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Abstract1

In evolutionary dynamics, a key measure of a mutant trait’s success is the probability that2

it takes over the population given some initial mutant-appearance distribution. This “fixation3

probability” is difficult to compute in general, as it depends on the mutation’s effect on the4

organism as well as the population’s spatial structure, mating patterns, and other factors. In5

this study, we consider weak selection, which means that the mutation’s effect on the organism6

is small. We obtain a weak-selection perturbation expansion of a mutant’s fixation probability,7

from an arbitrary initial configuration of mutant and resident types. Our results apply to a broad8

class of stochastic evolutionary models, in which the size and spatial structure are arbitrary9

(but fixed). The problem of whether selection favors a given trait is thereby reduced from10

exponential to polynomial complexity in the population size, when selection is weak. We11

conclude by applying these methods to obtain new results for evolutionary dynamics on graphs.12

1 Introduction13

Many studies of stochastic evolutionary dynamics concern the competition of two types (traits)14

in a finite population. Through a series of births and deaths, the composition of the population15

changes over time. Absent recurring mutation, one of the two types will eventually become fixed16
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and the other will go extinct. Such models may incorporate frequency-dependent selection as well17

as spatial structure or other forms of population structure. The fundamental question is to identify18

the selective differences that favor the fixation of one type over the other.19

This question is typically answered by computing a trait’s fixation probability (Haldane, 1927;20

Moran, 1958; Kimura, 1962; Patwa and Wahl, 2008; Traulsen and Hauert, 2010; Der et al., 2011;21

Hindersin and Traulsen, 2014; McCandlish et al., 2015; Hindersin et al., 2016) as a function of22

the initial configuration of the two types. Direct calculation of a mutant’s fixation probability23

is possible in simple models of well-mixed populations (Moran, 1958; Taylor et al., 2004) or24

spatially structured populations that are highly symmetric (Lieberman et al., 2005; Broom and25

Rychtář, 2008; Hindersin and Traulsen, 2014) or small (Hindersin and Traulsen, 2015; Cuesta26

et al., 2018; Möller et al., 2019; Tkadlec et al., 2019). For large populations, fixation probabilities27

can sometimes be approximated using diffusion methods (Kimura, 1962; Roze and Rousset, 2003;28

Ewens, 2004; Chen, 2018).29

When selection is weak, perturbative methods can be applied to the computation of fixation30

probabilities (Haldane, 1927; Nowak et al., 2004; Lessard and Ladret, 2007). The first-order effects31

of selection on fixation probabilities provide information about whether selection favors one trait32

over another, and, if so, by how much. This perturbative approach is often paired with methods33

from coalescent theory (Rousset, 2003; Chen, 2013; Van Cleve, 2015; Chen et al., 2016; Allen34

et al., 2017, 2020).35

Our aim in this work is to generalize the weak-selection method for computing fixation prob-36

ability to a broad class of evolutionary models. Our main result is a first-order weak-selection37

expansion of a mutant’s fixation probability from any initial condition. This result applies to ar-38

bitrary forms of spatial structure and frequency-dependent selection, and the expansion can be39

computed for any particular model and initial configuration by solving a system of linear equa-40

tions. Under conditions that apply to most models of interest, the size of this system—and hence41

the complexity of computing this expansion—exhibits polynomial growth in the population size.42

Our approach is based on a modeling framework developed by Allen and Tarnita (2014) and43

Allen and McAvoy (2019), which is described in Section 2. This framework describes stochastic44

trait transmission in a population of fixed size, N, and spatial structure. This setup leads to a finite45

Markov chain model of selection. Special cases of this framework include the Moran (Moran,46

1958) and Wright-Fisher models (Fisher, 1930; Wright, 1931; Imhof and Nowak, 2006), as well as47

evolutionary games in graph-structured populations (Ohtsuki et al., 2006; Szabó and Fáth, 2007;48

Nowak et al., 2009; Allen et al., 2017). We use this framework to define the degree of an evolu-49

tionary process, which later plays an important role in determining the computational complexity50

of calculating fixation probabilities.51

In Section 3, we establish a connection between sojourn times and stationary probabilities.52

Specifically, we compare the original Markov chain, which is absorbing, to an amended Markov53

chain, in which the initial configuration ξ can be re-established from the all-A and all-B states54

with some probability, u. This amended Markov chain is recurrent, and it has a unique stationary55

distribution. We show that sojourn times for transient states of the original Markov chain are equal56

to u-derivatives, at u = 0, of stationary probabilities in the amended chain. We also define a57

set-valued coalescent process that is used in the proof of our main results.58
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Section 4 proves our main result regarding fixation probabilities. We consider the fixation59

probability, ρA (ξ), of type A in a population whose initial configuration of A and B is ξ. The60

intensity of selection, δ, which quantifies selective differences between the two types, is assumed61

to be sufficiently weak, meaning δ ≪ 1. Our main result is a formula for calculating ρA (ξ) to62

first order in the selection intensity δ. This formula depends on the first-order effects of selection63

on marginal trait-transmission probabilities together with a set of sojourn times for neutral drift.64

The latter can be evaluated by solving a linear system of size O
(

ND+1), where D is the degree of65

the process. This linear system is what bounds the complexity in N of calculating the first-order66

coefficient, d
dδ

⏐⏐⏐
δ=0

ρA (ξ).67

In Section 5, we extend our main result to the case that the initial configuration of A and B68

is stochastic rather than deterministic. We derive a formula for d
dδ

⏐⏐⏐
δ=0

EµA [ρA], where µA is an69

arbitrary distribution over initial configurations of A and B (and which can also depend on δ).70

Section 6 considers relative measures of evolutionary success (Tarnita and Taylor, 2014) obtained71

by comparing EµA [ρA] to EµB [ρB] when A and B each have their own initial distributions, µA72

and µB.73

Finally, we apply our results to several well-known questions in evolutionary dynamics, partic-74

ularly on graph-structured populations. Section 7 discusses the case of constant fecundity, wherein75

the reproductive rate of an individual depends on only its own type. A large body of research76

(Lieberman et al., 2005; Broom and Rychtář, 2008; Broom et al., 2011; Voorhees, 2013; Monk77

et al., 2014; Hindersin and Traulsen, 2015; Kaveh et al., 2015; Cuesta et al., 2017; Pavlogiannis78

et al., 2018; Möller et al., 2019; Tkadlec et al., 2019) aims to understand the effects of graph79

structure on fixation probabilities in this context. Our results provide efficient recipes to calculate80

fixation probabilities under weak selection. Section 8 turns to evolutionary game theory. For a81

particular prisoner’s dilemma game (the “donation game”; Sigmund, 2010), we derive a formula82

for the fixation probability of cooperation from any starting configuration on an arbitrary weighted83

graph, generalizing and unifying a number of earlier results (Ohtsuki et al., 2006; Taylor et al.,84

2007; Chen, 2013; Allen and Nowak, 2014; Chen et al., 2016; Allen et al., 2017).85

2 Modeling evolutionary dynamics86

We employ a framework previously developed by Allen and Tarnita (2014) and Allen and McAvoy87

(2019) to represent an evolving population with arbitrary forms of spatial structure and frequency88

dependence. In addition to being described below, all of the notation and symbols we use are89

outlined in Table 1. Although we will use the language of a haploid asexual population, our90

formalism applies equally well to diploid, haplodiploid, or other populations by considering the91

alleles to be asexual replicators (the “gene’s-eye view”), as described in Allen and McAvoy (2019).92

As a source of motivation and a tool to illustrate the general model, we consider the Moran pro-93

cess (Moran, 1958) as a running example. The Moran process models evolution in an unstructured94

population consisting of two types, a mutant (A) and a resident (B), of relative fecundity (repro-95

ductive rate) r and 1, respectively. In a population consisting of i individuals of type A and N − i96

individuals of type B, the probability that type A is selected to reproduce is ir/ (ir + N − i). With97
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probability (N − i) / (ir + N − i), type B is selected to reproduce. The offspring, which inherits98

the type of the parent, then replaces a random individual in the population. Throughout our discus-99

sion of the framework below, we return to this simple example repeatedly (with more sophisticated100

examples following in later sections).101

2.1 Modeling assumptions102

We consider competition between two alleles, A and B, in a population of finite size, N. The state103

of the population is given by x ∈ {0, 1}N, where xi = 1 (resp. xi = 0) indicates that individual i104

has type A (resp. B).105

Since we are mainly concerned with the probability of fixation rather than the timescale, we106

may assume without a loss of generality that the population evolves in discrete time. However, the107

results reported here can also be applied to continuous-time models in a straightforward manner.108

In what follows, we assume that the population’s state is updated in discrete time steps via replace-109

ment events. A replacement event is a pair, (R, α), where R ⊆ {1, . . . , N} is the set of individuals110

who are replaced in a given time step and α : R → {1, . . . , N} is the offspring-to-parent map. For111

a fixed replacement event, (R, α), the state of the population at time t + 1, xt+1, is obtained from112

the state of the population at time t, xt, by letting113

xt+1
i =

⎧⎪⎨⎪⎩
xt

α(i) i ∈ R,

xt
i i ̸∈ R.

(1)

We can express such a transition more concisely by defining the extended mapping114

α̃ : {1, . . . , N} −→ {1, . . . , N}

: i ↦−→

⎧⎪⎨⎪⎩
α (i) i ∈ R,

i i ̸∈ R.
(2)

We then have xt+1 = xt
α̃, where xα̃ is the vector whose ith component is xα̃(i).115

In state x, we denote by
{

p(R,α) (x)
}
(R,α)

the distribution from which the replacement event116

is chosen. We call this distribution (as a function of x) the replacement rule. We assume that117

this replacement rule depends on an underlying parameter δ ⩾ 0 that represents the intensity of118

selection. Neutral drift corresponds to δ = 0, and weak selection is the regime δ ≪ 1.119

Example: Moran process. In the Moran process, a slightly advantageous mutant has fecundity120

r = 1 + δ for δ ≪ 1. The probability that replacement event (R, α) is chosen is121

p(R,α) (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xα(i)r + 1 − xα(i)

∑N
j=1 (xir + 1 − xi)

1
N

R = {i} ,

0 |R| ̸= 1.

