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ABSTRACT: The Standard Model Effective Field Theory (SMEFT) theoretical framework
is increasingly used to interpret particle physics measurements and constrain physics beyond
the Standard Model. We investigate the truncation of the effective-operator expansion using
the geometric formulation of the SMEFT, which allows exact solutions, up to mass-dimension
eight. Using this construction, we compare the exact solution to the expansion at O(v?/A?),
partial O(v*/A%) using a subset of terms with dimension-6 operators, and full O(v*/A%),
where v is the vacuum expectation value and A is the scale of new physics. This comparison
is performed for general values of the coefficients, and for the specific model of a heavy U(1)
gauge field kinetically mixed with the Standard Model. We additionally determine the input-
parameter scheme dependence at all orders in v/A, and show that this dependence increases
at higher orders in v/A.
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1 Introduction

With the proliferation of precise experimental results at the Large Hadron Collider (LHC)
and other facilities, and the lack of observed particles beyond the Standard Model (SM),
data analysis and theoretical developments in the framework of the Standard Model Effective
Field Theory (SMEFT) are of increasing interest. The SMEFT parameterizes the effects of
high-scale phenomena as effective operators with dimension d > 4 suppressed by a factor
1/A%* where A is the new-physics energy scale. The truncation of the effective field theory
(EFT) typically leads to relative errors of O(Q?/A?) on the operator coefficients, where Q?
is the square of the momentum transfer in a process. Given the wide range of Q? probed
by LHC measurements, a systematic accounting of these errors is central to the result [1-6].
They are relevant even when purely resonance observables are considered (Q? < v?), as the
measurements typically constrain scales only within an order of magnitude of the process.
Here v = v = \/2(HTH) is the vacuum expectation value of HH, with H the SU(2)y, scalar
doublet Higgs field.

For LHC resonance processes, the leading non-SM contribution occurs at O(v?/A?) and
is described by the interference between SM operators and dimension-6 operators in the
effective Lagrangian. Given the historical lack of a complete formulation relating processes to
dimension-8 operator coefficients," several approaches have been proposed to address unknown
contributions at O(v*/A%): (1) a generic relative v? /A2 uncertainty, which assumes the higher-
dimensional coefficients are of similar magnitude to the leading coefficients; (2) an uncertainty
estimated from the squared amplitude of diagrams containing dimension-6 coefficients, which
accounts for the next order in the coefficients present at O(v?/A?) as well as new coefficients
from dimension-6 operators that do not interfere with the SM operators, or are otherwise
suppressed; and (3) an uncertainty based on a scan of dimension-8 operator coefficients present
in a specific process, which allows a more complete accounting of the missing O(v*/A%) effects.
Each approach has its limitations, which should be considered when translating any coefficient
constraints to a particular model.

'Recently, a complete dimension-8 operator basis for the SMEFT was reported [7, 8].



The recent development of the geometric formulation of the SMEFT (geoSMEFT [9]),
which builds on an extensive theoretical foundation [10-16], allows a comprehensive analysis
of the truncation of the SMEFT expansion. The geoSMEFT approach provides results not
only for operators up to dimension 8, but at all orders in the v/A expansion for several
observables. For these observables we can now quantitatively compare different orders in the
SMEFT truncation, including partial higher-order contributions. In this paper, we study the
observables I'(h — ~vv), I'(h — Z7), and I'(Z — 1)), and determine the input-parameter
dependence in two schemes to all orders in v/A. We further match the SMEFT coefficients to
an underlying U(1) kinetic mixing model up to dimension eight, quantifying the differences
in inferred model parameters using different EFT truncation prescriptions.

2 SMEFT and geoSMEFT

The SMEFT Lagrangian is defined as

(d)
LsMmerT = LM + ﬁ(d), £ = Z %di) for d > 4. (2.1)
7

The particle spectrum includes an SU(2)y, scalar doublet (H) with hypercharge y, = 1/2.
The higher-dimensional operators di) in the SMEFT are constructed out of the SM fields.
Our SM Lagrangian and conventions are consistent with Ref. [17]. The operators di) are
labelled with a mass dimension d superscript and multiply unknown Wilson coefficients Ci(d).
We use the Warsaw basis [18] for £ and Refs. [9, 19] for £®) results, with the geoSMEFT
conventions taking definitional precedence in the case of modified conventions or notation.
We define éi(d) = Ci(d)f)‘%_4 /A%=%. Our remaining notation is defined in Refs. [17, 20].

The parameter v in the SMEFT is defined as the minimum of the potential, including
corrections due to higher-dimensional operators. The value of 17% represents a tower of higher-
order corrections in the SMEFT, but we do not expand out TJ% explicitly in terms of its SM
value plus 1/A corrections, as this same tower of higher order effects is present in all instances
of ﬁ% in numerical predictions.?

The geometric formulation of the SMEFT organizes the theory in terms of field-space
connections GG; multiplying composite operator forms f;, represented schematically by

Lsvprr = Y _Gi(I, A, ¢...) fi, (2.2)

where G; depend on the group indices A, I of the (non-spacetime) symmetry groups, and the
scalar field coordinates of the composite operators, except powers of D* H, which are grouped
into f;. The connections can be thought of as background-field form factors. The field-space

*We nevertheless present in Appendix B an iterative solution for the vev in terms of 1/A corrections for
completeness.



connections depend on the coordinates of the Higgs scalar doublet expressed in terms of real
scalar field coordinates, ¢r = {¢1, P2, P3, ¢4}, with normalization

_ 1 g2 +ion
Hion) = V2 ¢4 —id3

When considering the vacuum expectation value (vev), we note that ¢4 — ¢4 + vp. The
gauge boson field coordinates are defined as W4 = {W1 W2 W3, B} with A = {1,2,3,4}.
The corresponding general coupling in the SM is as = {g2, g2, 92, 91}. The mass eigenstate
field coordinates are A4 = {W+ W~, Z, A}, and final-state photons are represented by .
In the observables we examine, the field-space connections (hyy, gap, k1A, Ly 4) are used:

! | (2.3)

h1y (6)(Dug)' (D" ¢)”, (2.4)
gap(e)Wia,WHH. (2.5)
krja(¢)(DFg) (DY ¢) W, (2.6)
L (6)(DPo) @B/ rag /T, @7)

each of which is defined to all orders in the \/2(HTH)/A expansion in Ref. [9]. The geometric
Lagrangian parameters are functions of the field-space connections hry, gap, in particular the
matrix square roots of these field space connections \/g , , = <gAB>1/2, and Vhyy = <h[J>1/2.3
As the SMEFT perturbations are small corrections to the SM, the field-space connections are

positive semi-definite matrices, with unique square roots.

3 Partial vs full O(v*/A%)

The standard procedure for evaluating partial O(v*/A*) corrections is to include the squared
amplitude of diagrams with a linear dependence on dimension-6 Wilson coefficients for an
observable O;:

(0P ~ /[dps] ‘ASM + Asmerr(CLY) i (3.1)

~ [ [dps] (| Asm]? + Agn A% C9) 4 A5, A ¢ + 1A co)*
~ [ [dps]  [Asm|” + Asm ASverr(C; ) + ASy AsmerT(C; ) + |Asmert(C; )],

where [[dps] indicates an integral over phase space. We define this calculation to be the
partial-square procedure, which we compare to the full O(v*/A*) result. In the above cal-
culation the SMEFT amplitude correction includes corrections to the SM amplitude from
dimension-six operators, and novel contributions to the Wick expansion without an SM equiv-
alent. The dependence on the full set of dimension-six Wilson coefficients is indicated by C’Z(G),
with the sum over i suppressed. When an observable is predicted using a reference set of ob-
servables to numerically fix Lagrangian parameters, i.e. an input-parameter set, the correc-

tions to an SM amplitude in the SMEFT also include redefinitions of this mapping. We defer

3Note that \/§AB\/§BC =64 and \/EU\/E]K =L,



a discussion on input-parameter effects to Appendix C and first compare results analytically.
We restrict our analysis to CP-even operators, approximating A&y ppr = ASMEFT-
The full result in the SMEFT to O(v*/A%) is

~ - 2
(0;)SMEFT = /[dpS] (IASM!2 +2Re(Asm) Asmprr(CY) + ‘ASMEFT(CZ-(G))‘ )

+ /[dpS] (2 Re(Aswm) ASMEFT(C’Z-(S))> - (3.2)

This expression incorporates not only the £(® coefficients, but importantly also terms quadratic
in the £ coefficients that are missing in the partial-square procedure, as we will discuss
below.

Due to the large number of operators at £8) it has not been possible to perform practical
calculations until recently. However, the geoSMEFT formalism now defines corrections to
all orders in the v7/A expansion for several observables. Here we compare results for the
partial-square procedure and the full O(v*/A*) calculation for I'(h — ), T'(h — Z ), and
I'(Z — ¢ 4), and comment on other observables.

3.1 I'(h—yy)

In the SM, I'(h — ~v7) is loop-suppressed, and the leading-order result was developed in
Refs. [21-23]. Defining

1—z 2 2 2 21—
4 m3(l—4zx
i 1h7«, i go € / l:n/ ( mw+26xymw+x ymy ZNc ;?C f2( Z;)>7

M T 1672 my, mw mW—:rym%L 7 my —rymy

<h~A'uV-A,uV> = <h’h AHVAMV"Y(pa)a'Y(pb» =—4 <pa *Po gaﬂ - pg p?) €a€p, (33)
the three-point function h — v — v in the SMEFT is [9]

) = - ) [(BON 2 (o0 @) )

+ (hA™ A, ) AR (3.4)

Here we have used the geometric electric charge gauge coupling € and Weinberg angle s [9]
defined in Appendix A.

We write the O(v?/A?) correction to the h —~ — v function as (hA" A, Y (h|YvY) c6) /O,
with

0(6) 2 C( ) 0(6)
(hly) o) = Bt 91 Caw — 91 920w 7 (3.5)
(gz )?
where (g5M)% = g2 + g3. To O(v*/A*) the full three-point function is
hA* A, 44
(YY) t0 Ot /%) = <5T“> [ T A + (1 + (Vh >O(v2/A2)) (hlv7) ce6)
+ 2 (bl + 2 (k) o) goew] - (36)



Here
44 ~6) 1~
(VB Yoweazy = Clgh — 102337 (3.7)

and we have used the short-hand notation C’i(6) — Ci(s) for the replacements

6 L s 6 1 8 8 6 1 .8
=508 o (cB+CB), CRs—5CRws (38
Squaring the amplitude at O(v2/A?) gives the partial-square result
[(RA Ay Y (R t0 0(02/a2) /U7 |?, where
b | h
(R0 02 a2y )* = V7| AG] | + 2010 Re(AQ) (AIvY) ) + (hIvY) %) (3.9)

while the square of the amplitude with £®) operators can be expanded to give the full
O(vt/A*) result |[(hA* A, >‘2’<h‘77>’30(9(1;4//\4)/17%7 with:

2
"
(AW oo owisaty = D2 Ash | + 200 Re(AQD (1 + (VA )ope/az) (BI7) co (3.10)

_ h _ h

+ (14407 Re(AqY])) (A7) 7w + 407 Re(Agt]) (A7) 26|, oo -
The dependence on (h]*y’y)f:(@, which one might expect to correctly determine in the partial-
square procedure, is not correctly predicted by Eqn 3.9. This arises from a modification to the
couplings in the transformation to the mass-eigenstate field basis. The relationship between

€% in the SMEFT and (e?)5M is
&2 = ()™M |1+2(h 4 ((h 242 ((h 3.11
e =(e”) + 27w +4 (R ee)” +2 (R o)l go oo |- (3.11)

As a result, when expanding to O(v?/A?), the dependence on <h|fyfy>%<6) is not correctly
predicted by the partial-square procedure. The procedure has further inconsistencies if the
L) operators are rescaled by powers of the gauge couplings of the theory, as in Ref. [24].

