structures based on critical benefit-to-cost ratios, a comparison
639 based on which is “better for the evolution of cooperation” is more subtle.

640 Consider the donation game with accumulated payoffs on a graph, with death-Birth updating
641 and uniform mutant-appearance distribution. By Eq. (92),

$$\mathbb{E}_{\text{unif}} [\rho_A] = \frac{1}{N} + \frac{\delta}{N} \left(-c \sum_{i,j=1}^N \pi_i p_{ij}^{(2)} w_j \eta_{ij}^{\text{unif}} \right. \\ \left. + b \sum_{i,j,k=1}^N \pi_i \left(p_{ij}^{(2)} - p_{ij}^{(0)} \right) w_{jk} \eta_{ik}^{\text{unif}} \right) + O(\delta^2), \quad (102)$$

642 where

$$\eta_{ij}^{\text{unif}} = \begin{cases} \frac{1}{2} \left(1 + \sum_{k=1}^N \left(p_{ik}^{(1)} \eta_{kj}^{\text{unif}} + p_{jk}^{(1)} \eta_{ik}^{\text{unif}} \right) \right) & i \neq j, \\ 0 & i = j. \end{cases} \quad (103)$$

643 The critical benefit-to-cost ratio is

$$\left(\frac{b}{c} \right)^* = \frac{\sum_{i,j=1}^N \pi_i p_{ij}^{(2)} w_j \eta_{ij}^{\text{unif}}}{\sum_{i,j,k=1}^N \pi_i \left(p_{ij}^{(2)} - p_{ij}^{(0)} \right) w_{jk} \eta_{ik}^{\text{unif}}}. \quad (104)$$

644 In Fig. 3, we apply this result to first compute the critical benefit-to-cost ratios for two heteroge-
645 neous population structures of size $N = 50$. Specifically, we give examples of graphs Γ_1 (Fig. 3A)
646 and Γ_2 (Fig. 3B) such that $0 < (b/c)_{\Gamma_1}^* < (b/c)_{\Gamma_2}^*$, which means that the condition for cooperation
647 to be favored on Γ_1 is less strict than that of Γ_2 . However, this ranking alone does not imply that Γ_1
648 is unambiguously better for the evolution of cooperation than Γ_2 . For example, when $b = 10$ and
649 $c = 1$, which corresponds to $b/c > (b/c)_{\Gamma_1}^*, (b/c)_{\Gamma_2}^*$, weak selection boosts the fixation proba-
650 bility of cooperators on Γ_2 more than it does on Γ_1 , based on the magnitudes of the first-order effects