(3)
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That is, assuming R = {i}, the probability that α (i) reproduces is proportional to xα(i)r + 1 −122

xα(i) (which is r if α (i) has type A and 1 otherwise). The constant of proportionality is the123

reciprocal of the total population fecundity, ∑N
j=1 (xir + 1 − xi). If α (i) reproduces, then the124

probability that the offspring replaces i is simply 1/N.125

For brevity, we write B := {0, 1}. Each replacement rule defines a Markov chain on BN,126

according to Eq. (1). We let Px→y be the probability of transitioning from state x to state y in this127

Markov chain.128

We make three assumptions on the replacement rule. The first is that for every δ, there exists129

at least one individual who can generate a lineage that takes over the entire population. We state130

this assumption as an axiom:131

Fixation Axiom. There exists i ∈ {1, . . . , N}, m ⩾ 1, and a sequence {(Rk, αk)}m
k=1 with132

• p(Rk,αk)
(x) > 0 for every k ∈ {1, . . . , m} and x ∈ BN;133

• i ∈ Rk for some k ∈ {1, . . . , m};134

• for every j ∈ {1, . . . , N}, we have α̃1 ◦ α̃2 ◦ · · · ◦ α̃m (j) = i.135

The requirement that i ∈ Rk for some k ∈ {1, . . . , m} guarantees that the individual at i cannot136

live forever, since otherwise no evolution would occur (Allen and McAvoy, 2019). Allen and137

Tarnita (2014) showed that, under the Fixation Axiom, this Markov chain has two absorbing states:138

the state A in which xi = 1 for every i (all-A), and the state B in which xi = 0 for every i (all-B).139

All other states are transient. We denote the set of all transient states by BN
⊺ := BN − {A, B}.140

Our second assumption is that when δ = 0 (neutral drift), the replacement rule does not depend141

on the state, x. In this case, we denote the replacement rule by
{

p◦(R,α)

}
(R,α)

. Note that we have142

removed the dependence on x. This assumption arises because, under neutral drift, the competing143

alleles are interchangeable, and so the probabilities of replacement should not depend on how144

these alleles are distributed among individuals. More generally, in the quantities derived from the145

replacement rule below (e.g. birth rates and death probabilities), we use the superscript ◦ to denote146

their values under neutral drift.147

Our third assumption is that for every x ∈ BN and every replacement event (R, α), p(R,α) (x)148

is a smooth function of δ in a small neighborhood of δ = 0. This assumption enables a perturbation149

expansion in the selection strength, δ.150

Example: Moran process. Smoothness in δ is evident from Eq. (3) whenever r is itself a smooth151

function of δ.152

2.2 Quantifying selection153

Having outlined the class of models under consideration, we now define quantities that characterize154

natural selection in a given population state x ∈ BN. For any i and j in {1, . . . , N}, let eij (x) be155
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the marginal probability that i transmits its offspring to j in state x, i.e.156

eij (x) := ∑
(R,α)

j∈R, α(j)=i

p(R,α) (x) . (4)

The birth rate (expected offspring number) of i is bi (x) := ∑N
j=1 eij (x) and the death probability157

of i is di (x) := ∑N
j=1 eji (x). Using these quantities, we can write the expected change in the158

frequency of A due to selection as (Tarnita and Taylor, 2014; Allen and McAvoy, 2019)159

∆sel (x) :=
N

∑
i=1

xi (bi (x)− di (x)) . (5)

Any real-valued function on BN is called a pseudo-Boolean function (Hammer and Rudeanu,160

1968). Since eij (x) and its derivative with respect to δ at δ = 0 are pseudo-Boolean functions,161

for every i and j there is a unique multi-linear polynomial representation (Hammer and Rudeanu,162

1968; Boros and Hammer, 2002),163

d
dδ

⏐⏐⏐⏐⏐
δ=0

eij (x) = ∑
I⊆{1,...,N}

cij
I xI , (6)

where the cij
I are a collection of real numbers (Fourier coefficients) indexed by the subsets I ⊆164

{1, . . . , N}, and xI := ∏i∈I xi. Note that xI is a scalar, not a state, with xI = 1 if and only165

if xi = 1 for each i ∈ I. This representation includes the constant term cij
∅, linear terms of the166

form cij
{k}xk, quadratic terms of the form cij

{h,k}xhxk, and so on up through cij
{1,...,N}x1 · · · xN. The167

coefficients cij
I quantify how genetic assortment among sets of individuals affects the probability168

that i’s offspring replaces j, under weak selection.169

We let Dij denote the degree of the above representation, defined as the degree of the highest-170

order nonzero term:171

Dij := max
{

k : cij
I ̸= 0 for some I ⊆ {1, . . . , N} with |I| = k

}
. (7)

(In the trivial case that cij
I = 0 for every I ⊆ {1, . . . , N}, we set Dij = 0.)172

For I ⊆ {1, . . . , N}, let 1I ∈ BN denote the state in which xi = 1 for i ∈ I and xi = 0173

for i ̸∈ I. By applying a Möbius transform to Eq. (6) (Grabisch et al., 2000), we can express the174

coefficients cij
I as175

cij
I =

d
dδ

⏐⏐⏐⏐⏐
δ=0

∑
J⊆I

(−1)|I|−|J| eij (1J) . (8)

This expression provides a recipe for calculating the coefficients cij
I directly from eij (x) for a given176

process (see Section 8).177

We define the degree of the overall evolutionary process, under weak selection, to be the max-178

imal degree in Eq. (6) as i and j run over all pairs of sites:179
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Definition 1. The degree of the process under weak selection is D := max1⩽i,j⩽N Dij.180

Example: Moran process. In this particular process, we have181

eij (x) =
xir + 1 − xi

∑N
k=1 (xkr + 1 − xk)

1
N

. (9)

If r = r (δ) is a smooth function of δ with r (0) = 1, then182

d
dδ

⏐⏐⏐⏐⏐
δ=0

eij (x) =
1

N2 r′ (0)

(
xi −

1
N

N

∑
k=1

xk

)
. (10)

The degree of the Moran process is thus D = 1, with cij
∅ = 0 and183

cij
{k} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

N2

(
1 − 1

N

)
r′ (0) k = i,

− 1
N3 r′ (0) k ̸= i.

(11)

Beyond this linear example, in a degree-two process, d
dδ

⏐⏐
δ=0eij (x) can be represented as a184

quadratic function of x1, . . . , xN, with terms only of the form cij
∅, cij

{k}xk, or cij
{h,k}xhxk. In this case,185

replacement probabilities under weak selection depend on only pairwise statistics of assortment186

and not on higher-order associations.187

We turn now to fixation probabilities. For ξ ∈ BN, let ρA (ξ) (resp. ρB (ξ)) be the probability188

that the state A (resp. B) is eventually reached after starting in state ξ. Since states A and B are189

absorbing and all other states are transient, we have ρB (ξ) = 1 − ρA (ξ) for each ξ ∈ BN.190

In the case of neutral drift (δ = 0), we let πi be the probability of fixation for type A when191

starting from state 1{i}; that is, πi = ρA

(
1{i}

)
when δ = 0. Equivalently, πi is the probability,192

under neutral drift, that i is eventually the ancestor of the entire population. These site-specific193

fixation probabilities are the unique solution to the system of equations (Allen et al., 2015, Theorem194

2; Allen and McAvoy, 2019, Theorem 7)195

N

∑
j=1

e◦ijπj =
N

∑
j=1

e◦jiπi (1 ⩽ i ⩽ N) ; (12a)

N

∑
i=1

πi = 1. (12b)

The quantity πi can be interpreted as the reproductive value (RV) of site i (Fisher, 1930; Taylor,196

1990; Maciejewski, 2014; Allen and McAvoy, 2019), in that it quantifies the expected contribution197

of site i to the future gene pool, under neutral drift. For any state x ∈ BN, the RV-weighted198

frequency, x̂ := ∑N
i=1 πixi, is equal to the probability that A becomes fixed under neutral drift199

when the process starts in state x (Allen and McAvoy, 2019, Theorem 7).200
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Example: Moran process. The reproductive value of every location is 1/N due to the fact that the201

population is unstructured. In a state with i mutants, the fixation probability of A is thus i/N.202

In later examples, we will see that this distribution need not be uniform when the population is203

spatially structured.204

Reproductive values provide a natural weighting for quantities characterizing selection; for ex-205

ample, we define the RV-weighted birth rates and death probabilities to be b̂i (x) := ∑N
j=1 eij (x)πj206

and d̂i (x) := ∑N
j=1 eji (x)πi, respectively. In state x, the change in reproductive-value-weighted207

frequency of A due to selection, in one step of the process, is208

∆̂sel (x) :=
N

∑
i=1

xi

(
b̂i (x)− d̂i (x)

)
=

N

∑
i=1

πi

N

∑
j=1

(
xj − xi

)
eji (x) (13)

(Allen and McAvoy, 2019). Since b̂◦i = d̂◦i for i = 1, . . . , N, it follows that ∆̂◦
sel (x) = 0 for every209

x ∈ BN.210

3 Stationary distributions, sojourn times, and coalescence211

We are ultimately interested in quantifying (to first order in δ) the probability ρA (ξ) that type212

A reaches fixation from initial state ξ. To do so, we will need to quantify the frequency with213

which the Markov chain visits a given state x ∈ BN prior to absorption in state A or B. We will214

describe this frequency in two ways: using sojourn times and using the stationary distribution of215

an amended Markov chain. These two notions are closely connected, as we prove in Proposition 1216

below.217

We define the sojourn time tξ (x), for x ∈ BN, to be the expected number of visits to x prior to218

hitting {A, B} when the process begins in state ξ ∈ BN
⊺ . These sojourn times tξ (x) are uniquely219

determined by the recurrence relation220

tξ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x ∈ {A, B} ,

1 + ∑
y∈BN

tξ (y) Py→x x = ξ,

∑
y∈BN

tξ (y) Py→x x ̸∈ {A, B, ξ} .

(14)

Since the transition probabilities are continuously differentiable in δ in a neighborhood of δ =221

0, so is tξ (x).222

It is also helpful to consider an amended Markov chain that can “reset” in state ξ ∈ BN
⊺ after223

one of the monoallelic states, A or B, is reached. We introduce a new parameter u > 0, and define,224
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for x, y ∈ BN, the amended transition probabilities225

P⟳(ξ)
x→y :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u x ∈ {A, B} , y = ξ,

(1 − u) Px→y x ∈ {A, B} , y ̸= ξ,

Px→y x ̸∈ {A, B} .

(15)

Above, Px→y refers to the transition probability in the original Markov chain. Thus the amended226

chain has the same transition probabilities except that, from either of the monoallelic states A or227

B, there is probability u to transition to state ξ (see Fig. 1). Since ξ can be any polymorphic228

state, and since ξ is the only polymorphic state that can follow A or B, any interpretation of u as229

a “mutation” is likely tenuous from a biological standpoint. However, this amended chain plays230

an integral technical role in deriving our main results, which in turn do apply under much more231

realistic assumptions of mutant appearance (discussed in Section 5). In particular, the amended232

chain is clearly aperiodic, and it follows from the Fixation Axiom that it has a single closed com-233

municating class, and all states not in this class are transient. The amended chain therefore has a234

unique stationary distribution, which we denote by
{

π⟳(ξ) (x)
}

x∈BN
, the notation ⟳ (ξ) indicat-235

ing regeneration into state ξ.236

Consider now the Markov chain on the monoallelic states whose transition matrix is237

Λ :=

( A B

A ρA (ξ) ρB (ξ)

B ρA (ξ) ρB (ξ)

)
. (16)

This chain describes the process in which transitions are first from A or B to ξ, deterministically,238

and then from ξ to A with probability ρA (ξ) and to B with probability ρB (ξ). This chain is239

“embedded” in the amended chain in the sense that when u is small, the amended chain spends240

most of its time in {A, B}, but occasionally it transitions to ξ before returning to {A, B} according241

to the fixation probabilities. More formally, on a state-by-state basis, the stationary distribution of242

the embedded chain coincides with π⟳(ξ) on the monoallelic states in the limit u → 0 (Fudenberg243

and Imhof, 2006, Theorem 2), i.e.244

lim
u→0

π⟳(ξ) (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρA (ξ) x = A,

ρB (ξ) x = B,

0 x ̸∈ {A, B} .

