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Abstract

We study the topology of the configuration spaces C(n, w) of n hard disks of unit
diameter in an infinite strip of width w. We describe ranges of parameter or “regimes”,
where homology H;[C(n, w)] behaves in qualitatively different ways. We show that if
w > j+2, then the homology H;[C(n, w)] is isomorphic to the homology of the con-
figuration space of points in the plane, H;[C(n, R?)]. The Betti numbers of C(n, R?)
were computed by Arnold (The cohomology ring of the colored braid group. Springer
Berlin, pp 183-186, 2014), and so as a corollary of the isomorphism, 8;[C(n, w)] is a
polynomial in n of degree 2 j. On the other hand, we show thatif2 < w < j 41, then
B;[C(n, w)] grows exponentially with n. Most of our work is in carefully estimating
B;[C(n, w)] in this regime. We also illustrate, for every n, the homological “phase
portrait” in the (w, j)-plane—the parameter values where homology H;[C(n, w)]
is trivial, nontrivial, and isomorphic with H; [C(n, Rz)]. Motivated by the notion of
phase transitions for hard-spheres systems, we discuss these as the “homological solid,
liquid, and gas” regimes.
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1 Introduction

We study the topology of configuration spaces C(n, w) of n non-overlapping disks of
unit diameter in an infinite strip of width w.
In other words, for non-negative integers n, w we define

C(n,w) = {(x1, Y1, X2, Y2, - . » Xn, Yn) € R :
(x; —x,-)z + (i — yj)2 > 1 foreveryi # j, and
1/2 <y; <w—1/2foreveryi.}

The coordinates (x;, y;) give the center of disk i, the inequalities (x; — x j)z + (i —
y j)z > 1 ensure that the disks have disjoint interiors, and the inequalities 1/2 < y; <
w — 1/2 ensure that the disks of unit diameter (or radius 1/2) stay in the closed strip
0 < y < w. These spaces generalize the well-studied configuration space of points
in the plane, which we denote C(n, R?). We briefly review the homology of C(n, R?)
later in this section.

Our main result describes the asymptotics for the Betti numbers §;[C(n, w)], for
fixed j and w, as n — oo. Our results do not depend on the choice of coefficient
field for the homology. We use the notation f < g to indicate that there exist positive
constants ¢, ¢ such that

c1g(n) < f(n) < cr8(n)

for all sufficiently large n. In the following, the implied constants depend on j and w
but not on n.

Theorem 1.1 (Asymptotic rate of growth of the Betti numbers as n — c0)

(1) Ifw >2and 0 < j < w — 2 then the inclusion map i : C(n, w) — C(n, R?)
induces an isomorphism on homology

ix 1 Hj[C(n,w)] — H;[C(n,R?)].
So if n — oo then the asymptotic rate of growth is given by
Bj[C(n, w)] < n?.

2) Ifw >2andj > w—1thenwrite j = g(w—1)+rwithg > 1land0) <r < w—1.
Then we have that

B [C(n, w)] = (g + 1)'ndVF?,

Ifw=1and j =0, then By = n!.
(3) Ifeither w =0, orw =1 and j > 1, then ; = 0.

Configuration spaces of disks arise naturally as the phase space of a 2-dimensional
“hard-spheres” system, so are of interest in physics as well. See, for example, the
discussion of hard disks in a box by Diaconis (2009), and the review of the physics
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Fig.1 Theorem 1.1 describes the rate of growth of B; [C(n, w)], for fixed j and w, as n — oo. The results
are up to a constant factor, e.g. 3[C(n, 3)] < 51,12

literature by Carlsson et al. (2012). In these applications it is relevant to consider the
configuration spaces of unordered disks. However, the phenomenon of exponential
growth in Theorem 1.1 applies only to configuration spaces of ordered disks; we show
in Proposition 3.7 that the Betti numbers of the configuration spaces of unordered
disks grow at most polynomially in 7.

The topology of configuration spaces of particles with thickness has been studied
earlier, for example in Alpert (2017), Baryshnikov et al. (2014), Deeley (2011), and
Kusner et al. (2018), but so far, not much seems to be known. Some of this past work
is also inspired in part by applications to engineering, for example motion planning
for robots.

Inspired by the statement of Theorem 1.1, we suggest the following definitions for
“homological solid, liquid, and gas” regimes in the (w, j) plane.

e We define the “homological solid” phase to be wherever homology is trivial. The
motivation for this definition is that one expects that in a crystal phase, things are
fairly rigid and that the configuration space is simple.

e We define the “homological gas” phase to be where homology agrees with the
configuration space of points in the plane. In other words, through the lens of this
homology group, the particles are indistinguishable from points, corresponding to
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the assumption of atoms acting as point particles in an ideal gas. Arnold (2014)
showed that the Poincaré polynomial of C(n, R?) is given by

Bo+PBit+-+Bpit" ' =A+0)A+20)...(1+ (n = Di).

It follows that the Betti numbers are given by the unsigned Stirling numbers of the

first kind.
g [ B3] = [,, ’ij] -

For a self-contained overview of the homology and cohomology of C(n, R?), see
Sinha (2013).

One can use a standard recursive formula for Stirling numbers to write n—j
as a polynomial in n of degree 2 j. See, for example, Section 1.3 of Stanley’s book
(Stanley 2012). Formulas for the first few Betti numbers are given by:

BolC(n, RH)] =1

BIIC(n, R?)] = @
3n—1 —1 -2
prlc, B = =0 202
2 2
2, n(n—=1)"(n—2)(n—3)
BalC(n, RY)] = 5

e Finally, we define the “homological liquid” phase to be everything else. This is the
most interesting regime topologically, and we are somewhat surprised to find that
there is a lot of homology. Another physical metaphor for the homological liquid
regime, suggested to us by Jeremy Mason, is a turbulent fluid in a pipe.

Most of our work in this paper is in estimating the Betti numbers in the homological
liquid regime. For lower bounds, we use the duality between the homology of C(n, w)
and its homology with closed support. For upper bounds, we first prove that C(n, w)
is homotopy equivalent to a cell complex cell(n, w), and then apply discrete Morse
theory.

Some advantages of the definitions of homological solid, liquid, and gas include
their simplicity, their generality, and being well defined for every finite n and not
merely asymptotically. All three regimes are already visible whenn = 3 and j = 1.
The following describes the shapes of the regimes for every n. We emphasize that
the boundary between solid and liquid regimes is more interesting for finite n than it
appears to be in Theorem 1.1.
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Theorem 1.2 (The phase portrait for every n)

(1) (Gas regime.) If w > 2and0 < j < w — 2, then the inclusionmap i : C(n, w) —
C(n, R?) induces an isomorphism on homology

iv: Hj[C(n,w)] — H;[C(n, R)].

Moreover, if w > n then C(n, w) is homotopy equivalent to C(n, R?).

(2) (Liquidregime.)If1 <w <n—landw—1 < j < n—[n/w]then H;j(C(n, w)) #
0, but the inclusion map i : C(n, w) — C(n, R?) does not induce an isomorphism
on homology

ix 1 Hi[C(n,w)] — H;[C(n,R?)].
(3) (Solid regime.) If either w =0, or w > 1l and j > n — [n/w] + 1, then
H;[C(n, w)] = 0.

Although the statement is for every n and not only asymptotically as n — oo,
Theorem 1.2 is actually easier than Theorem 1.1 and is essentially a corollary of
intermediate results.

The rest of the paper is organized as follows.

In Sect. 2, we give definitions and notation used throughout the rest of the paper.
In particular, we describe a polyhedral cell complex cell(n, w), a subcomplex of the
Salvetti complex, which is homotopy equivalent to C(n, w).

In Sect. 3, we prove the homotopy equivalence of C(n, w) and cell(n, w). Parts (1)
and (3) of Theorem 1.1 follow immediately from the homotopy equivalence.

In Sect. 4, we prove lower bounds on the Betti numbers in the liquid regime, giving
one direction of part (2) of Theorem 1.1.

In Sect. 5, we prove Theorem 1.2.

In Sect. 6, we describe a discrete gradient vector field on cell(n, w). This allows us
to collapse cell(n, w) to a regular CW complex with far fewer cells.

In Sect. 7, we use the results from Sect. 6 to prove upper bounds, giving the other
direction of part (2) of Theorem 1.1.

In Sect. 8, we close with comments and open problems.

Finally, in an appendix by Ulrich Bauer and Kyle Parsons, we include calculation
of the Betti numbers for n < 8.

2 Definitions and notation

We first describe a ranked poset which we denote poset(rn), which is the face poset of
aregular CW complex cell(n) called the Salvetti complex. Then, afterward, we define
cell(n, w) as a subcomplex of cell(n). The Salvetti complex and related constructions
have appeared implicitly or explicitly many times—see Section 3 of Blagojevi¢ and
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Fig.2 Theorem 1.2 describes the shapes of the homological solid, liquid, and gas regimes for every n. We
illustrate here the case n = 24

Ziegler (2014) for a brief review of the literature. This complex was apparently first
described explicitly by Salvetti (1987), but Fox and Neuwirth (1962) studied a model
that is essentially dual to the Salvetti complex much earlier. For some applications of
the Fox—Neuwirth complex beyond configuration spaces see, for example, Ayala and
Hepworth (2014) (connections to Joyal’s category ®,,), Giusti and Sinha (2012) (con-
nections to the cohomology of the symmetric group S,), and Chapter 1 of Vassiliev’s
text (Vassiliev 1992) (connections to knot invariants).

