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Abstract: The Standard Model E↵ective Field Theory (SMEFT) theoretical framework

is increasingly used to interpret particle physics measurements and constrain physics beyond

the Standard Model. We investigate the truncation of the e↵ective-operator expansion using

the geometric formulation of the SMEFT, which allows exact solutions, up to mass-dimension

eight. Using this construction, we compare the exact solution to the expansion at O(v2/⇤2),

partial O(v4/⇤4) using a subset of terms with dimension-6 operators, and full O(v4/⇤4),

where v is the vacuum expectation value and ⇤ is the scale of new physics. This comparison

is performed for general values of the coe�cients, and for the specific model of a heavy U(1)

gauge field kinetically mixed with the Standard Model. We additionally determine the input-

parameter scheme dependence at all orders in v/⇤, and show that this dependence increases

at higher orders in v/⇤.
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1 Introduction

With the proliferation of precise experimental results at the Large Hadron Collider (LHC)

and other facilities, and the lack of observed particles beyond the Standard Model (SM),

data analysis and theoretical developments in the framework of the Standard Model E↵ective

Field Theory (SMEFT) are of increasing interest. The SMEFT parameterizes the e↵ects of

high-scale phenomena as e↵ective operators with dimension d > 4 suppressed by a factor

1/⇤d�4, where ⇤ is the new-physics energy scale. The truncation of the e↵ective field theory

(EFT) typically leads to relative errors of O(Q2
/⇤2) on the operator coe�cients, where Q

2

is the square of the momentum transfer in a process. Given the wide range of Q2 probed

by LHC measurements, a systematic accounting of these errors is central to the result [1–6].

They are relevant even when purely resonance observables are considered (Q2 . v
2), as the

measurements typically constrain scales only within an order of magnitude of the process.

Here v ⌘ v̄T =
p
2hH†Hi is the vacuum expectation value of H†

H, with H the SU(2)L scalar

doublet Higgs field.

For LHC resonance processes, the leading non-SM contribution occurs at O(v2/⇤2) and

is described by the interference between SM operators and dimension-6 operators in the

e↵ective Lagrangian. Given the historical lack of a complete formulation relating processes to

dimension-8 operator coe�cients,1 several approaches have been proposed to address unknown

contributions atO(v4/⇤4): (1) a generic relative v2/⇤2 uncertainty, which assumes the higher-

dimensional coe�cients are of similar magnitude to the leading coe�cients; (2) an uncertainty

estimated from the squared amplitude of diagrams containing dimension-6 coe�cients, which

accounts for the next order in the coe�cients present at O(v2/⇤2) as well as new coe�cients

from dimension-6 operators that do not interfere with the SM operators, or are otherwise

suppressed; and (3) an uncertainty based on a scan of dimension-8 operator coe�cients present

in a specific process, which allows a more complete accounting of the missing O(v4/⇤4) e↵ects.

Each approach has its limitations, which should be considered when translating any coe�cient

constraints to a particular model.

1Recently, a complete dimension-8 operator basis for the SMEFT was reported [7, 8].
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The recent development of the geometric formulation of the SMEFT (geoSMEFT [9]),

which builds on an extensive theoretical foundation [10–16], allows a comprehensive analysis

of the truncation of the SMEFT expansion. The geoSMEFT approach provides results not

only for operators up to dimension 8, but at all orders in the v/⇤ expansion for several

observables. For these observables we can now quantitatively compare di↵erent orders in the

SMEFT truncation, including partial higher-order contributions. In this paper, we study the

observables �(h ! ��), �(h ! Z �), and �(Z !  ̄  ), and determine the input-parameter

dependence in two schemes to all orders in v/⇤. We further match the SMEFT coe�cients to

an underlying U(1) kinetic mixing model up to dimension eight, quantifying the di↵erences

in inferred model parameters using di↵erent EFT truncation prescriptions.

2 SMEFT and geoSMEFT

The SMEFT Lagrangian is defined as

LSMEFT = LSM + L
(d)

, L
(d) =

X

i

C
(d)

i

⇤d�4
Q

(d)

i
for d > 4. (2.1)

The particle spectrum includes an SU(2)L scalar doublet (H) with hypercharge yh = 1/2.

The higher-dimensional operators Q
(d)

i
in the SMEFT are constructed out of the SM fields.

Our SM Lagrangian and conventions are consistent with Ref. [17]. The operators Q
(d)

i
are

labelled with a mass dimension d superscript and multiply unknown Wilson coe�cients C(d)

i
.

We use the Warsaw basis [18] for L(6) and Refs. [9, 19] for L(8) results, with the geoSMEFT

conventions taking definitional precedence in the case of modified conventions or notation.

We define C̃
(d)

i
⌘ C

(d)

i
v̄
d�4

T
/⇤d�4. Our remaining notation is defined in Refs. [17, 20].