(17)

The following result, which is key to our methodology, shows that sojourn times of the original245

chain coincide with the u-derivative, at u = 0, of the stationary distribution for the amended chain:246
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𝜌! 𝝃

𝜌" 𝝃

𝑢

𝑢

state 𝝃

state 𝐀 (all-𝐴)

state 𝐁 (all-𝐵)

1 − 𝑢

1 − 𝑢

Figure 1: Transitions into a fixed transient state, ξ, following absorption. When starting from a non-monomorphic
state, the process will eventually reach one of the two absorbing states (all-A or all-B) by the Fixation Axiom. From
each absorbing state, the process transitions to ξ with probability u ⩾ 0. This “artificial” mutation allows one to focus
on the fixation probabilities when the process is started in a fixed initial configuration, ξ, of A and B.
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Proposition 1. For every non-monoallelic state x ∈ BN
⊺ ,247

d
du

⏐⏐⏐⏐⏐
u=0

π⟳(ξ) (x) = tξ (x) . (18)

Proof. For x ∈ BN
⊺ , stationarity implies248

π⟳(ξ) (x) = ∑
y∈BN

π⟳(ξ) (y) P⟳(ξ)
y→x

= ∑
y∈BN

⊺

π⟳(ξ) (y) Py→x + uδξ,x

(
π⟳(ξ) (A) + π⟳(ξ) (B)

)
, (19)

where the Kronecker symbol δx,ξ is equal to 1 if x = ξ and 0 otherwise. Taking the u-derivative249

at u = 0, and noting that limu→0

(
π⟳(ξ) (A) + π⟳(ξ) (B)

)
= 1 by Eq. (17), we obtain250

d
du

⏐⏐⏐⏐⏐
u=0

π⟳(ξ) (x) = ∑
y∈BN

⊺

d
du

⏐⏐⏐⏐⏐
u=0

π⟳(ξ) (y) Py→x + δξ,x. (20)

We observe that d
du

⏐⏐⏐
u=0

π⟳(ξ) (x) satisfies the same recurrence relation, Eq. (14), as tξ (x). Since251

this recurrence relation uniquely defines the times tξ (x), we have Eq. (18).252

It follows immediately from Proposition 1 that tξ
(
BN
⊺
)
, the expected time to absorption when253

starting from state ξ, is equal to limu→0 π⟳(ξ)

(
BN
⊺
)

/u. With E⟳(ξ) [·] denoting expectation with254

respect to π⟳(ξ), we have the following result:255

Corollary 1. For any function φ : BN → R with φ (A) = φ (B) = 0,256

d
du

⏐⏐⏐⏐⏐
u=0

E⟳(ξ) [φ] =
∞

∑
t=0

E
[

φ
(
xt) | x0 = ξ

]
, (21)

and the sum on the right-hand side converges absolutely.257

Proof. ∑∞
t=0
⏐⏐E [φ (xt) | x0 = ξ

]⏐⏐ is bounded by tξ
(
BN
⊺
)

maxx∈BN
⊺
|φ (x)|, so the right-hand258

side of Eq. (21) converges absolutely. We may therefore rearrange this summation to obtain259

∞

∑
t=0

E
[

φ
(
xt) | x0 = ξ

]
=

∞

∑
t=0

∑
x∈BN

⊺

P
[
xt = x | x0 = ξ

]
φ (x)

= ∑
x∈BN

⊺

φ (x)
∞

∑
t=0

P
[
xt = x | x0 = ξ

]
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= ∑
x∈BN

⊺

φ (x) tξ (x)

=
d

du

⏐⏐⏐⏐⏐
u=0

E⟳(ξ) [φ] , (22)

as desired.260

In light of Corollary 1, we define the operator ⟨·⟩ξ, acting on state functions φ : BN → R with261

φ (A) = φ (B) = 0, by262

⟨φ⟩ξ :=
d

du

⏐⏐⏐⏐⏐
u=0

E⟳(ξ) [φ] =
∞

∑
t=0

E
[

φ(xt) | x0 = ξ
]

. (23)

We will use the notation ⟨·⟩◦ξ to indicate that the above expectations are taken under neutral drift263

(δ = 0).264

For any function φ : BN → R and any α̃ : {1, . . . , N} → {1, . . . , N}, we define φα̃ : BN →265

R by φα̃ (x) = φ (xα̃). If φ (A) = φ (B) = 0, then266

⟨φ⟩◦ξ = φ (ξ) +
∞

∑
t=0

E◦
[

φ(xt+1) | x0 = ξ
]

= φ (ξ) +
∞

∑
t=0

∑
(R,α)

p◦(R,α) E◦
[

φ
(
xt

α̃

)
| x0 = ξ

]
= φ (ξ) + ∑

(R,α)
p◦(R,α) ⟨φα̃⟩◦ξ , (24)

which gives the following lemma:267

Lemma 1. For any state function φ : BN → R with φ (A) = φ (B) = 0,268

⟨φ⟩◦ξ = φ (ξ) + ∑
(R,α)

p◦(R,α) ⟨φα̃⟩◦ξ . (25)

Allen and McAvoy (2019) introduced the rare-mutation conditional (RMC) distribution, de-269

fined for a state x as limu→0 P⟳(ξ)

[
X = x | x ∈ BN

⊺
]
, where P⟳(ξ) [·] denotes probability with270

respect to π⟳(ξ). Here, we show that this distribution can be equated to the fraction of time spent271

in state x out of all transient states:272

Corollary 2. For each x ∈ BN
⊺273

lim
u→0

P⟳(ξ)

[
X = x | x ∈ BN

⊺

]
=

tξ (x)
tξ
(
BN
⊺
) . (26)
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Proof. For x ∈ BN
⊺ ,274

lim
u→0

P⟳(ξ)

[
X = x | x ∈ BN

⊺

]
= lim

u→0

π⟳(ξ) (x)

π⟳(ξ)

(
BN
⊺
)

=
limu→0 π⟳(ξ) (x) /u

limu→0 π⟳(ξ)

(
BN
⊺
)

/u

=
tξ (x)

tξ
(
BN
⊺
) , (27)

by Proposition 1.275

Finally, we introduce a set-valued Markov chain that will be used in the proof of our main result.276

The states of this Markov chain are subsets of {1, . . . , N}. From a given state I ⊆ {1, . . . , N}, a277

new state I′ is determined by choosing a replacement event (R, α) according to the neutral proba-278

bilities p◦(R,α), and setting I′ = α̃ (I). This Markov chain, which we denote C, can be understood279

as a coalescent process (Kingman, 1982; Liggett, 1985; Cox, 1989; Wakeley, 2016). At each time-280

step, C transitions from a set of individuals I ⊆ {1, . . . , N} to the set α̃ (I) of parents of these281

individuals. (In the case that an individual i ∈ I is not replaced, the “parent” is i itself; that is,282

α̃ (i) = i.) Thus, with C0 = {1, . . . , N}, the state of the process after t steps can be understood as283

the set of ancestors of the current population, at time t before the present.284

By the Fixation Axiom, C has a single closed communicating class consisting only of single-285

ton subsets. (In biological terms, the population’s ancestry eventually converges on a common286

ancestor. The event that C first reaches a singleton set is called coalescence, and the vertex in this287

singleton set represents the location of the population’s most recent common ancestor.) It follows288

that C has a unique stationary distribution concentrated on the singleton subsets. In this stationary289

distribution, the probability of the singleton set {i} in this stationary distribution is given by the290

reproductive value πi.291

4 Fixation probabilities292

We now prove our main results regarding fixation probabilities. First, we show that the weak-293

selection expansion of a trait’s fixation probability has a particular form:294

Theorem 1. For any fixed initial configuration ξ ∈ BN
⊺ ,295

ρA (ξ) = ξ̂ + δ

⟨
d
dδ

⏐⏐⏐⏐⏐
δ=0

∆̂sel

⟩◦

ξ

+ O
(

δ2
)

. (28)

Theorem 1 generalizes earlier results of Rousset (2003), Lessard and Ladret (2007), Chen296

(2013), and Van Cleve (2015).297
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Proof. In the chain defined by Eq. (15), the expected change in the reproductive-value-weighted298

frequency of A in state x, in one step of the process, is given by299

∆̂⟳(ξ) (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−u
(

1 − ξ̂
)

x = A,

uξ̂ x = B,

∆̂sel (x) x ̸∈ {A, B} .

(29)

Averaging this expected change out over the distribution π⟳(ξ) gives300

0 = E⟳(ξ)

[
∆̂⟳(ξ)

]
= E⟳(ξ)

[
∆̂sel

]
− uπ⟳(ξ) (A)

(
1 − ξ̂

)
+ uπ⟳(ξ) (B) ξ̂. (30)

Differentiating both sides of this equation with respect to u at u = 0, applying Eq. (17), and301

rearranging, we obtain302

ρA (ξ) = ξ̂ +
⟨

∆̂sel

⟩
ξ

. (31)

Since ∆̂◦
sel (x) = 0 for every x ∈ BN, and since the replacement rule is a smooth function of δ303

around 0, we have304 ⟨
∆̂sel

⟩
ξ
= δ

d
dδ

⏐⏐⏐⏐⏐
δ=0

⟨
∆̂sel

⟩
ξ
+ O

(
δ2
)

= δ

⟨
d
dδ

⏐⏐⏐⏐⏐
δ=0

∆̂sel

⟩◦

ξ

+ O
(

δ2
)

. (32)

The interchange of the ⟨·⟩◦ξ operator with the δ-derivative is justified by Corollary 1. Combining305

this equation with Eq. (31) completes the proof.306

Alternatively, Theorem 1 can be established by writing307

ρA (ξ) = lim
t→∞

E
[

x̂t | x0 = ξ
]

= ξ̂ +
∞

∑
t=0

E
[

x̂t+1 − x̂t | x0 = ξ
]

= ξ̂ +
∞

∑
t=0

E
[
∆̂sel

(
xt) | x0 = ξ

]
= ξ̂ +

⟨
∆̂sel

⟩
ξ

. (33)
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This calculation recovers Eq. (31), and the rest of the proof follows as above.308