Definition 2.1 The poset which we denote poset(n) has as its underlying set A(n),
defined as follows. We call the elements of LA () “symbols”. A symbol is a permutation
in one-line notation (o] 02 ... 0y,), where between each consecutive pair of elements
o; 0;+1, there can either be a bar or not.

The bars separate the permutation into pieces that we call blocks. The partial order
on poset(n) is characterized as follows: the covers in the Hasse diagram of a symbol «
are the symbols obtained from « by the operation of removing a bar and merging the
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(213) (231) (321) (312) (132) (123)

(2113 (1233 (2/313 (2/13) (32(13 (28] 1 (3|21) (31123 (31[2) (13]2) (1[32) (1]23)

(2[1[3)2(3[1X3|2[1X3|1[2)X13[2X1|2[3)

Fig.3 The Hasse diagram of poset(3). This is the face poset of the Salvetti complex for the configuration
space of 3 points in the plane

two adjacent blocks by a shuffle—the shuffle must preserve the relative order within
each block.

The Hasse diagram of poset(3) is illustrated in Fig. 3. For example, (1 | 3 | 2),
(31]2),and (3 2 1) are all symbols in .A(3). Moreover, they form a chain in the
poset.

There are n — 1 positions between consecutive pairs of elements, so there are exactly
n!2"~! symbols in A(n).

It is useful to consider “block notation” for a symbol. If we write

a=(clec|-|cm),

it means that each ¢; is a block of the permutation, separated from the rest of the
permutation by bars. Forgetting the order of permutation elements within a block, we
may also regard a block as a subset of [n] := {1, 2, ..., n}. So we may write without
ambiguity such statements as “oj and oy are in the same block™.

It is well known that poset(n) is the face poset of a regular CW complex cell(n)—
see for example Blagojevi¢ and Ziegler (2014), usually called the Salvetti complex.
In the more general context of complexifications of real hyperplane arrangements, it
was shown in Salvetti (1987) that cell(n) is homotopy equivalent to the configuration
space of points in the plane C(n, R?). A Salvetti complex exists for every complexified
real hyperplane arrangement, but the complex cell(n) we discuss here is the Salvetti
complex associated with the braid arrangement of diagonal hyperplaces.

The cell complex cell(n) has n!(?~) = n!("_}) i-dimensional faces, indexed by
permutations withn —i —1 bars. Ifacell isindexed by asymbola = (c1 | ¢c2 | -+ | ¢m)
with m blocks, then the cell has dimension j = n — m.

We will be mostly concerned with certain subcomplexes of cell(n), described as

follows.

Definition 2.2 For every n, w > 1, we define poset(n, w) to be the sub-poset of
poset(n) where every block has width at most w, that is, at most w elements. We note
that poset(n, w) is an order ideal in poset(n). Then since poset(n) is the face poset of
cell(n), we have that poset(n, w) is the face poset of a subcomplex which we denote
cell(n, w).

The cell complex cell(3, 2) is illustrated in Fig. 4.
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Fig.4 The cell complex cell(3, 2)

In the remainder of the section, we define some spaces closely related to C(n, w).
We use these spaces in Sect. 3 for the proof that C(n, w) and cell(n, w) are homotopy
equivalent, and in Sect. 4 to find lower bounds on the Betti numbers of these spaces.

LetC4(n, w) denote the closed configuration space of n disks of diameter d in a strip
of width w, so that C(n, w) = C;(n, w). Rescaling gives homeomorphisms between
Cq(n, w),C(n, w/d),and Cq/y(n, 1), so we can identify C(n, w) with Cy/,, (n, 1). Let
Co(n, 1) denote the union of all C4(n, 1), i.e., the configuration space of n points in
the strip of width 1.

Definition 2.3 Given a symbol « € poset(n, w), we define an open set Uy, in Cy(n, 1)
as follows. Write « in block notation « = (¢; | ¢2 | -+- | ¢i), and then define the
open set Uy to be the set of points (x1, y1, X2, ¥2, ..., Xn, ¥u) € R%" such that the
following conditions are met.

We have 0 < y; < 1 for all yy.

Whenever oy and oy are in the same block and k < £, we have y,;, > yq,.
Whenever oy and oy are in different blocks and k < £, we have x,, < xo,.

If o} and oy are in the same block, and o}/ and o, are in different blocks, then

|xa’k - x(f[' < |x<7k/ _xok/|'

The indices are not assumed to be distinct—in particular it may be that k = ’.
Intuitively, elements in the same block must cluster by x-coordinate.

Given a symbol «, let w(«) denote the largest number of elements in any block of
«. For any natural number w, let U (n, w) denote the union in Cy(n, 1) of all U, for
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which w(«) < w. So U (n, w) excludes exactly those configurations in Cy(n, 1) that
have more than w points on the same vertical line. For the sake of completeness and
clarity later, we rewrite this definition as follows.

Definition 2.4 We define U (n, w) to be the set of points (x1, y1, X2, Y2, - - -» Xn, Yu) €
R?" such that the following conditions are met.

o (X, Yr) # (x¢, y¢) whenever 1 <k < £ <n,
e 0 <yr <lforeveryl <k <n,and
e no w + 1 of the points have the same x-coordinate.

3 Homotopy equivalence

The main goal of this section is to prove the following theorem.

Theorem 3.1 For every n,w > 1, we have a homotopy equivalence C(n, w) =~
cell(n, w). Moreover, these homotopy equivalences for w and w + 1 commute up
to homotopy with the inclusions cell(n, w) < cell(n,w + 1) and C(n, w) —
Cn,w—+1).

In Sect. 3.1 we give an overview of the parts of the proof, and in Sect. 3.2 we prove
the technical lemmas needed to finish the proof. Then, in Sect. 3.3 we list a few of the
immediate consequences of the homotopy equivalence.

3.1 Proof overview of Theorem 3.1

Our strategy is to use the nerve theorem. We briefly review some of the terminology
and ideas of nerve theory. We say that an open cover U = (Uy)rexc of a topological
space X is good if every intersection of elements of I/ is either empty or contractible.
The nerve N (U) of U is the simplicial complex built by taking a vertex for each open
set Uy and a simplex for every collection of open sets with nonempty intersection.
For our purposes here, the indexing set K will always be finite, so the nerve is always
finite-dimensional.

The nerve theorem says that the nerve N (/) is homotopy equivalent to the original
space X. In particular, let {¢}rcxc be a partition of unity subordinate to ¢/, and let
{vr}rexc be the vertices of the nerve. Then the map r: X — N (U) defined by

r() =) dex)u
kelC

is a homotopy equivalence.

To prove that the homotopy equivalences in Theorem 3.1 commute with the inclu-
sions into wider strips, we require the following functorial version of the nerve theorem.
The result is well known to topologists, and goes back at least to the 1970’s within the
framework of homotopy colimits (Bousfield and Kan 1972). The statement of The-
orem 3.2 and an elementary and self-contained proof appear in Section 4 of Bauer
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et al. (2017a). Part of the point of their proof is that there is an explicit map between
a space and the nerve of its cover, which avoids passing through homotopy colimits.
This explicit map may have first been described by Weil (1952).

Theorem 3.2 (Functorial nerve theorem, Bauer et al. 2017a) Suppose that U =
(Uk)kexc is a good open cover of a topological space X, and that V = (Vy)yer is a
good open cover of a topological space Y. Suppose that f : X — Y is continuous, and
that g: IKC — L is such that f(Uy) C Ve for everyk € K. Letg: NU) — N(V)
be the linear simplicial map induced by g. Then the following diagram commutes, up
to homotopy.

x 1 vy

Q

NU) —2

The other two pieces we need for the proof of Theorem 3.1 are the following two
theorems, which we prove in Sect. 3.2.

Theorem 3.3 U (n, w) deformation retracts to Cy (1, 1).

Theorem 3.4 The cover {Ug bw(a)<w 0f U (n, w) is good, and its nerve N (n, w) is the
barycentric subdivision of the regular cell complex cell(n, w).

Assuming these two theorems, we can finish the proof of Theorem 3.1.

Proof of Theorem 3.1 The homotopy equivalence between C(n, w) and cell(n, w) is a
composition of homotopy equivalences

Cn,w) = Ciypn, 1) = U, w) - N, w) — cell(n, w).

Specifically, let ¢: C(n, w) — C; Jw (1, w) be the rescaling map, which is a homeo-
morphism. The inclusion map i : Ci/y(n, w) < U (n, w) is a homotopy equivalence
because its homotopy inverse is the deformation retraction from Theorem 3.3. The map
r: Um,w) — N(n,w) is the homotopy equivalence given by the nerve theorem.
And, applying Theorem 3.4 weletb: N(n, w) — cell(n, w) be the homeomorphism
that undoes the barycentric subdivision.