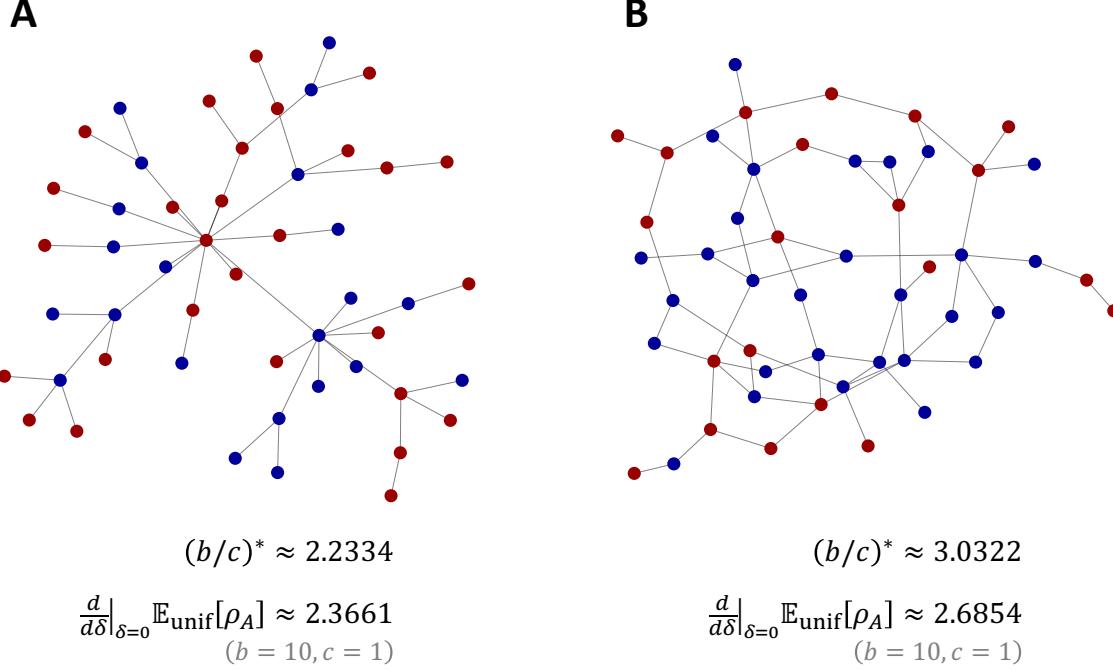


Figure 3: Two heterogeneous population structures of size $N = 50$ evolving based on death-Birth updating. The population structure depicted in **B** is unequivocally better for the evolution of cooperation than that of **A** when $b = 10$ and $c = 1$ because selection results in a greater improvement to a rare cooperator's fixation probability. This result holds despite the fact that the critical benefit-to-cost ratio of **B** is greater than it is for **A**, which means that the condition under which cooperators can thrive on **B** is stricter than that of **A**. It follows that a comparison between population structures based on which one is better for the evolution of cooperation cannot be made based on the critical ratios alone.

651 of selection. Therefore, for this particular cooperative social dilemma, Γ_2 more strongly supports
 652 the evolution of cooperation than Γ_1 . It follows that the critical benefit-to-cost ratio provides only
 653 part of the story when comparing two population structures based on their abilities to support the
 654 emergence of cooperation.

655 9 Discussion

656 In this study, we have analyzed the fixation probability of a mutant type under weak selection, for
 657 a broad class of evolutionary models and arbitrary initial conditions. The main result, Theorem 2,
 658 gives a first-order expansion of the fixation probability of A , $\rho_A(\xi)$, in the selection intensity δ ,
 659 for any initial configuration, ξ . This expansion has three main ingredients: (i) reproductive value,
 660 π_i , which quantifies the expected contribution of i to future generations; (ii) neutral sojourn times,
 661 η_I^ξ , which may be interpreted in terms of the mean number of steps in which all individuals in I
 662 have type A prior to absorption, given that the initial state of the population is ξ ; and (iii) Fourier
 663 coefficients, c_I^{ij} , of first-order effects of the probability that i replaces j in one update step.

664 It follows from Theorem 2 that the complexity of calculating this first-order expansion is

665 $O(N^{3(D+1)})$, where D is the degree of the process. Actually, by the work of Le Gall (2012),
 666 this complexity is (in theory) $O(N^{2.373(D+1)})$. This bound can be further improved in some
 667 cases by taking into account structural properties of the population, as we observed in the case
 668 of death-Birth updating on a regular graph. In any case, for fixed degree D , the system size ex-
 669hibits polynomial growth in N , whereas the number of states in the evolutionary process grows
 670 exponentially in N .

671 The neutral sojourn times, η_I^ξ and variants thereof, play a central role in our method. Their
 672 interpretation is therefore a question of interest. From Eq. (36), we can see that $-\eta_I^\xi = \langle \mathbf{x}_I - \hat{x} \rangle_\xi^\circ$
 673 is a measure of the tendency for all individuals in I have type A , under neutral drift from initial
 674 state ξ . In the case of a uniform initial distribution μ_A (Example 1), $\eta_I^{\mu_A}$ is proportional to the
 675 expected time for the coalescent process \mathcal{C} to reach a singleton set (coalesce) starting from set I .

676 The utility of our framework is illustrated by the application to evolutionary dynamics on
 677 graphs in Sections 7 and 8. In particular, Proposition 4 provides the weak-selection expansion
 678 of fixation probabilities for the donation game with arbitrary graph and initial configuration. This
 679 result unifies and generalizes the main results of Chen et al. (2016) (who considered only regular
 680 graphs) as well as Allen et al. (2017) (who considered only uniform initialization).