Our second main result provides a systematic way to compute the first-order term of the weak-309

selection expansion, Eq. (28):310

Theorem 2. For any fixed initial configuration ξ ∈ BN
⊺ ,311

ρA (ξ) = ξ̂ + δ

⎛⎜⎜⎜⎝ N

∑
i=1

πi

N

∑
j=1

∑
I⊆{1,...,N}
0⩽|I|⩽Dji

cji
I

(
ηξ
{i}∪I − ηξ

{j}∪I

)⎞⎟⎟⎟⎠+ O
(

δ2
)

, (34)

where ηξ is the unique solution to the equations312

ηξ
I = ξ̂ − ξI + ∑

(R,α)
p◦(R,α)η

ξ
α̃(I) (1 ⩽ |I| ⩽ D + 1) ; (35a)

N

∑
i=1

πiη
ξ
{i} = 0. (35b)

The term D appearing in this system is the degree of the process under weak selection; see313

Definition 1. To simplify notation, in what follows we occasionally drop the bracket notation314

when using η (e.g. ηξ
i instead of ηξ

{i}).315

Proof. Let us define316

ηξ
I := ⟨x̂ − xI⟩◦ξ . (36)

From Theorem 1 and Eqs. (6) and (13), we have317

d
dδ

⏐⏐⏐⏐⏐
δ=0

ρA (ξ) =

⟨
d
dδ

⏐⏐⏐⏐⏐
δ=0

∆̂sel

⟩◦

ξ

=
N

∑
i=1

πi

N

∑
j=1

∑
I⊆{1,...,N}
0⩽|I|⩽Dji

cji
I
⟨(

xj − xi
)

xI
⟩◦
ξ

=
N

∑
i=1

πi

N

∑
j=1

∑
I⊆{1,...,N}
0⩽|I|⩽Dji

cji
I

(
ηξ
{i}∪I − ηξ

{j}∪I

)
, (37)

which proves Eq. (34). Eq. (35b) follows immediately from the definition of ηI in Eq. (36). To318

obtain Eq. (35a) we apply Lemma 1:319

ηξ
I = ⟨x̂ − xI⟩◦ξ
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= ξ̂ − ξI + ∑
(R,α)

p◦(R,α)

⟨
x̂α̃ − xα̃(I)

⟩◦
ξ

= ξ̂ − ξI + ∑
(R,α)

p◦(R,α)

⟨
x̂ − xα̃(I)

⟩◦
ξ

= ξ̂ − ξI + ∑
(R,α)

p◦(R,α)η
ξ
α̃(I), (38)

where the penultimate line follows from the fact that x̂ is a martingale under neutral drift (Allen320

and McAvoy, 2019, Theorem 7).321

To prove uniqueness of the solution to Eq. (35), we consider the coalescent Markov chain C322

defined in the previous section. Let C be the transition matrix for C, and let p be its stationary323

distribution in vector form, which satisfies p (I) = πi if I = {i} and p (I) = 0 if |I| ̸= 1.324

By uniqueness of the stationary distribution, C has a simple unit eigenvalue, with corresponding325

one-dimensional left and right eigenspaces spanned by pT and 1, respectively. We observe that326

Eq. (35a) can be written in the form (I − C) y = b, where y has entries ηξ
I and b has entries327

ξ̂ − ξI . We have already exhibited a solution for y in Eq. (36); call this solution y0. By the above328

remarks about C, the most general solution is y = y0 + K1 for an arbitrary scalar K. Now we329

impose Eq. (35b), which can be written pTy = 0. Since pTy0 = 0 and pT1 = 1, we must have330

K = 0, which leaves y = y0 as the unique solution.331

Remark 1. For a process of degree D, calculating d
dδ

⏐⏐⏐
δ=0

ρA involves solving a linear system of332

size O
(

ND+1) (Eq. (35)). The complexity of solving for πi and cij
I is negligible in comparison.333

Since the complexity of solving a linear system of n equations is O
(
n3), it follows that calculating334

d
dδ

⏐⏐⏐
δ=0

ρA is O
(

N3(D+1)
)

.335

Since the quantities ηI arise as the solution to a system of equations related to the coalescent336

Markov chain C, it is natural to ask whether the ηI have a coalescent-theoretic interpretation. We337

show in the following sections that, in some cases when the initial state is chosen from a particular338

probability distribution, the ηI have a natural interpretation as coalescence times or as branch339

lengths of a coalescent tree. However, these interpretations do not appear to extend to the case of340

fixation from an arbitrary initial state ξ.341

5 Stochastic mutant appearance342

Having obtained (in Theorems 1 and 2) a weak-selection expansion for fixation probabilities from343

a particular state ξ, we now generalize to the case that the initial state is sampled from a probability344

distribution. Specifically, we introduce the probability measures µA and µB, on BN
⊺ , to describe345

the state of the process after type A or B, respectively, has been introduced into the population. We346

refer to µA and µB as mutant-appearance distributions, although the initial state could just as well347

arise by some mechanism other than mutation (migration, experimental manipulation, etc.). These348
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distributions can depend on the intensity of selection, δ, and we assume that they are differentiable349

at δ = 0.350

Two mutant-appearance distributions often considered in evolutionary models are uniform ini-351

tialization (a single mutant appears at a uniformly chosen site; Lieberman et al., 2005; Adlam352

et al., 2015) and temperature initialization (a single mutant appears at a site chosen proportionally353

to the death rate di; Allen et al., 2015; Adlam et al., 2015). To define these formally, we define the354

complement x of a state x ∈ BN by xi := 1 − xi for i = 1, . . . , N.355

Example 1 (Uniform initialization).

µA (1i) = µB
(
1i
)
=

1
N

(1 ⩽ i ⩽ N) . (39)

Example 2 (Temperature initialization).

µA (1i) =
di (B)

∑N
j=1 dj (B)

(1 ⩽ i ⩽ N) ; (40a)

µB
(
1i
)
=

di (A)

∑N
j=1 dj (A)

(1 ⩽ i ⩽ N) . (40b)

Unlike uniform initialization, temperature initialization opens up the possibility that the mutant-356

appearance distributions depend on the intensity of selection, δ.357

We call a mutant-appearance distribution symmetric if it does not distinguish between the two358

types:359

Definition 2. We say that µA and µB are symmetric if µA
(
ξ
)
= µB (ξ) for every ξ ∈ BN

⊺ .360

Uniform initialization (Example 1) gives symmetric µA and µB by definition. If mutant initial-361

ization is temperature-based (Example 2), then µA and µB are symmetric when di (A) = di (B)362

for i = 1, . . . , N. This condition is obviously satisfied under neutral drift (δ = 0) but could be363

violated when δ > 0.364

The expected fixation probabilities for A and B, initialized according to µA and µB, respec-365

tively, are366

EµA [ρA] = ∑
ξ∈BN

⊺

µA (ξ) ρA (ξ) ; (41a)

EµB [ρB] = ∑
ξ′∈BN

⊺

µB
(
ξ′
)

ρB
(
ξ′
)

. (41b)

Since ρ◦A (ξ) = ξ̂ and ρ◦B (ξ) = 1− ξ̂ when δ = 0, we have E◦
µA

[ρ◦A] = E◦
µA

[
ξ̂
]

and E◦
µB

[ρ◦B] =367

1 − E◦
µB

[
ξ̂
]
. More generally, we have EµB [ρB] = 1 − EµB [ρA].368

As an immediate consequence of Theorem 2, we obtain the following result for the fixation369

probability of a given type from a given mutant appearance distribution:370
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Corollary 3. If µA is a mutant-appearance distribution for A, then371

d
dδ

⏐⏐⏐⏐⏐
δ=0

EµA [ρA] =
d
dδ

⏐⏐⏐⏐⏐
δ=0

EµA

[
ξ̂
]
+

N

∑
i=1

πi

N

∑
j=1

∑
I⊆{1,...,N}
0⩽|I|⩽Dji

cji
I

(
η

µA
{i}∪I − η

µA
{j}∪I

)
, (42)

where ηµA is the unique solution to the equations372

η
µA
I = E◦

µA

[
ξ̂ − ξI

]
+ ∑

(R,α)
p◦(R,α)η

µA
α̃(I) (1 ⩽ |I| ⩽ D + 1) ; (43a)

N

∑
i=1

πiη
µA
i = 0. (43b)

Similarly, since d
dδ

⏐⏐⏐
δ=0

EµB [ρB] = − d
dδ

⏐⏐⏐
δ=0

EµB [ρA], we have373

d
dδ

⏐⏐⏐⏐⏐
δ=0

EµB [ρB] = − d
dδ

⏐⏐⏐⏐⏐
δ=0

EµB

[
ξ̂
]
−

N

∑
i=1

πi

N

∑
j=1

∑
I⊆{1,...,N}
0⩽|I|⩽Dji

cji
I

(
η

µB
{i}∪I − η

µB
{j}∪I

)
, (44)

where ηµB is the unique solution to the equations374

η
µB
I = E◦

µB

[
ξ̂ − ξI

]
+ ∑

(R,α)
p◦(R,α)η

µB
α̃(I) (1 ⩽ |I| ⩽ D + 1) ; (45a)

N

∑
i=1

πiη
µB
i = 0. (45b)

In the case of uniform initialization (Example 1), we have EµA [ξi] = 1/N for all i ∈375

{1, . . . , N}. In particular, E◦
µA

[
ξ̂ − ξi

]
= 0 for every i. Since η

µA
i = 0 for i = 1, . . . , N is376

then a solution to Eq. (43a), and since this solution satisfies Eq. (43b), it must be the unique so-377

lution to Eq. (43) in the case that |I| = 1 (see the proof of Theorem 2). (This argument is used378

repeatedly in later examples.) Furthermore, EµA [ξI ] = 0 for all |I| ⩾ 2. Eq. (43) then simplifies379

to380

η
µA
I =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
N

+ ∑
(R,α)

p◦(R,α)η
µA
α̃(I) 2 ⩽ |I| ⩽ D + 1,

0 |I| = 1.

(46)

In this case, η
µA
I is equal to 1/N times the expected number of steps for the coalescent Markov381

chain C to reach a singleton set from initial set I. In biological terms, Nη
µA
I is the expected time382

for the lineages of the individuals in set I to coalesce at a most recent common ancestor.383
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𝑢𝜇! 𝝃′

𝜌" 𝝃
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state 𝝃′

state 𝐀 (all-𝐴)

state 𝐁 (all-𝐵)

𝜌" 𝝃′𝜌! 𝝃

1 − 𝑢

1 − 𝑢

Figure 2: Mutant appearance and fixation in a structured population. In the all-B state, mutants of type A appear
based on the mutant-appearance distribution µA. In the all-A state, mutants of type B appear based on µB. Once the
process transitions into a non-monomorphic state, it will eventually reach one of the two monomorphic states.