In addition to the incorrect coefficient of <h|7’y)i(6) in the partial-square procedure, there
are missing quadratic £ coefficients due to the normalization of the Higgs field, which
modifies the coefficient of (h|y7y) @) in Eqn. 3.10.

3.2 TI'(h— Zv)

For I'(h — Z7) the differences between the partial-square procedure and the full O(v*/A%)
result are similar to those for I'(h — 7). The SM result for this decay was developed in



Refs. [23, 25],* and is

. p
AhZ7 ig2¢” IZ( / de/ d E 4m3€ (1= 4ey) NeQroy/sa
= 2 Yy 2 _ .2 — .3
16 72 myy 4m 4mW mf (my, —m3,

190 —t2+2a1—t2 T 3—t2—
12 (a,b) = /dm/ U= fg)ay — ( ."),
(a —b)xy — 4by(1 —y) — 0T
(hA" Z,,) = (Wl A" 2 mv(pa) 2(m)) = =2 (pa g™ — 1) e, (3.12)

Here we have used gV’SM = T3/2 — Qw(sggl)z. For v = {u,v,d,e} we have 2T3(¢)) =
{1,1,-1,—-1} and Q, = {2/3,0,—1/3, —1}.
The three-point function h — Z — ~ in the SMEFT is [9]

VI [ /6gss(@)\ G, /0gsa(@)\ G, — 8, [/ Ogua(e)\ 55

— nv vz Z zZ vz
(hh2) (AT Zp) 2 97 < on > 93 +< o > 9192 < Yoz} > 91
+ (hA™ 2,,) ARYE (3.13)

which depends on the geometric rotation angle sgz and Z effective gauge coupling gz defined
in Appendix A. Expanding out the h — Z — 7 three-point function to order v?/A?, we have

1
(Y Z) 10 0(w2/a2) = (RAM Z,) % o [UTA}WZ + <h\73>c<6>} : (3.14)

where

29192 (Citiy — Cith) + (63 — 98) Clilv s

(hIVZ) o) = ()2 (3.15)
Z
Expanding out to order v*/A* yields
(MY 2000 /a) = (A Za) = [UTA’“Z (1+ W) (BVE) o + QL?M V)
92 — 91
GO 2 GO 2 3@ 2 EO)
<hA’“’ZW) - <h\’yZ>L<6) HBY HW 92;‘ (Chrw 91 1B 93)
91 — 9
1
+ <hA‘“’ZW)E 2 (<h|73>c(6>)|q_(6>ﬁci(8> : (3.16)

The difference between the partial-square procedure and the full O(v*/A%) result then follows
from

2

AL+ 200 Re(ARD) (hyZ) o) + (W7 2) e, (3.17)

|<h|Z'y>t00(v2/A2 | - UT

“Note the sign correction to the results in Ref. [23] pointed out in Ref. [26].

Jxy —mzy(l —y)

)

[:(6):|



and

2

44
[(R1Z7) ot sy =0 AT |+ 200 Re(AGE) (14 (VA Dopzan) ) (IVE) e

Cip gt — Cil a3 + 3(6’% g} = Ciih 83)
91 - 92

+ 207 Re(AGD )WV Z) 2o

4
n <1 o (AW>) (A2,
2

+ 407 Re(AQT) (A Z) )] (3.18)

c®c® -
The quadratic dependence on the £ coefficients again differs due to contributions from
the Higgs field normalization and the coupling expansion to O(v*/A*), which includes an
additional term due to electroweak mixing. We have normalized these expressions to cancel

the dimensions in .A}WZ.

3.3 T(Z — )

We now consider a process that is present at tree level in the SM: the decay of a Z boson
into a pair of fermions. This decay can be defined at all orders of the v/A expansion via

- 3/2
vy 4M?
27 1/17
FZ—W//’pwr 24 2 |gef‘f pr ( 77—,L2p> ) (319)

z
where
9t = 2 (258, Qu — 03)dpr + (LYY + 050 (LYE")] (3.20)
Here ¢ = {qr,uR,dg,lr,er}, with o3 = 1 for ur,vy and o3 = —1 for dp,er. The decay

width depends on the Lagrangian parameters defined in the previous sections, supplemented
with the masses

% = 94 h33 v,
mh = (Y)h), (3.21)

with ]\wa,i the vector of eigenvalues of the m;f’r matrix. The generalized Yukawa couplings
(Ygﬁ) are defined in Ref. [9]. Focusing on the effective coupling contributing to the decay
width, the expressions at each order are:

_ o3
<geﬁz,¢;)r> SM — g%M [(SgM) Qw - ? 5;01”7 (322)
Z, (9z2)0w2/a2) | z. _ 95 1,(6 6
<geff:¢£)r>(9(v2//\2) - $<geﬁir>51\/{ 5]"’ + g%M le <ng>(’)(02/A2) 5]77" + % CHib) - C 6)
Z pr pr




(92) 0wt /A1)

(95 )00 /a8) = T (Getfpr) M Opr + T Qu (55, )01 /1) Opr + {T2) 002 /02) (55, 002/42) Qupr
Z
(@z)ow2nd) | 160 ss@| 9 | A® se® A

Expressions for <ng>0(v2//\2)7<ng>0(v4//\4)7 (92)0w2/n2), and (Gz) o(v4 /%), are given in Ref. [9]
and summarized in Appendix A. In addition, there are scheme-dependent corrections due to
the mapping of redefined Lagrangian parameters to measured input parameters.

As can be seen from Egs. 3.23 and 3.24, the partial-square and full O(v*/A*) results
differ extensively. As an illustration we consider the dependence on the Wilson coefficient
(éé?t)/v )%, which corresponds to the (squared) S parameter in the Warsaw basis. The partial-
square procedure yields a dependence of

(6) 2
91 g3 (C ) z, 2
|geff pr’partlalsquare ) - 2(931\5[{)”/3 5177" [g%M <geff?f)r>SM + (g gl) Q¢)] ’ (325)
Z

while the full O(v*/A*) result yields a dependence of
~(6
3363 (Ciivp)? (3 — 932 Q3
(g2)°

The partial-square result contains a term proportional to @ that is not present in the full

Spr + (Clpw )2 (927% VoriGpr. (3.26)

Z4 )2
|geff,pr|(’)(v4/A4)

result due to cancellations. We examine the numerical difference between these results in
Sec. 4.

34 h—ZZ*

Although the h — ZZ* final state includes an off-shell particle and is not directly observable,
it is of interest to examine the structure of corrections to the h — Z — Z three-point function.
The geoSMEFT result is [9]

(hZZ) = —(hZ"' Z,,) \/544g2z [<5933(¢)> Gy <5934(¢>> €, %, <5944(¢)> 831&]

4 Yoz} 93 Yon 9192 Yon 93
-2 _ 2 —
w4497 | /Ohs3(9)\ (V1 ur
+ (h2,2")Vh 5, 5 ) T+ {has(@)) =
44_o Cg 53
+(0,hZ,2M W ggor | (k)2 p — (k34) gZ : (3:27)
2 1
In the SM, we have:
_SM\2
(h| 22, s = (924 i or, (3.28)
(h| 2" Z,,)sm = 0, (3.29)
(Ouh|Z2,2")sm = 0, (3.30)



where the notation is such that (h|Z#Z,) represents the term multiplying (hZ*"Z,,) and so
forth. Expanding the geoSMEFT result to O(v?/A?) gives:

g2 o (9z)o(w2/A2 ~ 44
<h‘ZMZu>O(v2/A2) = (97 4) T2 gS(M/ ) +CHp + <\/ﬁ )Ow2/A2) | 5 (3.31)
Z
(92)0w2/A2)
h Z'LLVZ v v = T—anr = 332
(h| ) O (w2 /A2) Moy (3.32)
(Ouh| 2,2 ) 02 02) = 0, (3.33)

and expanding to O(v*/A%) one has

(h[ZHZ) ot /at) =

44 (G2)0wimny  3((G2) 0w /a2))? ~ ce) (92) 022
[<\/ﬁ Jow/at) +2 gS(M/ - (gSI(\/I)é S (e 2R §SM( PO (h1z 2,05
7 7 7

: _ 3 gSM 2 C”f(S) +é(8) o
N [C§L+2<gz>os(§;/m)} (22, )+ (32°)°( Hl% H.D2) |
9z
(3.34)
v 44 (Gz)0(w2 /A2 y
(R 2" Zu) 0w aty = [(ﬂ )02 /A2) +2g§(M/)] (R 2" Z10) o2 /42)
5 4 ((hvZ) o2 /a2))?
+2 ((hl 2" ZMV>O(U2/A2))‘C_(6)_>C_(8) + 17T( /A7) , (3.35)
~(8) ~(8)
v glC +92C
(Ouh| 2,24 ) oo aey = HHRAE DI, (3.36)
where
N La® a8y 30 oa0) &0 3 A0 )
(VA )ows/at = _g(CH,Dz +Cyp) + ZCHEI(2CH —Cyp) + @(CHD) : (3.37)

By direct inspection, it is clear that the differences between the partial-square and full results
for the h — Z — Z three-point function are extensive.

4 Numerical results

It is now possible to quantitatively compare the predictions of processes in the SMEFT using
a partial-square result and a full (CP-even) SMEFT result up to order v*/A*. In this section
we perform this comparison for the first time using an exact SMEFT formulation to O(v*/A%).