We check that each of these maps commutes up to homotopy with the inclusions
resulting from mapping each space to the corresponding space with w replaced by
w + 1. The diagram

C(n,w) —— C(n,w+1)

J J

Ci/w(n, 1) —— Ci i1y (n,1)

commutes because inclusion commutes with rescaling. The diagram

@ Springer



Configuration spaces of disks in an infinite strip

Ci/w(n, 1) —— Cijuwi1)(n,1)

L L

U(n,w) ——— U(n,w+1)

commutes because all of the maps are inclusions. The diagram

U(n,w) —— U(n,w+1)

L L

N(n,w) —— N(n,w+1)

commutes by the extended nerve theorem, Theorem 3.2. And, the diagram

N(n,w) —~— N(n,w+1)

L Js

cell(n, w) —— cell(n,w + 1)

commutes because barycentric subdivision is functorial. O

3.2 Technical lemmas for Theorem 3.1

First we prove Theorem 3.3, which says that U(n, w) deformation retracts to
Cijw(n, 1). Let 7: Cp(n, 1) — (0, 00) denote the function defined as follows; the
paper Baryshnikov et al. (2014) calls this the rautological function. For any configu-
ration p, we set 7(p) to be the maximum value d such that p € Cy(n, 1). Intuitively,
we take the points in the configuration p, and consider disks of growing radius with
those points as centers. When the disks first become tangent to each other or to the
lines y = 0 or y = 1, the diameter of those disks is t(p).

Because Cy/y(n, 1) is the subset of U (n, w) where ¢ > 1/w, our strategy for the
deformation retraction is to flow along a vector field that increases 7. In the following
lemma, we construct such a vector field for each U,, and then we combine the vector
fields for various « together.

Lemma 3.5 For each set Uy, there is a continuous vector field {vy (p)} pev,, With the

property thatif t(p) < 1/w(a), then T isincreasing at rate at least 2/ 1 /w(a) — T(p)
in the direction vy (p), that is, Dt,(ve(p)) = 24/1/w(a) — T(p).

(Although 7 is not a smooth function, it turns out that its directional derivative in
every direction is well-defined, so the expression D7, (v, (p)) makes sense.) Before
proving this technical lemma, we show how it gives the deformation retraction needed
for Theorem 3.3.
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Proof (Proof that Lemma 3.5 implies Theorem 3.3) Let w be a natural number. To
define the deformation retraction from U (n, w) to C (1, 1), we combine the vector
fields vy (p) from Lemma 3.5 as follows to produce a vector field v(p) on U (n, w) \
Cijw(n, 1). Let ¢ be a partition of unity subordinate to the covering {Ug }w(w)<w Of
U (n, w). Thatis, forany p € U (n, w), each ¢, (p) is between 0 and 1, with ¢, (p) = 0
if p ¢ Uy,and )", ¢o(p) = 1. Foreach p € U(n, w) \ Ci/w(n, 1), we define

v(p) =Y bu(P)va(p).

We claim that for each p, if 7(p) < 1/w then we have Dz,(v(p)) =>
2/1/w — t(p); that is, T(p) increases at rate at least 2./1/w — 7(p) in the direction

v(p). We already have that each vector field vy (p) increases t(p) at this rate:

D1, (va(p)) = 2y 1/w(@) — t(p) = 2y/1/w — T (p).

For the convex combination v, (p), we look at the configuration p of disks of diameter
7(p), and find all the places where two disks are tangent or where a disk is tangent
to the boundary of the strip. For each of these tangencies, there is a linear functional
on the tangent space at p, measuring how the distance between those two disks or
between that disk and the boundary changes as p varies. The set of vectors at p that
increase 7 is the intersection of half-spaces, one for each of the tangencies. And, the
set of vectors at p that increase t at rate at least 2./1/w — t(p) is the intersection
of half-spaces, one for each of the tangencies, cut out by planes that are parallel to
the corresponding planes for finding the set of vectors at p that increase t. Thus, this
latter set is convex. The vector v(p) = >, ¢ (p)vs(p) is a convex combination of
vectors vy that lie in the convex set, so v(p) is also in the set.

The deformation retraction is given by flowing along v(p) until we reach the set
Cijw(n, 1). To see how fast it finishes, let p(¢) be one of the trajectories, and let
8(t) = 1/w — t(p(t)). Then we have that §(¢) is decreasing at a rate

18'(0)] = 24/,

so we have
/
8 (1) <1
24/6(t)
or
d 5() < —1
dt -

Thus the quantity +/8(¢) decreases from at most /1/w to O at rate at least 1, and so
the deformation retraction finishes in time at most /1/w < 1.
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Fig. 5 The vector field y(p) — p moves the points up and down so that the disks in each block become
evenly spaced vertically. Then, the vector field x(p) — p pushes the blocks away from each other, fast
enough that points in different blocks do not move toward each other

The bulk of Theorem 3.3 is in constructing the vector field vy (p) to prove
Lemma 3.5.

Proof of Lemma 3.5 Given any «, we construct v, (p) as

ve(p) = A(p)y(p) — p) + (x(p) — p),

where x: Uy — Uy and y: Uy — Uy specify configurations, and A: Uy — Rxg
specifies a nonnegative scaling. The configuration y(p) differs from p by moving
the points vertically, and the configuration x(p) differs from p by moving the points
horizontally such that points in the same block of « keep their relationships but the
horizontal space between blocks may increase. We first construct y(p), then construct
A(p), and then construct x(p) so that the resulting vector has the desired properties.
See Fig. 5.

To analyze whether the vector v, (p) increases t(p) quickly enough, we observe
that t(p) is the minimum of all the distances between pairs of points in p and twice
all the distances between the points and the boundary of the strip. We refer to these
distances as the measurements, and refer to each measurement less than 1/w(«) as
short. It suffices to construct vy ( p) such that for each short measurement m (p), moving
along the vector vy (p) increases m(p) at rate at least 2/1/w(a) — m(p).

We start by constructing y(p) in such a way that for each short measurement within
any block, moving from p to y(p) increases that short measurement. Let y(p) € Uy
be a configuration in which the points have the same x—coordinates as in p, but the y—
coordinates are evenly spaced within each block, in the following way. If a block has k
elements, then the y—coordinates of those pointsin y(p) are 1 — %k, 1— %k, e, %k %k,
so that the intervals of size % around these values exactly tile the interval from O to 1.
In the new configuration y(p), each distance between points in the same block is at
least 1/w(«), and twice the distance from each point to the boundary of the strip is at
least 1/w ().

We still need to check that the vector at p given by y(p) — p infinitesimally increases
each short measurement within any block. Consider any short measurement in p given
by distance from a point to the boundary of the strip. In y(p), this measurement is
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no longer short, so the vector y(p) — p must move the relevant point away from the
boundary of the strip, increasing that measurement.

Next, consider any short measurement in p given by distance between two points
in the same block. Let a and b be the points in p, and let a” and b’ be the corresponding
points in y(p). To determine whether the vector y(p) — p increases this measurement,
we need to look at the triangle formed by vectors b — a and b’ — a’. The measurement
increases if and only if the angle at b — a is obtuse; that is, if we have the inequality of
inner products (b’ —a’, b—a) > (b—a, b—a). Because our two points are in the same
block, the x—coordinates of b — a and b’ — a’ are the same, while the y—coordinate
of b’ — @’ has the same sign as that of b — a but has greater magnitude because our
measurement is no longer short in y(p). Thus, we do have the desired inequality.

Because the vector y(p) — p infinitesimally increases each short measurement
within any block, we can choose the scaling A(p) such that if m(p) is a short mea-
surement within any block, then A(p)(y(p) — p) increases m(p) at a rate of at least
2/T/w(a) — m(p). We choose the minimum possible scaling A(p) with this property.
In particular, if p has no short measurements, or if every short measurement in p is a
distance between points in different blocks, then A(p) = 0.

Next we choose the configuration x(p), which differs from p by sliding some
pairs of consecutive blocks away from each other. The vector x(p) — p does not
change any measurements within any blocks. Thus, our task is to choose x(p) such
that the resulting vector vy (p) = A(p)(y(p) — p) + (x(p) — p) increases each short
measurement between blocks by the desired amount; the measurements within blocks
are already taken care of. We choose x (p) such that the left-most block of p does not
move. From this assumption, the configuration x(p) is determined by specifying the
amount of horizontal space between each pair of consecutive blocks.

Consider two consecutive blocks. If none of the distances between one point in
the first block and another point in the second block are short measurements, then
we leave the distance between those two blocks the same. Otherwise, consider such a
short measurement. Let a and b be the points in p that give the measurement, with a
in the left block and b in the right block. Suppose our vector v, (p) moves our points
toward a’ and b’; that is, for some small £ > 0 such that p +¢& - v, (p) € Uy, leta’ and
b’ be the corresponding points in the configuration p + ¢ - vy (p). (Note that whether
p + ¢ - vy(p) is in U, depends on A(p) and y(p) but not on x(p).) Then, as above,
the measurement increases if and only we have (' —a’, b —a) > (b —a, b —a), or
equivalently if (b’ —a’) — (b — a), b — a) > 0. In fact, the rate that T increases in
the direction vy (p) is 1/¢ times the length of the projection of (b — a’) — (b — a)
onto the direction b — a. We claim that we can choose x (p) such that this projection
is sufficiently long.