The overall weak-selection expansion of a trait’s fixation probability, in the case of uniform384

initialization, becomes385

EµA [ρA] =
1
N

+ δ
N

∑
i=1

πi

N

∑
j=1

∑
I⊆{1,...,N}
0⩽|I|⩽Dji

cji
I

(
η

µA
{i}∪I − η

µA
{j}∪I

)
+ O

(
δ2
)

. (47)

6 Comparing fixation probabilities386

When evaluating which of two competing types is favored by selection, it is common to com-387

pare their fixation probabilities. Specifically, the success of A relative to B is often quantified388

by whether EµA [ρA] > EµB [ρB] (A is favored) or EµA [ρA] < EµB [ρB] (B is favored) (Nowak389

et al., 2004; Allen and Tarnita, 2014; Tarnita and Taylor, 2014). This comparison is natural when390

the mutant-appearance distributions, µA and µB, are symmetric.391

When µA and µB are not symmetric, however, it is less natural to compare EµA [ρA] to EµB [ρB]392

directly. We therefore derive an alternative measure of success for the asymmetric case. As in Sec-393
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tion 3, we find it helpful to work with an amended Markov chain that possesses a unique stationary394

distribution. To this end, we suppose that, from the monomorphic state B, with probability u the395

next state is chosen from the distribution µA; otherwise, with probability 1 − u, the state stays396

B. Similarly, from the monomorphic state A, with probability u the next state is chosen from the397

distribution µB; otherwise, with probability 1− u, the state stays B. The structure of this amended398

Markov chain is depicted in Fig. 2. Provided u > 0, this process has a unique stationary dis-399

tribution. In analogy to our analysis of mutations into a fixed state in Section 3, we denote this400

stationary distribution by π⟳(µA,µB).401

We now turn to the limit of low mutation. Applying standard results on stationary distributions402

in this limit (Fudenberg and Imhof, 2006, Theorem 2), we have403

lim
u→0

π⟳(µA,µB) (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EµA [ρA]

EµA [ρA] + EµB [ρB]
x = A,

EµB [ρB]

EµA [ρA] + EµB [ρB]
x = B,

0 otherwise.

(48)

Intuitively, for small but positive mutation rates, the process is almost always in state A or B, with404

the fraction of time spent in A converging to EµA [ρA] /
(
EµA [ρA] + EµB [ρB]

)
.405

We say that weak selection favors A over B if the fraction of time spent in state A is greater406

under weak selection than it is in the neutral case:407

Definition 3. Weak selection favors A over B if408

EµA [ρA]

EµA [ρA] + EµB [ρB]
>

E◦
µA

[ρ◦A]

E◦
µA

[
ρ◦A
]
+ E◦

µB

[
ρ◦B
] (49)

(or, equivalently, EµA [ρA] / EµB [ρB] > E◦
µA

[ρ◦A] / E◦
µB

[ρ◦B]) for all sufficiently small δ > 0.409

When µ◦
A and µ◦

B are symmetric (e.g. temperature or uniform initialization), we have E◦
µA

[ρ◦A] =410

E◦
µB

[ρ◦B], and weak selection favors A relative to B if and only if EµA [ρA] > EµB [ρB] for all suf-411

ficiently small δ > 0. For general mutant-appearance distributions, µA and µB, weak selection412

favors A if413

d
dδ

⏐⏐⏐⏐⏐
δ=0

EµA [ρA]

EµA [ρA] + EµB [ρB]
> 0. (50)

The left-hand side above has the sign of414

E◦
µB

[ρ◦B]
d
dδ

⏐⏐⏐⏐⏐
δ=0

EµA [ρA]− E◦
µA

[ρ◦A]
d
dδ

⏐⏐⏐⏐⏐
δ=0

EµB [ρB] . (51)
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Applying Corollary 3, we obtain the condition415

E◦
µB

[ρ◦B]
d
dδ

⏐⏐⏐⏐⏐
δ=0

EµA

[
ξ̂
]
+ E◦

µA
[ρ◦A]

d
dδ

⏐⏐⏐⏐⏐
δ=0

EµB

[
ξ̂
]

+
N

∑
i=1

πi

N

∑
j=1

∑
I⊆{1,...,N}
0⩽|I|⩽Dji

cji
I

(
η

µAB
{i}∪I − η

µAB
{j}∪I

)
> 0, (52)

where η
µAB
I := E◦

µB
[ρ◦B] η

µA
I + E◦

µA
[ρ◦A] η

µB
I satisfies the system of equations416

η
µAB
I = E◦

µA
[ρ◦A]

(
1 − E◦

µB
[ξI ]
)
− E◦

µB
[ρ◦B]E◦

µA
[ξI ]

+ ∑
(R,α)

p◦(R,α)η
µAB
α̃(I) (1 ⩽ |I| ⩽ D + 1) ; (53a)

N

∑
i=1

πiη
µAB
i = 0. (53b)

Eq. (53a) is due to the facts that E◦
µA

[ρ◦A] = E◦
µA

[
ξ̂
]

and E◦
µB

[ρ◦B] = 1 − E◦
µB

[
ξ̂
]
.417

Example 3. Consider the case of fixation from a single mutant. Suppose that the initial mutant is418

located at site i with probability µi in both monomorphic states A and B. That is,419

µA (1i) = µB
(
1i
)
= µi (1 ⩽ i ⩽ N) . (54)

All states not of the form 1i for i ∈ {1, . . . , N} have probability zero in µA, and states not of the420

form 1i have probability zero in µB. Then we have E◦
µA

[ξi] = µi and E◦
µB

[ξi] = 1 − µi. For421

non-singleton I, we have E◦
µA

[ξI ] = 0 and E◦
µB

[ξI ] = 1 − ∑i∈I µi. We also have E◦
µA

[ρ◦A] =422

E◦
µB

[ρ◦B] by symmetry, and both EµA

[
ξ̂
]

and EµB

[
ξ̂
]

are independent of δ. In this case, weak423

selection favors A if424

N

∑
i=1

πi

N

∑
j=1

∑
I⊆{1,...,N}
1⩽|I|⩽Dji

cji
I

(
η

µAB
{i}∪I − η

µAB
{j}∪I

)
> 0, (55)

where the η
µAB
I (upon rescaling by 1/ E◦

µA
[ρ◦A]) satisfy the simplified recurrence relation425

η
µAB
I =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
i∈I

µi + ∑
(R,α)

p◦(R,α)η
µAB
α̃(I) 2 ⩽ |I| ⩽ D + 1,

0 |I| = 1.

(56)
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7 Application to constant fecundity426

Constant (or frequency-independent) fecundity refers to the case in which the fecundity (repro-427

ductive rate) of an individual depends on only its type and not on the composition of the rest of428

the population. A common setup has a mutant (A) of reproductive rate r > 0 competing against429

a resident (B) of reproductive rate 1 (Lieberman et al., 2005; Broom and Rychtář, 2008; Broom430

et al., 2011; Voorhees, 2013; Monk et al., 2014; Hindersin and Traulsen, 2015; Kaveh et al., 2015;431

Cuesta et al., 2017; Pavlogiannis et al., 2018; Möller et al., 2019; Tkadlec et al., 2019). The fixa-432

tion probability of the mutant type is then a function of r, which we can write as ρA (r; ξ), where433

ξ ∈ BN
⊺ is the initial configuration of the mutant and resident.434

A common feature of these models is that the fecundity is interpreted in a relative sense, mean-435

ing that r quantifies the reproductive rate of A relative to B. Consequently, the fixation probabilities436

of both types are invariant under rescaling the reproductive rates of all individuals. In particular,437

the fixation probability of a mutant of reproductive rate r competing against a resident of repro-438

ductive rate 1 is equal (upon dividing by r) to the fixation probability of a mutant of reproductive439

rate 1 competing against a resident of reproductive rate r−1. By interchanging the roles of A and440

B, we see that fixation probabilities satisfy the duality441

ρA (r; ξ) = 1 − ρA

(
r−1; ξ

)
. (57)

For r close to 1, meaning that the mutation has only a small effect on fecundity, a trait’s fixation442

probability can be analyzed using weak-selection methods such as those considered here (Allen443

et al., 2020). To apply these methods, we define the mutant’s selection coefficient as s = r − 1.444

We then obtain an expansion of the fixation probability, ρA (1 + s; ξ), around s = 0. The selection445

coefficient s plays a similar role to the selection intensity δ in the foregoing sections, except that s446

can also be negative, indicating a disadvantageous mutant.447

Taking the s-derivative of both sides of Eq. (57) at s = 0, it follows that448

d
ds

⏐⏐⏐⏐⏐
s=0

ρA (1 + s; ξ) =
d
ds

⏐⏐⏐⏐⏐
s=0

ρA
(
1 + s; ξ

)
=

1
2

d
ds

⏐⏐⏐⏐⏐
s=0

(
ρA (1 + s; ξ) + ρA

(
1 + s; ξ

))
. (58)

Applying Theorem 2 (with s in place of δ), we have the following weak-selection expansion for449

ρA:450

ρA (1 + s; ξ) = ξ̂ +
s
2

N

∑
i=1

πi

N

∑
j=1

∑
I⊆{1,...,N}
0⩽|I|⩽Dji

cji
I

(
η̃ξ
{i}∪I − η̃ξ

{j}∪I

)
+ O

(
s2
)

, (59)
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where η̃ξ
I := ηξ

I + ηξ
I . These η̃ξ

I are the unique solution to the recurrence relation451

η̃ξ
I =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 −

(
ξI + ξ I

)
+ ∑

(R,α)
p◦(R,α)η̃

ξ
α̃(I) 2 ⩽ |I| ⩽ D + 1,

0 |I| = 1.

(60)

Note that ξI + ξ I is equal to 1 if all individuals in I have the same type in ξ (i.e. ξi = ξ j for all452

i, j ∈ I) and 0 otherwise. In particular, ξi + ξ i = 1 for all i = 1, . . . , N, which is why η̃ξ
I = 0 for453

|I| = 1.454

If the initial state ξ is drawn from a mutant-appearance distribution, µA, we then have455

d
ds

⏐⏐⏐⏐⏐
s=0

EµA [ρA] =
d
ds

⏐⏐⏐⏐⏐
s=0

EµA

[
ξ̂
]
+

1
2

N

∑
i=1

πi

N

∑
j=1

∑
I⊆{1,...,N}
0⩽|I|⩽Dji

cji
I

(
η̃

µA
{i}∪I − η̃

µA
{j}∪I

)
, (61)

where456

η̃
µA
I =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − E◦

µA

[
ξI + ξ I

]
+ ∑

(R,α)
p◦(R,α)η̃

µA
α̃(I) 2 ⩽ |I| ⩽ D + 1,

0 |I| = 1.

(62)

In particular, for the mutant-appearance distribution in Example 3, in which the initial state has a457

single mutant whose location i is chosen with probability µi (independent of r), we have458

EµA [ρA] =
N

∑
i=1

πiµi +
s
2

N

∑
i=1

πi

N

∑
j=1

∑
I⊆{1,...,N}
0⩽|I|⩽Dji

cji
I

(
η̃

µA
{i}∪I − η̃

µA
{j}∪I

)
+ O

(
s2
)

, (63)

where, owing to the fact that E◦
µA

[
ξI + ξ I

]
= E◦

µA

[
ξ I
]
= 1 − ∑i∈I µi when |I| > 1,459

η̃
µA
I =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
i∈I

µi + ∑
(R,α)

p◦(R,α)η̃
µA
α̃(I) 2 ⩽ |I| ⩽ D + 1,

0 |I| = 1.