Accounting for SMEFT corrections to Lagrangian parameters is a precursor to an exact
SMEFT calculation of observables to sub-leading order. In the SM a key set of Lagrangian
parameters are the gauge couplings and the vacuum expectation value. In the SMEFT the
inference of these parameters from well-measured observables is modified by the presence of
higher-dimensional operators. When a Lagrangian parameter in a prediction is not accom-
panied by the same set of SMEFT corrections as in the observable used to fix the parameter,



it is necessary to correct for this difference. This is the case for the numerical extractions
of the gauge couplings. The electroweak (EW) vacuum in the SMEFT V2HTH = vy is a
common parameter for all instances when the Higgs vev appears in predictions. Formally,
this parameter includes an infinite tower of 1/A™ corrections. There is no need to re-expand
out v in terms of an SM vev and these 1/A™ corrections when the same combination of
higher-order terms is present in all instances of v in a prediction. This is the case for the
set of higher-dimensional operators that define the minimum of the potential, but this is not
the case for a) four-fermion operators and b) modifications of the W couplings to fermions
when this parameter is extracted from muon decay. These effects must be corrected for when
making predictions using a value of the vev.

Two popular input-parameter schemes are the {&ey, 17, G r}and {mwy,mz, G £} schemes.
Results to £(® for these schemes were developed in Refs. [17, 20, 27-32]° 6. Extending these
schemes to £®) was explored in Ref. [19]. Here we build on these results, with some differences
due to the consistent formulation of the SMEFT at £(® using the geoSMEFT [9]. We pro-
vide numerical relations between partial widths and Wilson coefficients in the {ry, mz, G F}
scheme in this section, and the corresponding relations in the {&ew, Mz, G F} scheme in Ap-
pendix E. Formulas for the inference of Lagrangian parameters at all orders in o7/A are
provided in Appendix C.

4.1 Order-of-magnitude estimates

The numerical impact of £(6) and £®) corrections on decay widths can be categorized using
several factors, such as whether the correction is part of an input parameter shift, whether
it comes from interference with the SM or between different £ terms, and whether the
corresponding SM amplitudes are tree- or loop-level. It is worthwhile to estimate the order-
of-magnitude effect in each of these categories before diving into numerics, in order to develop
some intuition for the hierarchy of effects.

Considering first loop-suppressed SM amplitudes, a SMEFT correction will have an equiv-
alent loop suppression for terms that arise from input-parameter £® and £®) corrections.
In general, an £4+27) correction to the input parameters will give a correction to the squared
loop-suppressed amplitude of order

N (g™ <@l>2”0g4+2n) (41)

(1672)%2 \ A ’ ‘ '
Similarly, a one-loop correction in the SMEFT with a higher-dimensional operator inserted
in a loop will have an effect of this order. Such loop corrections are generally not included
in partial-square estimates, as they are available for a limited set of processes. These results

A self-contained and up-to-date summary of these effects, in both schemes, is included in Ref. [33].

51t is important to note, when considering scheme dependence in the SMEFT, that such scheme dependence
is due to the effects of physics beyond the SM being absorbed into a set of low-energy parameters. This is
distinct physics from the scheme dependence associated with a perturbative expansion in a renormalizable
model, such as the SM, though the same label of “scheme dependence” is used in both cases.

,10,



are neglected here, although they are available in the literature for I'(h — ~7) [5, 34-37],
I'(h — Zv) [38, 39], and T'(Z — 1)) [6, 40]. These calculations could be used to study the
important issue of perturbative uncertainties in the SMEFT.
In the case where a loop-suppressed SM amplitude interferes with an £4+2%) amplitude,
the correction will be of order
i
(1672)

~

(T)Q" o), (4.2)

Higher-order terms arise when a loop-suppressed SM amplitude with an input-parameter
correction interferes with an £4+2%) amplitude,

(™M) (00 \2™ (OP\®(at2m) ~(at2m)
~ L - ) \ 4.
e (3) (X)) amar, (43)
or when two £42%) amplitudes interfere,
or\4"(av2n) 2 Or\2" OP\2™(a49n),  (442m)
(%) @2 o (F) () @ hed™). @

The effect of input-parameter corrections (and corresponding scheme dependence) is more
significant for decays that occur at tree level in the SM. In a tree-level SM decay, an input-
parameter correction due to £4t2%) operators gives a width correction of order

T 2n ”
~ @7 () el (4.5)

while the direct interference between £4+2") and SM amplitudes gives a width correction of

osM (VT (a42n)
B () o, (4.6)

These scalings dictate the numerical size of the corrections we report below.

4.2 T'(h— vy)

Using the input parameters in Table 1, we find the following SM leading-order h — ~~ partial
width in the My scheme:

2

mw m% hyy
Lot (B —=7y) = e Agn
= 1.00 x 107° GeV. (4.7)

The corresponding value in the ¢, scheme is Fg‘ﬁ/vf(h — 4y) = 1.08 x 107°GeV. The
differences in the SM results for different schemes are reduced at higher order in pertubation
theory. Since we use leading-order results when evaluating £6) and £® corrections, we list
here the SM leading-order results for completeness. Results in the SMEFT are quoted as
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T 80.387 GeV [41]

Grew(Mz) 1/127.950 [42]
iy 91.1876 GeV  [42-44]
Gr 1.1663787 -107°  GeV~—2  [42, 44]
i 125.09 GeV [45]
Gis(mhy) 0.1181 [42]
1y 17321 GeV [42]
Ty 418 GeV [42]
The 1.28 GeV [42]
s 1.77686  GeV [42]

Table 1. Numerical central values of the relevant SM parameters used as inputs. Only one of My or
Qe 18 used as input depending on the scheme adopted. The remaining SM inputs are taken from the
central values in the PDG [42].

ratios with respect to the SM, which can be applied to the highest-order result known in
perturbation theory (in the SM).

The squared amplitudes [(h|YY)t0 0(v2/ Az)\Q and |(h|y )2 O(vi/A4) 8lve the partial-square
and full O(v*/A*) SMEFT corrections, respectively, to the partial decay width. Explicitly,

&3

m
s (h ~ —h_1(p 2
p. ( - 77) 471_@%“ |r7/7>t00(v2/A2)|
~ 2
L AT+ 207 Re(ARY) (hlvy) zo + (hlvy)2 (4.8)
- 4%17% T|YSM SM £(6) £6) | :

while in the case of the full CP-even O(v*/A*) SMEFT result one has

~3
m
PsmerT(h — 77y) = g gg [PV 20 0wt/ aty
T
my | o] ey 2 hyy NG 44
T oy | Agy |+ 207 Re(Agy ) (1 + (VR Doz az)) (M) ce  (4.9)

+ (1+ 407 Re(AG) (b)) + 457 Re(AR) ((h111) 20| o1 0]

Restricting the analysis to corrections scaling as Eqns. (4.2)-(4.4) and neglecting corrections
=SM\4
X % as in Eqn. (4.1), the partial-square correction is

LW (b — )

m m ~(6 ~(6 m
e ~ 1 — 788 W 43942 (w2 — 351 (CO) — GOy i (4.10)
Loy (B =)

+ 97909 (C1) +0.80 ¢ — 10260, ) + 2228 5G9 fw
+2283C) (CY 1066 CO) —0.88C0) ),
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where

e e =[G +0.29 Cfy — 0548 5] (4.11)
S5 = fger = Ol +0.29 (CRly + Cily) = 054 5 (4.12)
m Gew __ | (6 ~(6 ~(6
S e g =[O = Ol = 066 C (4.13)

in both input-parameter schemes. The corresponding (CP-even) O(v*/A*) SMEFT result in
the my scheme is

M " ~(6
Lsvipre(h 277 _ Dol (b2 7) g <C}§)D - Hg?) fm f;ﬁW] — 1224 ()2,
Lo (h—y) Ty (h =) 4

(4.14)

We numerically analyse the difference between the SMEFT result and the partial-square result
in Secs. 5 and 6.

4.3 T'(h— Zv)
A similar analysis for I'(h — Z+) begins with the SM result

i 1, AN 6
m —
Loy (h— Zv) = B (1 — 5 > ‘ASM7 =6.5 x 107" GeV. (4.15)
h
. . . (g5M)4 . R
Again neglecting corrections oc 16722 the partial-square correction is

Tow (h— Z7)
— 616 Cighy  (Ci7p — Ciiy + 0020100, ) — 265 CJ), (CfRyy — Ciy — 0540100 ).

1= 237 118 ()7 — 131 (YY) — Ol )? — 67006 £

Finally, the full (CP-even) SMEFT result in the 1y scheme to O(v?/A%) is

m m ~(6

m - Am HO — fgnw + szW
Ionf (h—= 2v) Ty (h— Z7) 4 )
— 296 (f3")2 — 2375 (3.8C7) + 020, ),

where f{" = fier = |Ci7, + Ciflyy = Clf = 066 Cff ]

4.4 T(2— )

For T'(Z — 1)) the difference between the partial-square and O(v*/A*) results is dictated

zyp |2

by the difference in |g g - for each input-parameter case. We add the two chiral final states
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for each fermion pair to obtain a partial-square correction of

pP.S. Z, Z, 27 Z:
P o q o2 (8515 (83 Yowaaz) + (85t ) (85 Vo2
. (g5t + {35 o) 2
Z—ibpibp 9sM.pp 9sM.pp
Z, Z,
92528 028212 + (9525 ) 002/ a2)
T EOL V2 o (B VR 2 (4.17)
[(9501,pp) |* + {951 pip. |
while the full O(v*/A*) result is
e pP.S. Z,T/J Zy Za Zﬂb
oy, To.gy, Re [(gSM,§p> (B Yo sy + (51 E ) (8o Yo /a)
[SM 7 SM Z01 \12 4 (2R )2 - (4.18)
ZPpp ZPptp (9581, pp? |+ 1(9881,pp) |
In the {mwy,mz, G F} input-parameter scheme, the leading-order SM results are
M o, = 0.29 GeV, M - =0.37GeV, (4.19)
M, = 0.08GeV, M, =0.17GeV. (4.20)
For up-type quarks, we find the following expressions for (gfﬁiﬁ;/ .
(g5a1L,) = —0.26, (4.21)
~(6 ~(6 6 ~(6)  ~3,(6
(e Yoz az) = —0.13CY), — 0.21Cipy 5 + 0.188G) +0.37 (Cp) — CH), (4.22)
Pp PP
C«(G) (5G(6)
zZ, z,
<geff?gi>>(’)(u4/1\4) = — ( ZD + \/}21 <geﬁj;)lr')>o(v2//\2) (423)

+ Citp (013C5), - 021G, + C)))
—0.01(CY),)? +0.05C), 6G) +0.03C), — 0.16CY) p, — 0.10C ) 5

—0.38C )y, — g(éiif) +CF — C)) — 0.07(6GY)? +0.186G1Y,

pp pp pp
(goei ) = 0.11, (4.24)
(GG o2 a2y = —0.2201), — 0.21 Ol — 0.086GY +0.37Cly), (4.25)
pp
Y é(ﬁ) (5G(6) .
(9t 0w/ = ( 17T ) emlow ) (4.26)

+ il (013C), - 021(Cf, + CR))
+0.003(Clp)? — 0.02C1), 06 — 0.01C5), - 0.21C), — 0100,

—0.38C o + 0737 C® 4 0.03(5G9)2 — 0.086GY.
pp

The remaining expressions for final-state fermions are listed in Appendix D. The total width
is the linear sum of the partial widths.
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5 Coefficient sampling analysis

The final step required to numerically compare the full O(v*/A*) result to the partial-square
calculation for each process is to choose the coefficients C(9). The processes examined in
Sec. 4 depend on O(30) coefficients”. While 30 is far less than the ©(1000) coefficients in
the full dimension-6 plus dimension-8 SMEFT (N; = 1), it is still too many to analyze
coherently without making further assumptions (outside of a global fit). We explore two
options for choosing coefficients: a sampling approach (this section), and an ultraviolet (UV)
model-based approach (Sec. 6).