The parameter v̄T in the SMEFT is defined as the minimum of the potential, including

corrections due to higher-dimensional operators. The value of v̄2
T
represents a tower of higher-

order corrections in the SMEFT, but we do not expand out v̄2
T
explicitly in terms of its SM

value plus 1/⇤ corrections, as this same tower of higher order e↵ects is present in all instances

of v̄2
T
in numerical predictions.2

The geometric formulation of the SMEFT organizes the theory in terms of field-space

connections Gi multiplying composite operator forms fi, represented schematically by

LSMEFT =
X

i

Gi(I, A,� . . . ) fi, (2.2)

where Gi depend on the group indices A, I of the (non-spacetime) symmetry groups, and the

scalar field coordinates of the composite operators, except powers of Dµ
H, which are grouped

into fi. The connections can be thought of as background-field form factors. The field-space

2We nevertheless present in Appendix B an iterative solution for the vev in terms of 1/⇤ corrections for

completeness.
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connections depend on the coordinates of the Higgs scalar doublet expressed in terms of real

scalar field coordinates, �I = {�1,�2,�3,�4}, with normalization

H(�I) =
1
p
2

"
�2 + i�1

�4 � i�3

#
. (2.3)

When considering the vacuum expectation value (vev), we note that �4 ! �4 + v̄T . The

gauge boson field coordinates are defined as W
A = {W

1
,W

2
,W

3
, B} with A = {1, 2, 3, 4}.

The corresponding general coupling in the SM is ↵A = {g2, g2, g2, g1}. The mass eigenstate

field coordinates are A
A = {W

+
,W

�
,Z,A}, and final-state photons are represented by �.

In the observables we examine, the field-space connections (hIJ , gAB, kIJA, L
···

I,A
) are used:

hIJ (�)(Dµ�)
I(Dµ

�)J , (2.4)

gAB (�)W
A

µ⌫W
B,µ⌫

, (2.5)

kIJA (�)(Dµ
�)I(D⌫

�)JWA

µ⌫ , (2.6)

L
 
R/L

pr

IA
(�)(Dµ

�)J( ̄R/L

p �µ⌧A 
R/L

r ), (2.7)

each of which is defined to all orders in the
p
2hH†Hi/⇤ expansion in Ref. [9]. The geometric

Lagrangian parameters are functions of the field-space connections hIJ , gAB, in particular the

matrix square roots of these field space connections
p
g
AB

= hgABi
1/2, and

p
hIJ = hhIJi

1/2.3

As the SMEFT perturbations are small corrections to the SM, the field-space connections are

positive semi-definite matrices, with unique square roots.

3 Partial vs full O(v4/⇤4)

The standard procedure for evaluating partial O(v4/⇤4) corrections is to include the squared

amplitude of diagrams with a linear dependence on dimension-6 Wilson coe�cients for an

observable Oi:

hOii
p.s.

'

Z
[dps]

���ASM +ASMEFT(C̃
(6)

i
)
���
2

(3.1)

'

Z
[dps]

✓
|ASM|

2 +ASMA
?

SMEFT(C̃
(6)

i
) +A

?

SMASMEFT(C̃
(6)

i
) +

���ASMEFT(C̃
(6)

i
)
���
2
◆
,

where
R
[dps] indicates an integral over phase space. We define this calculation to be the

partial-square procedure, which we compare to the full O(v4/⇤4) result. In the above cal-

culation the SMEFT amplitude correction includes corrections to the SM amplitude from

dimension-six operators, and novel contributions to the Wick expansion without an SM equiv-

alent. The dependence on the full set of dimension-six Wilson coe�cients is indicated by C̃
(6)

i
,

with the sum over i suppressed. When an observable is predicted using a reference set of ob-

servables to numerically fix Lagrangian parameters, i.e. an input-parameter set, the correc-

tions to an SM amplitude in the SMEFT also include redefinitions of this mapping. We defer

3Note that
p
gABpg

BC
⌘ �AC and

p
h
IJp

hJK ⌘ �IK .
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a discussion on input-parameter e↵ects to Appendix C and first compare results analytically.

We restrict our analysis to CP-even operators, approximating A
?

SMEFT
= ASMEFT.

The full result in the SMEFT to O(v4/⇤4) is

hOii
SMEFT =

Z
[dps]

✓
|ASM|

2 + 2Re(ASM)ASMEFT(C̃
(6)

i
) +

���ASMEFT(C̃
(6)

i
)
���
2
◆

+

Z
[dps]

⇣
2Re(ASM)ASMEFT(C̃

(8)

i
)
⌘
. (3.2)

This expression incorporates not only the L(8) coe�cients, but importantly also terms quadratic

in the L
(6) coe�cients that are missing in the partial-square procedure, as we will discuss

below.

Due to the large number of operators at L(8), it has not been possible to perform practical

calculations until recently. However, the geoSMEFT formalism now defines corrections to

all orders in the v̄T /⇤ expansion for several observables. Here we compare results for the

partial-square procedure and the full O(v4/⇤4) calculation for �(h ! ��), �(h ! Z �), and

�(Z !  ̄  ), and comment on other observables.