(64)

Eq. (64) is identical to the recurrence relation for η
µA
I in Eq. (56).460

7.1 Constant fecundity on graphs461

Let us now suppose that the population structure is represented by an undirected, unweighted462

graph. Each vertex is occupied by one individual. As above, we consider a mutant type, A, of fe-463

cundity r = 1+ s, competing against a resident type, B, of fecundity 1. A robust research program464
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aims to elucidate the effects of graph structure on the mutant’s fixation probability (Lieberman465

et al., 2005; Broom and Rychtář, 2008; Broom et al., 2011; Voorhees, 2013; Monk et al., 2014;466

Hindersin and Traulsen, 2015; Kaveh et al., 2015; Cuesta et al., 2017; Pavlogiannis et al., 2018;467

Möller et al., 2019; Tkadlec et al., 2019).468

The edge weight between vertices i and j is denoted wij (= wji). We define the weighted469

degree of vertex i as wi := ∑N
j=1 wij. One can define a natural random walk on this graph, moving470

from vertex i to vertex j with probability p(1)ij := wij/wi (where the superscript indicates that this471

probability is for one step in the random walk). More generally, the probability of moving from472

i to j in n steps of this random walk is p(n)ij :=
(

p(1)
)n

ij
, i.e. entry (i, j) of the nth power of the473

transition matrix p(1).474

7.1.1 death-Birth updating475

Under the death-Birth process (Ohtsuki et al., 2006; Hindersin and Traulsen, 2015; Allen et al.,476

2020; Tkadlec et al., 2020), an individual is first chosen, uniformly-at-random from the population,477

to be replaced (“death”). A neighbor is then chosen, with probability proportional to the product478

of edge weight and fecundity, to produce an offspring that fills the vacancy (“Birth”). The term479

“Birth” is capitalized here to emphasize the fact that selection influences this step (Hindersin and480

Traulsen, 2015).481

For this process, the probability that the offspring of i replaces the occupant of j is482

eij (1 + s; x) =
1
N

wij ((1 + s) xi + 1 − xi)

∑N
k=1 wkj ((1 + s) xk + 1 − xk)

=
p(1)ji

N
1 + sxi

1 + s ∑N
k=1 p(1)jk xk

. (65)

Differentiating this expression with respect to s at s = 0 gives483

d
ds

⏐⏐⏐⏐⏐
s=0

eij (1 + s; x) =
N

∑
k=1

cij
k xk, (66)

where484

cij
k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p(1)ji

N

(
1 − p(1)ji

)
k = i,

−
p(1)ji

N
p(1)jk otherwise.

(67)

This process therefore has degree D = 1.485

Under neutral drift, e◦ij = p(1)ji /N, and solving Eq. (12) yields πi = wi/ ∑N
j=1 wj as the486

reproductive value of vertex i under death-Birth updating (see also Maciejewski, 2014; Allen et al.,487

2017; Allen and McAvoy, 2019). Using Eq. (59) and the reversibility property πi p
(1)
ij = πj p

(1)
ji , a488

series of simplifications gives the following result:489
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Proposition 2. For the death-Birth process on a weighted graph, with constant mutant fecundity490

r = 1 + s, the fixation probability from arbitrary starting configuration ξ can be expanded under491

weak selection as492

ρA (1 + s; ξ) = ξ̂ +
s

2N

N

∑
i,j=1

πi p
(2)
ij η̃ξ

ij + O
(

s2
)

, (68)

where the terms η̃ξ
ij arise as the unique solution to the recurrence relation493

η̃ξ
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N
2
(
ξi + ξ j − 2ξiξ j

)
+

1
2

N

∑
k=1

(
p(1)ik η̃ξ

kj + p(1)jk η̃ξ
ik

)
i ̸= j,

0 i = j.

(69)

The factor of 2 above is related to the fact that we focus on only those replacement events that494

influence i and j.495

For a single mutant initialized randomly as in Example 3, Eq. (63) becomes496

EµA [ρA] =
N

∑
i=1

πiµi +
s

2N

N

∑
i,j=1

πi p
(2)
ij η̃

µA
ij + O

(
s2
)

, (70)

where497

η̃
µA
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N
(

µi + µj

2

)
+

1
2

N

∑
k=1

(
p(1)ik η̃

µA
kj + p(1)jk η̃

µA
ik

)
i ̸= j,

0 i = j.

(71)

Eqs. (70)–(71) generalize a result of Allen et al. (2020), which pertained to the case of uniform498

initialization, i.e. µi = 1/N for all i.499

7.1.2 Birth-death updating500

In the Birth-death process (Lieberman et al., 2005; Hindersin and Traulsen, 2015), also known as501

the invasion process (Antal et al., 2006), an individual i is selected to reproduce with probability502

proportional to fecundity; the offspring of i replaces j with probability p(1)ij .503

Letting |x| := ∑N
i=1 xi denote the abundance of type A in state x, the probability that i replaces504

j in this state is505

eij (1 + s; x) =
(1 + s) xi + 1 − xi

∑N
k=1 ((1 + s) xk + 1 − xk)

p(1)ij =
1 + sxi

N + s |x| p(1)ij . (72)
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Differentiating this expression with respect to s at s = 0 gives506

d
ds

⏐⏐⏐⏐⏐
s=0

eij (1 + s; x) =
N

∑
k=1

cij
k xk, (73)

where507

cij
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N − 1

N2 p(1)ij k = i,

− 1
N2 p(1)ij otherwise.

(74)

Under neutral drift, e◦ij = p(1)ij /N, and Eq. (12) yields a reproductive value of πi = w−1
i / ∑N

j=1 w−1
j508

for Birth-death updating (see also Maciejewski, 2014; Allen et al., 2017; Allen and McAvoy, 2019).509

A series of simplifications based on Eq. (59) and the relation πi p
(1)
ji = πj p

(1)
ij gives the following510

result:511

Proposition 3. For the Birth-death process on a weighted graph, with constant mutant fecundity512

r = 1 + s, the fixation probability from arbitrary starting configuration ξ can be expanded under513

weak selection as514

ρA(1 + s) = ξ̂ +
s

2N

N

∑
i,j=1

πi p
(1)
ji η̃ξ

ij + O
(

s2
)

, (75)

where the terms η̃ξ
ij arise as the unique solution to515

η̃ξ
ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N
(
ξi + ξ j − 2ξiξ j

)
+ ∑N

k=1

(
p(1)ki η̃ξ

kj + p(1)kj η̃ξ
ik

)
∑N

k=1

(
p(1)ki + p(1)kj

) i ̸= j,

0 i = j.

(76)

The factor ∑N
k=1

(
p(1)ki + p(1)kj

)
is analogous to the factor of 2 in the corresponding expression516

for death-Birth updating (due to considering the effects of a replacement rule on only i and j).517

However, death is not necessarily uniform under Birth-death updating, which results in a slightly518

more complicated scaling factor.519

For the mutant-appearance distribution of Example 3, Eq. (63) simplifies to520

EµA [ρA] =
N

∑
i=1

πiµi +
s

2N

N

∑
i,j=1

πi p
(1)
ji η̃

µA
ij + O

(
s2
)

, (77)
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where521

η̃
µA
ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N
(
µi + µj

)
+ ∑N

k=1

(
p(1)ki η̃

µA
kj + p(1)kj η̃

µA
ik

)
∑N

k=1

(
p(1)ki + p(1)kj

) i ̸= j,

0 i = j.

(78)

8 Application to evolutionary game theory522

We now move from constant fecundity to evolutionary games (frequency-dependent fecundity) in523

structured populations (Blume, 1993; Nowak and May, 1992; Ohtsuki et al., 2006; Szabó and Fáth,524

2007; Nowak et al., 2009). In this setting, individuals interact with one another and receive a net525

payoff based on the types (strategies) of those with whom they interact. In state x ∈ BN, we let526

ui (x) denote the payoff (or utility) of player i. This payoff is converted into relative fecundity,527

Fi, by letting Fi (x) = exp {δui (x)}, where δ > 0 is the selection intensity parameter. (An528

alternative convention, Fi (x) = 1 + δui (x), is equivalent under weak selection, since both satisfy529

Fi (x) = 1 + δui (x) + O
(
δ2).) The replacement rule then depends directly on the fecundity530

vector, F ∈ (0, ∞)N, i.e. eij (x) = eij (F (x)). Furthermore, under weak selection, there is no loss531

of generality in assuming that the state-to-fecundity mapping, x ↦→ F (x), is deterministic (see532

McAvoy et al., 2020). Therefore, for every i, j = 1, . . . , N, we can write533

d
dδ

⏐⏐⏐⏐⏐
δ=0

eij (x) =
N

∑
k=1

(
∂

∂Fk

⏐⏐⏐⏐⏐
F=1

eij (F)

)
uk (x) . (79)

Since the fecundity derivative ∂
∂Fk

⏐⏐⏐
F=1

eij (F) does not depend on x, the degree of the process under534

weak selection is controlled by the utility functions {ui (x)}N
i=1. Let mij

k := ∂
∂Fk

⏐⏐⏐
F=1

eij (F) be535

the marginal effect of the fecundity of k on i replacing j (McAvoy et al., 2020), and suppose that536

individual k’s payoff is uk (x) = ∑I⊆{1,...,N} pk
I xI . We then have537

d
dδ

⏐⏐⏐⏐⏐
δ=0

eij (x) =
N

∑
k=1

mij
k uk (x) = ∑

I⊆{1,...,N}

(
N

∑
k=1

mij
k pk

I

)
xI , (80)

which, by the uniqueness of the representation of Eq. (6), gives cij
I = ∑N

k=1 mij
k pk

I . Therefore,538

generically, the degree of the process coincides with the maximal degree of the payoff functions539

when each payoff function is viewed as a multi-linear polynomial in x1, . . . , xN (see also Ohtsuki,540

2014; McAvoy and Hauert, 2016).541

8.1 Additive games542

Additive games are a special class of games for which the conditions to be favored by selection543

can be written in a simplified form. An evolutionary game is additive if its payoff function, ui (x),544
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is of degree one (linear) in x for every i = 1, . . . , N. In this case we can write545

d
dδ

⏐⏐⏐⏐⏐
δ=0

eij (x) = cij
0 +

N

∑
k=1

cij
k xk (81)

for some collection of constants cij
k with i, j, k ∈ {1, . . . , N}. If we further assume that the all-B546

state has the same replacement probabilities as the neutral process—that is, p(R,α) (B) = p◦(R,α)547

for all (R, α) and all δ > 0—it then follows that cij
0 = 0 for all i, j. In this case, Theorem 2 gives548

d
dδ

⏐⏐⏐⏐⏐
δ=0

EµA [ρA] =
d
dδ

⏐⏐⏐⏐⏐
δ=0

EµA

[
ξ̂
]
+

N

∑
i,j,k=1

πic
ji
k

(
η

µA
ik − η

µA
jk

)
, (82)

where the terms η
µA
ij arise as the unique solution to the equations549

η
µA
ij = E◦

µA

[
ξ̂ − ξiξ j

]
+ ∑

(R,α)
p◦(R,α)η

µA
α̃(i)α̃(j) (1 ⩽ i, j ⩽ N) ; (83a)

N

∑
i=1

πiη
µA
ii = 0. (83b)

Let us now consider the mutant-appearance distributions of Example 3; i.e. a single mutant550

appears at site i with probability µi. The weak-selection fixation probability of type A can then be551

calculated as552

EµA [ρA] =
N

∑
i=1

πiµi + δ
N

∑
i,j,k=1

πic
ji
k

(
η

µA
ik − η

µA
jk

)
+ O

(
δ2
)

, (84)

with η
µA
ij as above. Furthermore, the condition for weak selection to favor A, Eq. (55), becomes553

N

∑
i,j,k=1

πic
ji
k

(
η

µAB
ik − η

µAB
jk

)
> 0, (85)

where the terms η
µAB
ij arise as the unique solution to554

η
µAB
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µi + µj + ∑

(R,α)
p◦(R,α)η

µAB
α̃(i)α̃(j) i ̸= j,

0 i = j.