Leta = (a1, a2), b = (b1, by), a’ = (a}, a}), and b' = (b}, b}). Then az, by, d},
and b’2 are determined by our choice of A(p), y(p), and €. We have that b; — a; is
positive (because a is to the left of b), and that (b/1 — a{) — (b1 — ay) is equal to ¢
times the amount of additional space in x(p) between the two blocks, compared to
the space in p. By choosing this amount of additional space to be large, we may cause
the quantity (b} —a)) — (b1 —a1))(b1 — ay) to be arbitrarily large, while keeping the
quantity ((by — ay) — (by — a2))(by — az) the same, thus making the inner product
((b' —a’y — (b—a), b—a) as positive as we want. Thus, there is some choice of how
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much more space x(p) should have than p between the two blocks, in order to have
the property that for each short measurement m (p) between the two blocks, the vector
vy (p) increases this measurement at rate at least 2/1/w(«) — m(p); we choose the
least possible such amount of additional space.

Repeating this computation for each pair of consecutive blocks gives x(p) and
thus completes the construction of v, (p). The selection of A(p) and y(p) guarantees
that v, (p) increases each short measurement m(p) within a block at rate at least
2/T/w(a) — m(p), and the selection of x(p) guarantees that v, (p) increases each
short measurement 1 ( p) between two blocks at rate at least 24/1/w(a) — m(p). Thus,
vy (p) increases the function t(p), equal to the minimum of all these measurements,

at rate at least 24/1/w(a) — t(p). |

This completes the proof of Theorem 3.3, the deformation retraction from U (n, w)
to Cyjw(n, 1). Next we prove Theorem 3.4, which implies using the nerve theorem
that U (n, w) is homotopy equivalent to cell(n, w). The main thing to check is that the
intersection

Uy NUg, N -+ -N Uy
is nonempty if and only if the symbols

{ag, a0, ..., k)

form a chain in poset(n, w); thus, a simplex in the nerve N (n, w) corresponds to a
chain of incident cells in cell(n, w).

Proof of Theorem 3.4 Every U, is a convex open subset of R>, so every U, is
contractible and since the intersection of convex sets is convex, every nonempty inter-
section is contractible. Thus, the sets U, form a good cover of U (n, w).

Given a point p € U (n, w), we first describe an algorithm for finding A, the set
of symbols « € C(n, w) such that p € U,. Along the way, we will see that A, is a
chain.

We first define the poset of ordered partitions part(n). An element of part(n) is an
ordered sequence (S7, S2, ...) of non-empty subsets of [n] such that the subsets §;
are pairwise disjoint, and their union is all of [n].

The partial order on part(n) is characterized as follows: the covers of an ordered
partition 7 are the ordered partitions obtained from 7r by the operation of replacing two
adjacent subsets by their union at the same place in the order. We remark that part(n)
is somewhat similar to poset(n), but in part(n) we forget the order of the elements
within a block.

Now let a point

p = (X1, Y1, X2, 2, .., X, ¥n) € U(n, w)
be given. We find the set of U,, containing p in the following way.
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Step 1 produces a chain 1, 2, ..., 7, in the poset part(n). This step uses the x
coordinates of p but not the y coordinates. We say that x; and x, are consecutive x
values of p if x; < x¢ and there is no k' for which x; < xpr < xy.

Fori = 1,2,...,nand p > 0, define K;(p) := [xi — p/2,x;i + p/2], i.e., the
closed interval of length p centered on x;. Let K (p) := | K;(p) be the union of all
the intervals K;(p). Every path component of K (p) is a union of finitely many closed
intervals and is connected, hence is a closed interval itself. We cluster the integers
[n] according to which path connected component of K they lie in. In other words,
for i € [n] we say thati € Si(p) if x; is in the kth connected component of K (p),
counting left to right.

When p = 0, k and ¢ lie in the same cluster if and only if x; = x,. When
p is sufficiently large, there is only one cluster and Sj(p) = [n]. In general, the
ordered partition 7 (p) changes only at certain values of p, namely the differences of
consecutive x values. So as p increases, we get a finite sequence of distinct ordered
partitions 7y, 2, . . . This sequence is the desired chain in part(n).

Step 2 produces a chain 7y, 7, . .., T, in poset(n, w). Here m’ < m and for every
1 <i < m/, the symbol 7; € poset(n, w) is a “lift” of the ordered partition 7; €
part(n). This step uses the y coordinates of p but not the x coordinates.

Given a partition 7; = (81, S2, ... ) produced in Step 1, order the elements within
each subset Sy to produce 7; € poset(n, w), in such a way that if o, and oy are
elements of Sy with o; before o in the ordering (that is, £ < ¢'), then y,, > Yo, +1.
If for some Sy this can not be done, then discard 7r; from the chain and exclude it from
further consideration. We can also discard, then, ;. for any £ > i; any such ordered
partition is just made by merging elements of 7;, so it is still impossible to order within
a part by y coordinate.

It is immediate that the chain constructed from Steps 1 and 2 is the desired Ap,
from the definition of U,.

Finally, we check that an intersection

Uy NUg, N+ - N Uy,
is nonempty if and only if the symbols

{ag, a0, ..., o)

form a chain in poset(n, w).

First of all, if the intersection is nonempty then we apply the algorithm to any point
p in the intersection. The set of U, containing p gives a chain that includes all of
a1, ..., o, and any sub-poset of a chain is a chain, so oy, ..., oy must form a chain.

Now suppose we have a chain o] < ap < - -+ < oy, in poset(n, w). We produce a
point p such that p € Uy, for every i. First we choose the y-coordinates. None of the
blocks in any symbol have width more than w, so there is enough room vertically in
U (n, w) to ensure that if o and oy are in the same block of «,,, with k < £, then we
can choose ys, > v, + 1.

To choose the x-coordinates, we start by assuming without loss of generality that
the chain is maximal, so getting to each symbol «; from the previous symbol o1
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corresponds to merging two consecutive blocks. We start with oy and add restrictions
on the x-coordinates one stage at a time, so that on the ith step we will have fixed the
differences between x-coordinates within each block of «;, but we think of the separate
blocks sliding freely from side to side. After all the steps, we will have specified the
configuration up to horizontal translation.

More precisely, at Stage 1 we require that if k¥ < ¢—that is, if o} appears before
o¢ in aj—then x5, < x4,, with no other restrictions. Any such configuration is in
Uy, . At Stage 2, two consecutive elements in o together form a block of width 2, and
we introduce the restriction that their x-coordinates have difference 9 = 32. Then,
continuing in the same way, at step i two consecutive blocks ¢, and ¢, in o
merge to give ;. We introduce the restriction that the difference in x-coordinates
between the first element of ¢, and the last element of ¢y, ,—where “first” and “last”
are still taken in terms of the first symbol oj—should be 3*.

Any configuration that satisfies the restrictions up through Stage i and also leaves
horizontal gaps larger than 3’ between the blocks of «; is in Uy, . Note that Stage i
sets the gap between blocks ¢y, and ¢, , of a; 1 to be more than 3i=1 which is what
we need in order for the final configuration to be in Uy, ,. This is because, if we use
the word “width” here to mean the range of x-coordinates, the widths of ¢, and ¢y,_,
have been set to be distinct powers of 3 less than 3%, or to be 0 if the block has only
one element. Thus, the gap has size at most 3/ — (31 4 3/72) > 3i-1,

In the final stage, Stage n means merging two blocks to get «,, which has only one
block, and at Stage n we set the difference x,, — x,, to be 3" (here, the numbering
o1, ..., oy is still taken in terms of the first symbol «r1). At this stage, we have specified
the configuration p up to translation, and itisin Uy, N --- N Uy,,.

The barycentric subdivision of cell(n, w) has one vertex for every cell in cell(n, w),
and one simplex for every chain of incident cells in cell(n, w). The nerve N (n, w)
has one vertex for each U, and thus for each cell in cell(n, w). And, we have just
shown that every set of U, with nonempty intersection—corresponding to a simplex
in N(n, w)—corresponds to a chain of incident cells in cell(n, w), and vice versa.
Thus, N (n, w) is equal to the barycentric subdivision of cell(n, w). |

3.3 Consequences of the homotopy equivalence

One immediate consequence of the homotopy equivalence is Part (1) of Theorem 1.1,
i.e., given a sufficiently wide strip we have an isomorphism on homology with the
configuration space of points in the plane.

Proof (Proof of Part (1) of Theorem 1.1) We show that if w > j 4 2, then we have an
isomorphism between H;[C(n, w)] and H;[C(n, R?)]. Moreover, this isomorphism is
induced by the inclusion map i : C(n, w) — C(n, R?).

Every cell in cell(n) but not in cell(n, w) is indexed by a symbol with at least one
block of width atleast w+-1. Hence every such cell has dimension at least w. Therefore,
the subcomplex cell(n, w) of cell(n) has the same (w — 1)—skeleton as cell(n), so the
inclusion i : cell(n, w) < cell(n) induces an isomorphism of homology in degrees
<w-—2.
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By Theorem 3.1, the homotopy equivalences
cell(n,w) - U, w) = C(n, w)
and
cell(n) = cell(n, n) — U(n,n) = C(n, R?)

commute up to homotopy with the inclusions cell(n, w) < cell(n, n), U(n, w) —
U(n, n), and C(n, w) — C(n, R?), and so the inclusion i : C(n, w) < C(n, R?) also
induces an isomorphism on homology in degrees < w — 2.