681 From these results, one can derive many of the well-known results on critical benefit-to-cost
 682 ratios for cooperation to be favored in social dilemmas (Ohtsuki et al., 2006; Taylor et al., 2007;
 683 Chen, 2013; Allen and Nowak, 2014; Fotouhi et al., 2018). Moreover, they provide more informa-
 684 tion than just *when* weak selection favors a particular trait; they also determine *how much*, based
 685 on the magnitude of $\frac{d}{d\delta} \Big|_{\delta=0} \rho_A$, which can lead to more nuanced comparisons of population struc-
 686 tures based on their ability to promote a trait (Section 8.3). The magnitude of $\frac{d}{d\delta} \Big|_{\delta=0} \rho_A$ has been
 687 explored considerably less than its sign, and our results allow this question to be explored for quite
 688 a large class of evolutionary update rules, population structures, and initial configurations.

689 Our results on fixation probabilities apply to finite populations of a given size. It would be in-
 690 teresting to connect these results to the considerable body of theory for large populations (Kimura,
 691 1962; Roze and Rousset, 2003; Traulsen et al., 2006; Cox and Durrett, 2016; Chen, 2018), by
 692 analyzing the large-population ($N \rightarrow \infty$) asymptotics of our results such as Eq. (34). However,
 693 a number of challenges arise. First, unless one places a bound on the degree of the process, the
 694 number of terms in first-order part of Eq. (34) grows exponentially with N . Second, since Eq. (34)
 695 is itself an expansion for weak selection ($\delta \ll 1$), one must consider the relationship between N
 696 and δ as $N \rightarrow \infty$ and $\delta \rightarrow 0$. These two limits are known to be non-interchangeable, even in the
 697 relatively simple case of two-player games in a well-mixed population (Sample and Allen, 2017).
 698 However, neither of these challenges appears insurmountable, and addressing them is an important
 699 goal for future work.

700 Acknowledgments

701 We thank Krishnendu Chatterjee, Joshua Plotkin, Qi Su, and John Wakeley for helpful discussions
 702 and comments on earlier drafts. We are also grateful to the anonymous referees for many valuable

703 suggestions. This work was supported by the Army Research Laboratory (grant W911NF-18-
704 2-0265), the John Templeton Foundation (grant 61443), the National Science Foundation (grant
705 DMS-1715315), the Office of Naval Research (grant N00014-16-1-2914), and the Simons Foun-
706 dation (Math+X Grant to the University of Pennsylvania).

Table 1: Glossary of Notation

Symbol	Description	Introduced
A	Monomorphic state in which all individuals have type A	Section 2.1
α	Parentage map in a replacement event	Section 2.1
$\tilde{\alpha}$	Extension of the parentage map, α , to $\{1, \dots, N\}$	Section 2.1
B	Monomorphic state in which all individuals have type B	Section 2.1
\mathbb{B}	Boolean domain $\{0, 1\}$ (1 for A , 0 for B)	Section 2.1
\mathbb{B}^N	Set of configurations of types in the population	Section 2.1
\mathbb{B}_T^N	Set of non-monomorphic configurations of types in the pop- ulation, i.e. $\mathbb{B}^N - \{\mathbf{A}, \mathbf{B}\}$	Section 2.1
$b_i(\mathbf{x})$	Expected offspring number of i in state \mathbf{x}	Section 2.2
$(b/c)^*$	Critical benefit-to-cost ratio for cooperation to evolve	Section 8.3
c_I^{ij}	Fourier coefficients of $\frac{d}{d\delta} \Big _{\delta=0} e_{ij}(\mathbf{x})$	Section 2.2
δ	Selection strength	Section 2.1
$d_i(\mathbf{x})$	Death probability of i in state \mathbf{x}	Section 2.2
$\Delta_{\text{sel}}(\mathbf{x})$	Expected change in the frequency of A due to selection	Section 2.2
D_{ij}	Fourier degree of $\frac{d}{d\delta} \Big _{\delta=0} e_{ij}(\mathbf{x})$ as a multi-linear polynomial	Section 2.2
D	Fourier degree of the evolutionary process at $\delta = 0$	Section 2.2
$e_{ij}(\mathbf{x})$	Marginal probability that i transmits its offspring to j in state \mathbf{x}	Section 2.2
μ_A, μ_B	Mutant-appearance distributions of types A and B , respec- tively	Section 5
μ_i	Probability that a single mutant appears at location i	Section 6
m_k^{ij}	Marginal effect of the fecundity of k on i replacing j	Section 8
N	Number of individuals (population size)	Section 2.1
$p_{(R, \alpha)}(\mathbf{x})$	Probability of choosing replacement event (R, α) in state \mathbf{x}	Section 2.1
π_i	Reproductive value of location i	Section 2.2
$\pi_{\circlearrowleft}(\xi)$	Mutation-selection stationary distribution (which depends on a fixed configuration, ξ)	Section 3
$p_{ij}^{(n)}$	Probability of moving from vertex i to vertex j in n steps of a random walk on a graph	Section 7.1
R	Set of replaced positions in a replacement event	Section 2.1
r	Relative reproductive rate of a mutant in a constant- fecundity process	Section 7
ρ_A, ρ_B	Fixation probabilities of types A and B , respectively	Section 2.2