(86)
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8.2 Graph-structured populations with death-Birth updating555

Evolutionary games on a graphs provide well-known models for social interactions in structured556

populations (Santos and Pacheco, 2005; Ohtsuki et al., 2006; Taylor et al., 2007; Szabó and Fáth,557

2007; Santos et al., 2008; Chen, 2013; Débarre et al., 2014; Allen et al., 2017, 2019; McAvoy et al.,558

2020). As in Section 7.1, we suppose that the population structure is represented by a weighted,559

undirected graph with adjacency matrix
(
wij
)N

i,j=1. We adopt the notation of Section 7.1 for the560

weighted degree wi := ∑N
j=1 wij and the step probability p(1)ij := wij/wi.561

As in Section 7.1.1, we consider death-Birth updating: an individual is chosen uniformly at562

random for death, and then a neighboring individual is chosen, with probability proportional to the563

product of fecundity and edge weight, to reproduce into the vacancy. With this update rule, the564

marginal probability that i transmits an offspring to j is565

eij (x) =
1
N

Fi (x)wij

∑N
ℓ=1 Fℓ (x)wℓj

. (87)

Differentiating with respect to δ at δ = 0 gives566

d
dδ

⏐⏐⏐⏐⏐
δ=0

eij (x) =
1
N

ui (x)wijwj − wij ∑N
ℓ=1 uℓ (x)wℓj

w2
j

=
p(1)ji

N

(
ui (x)−

N

∑
ℓ=1

p(1)jℓ uℓ (x)

)
. (88)

We now focus on a particular game called the donation game (Sigmund, 2010), in which type567

A pays a cost of c to donate b to every neighbor; type B donates nothing and pays no cost. For568

b > c > 0, this is a special case of the prisoner’s dilemma, with A playing the role of cooperators569

and B playing the role of defectors.570

There are two main conventions for aggregating the payoffs received from these game in-571

teractions (Maciejewski et al., 2014). The first is to take the edge-weighted sum of the pay-572

offs received from all others; this method is called accumulated payoffs, and leads to ui (x) =573

−wicxi + ∑N
k=1 wikbxk. The second is to take the edge-weighted average (i.e. to normalize574

the sum by the weighted degree); this method is called averaged payoffs and leads to ui (x) =575

−cxi + b ∑N
k=1 p(1)ik xk. In both cases, the game is additive according to the definition of the previ-576

ous subsection.577

Substituting the respective payoff functions into Eq. (88) yields578

d
dδ

⏐⏐⏐⏐⏐
δ=0

eij (x) =
N

∑
k=1

cij
k xk, (89)
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where579

cij
k =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p(1)ji

N

(
−c
(

p(0)ik − p(1)jk

)
+ b

(
p(1)ik − p(2)jk

))
(averaged),

p(1)ji

N

(
−c
(

p(0)ik wi − p(1)jk wk

)
+ b

(
wik −

N

∑
ℓ=1

p(1)jℓ wℓk

))
(accumulated).

(90)

Above, we have used p(n)ij to denote the probability that an n-step random walk from i terminates580

at j; note in particular that p(0)ij equals 1 if i = j and 0 otherwise. We further define ηξ
(n) :=581

∑N
i,j=1 πi p

(n)
ij ηξ

ij as the expectation of ηξ
ij when i and j are sampled from the two ends of a stationary582

n-step random walk, where n ⩾ 0. We can then state the following result:583

Proposition 4. For the donation game on an arbitrary weighted, connected graph, with death-584

Birth updating, the fixation probability of cooperators from an arbitrary configuration ξ can be585

expanded under weak selection as586

ρA (ξ) = ξ̂ +
δ

N

(
−cηξ

(2) + b
(

ηξ
(3) − ηξ

(1)

))
+ O

(
δ2
)

, (91)

for averaged payoffs, and587

ρA (ξ) = ξ̂ +
δ

N

(
− c

N

∑
i,j=1

πi

(
p(2)ij − p(0)ij

)
wjη

ξ
ij

+ b
N

∑
i,j,k=1

πi

(
p(2)ij − p(0)ij

)
wjkηξ

ik

)
+ O

(
δ2
)

, (92)

for accumulated payoffs. In both cases, the terms ηξ
ij arise as the unique solution to588

ηξ
ij =

N
2

(
ξ̂ − ξiξ j

)
+

1
2

N

∑
k=1

(
p(1)ik ηξ

kj + p(1)jk ηξ
ik

)
(i ̸= j) ; (93a)

ηξ
ii = N

(
ξ̂ − ξi

)
+

N

∑
j=1

p(1)ij ηξ
jj; (93b)

N

∑
i=1

πiη
ξ
ii = 0. (93c)

Proof. Theorem 2 gives589

ρA (ξ) = ξ̂ + δ
N

∑
i,j,k=1

πic
ji
k

(
ηξ

ik − ηξ
jk

)
+ O

(
δ2
)

, (94)
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where the ηξ
ij are the unique solution to Eq. (93). The result then follows from applying Eq. (90) and590

simplifying using the reversibility property πi p
(n)
ij = πj p

(n)
ji , noting that ηξ

(0) = ∑N
i=1 πiη

ξ
ii = 0591

by Eq. (93c).592

Proposition 4 generalizes one of the main results of Allen et al. (2017) (who considered only593

uniform initialization) to the case of an arbitrary initial state.594

8.2.1 Homogeneous (regular) graphs595

In the case of a regular graph, we can obtain the weak-selection expansion of fixation probabilities596

in closed form. Suppose the graph is unweighted (meaning each edge weight is either 0 or 1), has597

no self-loops (wii = 0 for each i) and is regular of degree d (wi = d for all i). For regular graphs,598

accumulated and averaged payoffs are equivalent upon rescaling all payoffs by a factor of d; we599

consider averaged payoffs here.600

Noting that πi = 1/N for all i, and ξ̂ = |ξ| /N, for regular graphs, Eq. (93) for ηξ
ij can be601

written as602

ηξ
ij =

1
2
(
|ξ| − Nξiξ j

)
+

1
2

N

∑
k=1

(
p(1)ik ηξ

kj + p(1)jk ηξ
ik

)
(95a)

+
δij

2

(
|ξ| − Nξi + 2

N

∑
k=1

p(1)ik

(
ηξ

kk − ηξ
ik

))
,

N

∑
i=1

ηξ
ii = 0, (95b)

where δij is the Kronecker delta function. Multiplying by 1
N p(n)ij and summing over i and j leads603

to a recurrence relation for ηξ
(n):604

ηξ
(n+1) − ηξ

(n) =
1
2

N

∑
i,j=1

p(n)ij ξiξ j −
1
2
|ξ|

+
1

2N

N

∑
i=1

p(n)ii

(
Nξi − |ξ|+ 2

N

∑
k=1

p(1)ik

(
ηξ

ik − ηξ
kk

))
. (96)

We now let n → ∞, taking a running average in the case that the random walk is periodic. In this605

limit, p(n)ij converges to πj = 1/N for each i and j. Simplifying and applying Eq. (95b), Eq. (96)606

then becomes607

0 =
1

2N

N

∑
i,j=1

ξiξ j −
1
2
|ξ|+ 1

2N2

N

∑
i=1

(Nξi − |ξ|) + 1
N2

(
N

∑
i,k=1

p(1)ik ηξ
ik −

N

∑
k=1

ηξ
kk

)

=
1

2N
|ξ|2 − 1

2
|ξ|+ 1

N
ηξ
(1), (97)
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which leads to608

ηξ
(1) =

1
2
|ξ| (N − |ξ|) . (98)

Applying Eq. (96), and noting that p(2)ii = 1/d for each i, we see that609

ηξ
(2) =

1
2

(
|ξ| (N − |ξ| − 1) +

N

∑
i,j=1

p(1)ij ξiξ j

)
, (99a)

ηξ
(3) =

1
2

(
|ξ|
(

d + 1
d

(N − |ξ|)− 2
)
+

N

∑
i,j=1

(
p(1)ij + p(2)ij

)
ξiξ j

)
. (99b)

Substituting into Eq. (91), we obtain the following closed-form result (a corollary to Proposition 4):610

Corollary 4. For the donation game on an unweighted regular graph with death-Birth updating,611

the fixation probability of cooperators from arbitrary initial configuration ξ can be expanded under612

weak selection as613

ρA (ξ) =
|ξ|
N

+
δ

2N

(
− c

(
|ξ| (N − |ξ| − 1) +

N

∑
i,j=1

p(1)ij ξiξ j

)

+ b

(
|ξ|
(

N − |ξ|
d

− 2
)
+

N

∑
i,j=1

(
p(1)ij + p(2)ij

)
ξiξ j

))
+ O

(
δ2
)

.