3.1 �(h ! ��)

In the SM, �(h ! ��) is loop-suppressed, and the leading-order result was developed in

Refs. [21–23]. Defining

iA
h��

SM
=

i g2 e
2

16⇡2mW

Z
1

0

dx

Z
1�x

0

dy

 
�4m2

W
+ 6x ym2

W
+ x ym

2

h

m
2

W
� x ym

2

h

+
X

f

NcQ
2

f

m
2

f
(1� 4x y)

m
2

f
� x ym

2

h

!
,

hhA
µ⌫
Aµ⌫i = hh|hA

µ ⌫
Aµ ⌫ |�(pa), �(pb)i = �4

⇣
pa · pb g

↵�
� p

�

a p
↵

b

⌘
✏↵✏� , (3.3)

the three-point function h� � � � in the SMEFT is [9]

hh|� �i =� hhA
µ⌫
Aµ⌫i

p
h
44

4

⌧
�g33(�)

��4

�
e
2

g
2

2

+ 2

⌧
�g34(�)

��4

�
e
2

g1g2
+

⌧
�g44(�)

��4

�
e
2

g
2

1

�

+ hhA
µ⌫
Aµ⌫iA

h��

SM
. (3.4)

Here we have used the geometric electric charge gauge coupling ē and Weinberg angle s
✓̄
[9]

defined in Appendix A.

We write the O(v2/⇤2) correction to the h� � � � function as hhAµ⌫
Aµ⌫ ihh|��iL(6)/v̄T ,

with

hh|��i
L(6) =

"
g
2

2
C̃

(6)

HB
+ g

2

1
C̃

(6)

HW
� g1 g2 C̃

(6)

HWB

(gSM
Z

)2

#
, (3.5)

where (gSM
Z

)2 ⌘ g
2

1
+ g

2

2
. To O(v4/⇤4) the full three-point function is

hh|��itoO(v4/⇤4) =
hhA

µ⌫
Aµ⌫i

v̄T

h
v̄TA

h��

SM
+
⇣
1 + h

p

h
44

iO(v2/⇤2)

⌘
hh|��i

L(6)

+ 2 hh|��i2
L(6) + 2 (hh|��i

L(6))
��
C

(6)
i

!C
(8)
i

i
. (3.6)
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Here

h

p

h
44

iO(v2/⇤2) = C̃
(6)

H⇤ �
1

4
C̃

(6)

HD
, (3.7)

and we have used the short-hand notation C
(6)

i
! C

(8)

i
for the replacements

C
(6)

HB
!

1

2
C

(8)

HB
, C

(6)

HW
!

1

2

⇣
C

(8)

HW
+ C

(8)

HW,2

⌘
, C

(6)

HWB
!

1

2
C

(8)

HWB
. (3.8)

Squaring the amplitude at O(v2/⇤2) gives the partial-square result

|hhA
µ⌫
Aµ⌫ ihh|��itoO(v2/⇤2)/v̄T |

2, where

|hh|��itoO(v2/⇤2)|
2 = v̄

2

T

����A
h��

SM

����
2

+ 2v̄T Re(Ah��

SM
) hh|��i

L(6) + hh|��i
2

L(6) , (3.9)

while the square of the amplitude with L
(8) operators can be expanded to give the full

O(v4/⇤4) result |hhAµ⌫
Aµ⌫ i|

2
|hh|��i|

2

toO(v4/⇤4)
/v̄

2

T
, with:

|hh|��i|
2

toO(v4/⇤4)
= v̄

2

T

����A
h��

SM

����
2

+ 2v̄T Re(Ah��

SM
)(1 + h

p

h
44

iO(v2/⇤2)) hh|��iL(6) (3.10)

+ (1 + 4 v̄T Re(Ah��

SM
)) hh|��i2

L(6) + 4v̄T Re(Ah��

SM
) (hh|��i

L(6))|
C

(6)
i

!C
(8)
i

.

The dependence on hh|��i
2

L(6) , which one might expect to correctly determine in the partial-

square procedure, is not correctly predicted by Eqn 3.9. This arises from a modification to the

couplings in the transformation to the mass-eigenstate field basis. The relationship between

ē
2 in the SMEFT and (e2)SM is

ē
2 = (e2)SM

h
1 + 2 hh|��i

L(6) + 4 (hh|��i
L(6))2 +2 (hh|��i

L(6))|
C

(6)
i

!C
(8)
i

i
. (3.11)

As a result, when expanding to O(v4/⇤4), the dependence on hh|��i
2

L(6) is not correctly

predicted by the partial-square procedure. The procedure has further inconsistencies if the

L
(6) operators are rescaled by powers of the gauge couplings of the theory, as in Ref. [24].