In a sampling study, coefficient values are drawn from assumed distributions. This ap-
proach treats the SMEFT as a bottom-up effective field theory, irrespective of a particular
UV completion of the SM. The decoupling theorem [46, 47] establishes the SMEFT as a dis-
tinct theory, so this approach is favored in EFT studies of experimental data. Absent any
UV model constraint on the parameters, the simplest assumed distribution is a uniform flat
distribution with all coupling values equally likely, consistent with perturbation theory. One
can add a mild assumption by noting that UV models typically introduce particles whose
parameters can be mapped to a few coefficients, and in these cases the majority of the coef-
ficients will have small values. This scenario can be approximated by a gaussian distribution
for the coeflicient values. We find that the differences between the uniform and gaussian
distributions are imperceptible, and we sample from a gaussian distribution for the results in
this section.

We start with a qualitative assessment of the variations in the partial widths as terms at
O(v*/A*) are included in the calculation (Sec. 5.1). We then turn to a study of procedures
for coefficient uncertainty estimates in Sec. 5.2.

5.1 Partial-width variations

In order to compare partial-square and full O(v*/A*) results for the partial widths, we proceed
as follows:

1.) We sample coefficients affecting the calculation to O(v?/A?%). Coefficients of tree-level
operators are drawn from a gaussian (or uniform) distribution with a mean of zero and a
root mean square (r.m.s.) equal to one. For loop-level coefficients the r.m.s. and range
are reduced by a factor of 100, since larger values give large relative corrections to the
SM predictions that are inconsistent with experimental results. The categorization of
operator coefficients as tree-level or loop-level is determined using the results of Ref. [48—
50]. For example, the h — 7 tree-level matching coefficients for SMEFT operators are
Cg%, CJ(L?)D, C}j&f), Ci;sf), and 5G§), while the loop-level coefficients are Cg%, CJ(L?%V, and
Cgi‘),v - We draw random values for the C' (6) coefficients, and the C') coefficients that
appear in Secs. 2 and 3 can be obtained by multiplying by 17% /A%

"This number assumes flavor universality and treats (5G§f) as a single coefficient rather than separating
out the different contributions as shown in Appendix C. Relaxing either of these assumptions will change the
count by a small amount.
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With these coefficients and using the procedure outlined in Appendix C to connect to
experimental EW inputs, the O(v?/A?) and partial-square calculations are determined
up to the value of A. The result after this step is schematically

/
F:FSM—}—%—F%. (5.1)

2.) For each set of coefficients obtained above, we perform 10,000 separate samplings of
the remaining coefficients affecting the the full O(v*/A*) result. The coefficients are
again separated into tree- and loop-level, with dimension-8 operators with Higgs and
gauge field strengths (e.g. CSJ)B, CI(L?I)/V, CS‘),V ) classified as tree-level following [50] (their
dimension-6 counterparts are classified as loop-level for the Higgs boson partial widths

we consider).

3.) We calculate the deviation from the SM for each I'syigpr(A),

_ Fsmerr(A) —Tsm
Ism

dsMEFT(A) (5.2)

and determine the standard deviation os of the dgyprT(A) distribution.

4.) We compare the dp,2/a2)(A) and d.5.(A) curves, defined in the same way as Eqn. (5.2),
to the 1, 2,3 05 dsMEFT curves.

Following this procedure for A — v in the My, scheme gives the results in Figure 1 for
two sets of O(v2/A?) coefficients. The green shaded region shows the +1 o5 deviations of the
partial width from the SM prediction with the full O(v*/A*) SMEFT calculation, for given
O(v?/A?) (red line) and partial-square (black line) results. The 2,3 o4 regions are shown in
yellow and gray, respectively. The figure shows the expected dependence of the partial width
on O(vt/A%): as A increases the impact of these terms decreases. For A <1 TeV neither the
O(v?/A?) nor the partial-square calculation provides a good approximation. Equivalently, for
a given measured partial width the inferred coupling or scale is affected by higher order terms
if the scale is low. A 10% deviation in the partial width corresponds to a scale of &~ 3 TeV for
the chosen coefficients at O(v?/A2), but the scale can be much lower if there are cancellations
from higher-order terms.

Figures 2 and 3 show the results of similar coefficient sampling studies for h — Z~ and
Z — 0 in the My scheme. The loop-level h — Zv and h — <~ processes are similar,
with a broad band of deviations from O(v*/A*) contributions at low scales. In the right
panel of Fig. 2 an accidental cancellation in the partial-square result leads to essentially
zero deviation, while the O(v?/A?) band is just as broad as in the left panel. The band of
deviations is narrower for the Z — £¢ partial width, which is tree-level in the SM.

5.2 Coefficient variations

In global fits for SMEFT coefficients at O(v?/A?), it is appropriate to consider the effect of
the EFT truncation on the extracted values. We investigate two possible procedures for esti-
mating this effect: (1) using the difference between the partial-square result and the O(v?/A2)
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Deviations in I'(h—yy)

Deviations in ['(h—yy)

B B
T T
= =
< S
10 15 20 25 30 35 40 P00 15 200 25 30 35 40
A (TeV) A (TeV)
Figure 1. The deviations in h — 7y from the O(v?/A?) (red line) and partial-square (black

line) results, and the full O(v*/A%) results (green +1o05, yellow +205, and grey 305 regions).

In the left panel the coefficients determining the O(v?/A?) and partial-square results are C’g’])g =

—0.01, %9 = 0.004,C%) . = 0.007,C%) = —0.74, and 6G' = —1.6. In the right panel they are

¥ —0.007, '), =0.007,C), , = —0.015,C¢) = 0.50, and 6G'S = 1.26.
Deviations in I'(h—Zy)

Deviations in I'(h—Zy)

10

S(h=Zy)

-0.5

SO s 20 2y T30 s 1o

20 25 30 35 40

A (TeV) A (TeV)

Figure 2. The deviations in h — Zvy from the O(v?/A?) (red line) and partial-square (black
line) results, and the full O(v*/A*) results (green +10s, yellow +205, and grey +3 05 regions).
(6)

In the left panel the coefficients determining the O(v?/A?) and partial-square results are C}? N
—0.01, %), =002, , = —0.011,C¥)) = 0.53, and 6G'® = 0.13. In the right panel they are

) —0.002, ¢\ =0.001,C%), . = —0.001,C%) = 0.28, and 6G = —1.15.
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Deviations in I'(Z—¢f)

Deviations in ['(Z—{?) 0.10
0.10 T T T T T
0.051 1 008
0.00
0.06+
< <
T
[I] -0.05F N
= RS
© 0.04
-0.10}
0.02+
-0.15F
_020 L L 1 1 1 1 000 1 1 1 1 1 1
10 1.5 20 25 3.0 35 40 1.0 1.5 20 25 3.0 35 40
A (TeV) A (TeV)

Figure 3. The deviations in Z — £/ from the O(v?/A?) (red line) and partial-square (black line)
results, and the full O(v*/A*) results (green +1 04, yellow +2 05, and grey £3 05 regions). In the left
panel the coefficients determining the O(v?/A?) and partial-square results are Cllif) = —0.46, CZEG) =
1.24, ngg = 1.53,0;?1)3 = —0.79,026‘),[,3 = 0.007, and 5G§,§) = 0.16. In the right panel they are
ch® = 15559 = —0.71,0'9) = 0.23,¢%) = —0.51,C%), , = —0.008, and 5G\¥ = —0.44.

SMEFT result as an estimate of a ‘truncation uncertainty’; and (2) taking the fractional un-
certainty on each coefficient to be v2/A2. The former procedure uses the partial O(v?/A%)
information in the £ operators to take all the calculable terms when complete higher orders
are not available. The latter procedure instead only scales the measured coefficient by the
ratio of dimensionful parameters.

We test the uncertainty procedures by taking the full O(v*/A*) SMEFT calculation to
provide the ‘true’ value of a given coefficient. The shift in the partial width relative to the
SM is calculated for a set of coefficients drawn from a gaussian distribution. Fixing the value
of this shift and taking a given value of A, we determine the change in one of the coefficients
when calculating the partial width at O(v?/A2), or with the partial-square procedure. The
deviation in the coefficient value relative to its initial value is taken as the ‘truncation error’.

Figure 4 shows the distribution of this error for Cgs‘),v in the O(v?/A?) (left) and partial-
square (right) calculations of I'(h — 77y) using 50,000 samplings of the coefficients and taking
A = 2.5 TeV. This error distribution can be compared to the distribution of uncertainty
estimates shown in Fig. 5, where the distribution in the left panel is the difference between
the O(v?/A?) and partial-square calculations, and in the right panel it is v2/A? times the
coefficient. The uncertainty estimate is 1-2 orders of magnitude smaller than the error, with
the v2/A? distribution narrower by a factor of a few.

The validity of an uncertainty estimate is typically demonstrated by the pull distribution,
defined as the error divided by the uncertainty. An unbiased estimate of the central value
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Figure 4. The distribution of ngr)/v deviations between O(v%/A%) and either O(v?/A?%) (left) or
partial-square (right) calculations, where the impact on I'(h — ~) relative to the SM is fixed to the
value obtained from the O(v*/A*) calculation. These deviations represent the truncation errors on
the C'}{G‘),V coefficients extracted from the £ calculations.
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Figure 5. Left: The distribution of the Cg)x)/v deviation between O(v?/A?) and partial-square cal-
culations, where the impact on T'(h — ~7) relative to the SM is fixed. Right: The distribution of
(v? /A2)C’§§'I),V for the same parameter sets. The two calculations estimate the difference between the
calculations at O(v*/A*) and O(v?/A?%), and we consider their applicability as truncation uncertainties.

and uncertainty would have a pull distribution with a mean of zero and a standard deviation
of one. Figure 6 shows this distribution for I'(h — ~7) (top) and I'(Z — ¢¢) (bottom) for
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the two estimates of the uncertainty using the O(v?/A?) calculation for the central value of
the coefficient. The least biased estimate of the uncertainty comes from the partial-square
calculation, and has an O(1) width when applied to the tree-level I'(Z — ¢f) process. An
uncertainty of 10(v? /AQ)CZ-(G) could give a reasonable estimate, as it would scale down the
entire x-axis by a factor of 10. Such an uncertainty would imply that a scale of 2 1 TeV
would be required to reduce the truncation uncertainty to < 100%.