Another consequence of the homotopy equivalence is that cell (#, 2) is an Eilenberg—
MacLane space. This cell complex is a cube complex because for each dimension j,
each j—cell is indexed by a symbol that has j blocks of size 2 and all other blocks of
size 1. We can take this cell to be a j—dimensional cube.

Theorem 3.6 The cubical complex cell(n,2) admits a locally-CAT(0) metric. As
a corollary, C(n,?2) is aspherical, i.e., has a contractible universal cover. So
7;j(C(n,2)) =0forj > 2.

Proof This follows immediately from Gromov’s criterion for a cube complex to admit
locally-CAT(0) metric (Gromov 1987). The only thing to check is that the link of
every vertex in cell(n, 2) is a “flag” simplicial complex. A simplicial complex is said
to be flag if it is the clique complex of its underlying graph—i.e., if it is maximal
with respect to its 1-skeleton. A precise statement and complete proof of Gromov’s
criterion can be found in Appendix 1.6 of Davis (2015).

Checking that the link of a vertex in cell(n, 2) is flag is straightforward. Let v be a
vertex in cell(n, 2), and consider the link of v, L = lk(v). The vertex v corresponds
to a symbol in poset(n, 2) where every block has width 1.

The vertices of L correspond to elements o > v in poset(n, 2) where every block
in o has width 1 except one block of width 2. Similarly, edges in L correspond to
symbols 7 > v where every block in t has width 1 except two blocks of width 2.
These two blocks of width 2 are disjoint pairs in [n].

Suppose vy, v2, ..., vk span a k-clique in lk(v). Then every pair of vertices corre-
sponds to a disjoint pair of elements in [n], and then concatenating these k disjoint
pairs (and respecting the order within each pair) gives a symbol C € A(n, 2) with k
blocks of width 2 and all the remaining blocks of width 1. This symbol C indexes a
k-dimensional cube in cell(n, 2), which corresponds to a (k — 1)-dimensional simplex
in Ik(v).

For example, let v = (4 | 6 | 5| 1 | 3 | 2). The vertices (46 | 5| 1] 3] 2),
416]15]3]2),and (4|65 1]23)span a clique in link(v). Since the symbol
(46 | 15| 23) corresponds to a 3-dimensional cube in cell(6, 2), the clique in link(v)
is filled in by a 2-dimensional face.

On the other hand, C(n, w) is not an Eilenberg—MacLane space if 3 < w <n — 1.
Indeed, the 2-skeleton of cell(n, w) is the same as the 2-skeleton of cell(n) when w is
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in this intermediate range. So if C(n, w) were a K (7, 1), its homology would have to
agree with the configuration space of points but we will see in Sect. 5 that it does not.

One last consequence of the homotopy equivalence concerns the configuration
space of unordered disks. Let /C(n, w) denote the configuration space of n unordered
disks in a strip of width wy it is the quotient of C(n, w) by the action of the symmetric
group S, that reorders the disks. Similarly, let ucell(n) and ucell(n, w) be the cell
complexes given by taking the quotients of cell(n) and cell(n, w) by their S,,—actions.
The cells in ucell(n) and ucell(n, w) are indexed by symbols consisting of n identical
“numbers” separated by bars. The arguments of Theorem 3.1 can be done equivariantly
to show that A/C(n, w) and ucell(n, w) are homotopy equivalent. This implies the
following proposition.

Proposition 3.7 For any coefficient field, the Betti numbers B;[UC(n, w)] of the con-
figuration spaces of unordered disks satisfy the polynomial upper bound

BUCHn, )] < (” i 1).

Proof The cell complex ucell(n, w) is a subcomplex of ucell(n), and the number of
j—dimensional cells in ucell(n) is exactly (";1) This is because in each symbol there
are n — 1 places between consecutive numbers where a bar could go, and in a j—cell
exactly j of those places do not have a bar.

4 Asymptotic lower bounds

In this section, we exhibit a large number of linearly independent cycles to prove lower
bounds on Betti numbers. The following is well known.

Lemma 4.1 Suppose that M is an open d-dimensional manifold, with submanifolds
Z\,2Zs,...,2Zrand Z}, Z5, . .., Z{ satisfying the following.

(1) Every Z; is a compact orientable j-dimensional submanifold without boundary,
(2) every Z} is aclosed orientable (d— j)-dimensional submanifold without boundary,
(3) whenever a # b we have that Z, N ZZ =@, and

(4) Z, intersects Z) transversely in a point for every a.

Then for any choice of coefficient field for the homology, we have dim H; (M) > k.

Proof Choose orientations of each Z; and let [Z;] in H; (M) be the fundamental class
of Z;. Choose orientations of each Zi* and let [Z;"] in H f_l‘f (M) be the fundamental

class of Z. (Here H*BM denotes homology with closed supports, or Borel-Moore
homology.)
Choose an orientation of M so that the intersection pairing

p: Hi(M) x HEM(M) — R

is defined. By the stated properties of the manifolds Z; and Z, this intersection pairing
satisfies
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o p([Z4].[Z;]) = Ofora # b,
o p([Z4],[Z7]) = £1.

Therefore, the homology classes [Z1], [Z2], ..., [Zk] are linearly independent in
H; (M), so the dimension of H; (M) is at least k.

In what follows, rather than working with the space C(n, w) directly, it is most
convenient to apply Lemma 4.1 to the space which we denote by wU (n, w) — (0, £),
consisting of configurations of points in the strip R x [—%, 5] in which no w + 1
points have the same x—coordinate. Because wU (n, w) — (0, %) is an open subset of
R, it is an open manifold and thus is appropriate for Lemma 4.1. It is homeomorphic
to U(n, w), which we have shown in Sect. 3 is homotopy equivalent to C(n, w).
Lemma 4.1 gives a lower bound on the Betti numbers of wU (n, w) — (0, %), giving

the same lower bound on the Betti numbers of C(n, w).

Definition4.2 Let j = g(w — 1) +r with 0 < r < w — 1. A special symbol
a € A(n, w) isasymbol (c; | ¢c2 | -+ | ¢p) such that

(1) o has g blocks of width w, r blocks of width 2, and all other blocks of width 1,

(2) in every block, the largest element appears first, and

(3) if ¢; and c;41 are consecutive blocks of width strictly less than w, then the first
element of block ¢; is greater than the first element of block c; 1.

Which symbols are special depends on n, j, w, but for the sake of simplicity we
suppress these in the notation since these parameters are always implicit.

Definition 4.3 For every special symbol «, we define a closed submanifold Z} in
wU (n, w) — (0, %) as follows.

(1) If oy and oy are in the same block and k < ¢, then x5, = X5, and y,, > yo,.
(2) If oy and oy are in different blocks and & < £, and either oy or oy is in a block of
width w, then x4, < Xg,.

See, for example, the upper picture in Fig. 6. It is clear that every Z is closed in
wU (n, w) — (0, ), by Definition 2.4. Indeed, the strict inequalities y5, > Yo, and
Xg, < Xg, in Definition 4.3 could be replaced by weak inequalities y,, > y,, and
Xg, < Xg,, since at most w of the x-coordinates can be equal.

Now, for every special symbol o we describe a cycle with the desired intersection
properties.

Theorem 4.4 Given a special symbol «, there exists a cycle Z, represented by an
Jj-dimensional torus embedded in wU (n, w) — (0, %), such that whenever o' # a we
have that Zy N Z7, = (, and such that for every o, Z intersects Z;, transversely in
a point.

Proof The cycle Z, actually lies in the configuration space of disks of diameter 1,
which we can denote by C(n, w) — (0, %) and which is a subspace of wU (n, w) —
(0, %). The general idea of the construction is illustrated in the middle picture in Fig. 6.
For every block c;, we construct a (w(c;) — 1)-dimensional torus in the configuration
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Fig. 6 Upper picture: a point on the closed 34-dimensional submanifold Z. Middle picture: a point on
the compact 12-dimensional submanifold Z. Bottom picture: the single point of transverse intersection
Zy N Zy. In all three pictures, o € A(23, 5) is the special symbol @ = (19 | 134 |5[2361117 |17 |
1411031981211815122|2216]20)

space of only the disks appearing in that block. Then we put the configurations for the
different blocks horizontally next to each other in the strip in sequential order, making
a j-parameter family of configurations that is an embedded j-dimensional torus.
Looking more closely, for each individual block c;, the corresponding (w(c;) — 1)-
dimensional torus is constructed roughly as follows. We can spin the first two disks
around each other inside a disk of diameter 2. Then we can spin the third disk around
the first two disks, all inside a disk of diameter 3. Iterating this process, the final result
is a disk of diameter w(c;), with the final disk of the block circling around its inner
edge, and with the remaining disks moving around inside a disk of diameter w(c;) — 1
tangent to the final disk. In this way, w(c;) disks can move around inside a disk of
diameter w(c;) to make a (w(c;) — 1)-dimensional torus in their configuration space.
More precisely, we construct the cycle Z, as follows. We parameterize the torus

as

(Y ={(61,62,...,0) 16 €[0,27),i =1,2,..., j}.
Given a symbol « and angles (61, 62, ..., 6;), we need to specify a configuration in
C(n,w) — (0, 7).