Table 1: Glossary of Notation

Symbol	Description	Introduced
s	Selection coefficient of a mutant in a constant-fecundity process	Section 7
u	Probability of regenerating a fixed transient state, ξ , following A or B	Section 3
$u_i(\mathbf{x})$	Payoff to i in state \mathbf{x} in an evolutionary game	Section 8
w_{ij}	Edge weight between vertices i and j in a graph	Section 7.1
w_i	Degree of vertex i in a graph	Section 7.1
\mathbf{x}	Configuration of types in the population	Section 2.1
x_i	Type occupying i (1 for A , 0 for B)	Section 2.1
ξ	Initial configuration of types in the population	Section 2.2
\circ	Indicates the absence of selection	Section 2.1
$\hat{\cdot}$	Indicates weighting by reproductive values	Section 2.2

References

707

708 B. Adlam, K. Chatterjee, and M. A. Nowak. Amplifiers of selection. *Proceedings of the Royal*
709 *Society A: Mathematical, Physical and Engineering Science*, 471(2181):20150114, 2015. doi:
710 10.1098/rspa.2015.0114.

711 B. Allen and A. McAvoy. A mathematical formalism for natural selection with arbitrary spatial
712 and genetic structure. *Journal of Mathematical Biology*, 78(4):1147–1210, 2019. doi: 10.1007/
713 s00285-018-1305-z.

714 B. Allen and M. A. Nowak. Games on graphs. *EMS Surveys in Mathematical Sciences*, 1(1):
715 113–151, 2014. doi: 10.4171/emss/3.

716 B. Allen and C. E. Tarnita. Measures of success in a class of evolutionary models with fixed
717 population size and structure. *Journal of Mathematical Biology*, 68(1-2):109–143, 2014. doi:
718 10.1007/s00285-012-0622-x.

719 B. Allen, C. Sample, Y. Dementieva, R. C. Medeiros, C. Paoletti, and M. A. Nowak. The Molecular
720 Clock of Neutral Evolution Can Be Accelerated or Slowed by Asymmetric Spatial Structure.
721 *PLOS Computational Biology*, 11(2):e1004108, 2015. doi: 10.1371/journal.pcbi.1004108.

722 B. Allen, G. Lippner, Y.-T. Chen, B. Fotouhi, N. Momeni, S.-T. Yau, and M. A. Nowak. Evo-
723 lutionary dynamics on any population structure. *Nature*, 544(7649):227–230, 2017. doi:
724 10.1038/nature21723.

725 B. Allen, G. Lippner, and M. A. Nowak. Evolutionary games on isothermal graphs. *Nature*
726 *Communications*, 10(1):5107, 2019. doi: 10.1038/s41467-019-13006-7.