(100)

Corollary 4 is equivalent to the main result of Chen et al. (2016). In particular, when the614

initial state contains only a single type A individual (|ξ| = 1), we have ∑N
i,j=1 p(1)ij ξiξ j = 0 and615

∑N
i,j=1 p(1)ij ξiξ j = ∑N

i=1 p(2)ii ξi = 1/d, leading to616

ρA (ξ) =
1
N

+
δ

2N

(
−c (N − 2) + b

(
N
d
− 2
))

+ O
(

δ2
)

. (101)

This result holds regardless of which vertex contains the initial type A individual, as was first617

proven by Chen (2013).618

8.3 Comparing population structures619

A large body of literature is devoted to the question of whether—and to what extent—population620

structure can promote the evolution of cooperation (Nowak and May, 1992; Hauert and Doebeli,621

2004; Santos and Pacheco, 2005; Ohtsuki et al., 2006; Taylor et al., 2007; Santos et al., 2008;622

Nowak et al., 2009; Tarnita et al., 2009; Débarre et al., 2014; Allen et al., 2017). The donation623

game with b > c > 0 provides an elegant model for studying this question (Sigmund, 2010):624
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Type A (representing cooperation) pays cost c to give benefit b to its partners; type B pays no625

costs and gives no benefits. Population structures can then be compared according to whether626

or not they increase A’s chance of becoming fixed, depending on the benefit, b, and cost, c. Each627

population structure has a “critical benefit-to-cost ratio,” (b/c)∗, such that weak selection increases628

A’s fixation probability if and only if (b/c)∗ > 0 and b/c > (b/c)∗ (Ohtsuki et al., 2006; Nowak629

et al., 2009; Allen et al., 2017).630

A lower critical benefit-to-cost can then be interpreted as “better for the evolution of coopera-631

tion” (Nathanson et al., 2009). Such quantities have also been used to formally order population632

structures. For example, Peña et al. (2016) state that “two different models of spatial structure and633

associated evolutionary dynamics can be unambiguously compared by ranking their relatedness or634

structure coefficients: the greater the coefficient, the less stringent the conditions for cooperation635

to evolve. Hence, different models of population structure can be ordered by their potential to636

promote the evolution of cooperation in a straightforward way.” While there is indeed an unam-637

biguous comparison of population structures based on critical benefit-to-cost ratios, a comparison638

based on which is “better for the evolution of cooperation” is more subtle.639

Consider the donation game with accumulated payoffs on a graph, with death-Birth updating640

and uniform mutant-appearance distribution. By Eq. (92),641

Eunif [ρA] =
1
N

+
δ

N

(
− c

N

∑
i,j=1

πi p
(2)
ij wjη

unif
ij

+ b
N

∑
i,j,k=1

πi

(
p(2)ij − p(0)ij

)
wjkηunif

ik

)
+ O

(
δ2
)

, (102)

where642

ηunif
ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

(
1 +

N

∑
k=1

(
p(1)ik ηunif

kj + p(1)jk ηunif
ik

))
i ̸= j,

0 i = j.

(103)

The critical benefit-to-cost ratio is643 (
b
c

)∗
=

∑N
i,j=1 πi p

(2)
ij wjη

unif
ij

∑N
i,j,k=1 πi

(
p(2)ij − p(0)ij

)
wjkηunif

ik

. (104)

In Fig. 3, we apply this result to first compute the critical benefit-to-cost ratios for two heteroge-644

neous population structures of size N = 50. Specifically, we give examples of graphs Γ1 (Fig. 3A)645

and Γ2 (Fig. 3B) such that 0 < (b/c)∗Γ1
< (b/c)∗Γ2

, which means that the condition for cooperation646

to be favored on Γ1 is less strict than that of Γ2. However, this ranking alone does not imply that Γ1647

is unambiguously better for the evolution of cooperation than Γ2. For example, when b = 10 and648

c = 1, which corresponds to b/c > (b/c)∗Γ1
, (b/c)∗Γ2

, weak selection boosts the fixation probabil-649

ity of cooperators on Γ2 more than it does on Γ1, based on the magnitudes of the first-order effects650
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𝑏/𝑐 ∗ ≈ 2.2334

*++, -./
𝔼1234 𝜌6 ≈ 2.3661

𝑏 = 10, 𝑐 = 1 𝑏 = 10, 𝑐 = 1

𝑏/𝑐 ∗ ≈ 3.0322

*++, -./
𝔼1234 𝜌6 ≈ 2.6854

A B

Figure 3: Two heterogeneous population structures of size N = 50 evolving based on death-Birth updating. The
population structure depicted in B is unequivocally better for the evolution of cooperation than that of A when b = 10
and c = 1 because selection results in a greater improvement to a rare cooperator’s fixation probability. This result
holds despite the fact that the critical benefit-to-cost ratio of B is greater than it is for A, which means that the condition
under which cooperators can thrive on B is stricter than that of A. It follows that a comparison between population
structures based on which one is better for the evolution of cooperation cannot be made based on the critical ratios
alone.

of selection. Therefore, for this particular cooperative social dilemma, Γ2 more strongly supports651

the evolution of cooperation than Γ1. It follows that the critical benefit-to-cost ratio provides only652

part of the story when comparing two population structures based on their abilities to support the653

emergence of cooperation.654

9 Discussion655

In this study, we have analyzed the fixation probability of a mutant type under weak selection, for656

a broad class of evolutionary models and arbitrary initial conditions. The main result, Theorem 2,657

gives a first-order expansion of the fixation probability of A, ρA (ξ), in the selection intensity δ,658

for any initial configuration, ξ. This expansion has three main ingredients: (i) reproductive value,659

πi, which quantifies the expected contribution of i to future generations; (ii) neutral sojourn times,660

ηξ
I , which may be interpreted in terms of the mean number of steps in which all individuals in I661

have type A prior to absorption, given that the initial state of the population is ξ; and (iii) Fourier662

coefficients, cij
I , of first-order effects of the probability that i replaces j in one update step.663

It follows from Theorem 2 that the complexity of calculating this first-order expansion is664
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O
(

N3(D+1)
)

, where D is the degree of the process. Actually, by the work of Le Gall (2012),665

this complexity is (in theory) O
(

N2.373(D+1)
)

. This bound can be further improved in some666

cases by taking into account structural properties of the population, as we observed in the case667

of death-Birth updating on a regular graph. In any case, for fixed degree D, the system size ex-668

hibits polynomial growth in N, whereas the number of states in the evolutionary process grows669

exponentially in N.670

The neutral sojourn times, ηξ
I and variants thereof, play a central role in our method. Their671

interpretation is therefore a question of interest. From Eq. (36), we can see that −ηξ
I = ⟨xI − x̂⟩◦ξ672

is a measure of the tendency for all individuals in I have type A, under neutral drift from initial673

state ξ. In the case of a uniform initial distribution µA (Example 1), η
µA
I is proportional to the674

expected time for the coalescent process C to reach a singleton set (coalesce) starting from set I.675

The utility of our framework is illustrated by the application to evolutionary dynamics on676

graphs in Sections 7 and 8. In particular, Proposition 4 provides the weak-selection expansion677

of fixation probabilities for the donation game with arbitrary graph and initial configuration. This678

result unifies and generalizes the main results of Chen et al. (2016) (who considered only regular679

graphs) as well as Allen et al. (2017) (who considered only uniform initialization).680

From these results, one can derive many of the well-known results on critical benefit-to-cost681

ratios for cooperation to be favored in social dilemmas (Ohtsuki et al., 2006; Taylor et al., 2007;682

Chen, 2013; Allen and Nowak, 2014; Fotouhi et al., 2018). Moreover, they provide more informa-683

tion than just when weak selection favors a particular trait; they also determine how much, based684

on the magnitude of d
dδ

⏐⏐⏐
δ=0

ρA, which can lead to more nuanced comparisons of population struc-685

tures based on their ability to promote a trait (Section 8.3). The magnitude of d
dδ

⏐⏐⏐
δ=0

ρA has been686

explored considerably less than its sign, and our results allow this question to be explored for quite687

a large class of evolutionary update rules, population structures, and initial configurations.688

Our results on fixation probabilities apply to finite populations of a given size. It would be in-689

teresting to connect these results to the considerable body of theory for large populations (Kimura,690

1962; Roze and Rousset, 2003; Traulsen et al., 2006; Cox and Durrett, 2016; Chen, 2018), by691

analyzing the large-population (N → ∞) asymptotics of our results such as Eq. (34). However,692

a number of challenges arise. First, unless one places a bound on the degree of the process, the693

number of terms in first-order part of Eq. (34) grows exponentially with N. Second, since Eq. (34)694

is itself an expansion for weak selection (δ ≪ 1), one must consider the relationship between N695

and δ as N → ∞ and δ → 0. These two limits are known to be non-interchangeable, even in the696

relatively simple case of two-player games in a well-mixed population (Sample and Allen, 2017).697

However, neither of these challenges appears insurmountable, and addressing them is an important698

goal for future work.699
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Table 1: Glossary of Notation

Symbol Description Introduced
A Monomorphic state in which all individuals have type A Section 2.1
α Parentage map in a replacement event Section 2.1
α̃ Extension of the parentage map, α, to {1, . . . , N} Section 2.1
B Monomorphic state in which all individuals have type B Section 2.1
B Boolean domain {0, 1} (1 for A, 0 for B) Section 2.1

BN Set of configurations of types in the population Section 2.1
BN
⊺ Set of non-monomorphic configurations of types in the pop-

ulation, i.e. BN − {A, B}
Section 2.1

bi (x) Expected offspring number of i in state x Section 2.2
(b/c)∗ Critical benefit-to-cost ratio for cooperation to evolve Section 8.3

cij
I Fourier coefficients of d

dδ

⏐⏐⏐
δ=0

eij (x) Section 2.2

δ Selection strength Section 2.1
di (x) Death probability of i in state x Section 2.2

∆sel (x) Expected change in the frequency of A due to selection Section 2.2

Dij Fourier degree of d
dδ

⏐⏐⏐
δ=0

eij (x) as a multi-linear polynomial Section 2.2

D Fourier degree of the evolutionary process at δ = 0 Section 2.2
eij (x) Marginal probability that i transmits its offspring to j in

state x
Section 2.2

µA, µB Mutant-appearance distributions of types A and B, respec-
tively

Section 5

µi Probability that a single mutant appears at location i Section 6
mij

k Marginal effect of the fecundity of k on i replacing j Section 8
N Number of individuals (population size) Section 2.1

p(R,α) (x) Probability of choosing replacement event (R, α) in state x Section 2.1
πi Reproductive value of location i Section 2.2

π⟳(ξ) Mutation-selection stationary distribution (which depends
on a fixed configuration, ξ)

Section 3

p(n)ij Probability of moving from vertex i to vertex j in n steps of
a random walk on a graph

Section 7.1

R Set of replaced positions in a replacement event Section 2.1
r Relative reproductive rate of a mutant in a constant-

fecundity process
Section 7

ρA, ρB Fixation probabilities of types A and B, respectively Section 2.2
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Table 1: Glossary of Notation

Symbol Description Introduced
s Selection coefficient of a mutant in a constant-fecundity

process
Section 7

u Probability of regenerating a fixed transient state, ξ, follow-
ing A or B

Section 3

ui (x) Payoff to i in state x in an evolutionary game Section 8
wij Edge weight between vertices i and j in a graph Section 7.1
wi Degree of vertex i in a graph Section 7.1
x Configuration of types in the population Section 2.1
xi Type occupying i (1 for A, 0 for B) Section 2.1
ξ Initial configuration of types in the population Section 2.2
◦ Indicates the absence of selection Section 2.1ˆ Indicates weighting by reproductive values Section 2.2
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