We do not address here the case where measurements do not have sensitivity to the true
values of the coefficients, which are thus consistent with zero within experimental uncertain-
ties. In this situation the procedures discussed here would be dominated by the noise in the
measurement and would not provide an accurate estimate of the uncertainty. When using
these results to constrain specific models, a truncation uncertainty based on the measurement
uncertainty may be sufficient, e.g. CL(’UQ/A2)O'C_(6) with a of order 1.

6 Model example: Kinetic mixing of gauge bosons

In the previous section we investigated the numerical differences between the various calcu-
lations using coefficient sampling. Here we examine the differences that arise when using
experimental results to infer UV model parameters. To this end, we explore a simple two-
parameter model where a heavy U(1) gauge boson K, with mass my kinetically mixes with
By, the U(1)y gauge boson in the SM.

6.1 Matching to £®

We follow and extend the treatment of this model in Ref. [51], where the SM Lagrangian is
supplemented with the UV Lagrangian

1 1 k
AL ==K K" + §m%(KHK“ - 5B K, (6.1)

where the field strength is K,, = 0,K, — 0,K,. Integrating out the heavy K state, a
particular matching pattern results in the SMEFT. The equation of motion for K, is

Oy KM —m3 K" 4k (9,B") =0, (6.2)
which can be split into two equations:

K" =0, (6.3)
(0% + m3) K" =k (9,B").

To find the tree-level matching, it is sufficient to insert the solution for the equation of motion
for K* back into the Lagrangian. The classical solution is

k k k
h— " _ (§,B")=—(8,B")— —— (8%9,B") + ... 6.5
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Figure 6. The pull distributions for coefficients affecting I'(h — v7v) (top) and I'(Z — £¢) (bottom),
using as the uncertainty the difference between the partial-square and O(v?/A?) calculations (left) or
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Plugging this solution back into the Lagrangian, we find [51]

1 1 . k ”
AL =3 Kapu [0° +mic] Kij = S KG0u0, K — 5 Bu K},
k
- — 5 (GVB“”) Kcl7u
k2 k2 )
=— 0y B"") (0% Bpia 0,B"") (0°0°Blia) - 6.6
Qm%(( ) ( H)+2m‘}(( ) ( uar) (6.6)
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The induced operators are reducible by the equations of motion. The relevant terms in the
Lagrangian are

1 —_
L=~ BuB" + Y 0y"iD + (D,H)' (D"H) + AL, (6.7)
P

with ¢ = {q, ¢, u,d, e} possessing hypercharges y,;, = {1/6,—-1/2,2/3,—-1/3,—1}. By redefin-
ing the field,

]{52
By =B+ —5 om [(8VBW) — Jul

1}([( 5 @orma) -5 (2) atm @)
S

O K

the Lagrangian becomes

1 , .
Lp=— ZBWB“ + ) yiDup + (D, H)' (D*H)
P

k2 k2 — k4 g2kt
- "+ (0%4,) 5" + S (HTH) 5" 6.9
Gl + T (0%5,) +4m%(( )iudt (6.9)
where8
. - 1 .=
Iu = Z(_QIYw)¢7u¢+ (—291> H'%WD,H. (6.10)
¥

Up to £®) it is sufficient to use the marginal equations of motion to simplify the matching to
an operator basis consistent with the geoSMEFT formulation [9] (and the Hilbert series [52—
55)).

The £ matching is given in Table 2. The reduction of the derivative terms in the current

8We use a positive sign convention in the covariant derivative.
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HAD? W* : (RR)(RR) ' : (LL)(RR)

2,12 21.2

H?)?D ) _gik c© | _1g3k o©® | _1gik

HO 8m?2 ee 2 °m2 Le 2 m2
CLO) | _yest — K s
HE | Tom2 ) _9ik o | _20ik o©) 1 97k

HD 2m?2 UL 9 m2 Y2 3 m2

C(ﬁ) Yegl bl K K “ s
He T 2m3 (6) 2k2 (6) il
C _ L 91 > C 1 gl -
CLO) | gty 1/14 (LL)(L ) ad 18 mi M 0 mic
Hq 2m3, g 0(6) 2 g2k? 0(6) 193k2

C _1 eu 32 qe 6 m?

OO | sty w | —m s o
Hu 2m2. V1 (6) 2)2 1,(6) ik’

1,(6) k‘ C _lgl C ) lgl

C _ 4 91 2 qu 2
C(G) ydgl b qq 72 m%{ ed 3 mi 9 mie
Hd 2m3, .6) 2k 0 2 g2k? b0 1 9ik?
Cya 1905 ud 9 mZ d 18 mi

K

Table 2. £ matching coefficients; here by = k? — 2\ (k? — k4) UT . Flavour indicies are suppressed

and the heavy field does not violate U(3)® flavour symmetry. Fierz rearrangements of the four-fermion
operators are allowed.

at £®) requires non-trivial manipulations. These terms can be reduced into the form
J0%j = g% [(DWHY) (D, H)(DFHY)(D” H) — (D, H') (D, H) (D" HY) (D" )|

+ 93 [91(H'H) B (D" HY) i (D" H) = g2 (HTH) (D" H) i 00 (D" H) W, |

2 2 4
919 a v g v n v
+ 18 LW, Wi (HYH)? = 5B, BY (HH)? + glyu (b94) B D (HTH)

& g2 (Grouron) [(HTH) <HTZSZH> + (Hlo,H) <HTzBuH>]

2 2
_ 791492 [4 (HTHY (D, H'DPH) + X (HTHY? (0% — 2(H'H)) + Ho,H (D, H*J“D“H)}

+ 2iadyo0#0) |\~ 20111 (HID, I ) + (DD D) — (DD (Do)

<~

- ghyu(by) (H'H) (2 (9 + 3) (H iD H) + gy (@Y >>
2
+ gty (97) {—922 Yoy (H oo H) + g2 W, DY (HTO'GH)] : (6.11)

where a sum is implied over all v, v, and v’ pairs, and terms proportional to Yukawa
couplings are neglected. The conventions used for reducing to the operator basis in the £
matching are those of the geoSMEFT formulation [9], which allows all-orders results in the

o1 /A expansion to be defined. In this convention derivatives have been moved onto scalar
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fields and off of fermion fields. A useful identity in deriving this result is
(H'o,H)(D*H') (DYH)iW}, = —(H'H)(D"H') 0,(D" H)iW}, (6.12)
Lo we |5t ti Do 5 tiD
~ 1 DuWVi, [H H <H ZDMH> + Hlo"H <H zDHHﬂ
g2 a a a v v
+2 [(HTH)2WWWW + (HY o 1) (H P HYW W ]

+ %(HT o H)(H H) W B,,.

The matching at £®) illustrates a number of interesting features:

o At L) the matching results are only dependent on the model parameters and the
SM gauge coupling g;. This is consistent with naive expectations in a U(1) kinetic
mixing model. At £®), the result in Eqn. (6.9) is expressed in terms of derivatives
and U(1) currents. Dependence on go is introduced in the rearrangement of higher-
derivative terms, as required to be consistent with the geoSMEFT conventions. This
coupling dependence comes about via commutators of derivatives acting on the Higgs
field. Further dependence on go, and more £® terms, are introduced through map-
ping the SM gauge coupling g1, present in the £ matching, to input measurements,
including SMEFT corrections. As a result, the input-parameter scheme dependence is
enhanced at O(v*/A?*) in the SMEFT.

e A naive interpretation of UV physics acting as a mediator leading to a £ operator at
tree level is frequently possible by inspection. For example, the tree-level exchange of
an SU(2)y, triplet field or singlet field leads to

Q) = (H*z’l%ﬂ) Do, (6.13)
Quy = (HTZ'BHH) Pyl (6.14)

respectively at £, Such naive intuition fails at £(8) and beyond. Specifically, at £(®)

operators can be reduced due to the SU(2)1, completeness relations acting on the scalar
coordinates as

_ <« _ e
Yy Hi'o"H (HT iD““H> — Yy HUH (HT z'DHH) : (6.15)

This rearrangement is present in the SMEFT at £(®) when using a non-redundant opera-
tor basis. Such simplifications lead to Eq. (6.11) in part. This reduces the transparency
of the underlying UV field content and the interactions leading to tree-level matchings
to higher-dimensional operators.

e At £ there can be patterns that classify Wilson coefficients as tree-level or loop-
level [48], with the latter in particular applying to coefficients of operators with gauge
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Cht? | 225kt — 2 (2 — k) (22 + 955
K K
cL® Z;ﬁ}j‘ p4 %(k‘? A+ g?zgg) 1762
K K
CL®) | yagl pa _ giva(p2 _ payo) 4 91493 c'®) ‘ gk _ gt (k2 — kY
He | amd B0 St (B = KD (2A 4+ 557) D2 | EmL T aml
g '™ 2 2 (8) 391k 9195 (12 _ 14
Clliis) %mg%l{ Kt~ %(kQ — k(21 + ) Chp ‘ 6ml ~ 2mi (k= = k%)
L(8) | vagi 4 _ 9iy 4 g3+g2
CHd z;clT%(k _#;(kQ_k)@)‘"i_ 14 2) X2 4
2,(8) _ 9195 (1.2 _ 14 3 4
Chy TS (k2 — k%) C}(LH)B ‘ _169"11%( (k2 — k%)
) — S (k2 k) i | e -
K 16 m7,
3,(8) 9195 (12 _ 14
CHE - 161m?}( (k k )
3,(8) 9195 (12 _ 14
CHq 7161m?}( (K — &%)

Table 3. Matching coefficients onto operators in £® relevant for T'(h — ~vv) and T'(Z — ). In ad-
dition to these matching contributions, there are four-fermion operators and four-point contributions.
See the results in Eqn. 6.11, which include these terms and neglect only effects suppressed by Yukawa
couplings.

field strengths. This is an accidental pattern due to the renormalizability of some
UV physics models. Such matching patterns are not present in non-renormalizable
UV theories in general [49]. They also do not apply to operators with higher mass
dimensions. The result in Eqn. (6.11) shows that gauge field-strength operators can
receive tree-level matching contributions at £ in a weakly-coupled renormalizable
UV model. This is consistent with the results in Ref. [49, 50]. At £V the seesaw
model also leads to operators with gauge field strengths [56] in tree-level matching.
These examples show that the operator normalization pattern of Ref. [48] does not
extend to operators of arbitrary mass dimension in the SMEFT.

e The rearrangement of derivative terms at £® leads to matching coefficients proportional

™ is present in matching

to 92/m3 for £, Formally, an infinite series in (v2./m?%)
coefficients for higher-dimensional operators. This is due to rearranging matching terms
in the non-redundant operator basis. However, as this dependence is an artifact of this

particular basis we expect it to cancel in the full result. This occurs as expected.