727 B. Allen, C. Sample, R. Jencks, J. Withers, P. Steinhagen, L. Brizuela, J. Kolodny, D. Parke,
 728 G. Lippner, and Y. A. Dementieva. Transient amplifiers of selection and reducers of fixation
 729 for death-Birth updating on graphs. *PLOS Computational Biology*, 16(1):e1007529, 2020. doi:
 730 10.1371/journal.pcbi.1007529.

731 T. Antal, S. Redner, and V. Sood. Evolutionary Dynamics on Degree-Heterogeneous Graphs.
 732 *Physical Review Letters*, 96(18), 2006. doi: 10.1103/physrevlett.96.188104.

733 L. E. Blume. The Statistical Mechanics of Strategic Interaction. *Games and Economic Behavior*,
 734 5(3):387–424, 1993. doi: 10.1006/game.1993.1023.

735 E. Boros and P. L. Hammer. Pseudo-Boolean optimization. *Discrete Applied Mathematics*, 123
 736 (1-3):155–225, 2002. doi: 10.1016/s0166-218x(01)00341-9.

737 M. Broom and J. Rychtář. An analysis of the fixation probability of a mutant on special classes
 738 of non-directed graphs. *Proceedings of the Royal Society A: Mathematical, Physical and Engi-
 neering Sciences*, 464(2098):2609–2627, 2008. doi: 10.1098/rspa.2008.0058.

740 M. Broom, J. Rychtář, and B. T. Stadler. Evolutionary Dynamics on Graphs - the Effect of Graph
 741 Structure and Initial Placement on Mutant Spread. *Journal of Statistical Theory and Practice*, 5
 742 (3):369–381, 2011. doi: 10.1080/15598608.2011.10412035.

743 Y.-T. Chen. Sharp benefit-to-cost rules for the evolution of cooperation on regular graphs. *The
 744 Annals of Applied Probability*, 23(2):637–664, 2013. doi: 10.1214/12-aap849.

745 Y.-T. Chen. Wright-fisher diffusions in stochastic spatial evolutionary games with death–birth
 746 updating. *The Annals of Applied Probability*, 28(6):3418–3490, 2018. doi: 10.1214/18-aap1390.

747 Y.-T. Chen, A. McAvoy, and M. A. Nowak. Fixation Probabilities for Any Configuration of Two
 748 Strategies on Regular Graphs. *Scientific Reports*, 6(1), 2016. doi: 10.1038/srep39181.

749 J. T. Cox. Coalescing random walks and voter model consensus times on the torus in \mathbb{Z}^d . *Annals
 750 of Probability*, 17(4):1333–1366, 1989. doi: 10.1214/aop/1176991158.

751 J. T. Cox and R. Durrett. Evolutionary games on the torus with weak selection. *Stochastic Pro-
 752 cesses and their Applications*, 126(8):2388–2409, 2016. doi: 10.1016/j.spa.2016.02.004.

753 F. A. Cuesta, P. G. Sequeiros, and Á. L. Rojo. Suppressors of selection. *PLOS One*, 12(7):
 754 e0180549, 2017. doi: 10.1371/journal.pone.0180549.

755 F. A. Cuesta, P. G. Sequeiros, and Á. L. Rojo. Evolutionary regime transitions in structured popu-
 756 lations. *PLOS One*, 13(11):e0200670, 2018. doi: 10.1371/journal.pone.0200670.

757 F. Débarre, C. Hauert, and M. Doebeli. Social evolution in structured populations. *Nature Com-
 758 munications*, 5, 2014. doi: 10.1038/ncomms4409.

759 R. Der, C. L. Epstein, and J. B. Plotkin. Generalized population models and the nature of genetic
 760 drift. *Theoretical Population Biology*, 80(2):80–99, 2011. doi: 10.1016/j.tpb.2011.06.004.

761 W. J. Ewens. *Mathematical Population Genetics*. Springer New York, 2004. doi: 10.1007/978-0-387-21822-9.

763 R. A. Fisher. *The Genetical Theory of Natural Selection*. Clarendon Press, 1930. doi: 10.5962/bhl.title.27468.

765 B. Fotouhi, N. Momeni, B. Allen, and M. A. Nowak. Conjoining uncooperative societies facilitates evolution of cooperation. *Nature Human Behaviour*, 2(7):492–499, 2018. doi: 10.1038/s41562-018-0368-6.