In addition to the incorrect coe�cient of hh|��i2
L(6) in the partial-square procedure, there

are missing quadratic L
(6) coe�cients due to the normalization of the Higgs field, which

modifies the coe�cient of hh|��i
L(6) in Eqn. 3.10.

3.2 �(h ! Z�)

For �(h ! Z�) the di↵erences between the partial-square procedure and the full O(v4/⇤4)

result are similar to those for �(h ! ��). The SM result for this decay was developed in
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Refs. [23, 25],4 and is

iA
hZ�

SM
=

i g2 e
2

16⇡2mW

 
I
Z

W (
m

2

h

4m2

W

,
m

2

Z

4m2

W

) +

Z
1

0

dx

Z
1�x

0

dy

X

f

4m2

f
(1� 4x y)NcQf g

 

V
/s

2✓̄

m
2

f
� (m2

h
�m

2

Z
)x y �m

2

Z
y(1� y)

!
,

I
Z

W (a, b) =
2

t
✓̄

Z
1

0

dx

Z
1�x

0

dy
(5� t

2

✓̄
+ 2a(1� t

2

✓̄
))xy � (3� t

2

✓̄
)

1� 4(a� b)xy � 4by(1� y)� i0+
,

hhA
µ⌫
Zµ⌫i = hh|hA

µ ⌫
Zµ ⌫ |�(pa),Z(pb)i = �2

⇣
pa · pb g

↵�
� p

�

a p
↵

b

⌘
✏
A

↵ ✏
Z

�
. (3.12)

Here we have used g
 ,SM

V
= T3/2 � Q (sSM✓Z )2. For  = {u, ⌫, d, e} we have 2T3( ) =

{1, 1,�1,�1} and Q = {2/3, 0,�1/3,�1}.

The three-point function h� Z � � in the SMEFT is [9]

hh|�Zi =� hhA
µ⌫
Zµ⌫i

p
h
44

2
e gZ

"⌧
�g33(�)

��4

�
c
2

✓Z

g
2

2

+

⌧
�g34(�)

��4

�
c
2

✓Z
� s

2

✓Z

g1g2
�

⌧
�g44(�)

��4

�
s
2

✓Z

g
2

1

#

+ hhA
µ⌫
Zµ⌫iA

h�Z

SM
, (3.13)

which depends on the geometric rotation angle s2
✓Z

and Z e↵ective gauge coupling ḡZ defined

in Appendix A. Expanding out the h� Z � � three-point function to order v2/⇤2, we have

hh|�ZitoO(v2/⇤2) = hhA
µ⌫
Zµ⌫i ⇥

1

v̄T

h
v̄TA

h�Z

SM
+ hh|�Zi

L(6)

i
, (3.14)

where

hh|�Zi
L(6) =

2

4
2g1g2

⇣
C̃

(6)

HW
� C̃

(6)

HB

⌘
+
�
g
2

1
� g

2

2

�
C̃

(6)

HWB

(gSM
Z

)2

3

5 . (3.15)

Expanding out to order v4/⇤4 yields

hh|�ZitoO(v4/⇤4) = hhA
µ⌫
Zµ⌫i

1

v̄T


v̄TA

h�Z

SM
+
⇣
1 + h

p

h
44

iO(v2/⇤2)

⌘
hh|�Zi

L(6) +
2 g1 g2
g
2

2
� g

2

1

hh|�Zi
2

L(6)

�

+ hhA
µ⌫
Zµ⌫i

1

v̄T
hh|�Zi

L(6)

"
C̃

(6)

HB
g
2

1
� C̃

(6)

HW
g
2

2
+ 3(C̃(6)

HW
g
2

1
� C̃

(6)

HB
g
2

2
)

g
2

1
� g

2

2

#

+ hhA
µ⌫
Zµ⌫i

1

v̄T
2 (hh|�Zi

L(6))|
C

(6)
i

!C
(8)
i

. (3.16)

The di↵erence between the partial-square procedure and the full O(v4/⇤4) result then follows

from

|hh|Z�itoO(v2/⇤2)|
2 = v̄

2

T

����A
h�Z

SM

����
2

+ 2v̄T Re(Ah�Z

SM
) hh|�Zi

L(6) + hh|�Zi
2

L(6) , (3.17)

4Note the sign correction to the results in Ref. [23] pointed out in Ref. [26].
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and

|hh|Z�i|
2

toO(v4/⇤4)
=v̄

2

T

����A
h�Z

SM

����
2

+ 2v̄T Re(Ah�Z

SM
)
⇣
1 + h

p

h
44

iO(v2/⇤2)

⌘
hh|�Zi

L(6)

+ 2v̄T Re(Ah�Z

SM
)hh|�Zi

L(6)

"
C̃

(6)

HB
g
2

1
� C̃

(6)

HW
g
2

2
+ 3(C̃(6)

HW
g
2

1
� C̃

(6)

HB
g
2

2
)

g
2

1
� g

2

2

#

+

✓
1 +

4 g1 g2 v̄T
g
2

2
� g

2

1

Re(Ah�Z

SM
)

◆
hh|�Zi

2

L(6)

+ 4v̄T Re(Ah�Z

SM
) (hh|�Zi

L(6))|
C

(6)
i

!C
(8)
i

. (3.18)

The quadratic dependence on the L
(6) coe�cients again di↵ers due to contributions from

the Higgs field normalization and the coupling expansion to O(v4/⇤4), which includes an

additional term due to electroweak mixing. We have normalized these expressions to cancel

the dimensions in A
h�Z

SM
.