We compute the coordinates xi, yi, ..., X, ¥, as follows. Leto = (c1 | ¢ca | -+ - |
cm) be a special symbol. Let w(c;) denote the width of ¢;. By the definition of special
symbol, the blocks in « are all of width 1, 2, or w.
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Let

X1 =w(c)/2
Xo =w(cr) +w(c)/2

Xi =wlc) +wlca) + - +wlci—1) +w(c)/2

This variable tells us how far to horizontally shift the center of the torus for the
next block. So, the imagined disk of diameter w(c;) that contains the disks of the ith
block has center at (X;, 0).

Let

D; = w(cy) + w(ca) +--- +wlc;) —i.

This is a counter which tells us which angle we are on. That is, the first w(c;) — 1
angles correspond to the first block, the next w(c2) — 1 angles correspond to the second
block, and so on, so that angle D; is the last angle corresponding to the ith block.

(1) If w(cj) = 1, that s, ¢; is the block with a single permutation element ¢; = |oy,|,
then set

(-X(Tm7 )’am) = (Xiﬂ 0)

2) If w(c;) = 2, thatis, ¢; = |0,,0m+1], then set

1 1
(X6,,+ Yo,,) = (Xi — 3 cosfp;, —3 sinfp,),

1 1 .
Xopi1s Yomsr) = (Xi + 3 cosfp;, 3 sinfp,),

so that 8p, is the direction of the vector from disk o, to disk 0,,,41.
3) Ifw(c) =w,i.e., ci = |0mOm+1 - - - Omtw—1/, then

(a) Initialize (ug, vo) = (X;, 0).

(b) Fork = 1,2,..., w, we let (ux, vg) be the center of the imagined disk con-
taining the first w — k disks of the block, and 6p, 11— will be the direction of
the vector from (uy, vi) to the kth-to-last disk of the block. That is, for k = 1
we let

1
(w1, v1) = (ug, vo) — 5(00890,», sinfp,),

and

w—1

(meer,l P yamﬂ),l) = (M(), UO) + (COS eDi s sin QDI‘ )’
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and for general k we let

1 .
(g, ve) = (Ug—1, Vk—1) — E(COSQD,-+17k, sinOp, +1-£),

and

w—k

(Xomswi> Yomrwi) = Wk—1, Vk—1) + (cos Op, 11—k, SinOp, +1-k).
This completes the construction of the cycle Z,.
Now we must check that whenever &’ # a we have that Z, N Zy, =, and that
Z, intersects Z7 transversely in a point for every .
Suppose that
P =X,V X, Yu) € Zg N Z;/-

Define an equivalence relation on [n] by setting k ~ £ if x; = x; in p. By the definition
of cycle Zy, if k ~ £ then k and ¢ are in the same block of «. By the definition of Z;,,
if k and ¢ are in the same block of &', then k ~ £. So then if p € Z, N Z;,, if k and ¢
are in the same block of &', then they are in the same block of a.

By assumption, both @ and &’ are special symbols in A(n, w), so they both have ¢
blocks of width j, r blocks of width 2 and the remaining blocks of width one. So it
must be that the converse is also true, that if k and £ are in the same block of «, then
they are in the same block of «'.

Moreover, the partition of [n] given by the equivalence relation ~ must be the same
as the partition into blocks given by ¢ and «’. So the elements within every block are
vertically aligned. In the special symbol &', the first element of a block is greatest in
the underlying permutation, and in Z7, it corresponds to the element at the top of the
column (i.e., has the largest y-coordinate).

Consider any point on Z,, in which the elements in each block are vertically aligned,
with the greatest element of each block (and hence first element, because « is special)
on top. We claim that there is only one such point, and that the order of the elements
in each block is the same as the order of their corresponding disks from top to bottom.

The first element in the block is on top by assumption. Then since the first two
elements are vertically aligned and in an imagined disk of diameter 2, the next element
of the block must lie immediately below the first element. Continuing by induction,
if the first £ elements of the block are vertically aligned and in an imagined disk of
diameter k, then the kth element of the block must be immediately below the (k — 1)st
element. Thus, the configuration is completely determined by the assumption that the
first element of the block is on top, proving that if Z, and Z}, intersect, then @ = o
and the intersection is a single point.

The only thing left to verify is that in this case the intersection is transverse. Since Z,
and Z7 intersect at a single point and are of complementary dimension in the ambient
manifold, the claim of transversality is equivalent to checking that the tangent space
to U (n, w) is the direct sum of the tangent spaces to Z, and Z};. Roughly, the tangent
space to Z corresponds to the set of ways to assign a vector to each disk such that
for each block, the horizontal components are equal; in the tangent space to Z,, the
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vector corresponding to each disk is horizontal and for each block there is a single
linear relation on the vectors. We omit the details.

Finally, we are ready to prove lower bounds on the Betti numbers of C(n, w).

Proof (Proof of lower bounds for part (2) of Theorem 1.1) We have just verified the
conditions of Lemma 4.1, which then implies that if » > gw + 2r (i.e., for sufficiently
large n) then

n
o>
'B]_(w,...,w,Z,...,2,n—qw—2r
——— ——

g times  r times

)CI! (w—DH (g + 19w,

This counts the number of special symbols in .A(#, w). The multinomial coefficient
counts the number of ways to partition n into g subsets of size w, r subsets of size
2, and n — qw — 2r subsets of size 1. There are g! ways to order the subsets of size
w, and ((w — 1)!)7 ways to order the terms in each subset, considering the restriction
that the largest element must come first within each part. Finally, we place the blocks
of width 2 and 1 between the blocks of width w, and there are (¢ + 1)"~7"~" ways to
do this.

If j and w are fixed and n — o0, then we write the simpler asymptotic expression

Bj[C(n, w)] = ((q + 1)nnqw+2r> .

Here f = Q(g) means that there exists a positive constant ¢ such that f (n) > cg(n)
for all sufficiently large n.

5 The phase portrait for every n

In this section we prove Theorem 1.2. Everything follows quickly from the homo-
topy equivalence C(n, w) =~ cell(n, w) in Sect. 3, and the non-triviality of the cycles
constructed in Sect. 4.

Proof of Theorem 1.2

(1) Gas: This is identical to the proof of (1) of Theorem 1.1, in Sect. 3.3. The proof
of isomorphism on homology holds for every n.

(2) Liquid:If1 <w <n—1land0 < j < n—[n/w] weseefirstthat H;[C(n, w)] # 0.
Indeed, the cycles constructed in Sect. 4 are already enough. One can partition [#]
into at most [n/w] blocks of width at most w. By ordering elements within a
block, and reordering blocks if necessary, then we have a special symbol « with
at most [n /w7 blocks. This indexes a cycle Z, of dimension at least n — [n/w].
We next see that if j > w — 1 then the inclusion map i : C(n, w) — C(n, Rz)
does not induce an isomorphism on homology

ix : Hj[C(n,w)] — H,[C(n, R?)].

@ Springer



Configuration spaces of disks in an infinite strip

We observe that the kernel of i, is nontrivial. Consider two different torus cycles
Zy and Z,, indexed by two different special symbols o, o’ € A(n, w) where o’
is obtained from « by transposing two blocks (keeping the order of the elements
within a block). Since n > w 4+ 1 and j > w — 1, this is always possible. Indeed,
the condition that j > w — 1 ensures that « and &’ have at least one block of width
w, and the condition that n > w + 1 ensures that there is at least one other block.
We have shown that Z, and Z, are not homologous in C(n, w), but i,(Z,) and
i+(Z4) are homologous in C(n, R2), so we conclude that Z, — Z, is in the kernel
of iy.
(3) Solid: Finally, we check thatif w > 1 and j > n — f%-| + 1, then

H; [C(n, w)] =0.

We know from Sect. 3 that C(n, w) ~ cell(n, w). The largest dimension of a cell
in cell(n, w) is n — [%—‘, since the minimum number of blocks is (%1 So if
j>=n-— (%] + 1, then there are no j-dimensional cells, in which case there is no
nontrivial j-dimensional homology.

6 Discrete Morse theory

In this section, we describe a discrete gradient vector field on cell(n, w). Then in
the next section, we prove an upper bound on the number of critical cells, thus giv-
ing an upper bound on the Betti numbers. This upper bound completes the proof of
Theorem 1.1, the asymptotic rate of growth of Betti numbers.

A discrete vector field V on aregular CW complex X is a collection of pairs of faces
[a, B] where « is a face of 8 and dim @ = dim 8 — 1, and such that every face can be in
at most one pair. The discrete vector field V is said to be gradient if there are no closed
V—walks. A V-walk is a collection of pairs of faces [«1, B1], [a2, B2], - .., [, Br]
where [, B;] € V for every i and «;4 is a codimension 1 face of §; other than «;,
and the V—walk is closed if o, = «.

We call a face critical if it is not in any pair. The fundamental theorem of discrete
Morse theory (Forman 2002) is that X is homotopy equivalent to a CW complex X',
where X’ has exactly one cell for every critical face in V. Any discrete gradient vector
field gives an upper bound on the Betti numbers of the cell complex: each Betti number
is at most the number of critical cells in the corresponding dimension. So, we give
an asymptotic upper bound on the number of critical cells to get an asymptotic upper
bound on the Betti numbers.