Restricting the results to the subset of operators that contribute to I'(h — ) and I'(Z —
Y1), the matching results for L£®) operators are given in Table 3.

,25,



6.2 Constraints to O(v%/m%,)

The kinetic mixing model allows a comparison of the constraints on an underlying UV physics
model at different orders in the SMEFT expansion, and for the partial-square calculation.
Consider an experimental bound on the deviation of I'(h — ~7) from the SM prediction.
Substituting the results of Table 2 into the partial-square I'(h — v7) formula Eqn. (4.11)
yields no constraint on the model parameters, at least when considering tree-level match-
ing. However, using Eqn. (4.14) we find the partial width to be sensitive to this model at

O(v/mic):

e (h > 77) | (403 46.8 (k* — k) g1 (g7 — 0.2993) U (6.16)
MEFT 3,46. L : :
F[SI\/F/ ](h — ) ULy

The width correction has ~ 5% scheme dependence, and we show its dependence on the model
parameters in Fig. 7 in the G, scheme. Direct bounds on I'(h — 77) are not available,
since LHC cross sections depend on the production interaction and the total Higgs width.
Ratios of partial widths are available and could be applied as a constraint if a calculation of
h — 4¢ and/or T, were available in the SMEFT to this order. A calculation has recently
been performed to O(v?/A?) [33] and could be extended to O(v*/A*) with the geoSMEFT
framework. However, this is beyond the scope of this work.

Experimental constraints can be considered in the case of the total width of the Z boson,
I'z = 2.4952 4+ 0.0023 GeV. Defining this quantity as the sum of the decay widths to each
two-body final state, the partial-square calculations in the two input-parameter schemes are

Z pS Oéew ,2 k2 —4
Tl 1451070 T 4 x 1070 kT (6.17)
Zw Fz—wpz/zp mK mK
Z ;DS sy ) k2 ~4
SV ZoUle g %1072 L0 93w 1074kt UL (6.18)
S pSMiw m2 mi

YT Zibpiyp

The results show significant scheme dependence. An interesting aspect of the scheme de-
pendence is the equivalence of the shifts in the partial widths in the my, scheme, while the
individual partial-width corrections differ in the ¢, scheme.

The corresponding full SMEFT results matched onto the U(1) model at O(v4/m%,) are’

Z SMEFT JQew 72 k? L
v Z;\fg% = 1445x103 L0 _57x 1073 (k' — 1.74K%) —L-, (6.19)

2 T2 g, mi m

SMEFT,m

> T W 9 12 4

v Zﬁp% —1-31x102 L0 1 7.9x 1073 (k* — 0.88k%) —L-.  (6.20)
sSmw m m
Zw Z—bpibp K K

9For this result we include the 72 / m2 correction in the parameter b; that is formally present as a contri-
bution to matching onto £©® operators. Doing so, the A dependence exactly cancels out, as expected.
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Figure 7. The dependence of I'(h — ~v) on the parameters of a U(1) mixing model using the
SMEFT expansion to O(o%/mf%). The left plot shows the dependence of the ratio ATg5fpr(h —
vv) /T (h — v7y) on the coupling parameter k for my = {500,1000} GeV, for the blue and orange
curves respectively. The right plot shows the relative deviations {£0.01,£0.1, £0.3} of the partial
width in the {mx, k} plane, with intermediate deviations represented by coloured regions. The results
are shown in the G, scheme, though results in the myy scheme are qualitatively the same. The partial
width has no sensitivity to the model at O(v%/m?%) with tree-level matching. Direct experimental
bounds on I'(h — v7) are not available since only ratios of partial widths can be measured directly,
e.g. I'(h = vv)/T'(h — 4£) [57].

All differences between partial-square and full SMEFT results are at order TJ% /m}l{. Such
differences are most important when deviations from the SM are larger, e.g. for lower mass
scales, where experimental analyses are more likely to uncover deviations using the SMEFT
formalism. We show some of the implications of these results in Figs. 8 and 9. A number of

conclusions are apparent:

e The results show significant scheme dependence, which increases when a full SMEFT
result is used. This is expected on general grounds due to the decoupling theorem:
low-energy measured parameters are absorbing the effects of high-scale physics. Scheme
dependence is expected to be reduced only through a global combination of constraining

measurements.

e The model parameters extracted from the partial-square result for the &g, input-
parameter scheme are constrained more tightly than those at O(v4/mj), given the
< 0.1% precision on the I'; measurement (Fig. 9). The O(v%/m?3.) constraints are also
overly tight, though less so.

e Results in the myy scheme are more consistent across the different orders in the calcula-
tion. The parameter constraints extracted from the partial-square and O(v%/m?%) calcu-
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lations are essentially the same, and slightly tighter than those from the full O(v4/m%)
calculation.

e At £ there is no dependence on ¢ in the matching. The dependence on gy at £(®
comes about due to the arrangement of operator forms in the middle term of Eqn. (6.9),
and when inferring Lagrangian parameter numerical values from input parameters. The
correction to the I'; width dependent on go in the U(1) model carries an overall k% — k*
dependance, suppressing the numerical dependence of the results on go. We also find
that the O(A) contributions cancel in the O(v7/mj,) result, as expected for a basis-
independent result.

I'z bounds on U(1) model, L6 interference

'z bounds on U(1) model, partial square 'z bounds on U(1) model, actual L8 result
6F T C T T T T ! T T T T

6L T

6

100015002000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000
mK mK mK

I'z bounds on U(1) model, L6 interference 'z bounds on U(1) model, partial square I'z bounds on U(1) model, actual L8 result

T T T T T T | [ T T T T T ] 6 T T T T T

I
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-6k, . . . . .4 -6 ‘ ‘ ‘ ‘ .3 -6 . . . . -
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Figure 8. Illustrative bounds on a U(1) mixing model parameters due to bounds on I'z. Shown is
the {1,2,3}c allowed region in green, yellow, gray. Here 1o for 6"z = 0.0023/2.4952. Results shown
are for the d.,, input-parameter scheme in the first row. The results in the second row are in the 1y,
input-parameter scheme.

These results are specific to the U(1) mixing model and should be considered as illus-
trative. Nevertheless, they highlight the need to combine multiple measurements to suppress
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Figure 9. Deviation in the Z width in the U(1) mixing model for fixed my comparing the partial-
square result in red and the full SMEFT result at £ in green, and the full SMEFT result at £(%) in
blue.

scheme dependence, and they show that the inference of model parameters from partial-square
results can be less accurate than those from a O(v?/A?) calculation. A consistent truncation
order is preferred for measuring coefficients and matching to UV models.

7 Conclusions

Using the geoSMEFT formalism we have calculated the first complete results in the SMEFT to
O(v*/A*). We have provided numerical expressions to this order for the operator dependence
of the partial widths I'(h — 77), T'(h — Z+), and T'(Z — 1), for both the 7y and Ay
input-parameter schemes. A necessary ingredient for these results is the theoretical formalism
of input-parameter schemes to all orders in the v7/A expansion.

In addition to the full O(v*/A*) calculations, we have obtained numerical expressions
for the expansion of each partial width to O(v?/A?), and using a ‘partial-square’ procedure
whereby the amplitudes with dimension-6 operators are squared. We have used these results to
study the partial-width deviations from the SM for the different calculations and a common set
of parameters. As expected the effect of the higher-order terms increase as the scale decreases,
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and are particularly important for the (SM) loop-level widths I'(h — vv) and I'(h — Z ). We
have investigated two procedures for estimating the effects of O(v*/A%) relative to O(v?/A?),
and found that the partial-square calculation provides a reasonable estimate of the truncation
uncertainty for one of the operators affecting the tree-level width of the Z boson, but both
procedures underestimate the uncertainty for the loop-level partial widths. Current global
fits find dimension-6 coefficients consistent with zero, so we recommend using an uncertainty
based on the measurement precision and expected A dependence in order to minimize the
effects of measurement noise. A total uncertainty assignment, due to missing higher order
effects, should also include an estimate for missing perturbative corrections.

We have performed a matching of operators up to L£®) for a kinetic mixing model, and we
have determined the differences in inferred parameter values using the various calculations.
We have observed a significant dependence on the input-parameter scheme, highlighting the
importance of combining multiple measurements when fitting for Wilson coefficients. The
partial width I'(h — ) is only affected at O(v*/A*), providing an example of the value
of determining coefficients to this order. The total width I'y is affected at O(v?/A?), and
the parameter constraints inferred from a partial-square calculation are tighter than those
inferred from either the O(v?/A?) or O(v*/A*) calculations in the Ge, scheme. A consistent
expansion in the matching and the coefficient measurement is preferred on general grounds,
and this example demonstrates that the use of a partial-square calculation in a fit can lead
to overly tight constraints. While a partial-square procedure can provide an indication of
the O(v*/A*) contributions, a full fixed-order calculation should be used when measuring
coefficients in data, or when matching to UV models. We have demonstrated the power of
the geoSMEFT formalism to expand the canon of complete calculations at O(v*/A*) and
open up a new avenue to exploring the phenomenology of the SMEFT.
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A Gauge couplings and mixing angles
The geometric Lagrangian parameters are
_ 33 34 44 34
€ =g (89\/,(7 +cgVg ) =0 (09\/57 +55v/9 ) (A.1)

2 (91\/§44 - 92\/534)2 (A.2)
(V) + (VI + BI(va*)? + (V™ — 201909 (VT + ) '

N
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and

s _ 91(/5 55 — /5" ¢cg) A3
S0, = 33, 34 4. 34y (A.3)
92(\/ 97 cg — /97 s9) + 91(\/ "85 — /9 cp)
_ : g
9z = (:972 (09‘\/533 - 85\/534) = 571 (Sé\/§44 - Cé\/§34) : (A.4)
GZ QZ
A set of useful results for Lagrangian parameters expanded out to O(v*/A%) as
P = PSM + <p>(9(v2//\2) + <p>(’)(y4/A4) —+ ... <A5)
are
M = g0, (G2)o@w2/a2) = gzégv,
_ 3 _ 2 1,
(G2) ot asy = g ((G2)02/a2))” + 5 (T2)02/12) GO 6E) (A.6)
Y G192 @ g192 <9§C~'§23 + Q%C’;?I)/V - glgzél(u%/g) (A7)
eV = — €)ow?/A2) = ; :
Vi + g3 (/A9 (g7 + 933/
_ 3 _ 2
(E)o@wi/as) = pesTy (@ ow2/a2))” + (@ ow2/a2) GO (A.8)
2/~(6) 2/~(6) ~(6)
_ 5 5 _ 9iCyp+y9 + g192C
g%M = g% +g§7 <gZ>O(vz/A2) = =LHB 22 HW2 1/2 HWB? (Ag)
(91 + 92)
_ 3 _ 2 ESZ’M 2 2 —
(Gz) 0w/t =5t (Gz)owe/an)” + —agir e (S5,)002/02) " + (T2)002/0%) |0 a®
2g7 2557 ¢y i i
(A.10)
2,SM 2,SM g%
~(6 ~(6 ~(6
() (2 9192 (29192 (Cgﬂ)g - C,gﬂ)/v) — (91 — 93) Ol(“{I)/I/B> (A12)
S0,10(w?/A2) = S5/ O(v?2/A2) = (62 + g2)2 J :
2
(55,00t /a4) = =1 (@ ow2/az)) ((s5,0002/a2)) + ((55,)02/a2)) ‘5‘56)*558) , o (A13)
2 2 E%Mégsl)/VB 2
(8500(1/a1) = (85,) 0wt /A1) T M ((s5,)0@w2/A2)) - (A.14)
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It is also useful to note the relations

(53 Do /a2 = —z(jl gj (WY Z) o)

(s5,000i /a4 = 2 ((s5,)002/a2)) (hIVY) £ + (<52Z>O(v2/1\2))|CZ_(6)_>CZ_(8) :
where (h|vZ) ) is defined in Eqn. (3.15) and (h|y7y) s is defined in Eqn. (3.5).