3.3 �(Z !  ̄ )

We now consider a process that is present at tree level in the SM: the decay of a Z boson

into a pair of fermions. This decay can be defined at all orders of the v/⇤ expansion via

�̄
Z! ̄p r

=
N
 
c

24⇡

q
m̄

2

Z
|g

Z, 

e↵,pr
|
2

 
1�

4M̄2

 ,p

m̄
2

Z

!
3/2

, (3.19)

where

g
Z, 

e↵,pr
=

ḡZ

2

h
(2s2

✓Z
Q � �3)�pr + v̄T hL

 ,pr

3,4
i+ �3v̄T hL

 ,pr

3,3
i

i
. (3.20)

Here  = {qL, uR, dR, `L, eR}, with �3 = 1 for uL, ⌫L and �3 = �1 for dL, eL. The decay

width depends on the Lagrangian parameters defined in the previous sections, supplemented

with the masses

m̄
2

Z =
ḡ
2

Z

4

p
h33

2

v̄
2

T ,

m̄
 

pr = h(Y  

pr)
†
i, (3.21)

with M̄ ,i the vector of eigenvalues of the m̄
 
pr matrix. The generalized Yukawa couplings

(Y  
pr) are defined in Ref. [9]. Focusing on the e↵ective coupling contributing to the decay

width, the expressions at each order are:

hg
Z, 

e↵,pr
iSM = ḡ

SM

Z

h
(sSM
✓

)2Q �
�3

2

i
�pr, (3.22)

hg
Z, 

e↵,pr
iO(v2/⇤2) =

hḡZiO(v2/⇤2)

ḡ
SM

Z

hg
Z, 

e↵,pr
iSM �pr + ḡ

SM

Z Q hs
2

✓Z
iO(v2/⇤2) �pr +

ḡ
SM

Z

2

"
C̃

1,(6)

H 
pr

� �3 C̃
3,(6)

H 
pr

#
,

(3.23)
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hg
Z, 

e↵,pr
iO(v4/⇤4) =

hḡZiO(v4/⇤4)

ḡ
SM

Z

hg
Z, 

e↵,pr
iSM �pr + ḡ

SM

Z Q hs
2

✓Z
iO(v4/⇤4) �pr + hḡZiO(v2/⇤2) hs

2

✓Z
iO(v2/⇤2)Q �pr

+
hḡZiO(v2/⇤2)

2

"
C̃

1,(6)

H 
pr

� �3 C̃
3,(6)

H 
pr

#
+

g
SM

Z

4

"
C̃

1,(8)

H 
pr

� �3 C̃
2,(8)

H 
pr

� �3 C̃
3,(8)

H 
pr

#
. (3.24)

Expressions for hs2
✓Z
iO(v2/⇤2),hs

2

✓Z
iO(v4/⇤4), hḡZiO(v2/⇤2), and hḡZiO(v4/⇤4), are given in Ref. [9]

and summarized in Appendix A. In addition, there are scheme-dependent corrections due to

the mapping of redefined Lagrangian parameters to measured input parameters.

As can be seen from Eqs. 3.23 and 3.24, the partial-square and full O(v4/⇤4) results

di↵er extensively. As an illustration we consider the dependence on the Wilson coe�cient

(C̃(6)

HWB
)2, which corresponds to the (squared) S parameter in the Warsaw basis. The partial-

square procedure yields a dependence of

|g
Z, 

e↵,pr
|
2

partial square
�

g
2

1
g
2

2
(C̃(6)

HWB
)2

(gSM
Z

)6
�pr

h
g
SM

Z hg
Z, 

e↵,pr
iSM + (g22 � g

2

1)Q )
i
2

, (3.25)

while the full O(v4/⇤4) result yields a dependence of

|g
Z, 

e↵,pr
|
2

O(v4/⇤4)
�

g
2

1
g
2

2
(C̃(6)

HWB
)2 (g2

2
� g

2

1
)2Q2

 

(gSM
Z

)6
�pr + (C̃(6)

HWB
)2hgZ, 

e↵,pr
i
2

SM�pr. (3.26)

The partial-square result contains a term proportional to Q that is not present in the full

result due to cancellations. We examine the numerical di↵erence between these results in

Sec. 4.

3.4 h ! ZZ
⇤

Although the h ! ZZ
⇤ final state includes an o↵-shell particle and is not directly observable,

it is of interest to examine the structure of corrections to the h�Z �Z three-point function.