768 D. Fudenberg and L. A. Imhof. Imitation processes with small mutations. *Journal of Economic Theory*, 131(1):251–262, 2006. doi: 10.1016/j.jet.2005.04.006.

770 M. Grabisch, J.-L. Marichal, and M. Roubens. Equivalent Representations of Set Functions. *Mathematics of Operations Research*, 25(2):157–178, 2000. doi: 10.1287/moor.25.2.157.12225.

772 J. B. S. Haldane. A mathematical theory of natural and artificial selection, part V: Selection and mutation. In *Mathematical Proceedings of the Cambridge Philosophical Society*, volume 23, pages 838–844. Cambridge University Press, 1927. doi: 10.1017/S0305004100015644.

775 P. L. Hammer and S. Rudeanu. *Boolean Methods in Operations Research and Related Areas*. Springer Berlin Heidelberg, 1968. doi: 10.1007/978-3-642-85823-9.

777 C. Hauert and M. Doebeli. Spatial structure often inhibits the evolution of cooperation in the snowdrift game. *Nature*, 428(6983):643–646, 2004. doi: 10.1038/nature02360.

779 L. Hindersin and A. Traulsen. Counterintuitive properties of the fixation time in network-structured populations. *Journal of The Royal Society Interface*, 11(99), 2014. doi: 10.1098/rsif.2014.0606.

781 L. Hindersin and A. Traulsen. Most Undirected Random Graphs Are Amplifiers of Selection for Birth-Death Dynamics, but Suppressors of Selection for Death-Birth Dynamics. *PLOS Computational Biology*, 11(11):e1004437, 2015. doi: 10.1371/journal.pcbi.1004437.

784 L. Hindersin, M. Möller, A. Traulsen, and B. Bauer. Exact numerical calculation of fixation probability and time on graphs. *Biosystems*, 150:87–91, 2016. doi: 10.1016/j.biosystems.2016.08.010.

787 L. A. Imhof and M. A. Nowak. Evolutionary game dynamics in a Wright-Fisher process. *Journal of Mathematical Biology*, 52(5):667–681, 2006. doi: 10.1007/s00285-005-0369-8.

789 K. Kaveh, N. L. Komarova, and M. Kohandel. The duality of spatial death-birth and birth-death processes and limitations of the isothermal theorem. *Royal Society Open Science*, 2(4):140465–140465, 2015. doi: 10.1098/rsos.140465.

792 M. Kimura. On the Probability of Fixation of Mutant Genes in a Population. *Genetics*, 47(6):713–719, 1962.

794 J. F. C. Kingman. The coalescent. *Stochastic Processes and their Applications*, 13(3):235–248,
795 1982. doi: 10.1016/0304-4149(82)90011-4.

796 F. Le Gall. Faster Algorithms for Rectangular Matrix Multiplication. In *2012 IEEE 53rd Annual*
797 *Symposium on Foundations of Computer Science*. IEEE, 2012. doi: 10.1109/focs.2012.80.

798 S. Lessard and V. Ladret. The probability of fixation of a single mutant in an exchangeable
799 selection model. *Journal of Mathematical Biology*, 54(5):721–744, 2007. doi: 10.1007/
800 s00285-007-0069-7.

801 E. Lieberman, C. Hauert, and M. A. Nowak. Evolutionary dynamics on graphs. *Nature*, 433(7023):
802 312–316, 2005. doi: 10.1038/nature03204.

803 T. M. Liggett. *Interacting Particle Systems*. Springer New York, 1985. doi: 10.1007/
804 978-1-4613-8542-4.

805 W. Maciejewski. Reproductive value in graph-structured populations. *Journal of Theoretical*
806 *Biology*, 340:285–293, 2014. doi: 10.1016/j.jtbi.2013.09.032.

807 W. Maciejewski, F. Fu, and C. Hauert. Evolutionary game dynamics in populations with heteroge-
808 nous structures. *PLoS Computational Biology*, 10(4):e1003567, 2014. doi: 10.1371/journal.
809 pcbi.1003567.