B All-orders vev

An all-orders form of the vev can be constructed as an infinite series by defining

YD) D) DS

n=0m=0 k=0 (r)n

0o oo 00 4nAmk n+1)()n(2

where (z), is the Pochhammer symbol and
t=n+m+k+...
j=n4+2m+3m+...
r=2—-n-4+j

l\D\rQ =3

12k + /3 sin <27rk:

5
(
<12k V/3sin
ol

o] %\H»&\H @\H co\r—~ co\HL\DM—MQ —

) () (

Z6m =14 (=1)" + 2k +...

(A.15)

(A.16)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

This does not violate the Abel impossibility theorem, as the solution is not a solution in

radicals.

The same solution can be applied to solve for the Lagrangian parameter v7 in terms of

the measured value of G P
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C (v2/A%)" mappings of input parameters to Lagrangian parameters

We use the “hat-bar” convention [17, 20, 29] in our input parameter analysis. Lagrangian
parameters directly determined from the measured input parameters are defined as having
hat superscripts. Lagrangian parameters in the canonically normalized SMEFT are indicated
with bar superscripts. These parameters are the geoSMEFT mass eigenstate Lagrangian
parameters. A numerical value of an SM Lagrangian parameter (P) can be modified in the
SMEFT, and the difference between these Lagrangian parameters (P) is in general denoted
as 6P = P — P. Note that defining the parameter shift in this manner introduces a sign
convention for § P. The Lagrangian parameters are defined to all orders in Appendix A.

C.1 Input parameter Gr

The value of the vev of the Higgs field is obtained from the precise measurement of the decay
D(u~ — e + De +1,). Tt is sufficient when considering corrections up to £ to define the
local effective interaction for muon decay as

AGr _
Lap = *Tg (Zu v Prp) (@ yuPrve) - (C.1)

The modification of this input parameter in the SMEFT to O(v?/A?) in the Warsaw basis
was given in Ref. [20]

4G 2 6 6 3,(6 3,(6
5 - ==t (C( ) +C%) ) -2 (CHE '+ )> : (C.2)
peep eppe ee g

At higher orders in the 7 /A expansion, the results in Ref. [9] define the contributions through
a W exchange to Eqn. (C.1) via

2

bp|WY (W )y o ————
(W) (W) N

X [1 — o (L% +¢17T<L§v§2>} [1 —op(LY) —iop(LEh| . (C.3)

(Du Y Pr ) (é'YuPLVe)

Here we are neglecting corrections relatively suppressed by the light fermion masses and I'yy .
The cross terms of the field-space connections (L) are examples of “double insertions” of
higher-dimensional operators in the SMEFT, generically present when developing analyses to
O(v*/A*) or higher. To generalize to higher orders in the power counting expansion we define

_492’ 2
\/i \/hllzﬁ%

The tower of higher-dimensional operators that directly give a four-point function can interfere

(1= oLt + oL [1 - ol —ion(Zish] . (C4)

with the SM contribution. Four-fermion operators that can contribute to muon decay have the
chirality combinations LLLL or LLRR. At O(v?/A?) only LLLL terms interfere with the SM
amplitude, and such contributions are from C’l(lG) in Eqn. (C.1). When considering corrections
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to O(vt/A*) and higher, self-interference terms are also present in the Wick expansion that
need not interfere with (C.1). For example, in the Warsaw basis [18] for £, a contribution
from
QU = (HVH) (Gt E7er) (©5)
prst
is present when n = 0. Here p,r, s,t are flavour indicies that run over 1,2,3. The generaliza-
tion for LLRR operators to higher mass dimensions introduces an additional operator of the
form
Oy = (H'HY" (H1o"H) (1,7 i () (€< ). (C.6)
prst
We use a dot product in the operator label to indicate an SU(2)y, triplet contraction and
define a short-hand notation for these contributions

4pt 1 ~(64+2n) 1 ~(842n)
e 30 le T -2 “4-He - (07)
pr UT prl2 UT prl2

When considering four-fermion operators of the chirality LLLL that can contribute to
muon decay, it is sufficient to define

d n nes —
L35 — oS (H ) (HTH) (64" £0) (£ 7 4r)

prst

+ CSP (ot HY (HYH)™ (7" 04 0,) (s Y )
prst

+ Chpnn (HTHY" (HYo' H) (H o) H) (0,7 0:6,) (s yu050). (C:8)
prst
where ¢! are the Pauli matrices. Fermi statistics imposes a non-trivial counting in the allowed
prst, as is also the case for £(%), see Refs. 20, 58, 59]. An operator form with an explicit €/*
can be related to those above using the Pauli matrix commutation and completeness rela-
tions. We also introduce the short-hand notation for the set of higher-dimensional-operator
contributions that interfere with the SM amplitude

1 { - - - - N
Apt (6) (6) (8+2n) (8+2n) (8+2n) (8+2n)
Gt =52 <C n TC + 21+ Curr "+ Clpr | + ol+n Comen’ — Corn ])
rs T rseu eurs rseu eurs eurs rsep
1 (10+2n) (10+2n)
T 2292 Covrrst +Cront | s (C.9)
T eurs rsepu

which interferes with the SM when r = 2,5 = 1.
There are also self-interference terms present in the Wick expansion at O(v*/A?) and
higher that need not interfere with Eqn. (C.1). For example, in the Warsaw basis [18] contri-

butions from Q(6l)l arise when 7 # 2,5 # 1 [20].'° These contributions are also given by g;‘;’ b
eurs rs

when r # 2,5 # 1.

10 The muon decay width is measured without identification of the produced neutrino species, but the SM
weak interaction eigenstates are defined to be the flavour labels in Eqn. (C.1), so only contributions from the
same weak neutrino eigenstates interfere with the SM contribution.
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A measurement of the inclusive decay width of p=(p1) — e (pa) + e(p3) + vu(p2) and
an assumed value of the muon mass 1, yields
G2 3 5
192 7'1'3 )

T(p— evev,) = (C.10)

The value of G% in a theoretical prediction of the right-hand side above corresponds to the
amplitude squared via

V2

The same sum over phase space and spin sum is present for all contributions considered here.

|A]? =38 <4GF> (p1-p3)(p2 - pa) (C.11)

The mapping of these results to the Lagrangian parameters is then given by

A\ 2
4GF> < 4QF 4pt> ( 4 t) ( Apt
SR (SR +Z P >olgd) - (C.12)
< \/i \/i r,8,m8#21 rs
Inverting this equation and solving for v% order by order in the ¥r/A expansion defines
dGF order by order. Consistent with past works [29] we define this correction with the

normalization
% = \/;@#Ep, (C.13)
which can be defined at any order in (o7/A)?™ using (C.12).
C.2 Input parameter A,
For the U(1)ew current we have
L= —€pf 4 QupOprthr (C.14)

The extraction of &, occurs in the measurement of the Coulomb potential of a charged
particle in the low momentum limit (¢*> — 0). A low-scale measurement of this coupling must
be run up through the hadronic resonance region ¢> ~ A?QCD to be used at higher scales, and
this introduces the dominant error in the use of this input parameter. See the discussion in
Ref. [60] for more details.

C.3 Input parameters mz, my

The remaining input parameters are more directly generalized to higher orders in the power
counting. The experimental measurements of these parameters are discussed in Ref. [60]. For
mzw we use the geometric definitions of the bar parameters, which are valid to all orders in
the vp/A expansion:

=2
2
WQZ = %\/ﬁgg@%, m%/[/ g4 hll 'UT7 (C15)
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where in the Warsaw basis

~(6) A8 L A®) ~(6) 2
¢ up* Ciipa _ ()™, (C.16)

h -1 HD
\f33 + + 39

~(8 ~(8
i~ Chib

\/7111:1—1— D + ..., (0.17)

D  {siy,mz, Gp} input-parameter scheme at all orders in (22 /A%)"

In this scheme we can again use Eqn. (E.2) to define a shift to gz. We also use

O o)
R e e D2
to solve for 2 via
i o U U5 [0 = ()] () [0 ()]
o () et [(@4‘*)2 + (v - (gf)] . D3
&= \/?“ (sav™ +cov/a™), (D.A4)
@ - Z (s3v9" —5v9™") D.5)

In both schemes, gz and ng have the same definition in terms or other “barred” Lagrangian
parameters.
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D.1 T(Z — bb)

The effective coupling results to O(v*/A%) in the case of down quarks are given by

(95xi%,) = 032, (D.6)
(G5 Yoz 2y = 0020550, +0.10 ), — 0.228G) 4037 (CL5) + CH), (D.7)
pp pp
0(6) 5G( ) 5 N - -
(G2 Yoty = — (ZID ok (95 ot /a2 + Clitl (—0.06C17), +0.10(C, + CiYL) )
+ 0.0L(C$))? — 0.06CL), 6G) — 0.04C%), +0.06C p, +0.05C 5 5
0.37 . .
+0.19C s + —(CHY + CFY + C5)) + 0.08(5G )2 — 0.226G, (D.8)
2 pp pp pp
(g5 =) = —0.06, (D.9)
(G5 o2 /a2y = 011CY), +0.10 Cly  + 0.048GY +0.37C), (D.10)
pp
0(6) (5G(6)
(G5 oty = — (ZD + (9042 + Clity (~0.06C17), +0.10(C, + Ci) )
—0.002(Cig),)% +0.01CY), 066G + 0.01C%), +0.10CY),, + 0.05C,
+0.19C ), + g C%) —0.01(66%9)? + 0.045GY. (D.11)

pp
D.2 T(Z — )