The geoSMEFT result is [9]

hh|ZZi = �hhZ
µ⌫
Zµ⌫i

p
h
44

4
g
2

Z

"⌧
�g33(�)

��4

�
c
4

✓Z

g
2

2

� 2

⌧
�g34(�)

��4

�
c
2

✓Z
s
2

✓Z

g1g2
+

⌧
�g44(�)

��4

�
s
4

✓Z

g
2

1

#

+ hhZµZ
µ
i

p

h
44 g

2

Z

2

"⌧
�h33(�)

��4

�✓
vT

2

◆
2

+ hh33(�)i
vT

2

#

+ h@⌫hZµZ
µ⌫
i

p

h
44

g
2

ZvT

"
hk

3

34i
c
2

✓Z

g2
� hk

4

34i
s
2

✓Z

g1

#
. (3.27)

In the SM, we have:

hh|Z
µ
ZµiSM =

(ḡSM
Z

)2

4
v̄T , (3.28)

hh|Z
µ⌫
Zµ⌫iSM = 0, (3.29)

h@⌫h|ZµZ
µ⌫
iSM = 0, (3.30)
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where the notation is such that hh|Zµ
Zµi represents the term multiplying hhZ

µ⌫
Zµ⌫i and so

forth. Expanding the geoSMEFT result to O(v2/⇤2) gives:

hh|Z
µ
ZµiO(v2/⇤2) =

(ḡSM
Z

)2 v̄T
4


2
hḡZiO(v2/⇤2)

ḡ
SM

Z

+ C̃HD + h

p

h
44

iO(v2/⇤2)

�
, (3.31)

hh|Z
µ⌫
Zµ⌫iO(v2/⇤2) =

hḡZiO(v2/⇤2)

ḡ
SM

Z
v̄T

, (3.32)

h@⌫h|ZµZ
µ⌫
iO(v2/⇤2) = 0, (3.33)

and expanding to O(v4/⇤4) one has

hh|Z
µ
ZµiO(v4/⇤4) =

h
h

p

h
44

iO(v4/⇤4) +2
hḡZiO(v4/⇤4)

ḡ
SM

Z

�
3(hḡZiO(v2/⇤2))

2

(ḡSM
Z

)2
� (C̃(6)

HD
)2 � 2

C̃
(6)

HD
hḡZiO(v2/⇤2)

ḡ
SM

Z

#
hh|Z

µ
ZµiSM

+


C̃

(6)

HD
+ 2

hḡZiO(v2/⇤2)

ḡ
SM

Z

�
hh|Z

µ
ZµiO(v2/⇤2) +

3 (ḡSM
Z

)2 (C̃(8)

HD
+ C̃

(8)

H,D2
) v̄T

16
,

(3.34)

hh|Z
µ⌫
Zµ⌫iO(v4/⇤4) =


h

p

h
44

iO(v2/⇤2) + 2
hḡZiO(v2/⇤2)

ḡ
SM

Z

�
hh|Z

µ⌫
Zµ⌫iO(v2/⇤2)

+ 2
�
hh|Z

µ⌫
Zµ⌫iO(v2/⇤2)

���
C

(6)
i

!C
(8)
i

+
4 (hh|�ZiO(v2/⇤2))

2

v̄T
, (3.35)

h@⌫h|ZµZ
µ⌫
iO(v4/⇤4) =

g1 C̃
(8)

HDHB
+ g2 C̃

(8)

HDHW

4 v̄T
, (3.36)

where

h

p

h
44

iO(v4/⇤4) = �
1

8
(C̃(8)

H,D2
+ C̃

(8)

HD
) +

3

4
C̃

(6)

H⇤(2C̃
(6)

H⇤ � C̃
(6)

HD
) +

3

32
(C̃(6)

HD
)2. (3.37)

By direct inspection, it is clear that the di↵erences between the partial-square and full results

for the h� Z � Z three-point function are extensive.

4 Numerical results

It is now possible to quantitatively compare the predictions of processes in the SMEFT using

a partial-square result and a full (CP-even) SMEFT result up to order v4/⇤4. In this section

we perform this comparison for the first time using an exact SMEFT formulation to O(v4/⇤4).

Accounting for SMEFT corrections to Lagrangian parameters is a precursor to an exact

SMEFT calculation of observables to sub-leading order. In the SM a key set of Lagrangian

parameters are the gauge couplings and the vacuum expectation value. In the SMEFT the

inference of these parameters from well-measured observables is modified by the presence of

higher-dimensional operators. When a Lagrangian parameter in a prediction is not accom-

panied by the same set of SMEFT corrections as in the observable used to fix the parameter,
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it is necessary to correct for this di↵erence. This is the case for the numerical extractions

of the gauge couplings. The electroweak (EW) vacuum in the SMEFT
p

2H†H ⌘ v̄T is a

common parameter for all instances when the Higgs vev appears in predictions. Formally,

this parameter includes an infinite tower of 1/⇤n corrections. There is no need to re-expand

out v̄T in terms of an SM vev and these 1/⇤n corrections when the same combination of

higher-order terms is present in all instances of v̄T in a prediction. This is the case for the

set of higher-dimensional operators that define the minimum of the potential, but this is not

the case for a) four-fermion operators and b) modifications of the W
± couplings to fermions

when this parameter is extracted from muon decay. These e↵ects must be corrected for when

making predictions using a value of the vev.