We begin by describing which cells will be critical with respect to the discrete
gradient vector field that we will construct. In the symbol of a cell in cell(n, w), we
say that a block is top-heavy if the largest element of that block is the first element.
We designate some pairs of blocks as leader/follower pairs, as follows. Roughly, we
look at pairs of consecutive blocks, starting with the first two blocks and moving to the
right. We may designate a pair of blocks to be a leader (the first block) and a follower
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(the next block), in which case we look next at the two blocks after these, so that
no follower gets immediately also labeled a leader, and the leader/follower pairs are
disjoint.

More precisely, we say that a block is a leader if it is not a follower and its first
element is larger than all the other elements of that block and also all the elements
of the next block; we say that a block is a follower if the previous block is a leader.
These definitions allow us to describe the critical cells of our discrete gradient vector
field. We say that a cell of cell(n, w) is k—crit if the following is true for the first k
blocks: every block that is not top-heavy is a follower, and every leader/follower pair
has greater than w elements, combined. Our goal is to verify that this definition of
k—crit agrees with which cells are critical with respect to the discrete gradient vector
field we will construct.

Theorem 6.1 There is a discrete gradient vector field V on cell(n, w), such that the
critical cells are exactly those that are k—crit for all k.

In order to define the discrete vector field V, we describe how to find the matching
cell for each non-critical cell of cell(n, w). We define a function v that sends each cell
to its matching cell; that is, if [«, 8] is a pair in V, then we will have v(e) = 8 and
v(B) = «, and for any critical cell o, we will have v(«) = «. The definition of v is as
follows. Given a cell «, if « is k—crit for all k, then we set v(a) = «. Otherwise, we
find k such that « is (kK — 1)—crit but not k—crit. There are two possibilities:

(1) The (k — 1)st block is a leader, the kth block is a follower, and their combined
number of elements is at most w; or
(2) The kth block is not a follower and is not top-heavy.

We refer to the first case as the “match-up at k — 17 case, and we refer to the second
case as the “match-down at k” case. In the first case, we obtain v(«) by swapping the
(k — 1)st block with the kth block and removing the bar between them. In the second
case, we obtain v(«) by adding a bar just before the largest element of the kth block,
to separate it into two blocks, and then swapping those two blocks. In order to be able
to use v to define V, we need to check that v actually matches the cells in pairs.

Lemma 6.2 The function v is an involution; that is, we have v(v(«)) = « for every
cell o of cell(n, w).

Proof Suppose that « is a cell in the match-up at k — 1 case. We want to show that
v(w) is in the match-down at k — 1 case. We know that v(«) is (k — 2)—crit because
o and v(«) agree in the first k — 2 blocks. Suppose for the sake of contradiction that
block k — 1 of v(«) is a follower. Then block k — 1 of « is also a follower, because in
both cases the previous block is the same and the current block has the same largest
element. But we know that block k — 1 of « is a leader and thus not a follower, giving a
contradiction. So block k — 1 of v(«) is not a follower. It is clear from the construction
that block k — 1 of v(«) is not top-heavy, so v(«) is in the match-down at k — 1 case,
and it is also clear from the construction that applying v to v(«) gives « again.

Now suppose that « is a cell in the match-down at k case. We want to show that
v(w) is in the match-up at k£ case. We know that v(«) is (k — 1)—crit because « and
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v(a) agree in the first k — 1 blocks. To show that v(«) is k—crit, we need to check that
block k of v(w) is top-heavy and is not a follower. It is clear from the construction
that block k of v() is top-heavy. Suppose for the sake of contradiction that block k
of v(x) is a follower. Then block k of « is also a follower, because in both cases the
previous block is the same and the current block has the same largest element. But we
know that block k of « is not a follower, because « is in the match-down at k case.
Thus block & of v(«) cannot be a follower, and so v(«) is k—crit. Knowing that block
k of v(x) is not a follower, it is clear from the construction that this block is a leader
and that its combined number of elements with the next block is at most w, so v(«) is
in the match-up at k case. Then it is also clear from the construction that applying v
to v(a) gives o again.

Thus if « is in any of the three cases—critical, match-up, or match-down—we have
v(v(a)) = «a.

Having shown that every orbit of v has either one or two elements, we can define
V to be the set of two-element orbits; that is, if v(«) = B and v(8) = «, with 8 # «,
then the definition of v implies that we may swap the labels if necessary so that « is a
codimension 1 face of 8, and we let [«, B8] be one of the pairs in V. To finish the proof
of Theorem 6.1, we need to show that V is gradient.

Lemma 6.3 The discrete vector field V is gradient; that is, it does not admit any closed
V—walks.

Proof Suppose for the sake of contradiction that [«1, B1], [@2, B2l - .., o, Br] is a
closed V—-walk. We define a function

o
key: poset(n, w) — @Z

i=1

and show that if we compare the various key(«; ), they are in strictly decreasing lexi-
cographical order. This gives a contradiction with the assumption that the V—-walk is
closed with o, = «;.

The key function is defined as follows. Given the symbol « of a cell in cell(n, w),
we consider each block, and we set entry 2k — 1 of key(«) to be the first element of the
kth block, unless that block is a follower, in which case we set that entry to be zero; in
either case, we set entry 2k of key(«) to be the number of elements of the kth block.
Past twice the number of blocks, all entries of key(«) are zero. The lexicographical
order on @B;°, Z is defined as follows: to compare two elements, we find the first
entry where they differ, and we order the elements by their values in Z at that entry.

We claim that for any i, we have key(«;+1) < key(e;). Let k be the block where «;
merges to make §;; that is, «; is match-up at k and B; is match-down at k. Some block
k" of B; is split to form «;y 1, and there are three cases: it is the same block k' = k, it
is an earlier block k¥’ < k, or it is a later block ¥’ > k.

Suppose k' = k. We know that block k of «; is the longest subblock of block & of
Bi that begins with the largest element of that block, so comparing entries 2k — 1 and
2k of key(«;) and key(«;j+1), we find key(a;+1) < key(w;) in this case.
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Suppose k€ < k. Because B; is (k — 1)—crit, the block &’ that is split is either
top-heavy or a follower, and block k’ of @;1| is a subblock of block k" of ;. In the
top-heavy case, comparing at entries 2k’ — 1 and 2k’ gives key(a;+1) < key(B;),
and because B; and «; agree past block &/, this implies key(a;+1) < key(«;). In the
follower case, block k" of ;11 remains a follower, so comparing at entry 2k" — 1 gives
key(ai+1) < key(B;) and so key(a;+1) < key(a;).

Suppose k’ > k. Then block k of o; 1 is the same as block k of B;, which has a
smaller first element than block k of «; (which is a leader and not a follower). Thus,
comparing at entry 2k — 1 gives key(a;+1) < key(o;).

Thus, in all three cases the sequence key(«;) is strictly decreasing and so cannot
be a cycle, contradicting the existence of a closed V-walk, and so V is gradient.

Together, Lemmas 6.2 and 6.3 imply Theorem 6.1.

Proof of Theorem 6.1 Lemma 6.2 shows that the discrete vector field V specified by the
function v is well-defined: each cell can be in at most one pair in V. The construction
of v automatically implies that the critical cells of V are those that are k—crit for all k,
because those are the only cells that are fixed points of v. Lemma 6.3 shows that the
discrete vector field V is gradient.

7 Asymptotic upper bounds

In order to finish the proof of Theorem 1.1, we need to prove an asymptotic upper
bound on the number of critical cells of each dimension. To do this, we group the
critical cells of each dimension j into finitely many groupings and prove that each
grouping satisfies the asymptotic bound. The groupings are called skylines. Roughly,
the skyline retains the information about which blocks form leader/follower pairs and
about the sequence of sizes of blocks, but forgets the numbers (corresponding to labels
of disks) and all the blocks of size 1 that are neither leaders nor followers. Given the
symbol of a critical cell in cell(n, w), we refer to each leader/follower pair as a 2-block
barrier. We find the skyline of that cell by the following process: we delete all the
blocks that have just one element and are neither leaders nor followers (along with a
bar adjacent to each), we replace the first element of each leader block by 1, and we
replace all the other numbers in the symbol by 0.

The resulting skyline is a kind of symbol in which all of the numbers are O or 1. If the
original cell was j—dimensional, then j is the number of zeros and ones in the skyline
minus the number of blocks in the skyline, much as in the original cell. Any block with
only one element is part of a barrier, so there are only finitely many different skylines
for each j, independent of n. For each skyline S, we let b(S) (“barriers”) denote the
number of barriers, equal to the number of ones in S, and we let z(S) (“zeros”) denote
the number of zeros in S. In preparation for proving Theorem 1.1, the following lemma
implies an upper bound on the number of critical cells with a given skyline.

Lemma 7.1 For every skyline S, there is an injective function codes from the set of
critical cells with skyline S into the set [n]*S) x [b(S) + 1]".

@ Springer



Configuration spaces of disks in an infinite strip

Proof The function codegs is defined as follows. Given a critical cell « with skyline
S, we can map « to an element of [n]**Y) by recording the original number in o
corresponding to each zero in S, in the order these numbers appear in «. For the
second coordinate, we divide the symbol of « into b(S) 4 1 intervals: all the blocks up
through the first barrier, all the blocks after the first barrier and up through the second
barrier, and so on, with the last interval being all the blocks after the last barrier. Then
we can map « to an element of [6(S) + 1] by recording, for each number in «, which
of the b(S) + 1 intervals it appears in.