810 A. McAvoy and C. Hauert. Structure coefficients and strategy selection in multiplayer games.
811 *Journal of Mathematical Biology*, 72(1):203–238, 2016. doi: 10.1007/s00285-015-0882-3.

812 A. McAvoy, B. Allen, and M. A. Nowak. Social goods dilemmas in heterogeneous societies.
813 *Nature Human Behaviour*, 4(8):819–831, 2020. doi: 10.1038/s41562-020-0881-2.

814 D. M. McCandlish, C. L. Epstein, and J. B. Plotkin. Formal properties of the probability of fixation:
815 Identities, inequalities and approximations. *Theoretical Population Biology*, 99:98–113, 2015.
816 doi: 10.1016/j.tpb.2014.11.004.

817 M. Möller, L. Hindersin, and A. Traulsen. Exploring and mapping the universe of evolutionary
818 graphs identifies structural properties affecting fixation probability and time. *Communications*
819 *Biology*, 2(1):137, 2019. doi: 10.1038/s42003-019-0374-x.

820 T. Monk, P. Green, and M. Paulin. Martingales and fixation probabilities of evolutionary graphs.
821 *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 470
822 (2165):20130730–20130730, 2014. doi: 10.1098/rspa.2013.0730.

823 P. A. P. Moran. Random processes in genetics. *Mathematical Proceedings of the Cambridge*
824 *Philosophical Society*, 54(01):60, 1958. doi: 10.1017/s0305004100033193.

825 C. G. Nathanson, C. E. Tarnita, and M. A. Nowak. Calculating Evolutionary Dynamics in Struc-
826 tured Populations. *PLoS Computational Biology*, 5(12):e1000615, 2009. doi: 10.1371/journal.
827 pcbi.1000615.

828 M. A. Nowak and R. M. May. Evolutionary games and spatial chaos. *Nature*, 359(6398):826–829,
829 1992. doi: 10.1038/359826a0.

830 M. A. Nowak, A. Sasaki, C. Taylor, and D. Fudenberg. Emergence of cooperation and evolutionary
831 stability in finite populations. *Nature*, 428(6983):646–650, 2004. doi: 10.1038/nature02414.

832 M. A. Nowak, C. E. Tarnita, and T. Antal. Evolutionary dynamics in structured populations.
833 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365(1537):19–30, 2009.
834 doi: 10.1098/rstb.2009.0215.

835 H. Ohtsuki. Evolutionary dynamics of n -player games played by relatives. *Philosophical Transac-*
836 *tions of the Royal Society B: Biological Sciences*, 369(1642):20130359–20130359, 2014. doi:
837 10.1098/rstb.2013.0359.

838 H. Ohtsuki, C. Hauert, E. Lieberman, and M. A. Nowak. A simple rule for the evolution of
839 cooperation on graphs and social networks. *Nature*, 441(7092):502–505, 2006. doi: 10.1038/
840 nature04605.

841 Z. Patwa and L. M. Wahl. The fixation probability of beneficial mutations. *Journal of The Royal*
842 *Society Interface*, 5(28):1279–1289, 2008. doi: 10.1098/rsif.2008.0248.

843 A. Pavlogiannis, J. Tkadlec, K. Chatterjee, and M. A. Nowak. Construction of arbitrarily strong
844 amplifiers of natural selection using evolutionary graph theory. *Communications Biology*, 1(1),
845 2018. doi: 10.1038/s42003-018-0078-7.

846 J. Peña, B. Wu, and A. Traulsen. Ordering structured populations in multiplayer cooperation
847 games. *Journal of The Royal Society Interface*, 13(114):20150881, 2016. doi: 10.1098/rsif.
848 2015.0881.

849 F. Rousset. A Minimal Derivation of Convergence Stability Measures. *Journal of Theoretical*
850 *Biology*, 221(4):665–668, 2003. doi: 10.1006/jtbi.2003.3210.