Two popular input-parameter schemes are the {↵̂ew, m̂Z , ĜF } and {m̂W , m̂Z , ĜF } schemes.

Results to L
(6) for these schemes were developed in Refs. [17, 20, 27–32]5 6. Extending these

schemes to L(8) was explored in Ref. [19]. Here we build on these results, with some di↵erences

due to the consistent formulation of the SMEFT at L
(8) using the geoSMEFT [9]. We pro-

vide numerical relations between partial widths and Wilson coe�cients in the {m̂W , m̂Z , ĜF }

scheme in this section, and the corresponding relations in the {↵̂ew, m̂Z , ĜF } scheme in Ap-

pendix E. Formulas for the inference of Lagrangian parameters at all orders in v̄T /⇤ are

provided in Appendix C.

4.1 Order-of-magnitude estimates

The numerical impact of L(6) and L
(8) corrections on decay widths can be categorized using

several factors, such as whether the correction is part of an input parameter shift, whether

it comes from interference with the SM or between di↵erent L
(6) terms, and whether the

corresponding SM amplitudes are tree- or loop-level. It is worthwhile to estimate the order-

of-magnitude e↵ect in each of these categories before diving into numerics, in order to develop

some intuition for the hierarchy of e↵ects.

Considering first loop-suppressed SM amplitudes, a SMEFT correction will have an equiv-

alent loop suppression for terms that arise from input-parameter L
(6) and L

(8) corrections.

In general, an L
(4+2n) correction to the input parameters will give a correction to the squared

loop-suppressed amplitude of order

⇠
(ḡSM)4

(16⇡2)2

⇣
v̄T

⇤

⌘2n
C

(4+2n)

i
. (4.1)

Similarly, a one-loop correction in the SMEFT with a higher-dimensional operator inserted

in a loop will have an e↵ect of this order. Such loop corrections are generally not included

in partial-square estimates, as they are available for a limited set of processes. These results

5A self-contained and up-to-date summary of these e↵ects, in both schemes, is included in Ref. [33].
6It is important to note, when considering scheme dependence in the SMEFT, that such scheme dependence

is due to the e↵ects of physics beyond the SM being absorbed into a set of low-energy parameters. This is

distinct physics from the scheme dependence associated with a perturbative expansion in a renormalizable

model, such as the SM, though the same label of “scheme dependence” is used in both cases.
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are neglected here, although they are available in the literature for �(h ! ��) [5, 34–37],

�(h ! Z�) [38, 39], and �(Z !  ̄ ) [6, 40]. These calculations could be used to study the

important issue of perturbative uncertainties in the SMEFT.

In the case where a loop-suppressed SM amplitude interferes with an L
(4+2n) amplitude,

the correction will be of order

⇠
(ḡSM)2

(16⇡2)

⇣
v̄T

⇤

⌘2n
C

(4+2n)

i
. (4.2)

Higher-order terms arise when a loop-suppressed SM amplitude with an input-parameter

correction interferes with an L
(4+2n) amplitude,

⇠
(ḡSM)2

(16⇡2)

⇣
v̄T

⇤

⌘2m ⇣ v̄T
⇤

⌘2n
C

(4+2n)

i
C

(4+2m)

j
, (4.3)

or when two L
(4+2n) amplitudes interfere,

⇠

⇣
v̄T

⇤

⌘4n
(C(4+2n)

i
)2, or ⇠

⇣
v̄T

⇤

⌘2n ⇣ v̄T
⇤

⌘2m
(C(4+2n)

i
)(C(4+2m)

k
). (4.4)

The e↵ect of input-parameter corrections (and corresponding scheme dependence) is more

significant for decays that occur at tree level in the SM. In a tree-level SM decay, an input-

parameter correction due to L
(4+2n) operators gives a width correction of order

⇠ (ḡSMZ )2
⇣
v̄T

⇤

⌘2n
C

(4+2n)

i
, (4.5)

while the direct interference between L
(4+2n) and SM amplitudes gives a width correction of

⇠ ḡ
SM

Z

⇣
v̄T

⇤

⌘2n
C

(4+2n)

i
. (4.6)

These scalings dictate the numerical size of the corrections we report below.