To show that the function codeg is injective, we show how to recover « from
codeg(a). The [n]*S) coordinate specifies the original number for each 0 in S, so
what remains is to find the original number for each 1 in S and to figure out where
to insert the remaining numbers as one-element blocks. We can recover the original
number for each 1 in § by finding which of the b(S) + 1 intervals ends with that barrier,
selecting all the numbers in that interval, and taking the greatest of those numbers—
the preceding blocks in the interval are top-heavy with initial elements in increasing
order, and the 1 corresponds to the initial element of a leader block. Then, for all the
numbers that do not correspond to zeros or ones in S, we find which of the b(S) + 1
intervals each number belongs to, and insert it as a one-element block into that interval
in such a way that the initial elements of all the blocks in that interval (excluding the
follower block at the end) are in increasing order. Because we can use this process to
recover « from codeg(«), the function codegy is injective.

Putting these bounds together for all finitely many skylines, we can finish the proof
of Theorem 1.1.

Proof of Theorem 1.1 The statements about the gas regime and the solid regime have
already been addressed, and in Sect. 4 we have shown that if j = g(w — 1) 4 r with
g >1land0 <r < w — 1, then we have

BilC(n, w)] = Q((g + 1)'n*2").
Thus, what remains is to prove that in this case we also have

BjIC(n, w)] = O((q + D)'n*2").
Lemma 7.1 implies that for any skyline S, the number of critical cells with that skyline
is at most (b(S) 4+ 1)"n*®). Because the Betti number 8 j is bounded by the number of
critical cells of dimension j, and because there are finitely many skylines for each j,

it then suffices to prove that for any skyline S corresponding to j—dimensional cells,
we have

(b(S) + 1)"'n*S = 0((g + 1)"n "),
Thinking of each block of size k as contributing a value of k — 1 to j, we observe that
each 2-block barrier in S contributes a combined value of at least w — 1 to j. Thus

we have b(S) < ¢. In the case where b(S) < ¢, we certainly have (b(S) + 1)"n*®) =
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O((g + 1)"n9"*2") because the factor that is exponential in n overwhelms the factor
that is polynomial in 7.

Thus, it suffices to prove that if b(S) = ¢, then z(S) < qw + 2r. The number of

zeros in S is j plus the number of blocks in S without a 1. Because j = g(w — 1) +r,
this means that it suffices to show that the number of blocks in S without a 1 is at
most g + r. Each barrier contains exactly one block without a 1, so there are ¢ such
blocks. The other blocks without a 1 are not part of barriers, so they have size at least
2. Each of these contributes at least 1 to j, and the barriers together contribute at least
g(w — 1) to j, so there are at most r of these non-barrier blocks in S. Thus, together
the number of blocks in S without a 1 is at most ¢ + r, so we have z(S) < qw + 2r,
and thus

BiIC(n, w)] < #(crit cells of dim j) = O ((q + 1)”nqw+2’) ,

completing the proof of Theorem 1.1.

8 Comments

ey

@

In principle, one could compute homology of C(n, w) exactly. For example,
C(n, w) is homotopy equivalent to U (n, w), which in turn is homeomorphic to
the complement of a certain real subspace arrangement. We define .4, ,, to be the
collection of (5) subspaces of codimension 2

{(X1, Y1y e vy Xy yn) € R? | xp = xg and yi = ye)

together with the (w’fH) subspaces of codimension w + 1

{(Xl, Y1, oo Xn, y}’l) | xil =.xi2 = :xiw+]}'

Since C(n, w) is homotopy equivalent to the complement of this subspace arrange-
ment, the homology is determined by the intersection lattice of the arrangement
(Goresky and MacPherson 1988). One might apply essentially combinatorial for-
mulas to derive a formula for 8;[C(n, w)]. Such an exact formula might be nice
to have, even if in a complicated or recursive form.

The definitions of homological solid, liquid, and gas make sense even for Oth
homology, especially for bounded regions. Determining the threshold for the
solid-liquid phase transition for Oth homology passing from trivial to nontrivial is
equivalent to the well-studied “sphere packing” problem.

There is another transition for Oth homology, the homological liquid-gas phase
transition, where the configuration space becomes connected. This seems to be
much less well studied, but the threshold for connectivity is a natural and important
question for a number of reasons. For example, Diaconis (2009) comments on it in
the context Diaconis writes about it in the context of ergodicity of Markov chains,
arequirement for being able to effectively sample a configuration space by making
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small random movements of disks. See also Kahle (2012) for discussion of the
connectivity threshold.

We show in Sect. 4 that certain tori generate a positive fraction of the homology,
but on the other hand we also know that even if one considers all of the tori that
one can make in similar ways, they do not seem to generate all of the homology.
Consider the example n = 3, w = 2, j = 1, illustrated in Fig. 4. We know that
B1 = 7, but only 6 cycles are accounted for by rotating a pair of disks around each
other, and having the third disk on either one side or the other. The “outside circle”
in the figure is visibly not in the span of the six smaller cycles.

Discrete Morse theory has been studied on the Salvetti complex before. For a
more geometric approach to discrete gradients on cell(n), see Salvetti and Set-
tepanella (2007), Mori and Salvetti (2011), and Lofano and Paolini (2021). We
do not know whether the techniques from these papers can improve the upper
bounds on ;[C(n, w)], or perhaps even produce perfect discrete Morse functions
or minimal CW complexes for C(n, w).

A related family of spaces is the “no k-equal space” M, R .. studied by Bjérner and
Lovész (1994), Bjorner et al. (1992), Bjérner and Welker (1995). In particular,
there is a natural map C(n, w) — M “w+1 DY projecting onto the x-coordinates.
We do not know much about the 1nduced map on homology in general. We point
here out a coincidence we notice in the data that we do not currently have a good
explanation for.

Comparing Table 1 in our appendix with the first table in the appendix of
Bjorner and Welker (1995), it seems possible that H;(C(n, 2)) is isomorphic to
H, (M}Erm)—at least the Betti numbers are equal for n < 8.

We emphasize that C(n, 2) is a configuration space of n points, and M}ﬁm isa
configuration space of n 4 1 points, so we do not even have an obvious candidate
of map to induce such an isomorphism. Supposing that there were such a map,
we might wonder if it also induces an isomorphism on 7r; but apparently not, as
follows.

We showed that C(n, 2) is a K (7, 1) in Sect. 3.3. The question of whether M, R
is a K(m, 1) was asked by Bjorner et al. (1994) and answered affirmatively by
Khovanov (1996). Khovanov describes this as a real analogue of the fact that M, (C
(the configuration space of points in the plane) is a K (;r, 1). Since both spaces
are K(m, 1)’s, if they had isomorphic fundamental groups then they would be
homotopy equivalent. But the Betti number tables rule out the higher homology
groups j > 2 being isomorphic.

Appendix by Ulrich Bauer and Kyle Parsons

We computed the Betti numbers 8; [cell(n, w)] for n < 8, for homology with Z/2
coefficients, using the software PHAT (Bauer et al. 2017b). The results of the com-
putations appear in Table 1. For a point of reference, we note that cell(8) has over 5
million cells.
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Table 1 Betti numbers of C(n, w) for small n and w

n w Bo Bi B2 B3 Ba Bs Be B7
2 1 2 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0
3 1 6 0 0 0 0 0 0 0
3 2 1 7 0 0 0 0 0 0
3 3 1 3 2 0 0 0 0 0
4 1 24 0 0 0 0 0 0 0
4 2 1 31 6 0 0 0 0 0
4 3 1 6 29 0 0 0 0 0
4 4 1 6 11 6 0 0 0 0
5 1 120 0 0 0 0 0 0
5 2 1 111 110 0 0 0 0 0
5 3 1 10 169 40 0 0 0 0
5 4 1 10 35 146 0 0 0 0
5 5 1 10 35 50 24 0 0 0
6 1 720 0 0 0 0 0 0 0
6 2 1 351 1160 90 0 0 0 0
6 3 1 15 714 780 80 0 0 0
6 4 1 15 85 1066 275 0 0 0
6 5 1 15 85 225 874 0 0 0
6 6 1 15 85 225 274 120 0 0
7 1 5040 0 0 0 0 0 0 0
7 2 1 1023 9212 3150 0 0 0 0
7 3 1 21 2568 6468 3920 0 0 0
7 4 1 21 175 5272 5957 840 0 0
7 5 1 21 175 735 7678 2058 0 0
7 6 1 21 175 735 1624 6084 0 0
7 7 1 21 175 735 1624 1764 720 0
8 1 40,320 0 0 0 0 0 0 0
8 2 1 2815 61,194 60,900 2520 0 0 0
8 3 1 28 8385 37,464 76,146 6720 0 0
8 4 1 28 322 21,477 54,901 36,239 2520 0
8 5 1 28 322 1960 43,728 49,959 7896 0
8 6 1 28 322 1960 6769 62,525 17,101 0
8 7 1 28 322 1960 6769 13,132 48,348 0
8 8 1 28 322 1960 6769 13,132 13,068 5040

Bold font indicates that homology is in the “liquid regime”
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