851 D. Roze and F. Rousset. Selection and drift in subdivided populations: a straightforward method
852 for deriving diffusion approximations and applications involving dominance, selfing and local
853 extinctions. *Genetics*, 165(4):2153–2166, 2003.

854 C. Sample and B. Allen. The limits of weak selection and large population size in evo-
855 lutionary game theory. *Journal of Mathematical Biology*, 75(5):1285–1317, 2017. doi:
856 10.1007/s00285-017-1119-4.

857 F. C. Santos and J. M. Pacheco. Scale-free networks provide a unifying framework for the emer-
858 gence of cooperation. *Physical Review Letters*, 95(9):098104, 2005. doi: 10.1103/physrevlett.
859 95.098104.

860 F. C. Santos, M. D. Santos, and J. M. Pacheco. Social diversity promotes the emergence of coop-
861 eration in public goods games. *Nature*, 454(7201):213–216, 2008. doi: 10.1038/nature06940.

862 K. Sigmund. *The calculus of selfishness*. Princeton University Press, 2010. doi: 10.1515/
863 9781400832255.

864 G. Szabó and G. Fáth. Evolutionary games on graphs. *Physics Reports*, 446(4-6):97–216, 2007.
865 doi: 10.1016/j.physrep.2007.04.004.

866 C. E. Tarnita and P. D. Taylor. Measures of Relative Fitness of Social Behaviors in Finite Structured
867 Population Models. *The American Naturalist*, 184(4):477–488, 2014. doi: 10.1086/677924.

868 C. E. Tarnita, H. Ohtsuki, T. Antal, F. Fu, and M. A. Nowak. Strategy selection in structured
869 populations. *Journal of Theoretical Biology*, 259(3):570–581, 2009. doi: 10.1016/j.jtbi.2009.
870 03.035.

871 C. Taylor, D. Fudenberg, A. Sasaki, and M. A. Nowak. Evolutionary game dynamics in finite
872 populations. *Bulletin of Mathematical Biology*, 66(6):1621–1644, 2004. doi: 10.1016/j.bulm.
873 2004.03.004.

874 P. D. Taylor. Allele-Frequency Change in a Class-Structured Population. *The American Naturalist*,
875 135(1):95–106, 1990. doi: 10.1086/285034.

876 P. D. Taylor, T. Day, and G. Wild. Evolution of cooperation in a finite homogeneous graph. *Nature*,
877 447(7143):469–472, 2007. doi: 10.1038/nature05784.

878 J. Tkadlec, A. Pavlogiannis, K. Chatterjee, and M. A. Nowak. Population structure determines the
879 tradeoff between fixation probability and fixation time. *Communications Biology*, 2, 2019. doi:
880 10.1038/s42003-019-0373-y.

881 J. Tkadlec, A. Pavlogiannis, K. Chatterjee, and M. A. Nowak. Limits on amplifiers of natural
882 selection under death-birth updating. *PLOS Computational Biology*, 16(1):e1007494, 2020.
883 doi: 10.1371/journal.pcbi.1007494.

884 A. Traulsen and C. Hauert. Stochastic Evolutionary Game Dynamics. In *Reviews of Nonlinear
885 Dynamics and Complexity*, pages 25–61. Wiley-Blackwell, 2010. doi: 10.1002/9783527628001.
886 ch2.

887 A. Traulsen, J. M. Pacheco, and L. A. Imhof. Stochasticity and evolutionary stability. *Physical
888 Review E*, 74(2):021905, 2006. doi: 10.1103/physreve.74.021905.

889 J. Van Cleve. Social evolution and genetic interactions in the short and long term. *Theoretical
890 Population Biology*, 103:2–26, 2015. doi: 10.1016/j.tpb.2015.05.002.

891 B. Voorhees. Birth-death fixation probabilities for structured populations. *Proceedings of the Royal
892 Society A: Mathematical, Physical and Engineering Sciences*, 469(2153):20120248, 2013. doi:
893 10.1098/rspa.2012.0248.

894 J. Wakeley. *Coalescent Theory: An Introduction*. Macmillan Learning, 2016.

895 S. Wright. Evolution in Mendelian populations. *Genetics*, 16:97–159, 1931.