The effective coupling results to O(v*/A%) in the case of charged leptons are given by

(92315, = 0.20, (D.12)
(G Vo /az) = 0.24C% +0.31C%), - —0.156GY +0.37 (CE) + C29)y, (D.13)

pp pp
Chh 0GR, 2 -6 -6 -6) . A
(% + ) o+l (019085 #0318 i)

Zl
<geﬂ"1§/p>0(v4//\4) -

+ 0.01(Cl))% — 0.04C5), 6GY) — 0.03C), + 0.26C5 py +0.15C ),

0.37 . .
+ 0.58C s + —5 - (Chi” + i + Clg)) +0.05(5G) — 01506, (D.14)

pp pp pp
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(g53it,) = —0.17, (D.15)
(GG Yowe a2y = 0.33CY), +0.31Cloyy s +0.126GY) +0.37CY), (D.16)

pp
Chb | 0GY -6 -6 ) . A6
G5 ) owijan = — (ZD + (9 o /a) + Cli (019G, +0.31(CHY, + CiL) )
— 0.01(C))? +0.03CY ), 6GY) +0.02C1), + 03105, + 0.15C 5y 5
+ 0.58C y, +0.19CY) — 0.04(5G)? +0.125G. (D.17)

pp
D.3 T'(Z - )

The effective coupling results to O(v?/A*) are given by

(951 L, = —0.37, (D.18)
(955 Yoz a2y = 0.09C%), +0.260G) +0.37 (Cly) — O, (D.19)
pp pp
) ORI
(955 Yo /aty = — <ZD v (GG Yoz az) — 0.09(6G )2 +0.265G )
— 0.01(C))? +0.07C), 6GY) +0.05C1), +0.05C)),
0.37 - ) ;
- S (Ch + e = Cia. (D.20)
pp pp pp

E  {Gecw,hz, Gr} input-parameter scheme at all orders in (o2/A2)"
For the {&ew, Mz, G F} input-parameter scheme we use the inputs [29, 60]
1
é = \ATbew, Ir=—r=, My, E.1
ew 91/4 /7GF Z ( )

to numerically fix values for the U(1)ey coupling, the vev, and the Z and Higgs pole masses.
From these inferred numerical values for Lagrangian parameters, one derives numerical values
for the remaining Lagrangian parameters. When considering the geoSMEFT formalism an
efficient way to derive the shifts in the remaining Lagrangian parameters is to first determine

2M,
Gy = = (E.2)
i Vh33vr
=0z + 49z (E.3)

to a desired order in (o7/A)?" .11 Then we express g1 and go in terms of €, sz and the g8
metric using Eqn. (A.1),

g1 92 = (E.4)

e e
Vg sya s5vVI" +cgv/g

"'When comparing to past work [17, 20, 29] the sign of a defined jz has conventionally absorbed a factor of

i? = —1 when only considering £ corrections.

— 38 —



Further, Eqn. (A.3) combined with Eqn. (E.4) allows s% to be defined in terms of quantities
related to input parameters via
€ 34 33 44
Sg = 2V/g (\/5? —V9 ) V-
_ 33)2 342 442 342 {
297 (V&™) + (va")’] [(va")* + (va")’]

[ (28 )+ ()]

() il () .

2
where /7, = /5" /5" + (7")”

The remaining electroweak Lagrangian parameters are then determined in terms of the

DN

inputs by using

s e (spv7" — cgv7™) B
S0 = = 1, . 34 (E.6)
9z (cg/9"" + 559"
1
_ €/ g
g2 = B 33\[ 34N 0 (E7)
(s5v/9™ + cgv/9™")
WIZ/V = 9472 (\/511> @% (ES)

To utilize these relations, one expands out to a fixed order in (77 /A)™)

, thereby relating each
“barred” Lagrangian parameter to parameters defined by input measurements via P = P+6P.
This determines 6P up to the fixed order in (o7/A)*™ one is examining.

The following subsections provide numerical results for the partial widths in the SMEFT

in this scheme. For reference the corresponding SM predictions are given by

Ty (h — vy) = 1.08 x 1075 GeV, Toev(h — Z9) = 6.61 x 10°GeV,  (E.9)
Téii (2 — au) = 0.28 GeV, Toev (2 — dd) = 0.36 GeV, (E.10)
L&y (2 — 00) = 0.08 GeV, Toev(Z — pv) = 0.17 GeV. (E.11)

E.1l T(h— vy

The partial-square calculation of the partial decay width T'(h — ~7) is

Ioew (b — y7)

> ~ 1 — TAS flew 4 3742 (few)2 _ 349 (GO _ 5(6) y2 E.12
e — f (Fee)? = 349 (Cigy, ~ Cigp) (E.12)

= 53.3C 5 (Cith +8.5CH —10.6C1 ) — 139CK), (CF, +18C, —17CH), )

+13706GY (Cih — 0.14C(7, — 0.15C 5 ) |
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while the full O(v?/A*) SMEFT result is

Dotapr(h = 77)  Tose(h =)

I -2 — 748
Lsip (b — vy) Lip (b =)

— 1147 (flew)?,

. O\ A
6 Qew Qew
(qu)g— ZD>f1 +Js

(E.13)
E.2 T'(h— Zv)
The partial-square calculation of the partial decay width I'(h — Z7) is

Lew (h — Zv) ; ; ~(6 ~ (6
;zz.s._ ~ 1— 939 aw + 1202 aw\2 128 C( ) _ C( ) 2
T (s 2) /3 (fs™) (Cup o)

~(6 ~(6 ~(6 ~(6 ~(6 ~(6 ~(6 ~(6
+27.8C5), (Citp = Citly = 4180 ) =171 C 5 (Cih — Cily = 33C )
— 446G (O, - CRl + 150 ).
while the full O(v*/A*) SMEFT result is
X de“) ~ 6
T?ﬁ{fEFT(’l — Z7) _ F}z.s. (h — 2Z7) Cﬂ;{ﬁ)m _ CJ(LI)D gzew + ffew
Mo 29) | TS (h— 29) 1

321 (f9ew)2 — 239 foen (3.96*}?}9 +0.12649) ) . (E.14)

— 239

E.3 TI'(Z — uu)

The effective-coupling results in the &, scheme dictating Z boson decay to up-type quarks
are

(g5ui%,) = —0.26, (E.15)
(95" ) o a2y = 0.15C5), +0.39 Cloy 5 +0.410G) + 037 (CYy) — C ), (E.16)
pp pp

z C‘SL 5G;§) =z
(et pplo@i/aty = — | == + N (Gatt pp) Ow2/A2) (E.17)
+ Citlvp (035C), +039(CH), + CiL) +0.980G1 )

+0.02(Cip)% +0.31C5), 6GY) +0.07C), +0.07CH p, + 0.58(Ciy )2

+0.20C%) . — E(éfq’ff) +CRY — CF) +0.15(6GY)? + 0.416GY)

2 Fo
pp pp pp
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(g5ui =) = 0.12, (E.18)
(95" 02 a2y = 0.05 Cig), +0.39 Cighy 5 + 01506 +0.37CY), (E.19)

pp
" C«(ﬁ) 5G(6) w
(9§f’,p’§,)0(v4m4) =- ( ZD \/g (95 o) O(v2/A2) (E.20)

+ Citlp (035C), +039(CH), + CL) +0.980G )

+0.03(Cipp)% +0.24C5), 6GY) +0.03C), +0.03C5 py + 0.58(Chihy )2
+0.20C) . + g %) 40246692 4 0.156G'%).
pp

E.4 T(Z —bb)

The effective coupling results defining Z decay to O(v*/A%) in the case of down quarks are

given by
(gdas,) = 0.31, (B.21)
(G Yowe a2y = —0.120%), — 0.20Cley ;5 — 0.346GY) +0.37 (c% + Cz :6)), (E.22)
0(6) (SG(G)
(95 ) ot jaty = — <ZD + \/g (955 ) 02 /a2) (E.23)
+ Cli (—017CF) - 0.20(CHY + CY) — 0,496 )
—0.003(Cyp)? — 0.19C55), 6GY — 0.06C1), — 0.06C5 p, — 0.20(Cighy )2
—0.10C%) . + g(c W Oy 1 aR)) —0.030061)2 — 0.346G,
pP pp pp
(Goni ) = —0.06, (E.24)
() o2 /a2y = —0.03 O}, — 0.20 )y — 0.080GY +0.37 Cy), (E.25)
pp
0(6) 5G(6)
(955 ot jpty = — <ZD + TS (G252 ) o2 /a2) (E.26)

+ Cli (—017CF) - 0.20(CHY + C ) — 0,496 )

—0.015(Cp)? — 01285}, 6GY — 0.01C5), — 0.01C5 ), — 0.29(Cighy )2
—0.106%) .+ g C® —0.1266¥)2 - 0.085G%.
pp
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E5 I(Z— )

The effective coupling results to 1/A% in the case of charged leptons are given by

(95315,) = 0.21, (E.27)
(95 Vo az) = —0.17CY) — 0.59 Ciply p — 0.498GY) +0.37 (Cly) + T, (E.28)
pp pp

X0 Ciip , 3GE\ | zu,
<geé,pp>0(v4/A4) = — T + \/i (geﬁ pp> O(v2/A2) (E_Qg)

+ Citp (~0.52C5), - 0.59(CiT) + Cy) — 14656

—0.03(Cig),)? — 0.43CY), 6GE) — 0.09C}), — 0.09C1,, — 0.88(Clyy )°

02008, + 232 1 E3O 4 6®) 0.26(661)? — 0.495G,
2 pp Pp pp
(g5 0) = —0.17, (E.30)
(G oz az) = —0.08 ) — 059 Clglyp — 0.236GY) +0.37 ), (E.31)
pp

Z0n Cb L 0GR\ |z
<geﬁ,pp>o(v4//\4) - 4 + \ﬁ <geff,pp>(9(v2/A2) (E32)
+ 0 (—0.526*}2) —0.59(C0), + 1) ) — 1.466G(6)>
—0.04(C))? — 0.37C1), 6GY) — 0.04C1), — 00405, — 0.88(Cl)y )
~0.20C%) . +0.19C%) —0.36(6G)2 — 0.235GY.

pp
E.6 T'(Z— )

The effective coupling results to O(vt/A%) are given by

(g5urs,) = —0.37, (E.33)
(GG Yowe a2y = 0.09C1), +0.265G) + 037 (Cl5) — CH), (E.34)
pp pp
) G0 50O
(Y owtyat) = — (ZID v (5L Yoz az) — 0.09(6G ) +0.260G)
~ 0.01(C}{),)? +0.07C ), 6GE) +0.05CY), + 00501,
0.37 (8
— =5+ Oy = ). (E.35)
pp pp pp
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