4.2 �(h ! ��)

Using the input parameters in Table 1, we find the following SM leading-order h ! �� partial

width in the m̂W scheme:

�m̂W

SM
(h ! ��) =

m̂
3

h

4⇡

����A
h��

SM

����
2

= 1.00⇥ 10�5GeV. (4.7)

The corresponding value in the ↵̂ew scheme is �↵̂ew
SM

(h ! ��) = 1.08 ⇥ 10�5GeV. The

di↵erences in the SM results for di↵erent schemes are reduced at higher order in pertubation

theory. Since we use leading-order results when evaluating L
(6) and L

(8) corrections, we list

here the SM leading-order results for completeness. Results in the SMEFT are quoted as
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m̂W 80.387 GeV [41]

↵̂ew(MZ) 1/127.950 [42]

m̂Z 91.1876 GeV [42–44]

ĜF 1.1663787 ·10�5 GeV�2 [42, 44]

m̂h 125.09 GeV [45]

↵̂s(m̂Z) 0.1181 [42]

m̂t 173.21 GeV [42]

m̂b 4.18 GeV [42]

m̂c 1.28 GeV [42]

m̂⌧ 1.77686 GeV [42]

Table 1. Numerical central values of the relevant SM parameters used as inputs. Only one of m̂W or
↵̂ew is used as input depending on the scheme adopted. The remaining SM inputs are taken from the
central values in the PDG [42].

ratios with respect to the SM, which can be applied to the highest-order result known in

perturbation theory (in the SM).

The squared amplitudes |hh|��itoO(v2/⇤2)|
2 and |hh|��i|

2

toO(v4/⇤4)
give the partial-square

and full O(v4/⇤4) SMEFT corrections, respectively, to the partial decay width. Explicitly,

�p.s.(h ! ��) '
m̂

3

h

4⇡ v̄2
T

|hh|��itoO(v2/⇤2)|
2

'
m̂

3

h

4⇡ v̄2
T

"
v̄
2

T

����A
h��

SM

����
2

+ 2v̄T Re(Ah��

SM
) hh|��i

L(6) + hh|��i
2

L(6)

#
, (4.8)

while in the case of the full CP-even O(v4/⇤4) SMEFT result one has

�SMEFT(h ! ��) =
m̂

3

h

4⇡ v̄2
T

|hh|��i|
2

toO(v4/⇤4)

=
m̂

3

h

4⇡ v̄2
T

"
v̄
2

T

����A
h��

SM

����
2

+ 2v̄T Re(Ah��

SM
)(1 + h

p

h
44

iO(v2/⇤2)) hh|��iL(6) (4.9)

+ (1 + 4 v̄T Re(Ah��

SM
)) (hh|��i

L(6))2 + 4v̄T Re(Ah��

SM
) (hh|��i

L(6))|
C

(6)
i

!C
(8)
i

i
.

Restricting the analysis to corrections scaling as Eqns. (4.2)-(4.4) and neglecting corrections

/
(ḡ

SM
)
4

(16⇡2)2
as in Eqn. (4.1), the partial-square correction is

�m̂W

p.s. (h ! ��)

�m̂W

SM
(h ! ��)

' 1� 788f m̂W

1
+ 3942 (f m̂W

1
)2 � 351 (C̃(6)

HW
� C̃

(6)

HB
) f m̂W

3
(4.10)

+ 979 C̃(6)

HD
(C̃(6)

HB
+ 0.80 C̃

(6)

HW
� 1.02 C̃(6)

HWB
) + 2228 �G(6)

F
f
m̂W

1

+ 2283 C̃(6)

HWB
(C̃(6)

HB
+ 0.66 C̃

(6)

HW
� 0.88 C̃(6)

HWB
),
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where

f
m̂W

1
' f

↵̂ew

1
=
h
C̃

(6)

HB
+ 0.29 C̃

(6)

HW
� 0.54 C̃(6)

HWB

i
, (4.11)

f
m̂W

2
' f

↵̂ew

2
=
h
C̃

(8)

HB
+ 0.29 (C̃(8)

HW
+ C̃

(8)

HW,2
)� 0.54 C̃(8)

HWB

i
, (4.12)

f
m̂W

3
' f

↵̂ew

3
=
h
C̃

(6)

HW
� C̃

(6)

HB
� 0.66 C̃(6)

HWB

i
, (4.13)

in both input-parameter schemes. The corresponding (CP-even) O(v4/⇤4) SMEFT result in

the m̂W scheme is

�m̂W

SMEFT
(h ! ��)

�m̂W

SM
(h ! ��)

=
�m̂W

p.s. (h ! ��)

�m̂W

SM
(h ! ��)

� 788

" 
C̃

(6)

H⇤ �
C̃

(6)

HD

4

!
f
m̂W

1
+ f

m̂W

2

#
� 1224 (f m̂W

1
)2.

(4.14)

We numerically analyse the di↵erence between the SMEFT result and the partial-square result

in Secs. 5 and 6.

4.3 �(h ! Z�)

A similar analysis for �(h ! Z�) begins with the SM result

�m̂W

SM
(h ! Z�) =

m̂
3

h

8⇡

✓
1�

m̂
2

Z

m̂
2

h

◆3 ����A
hZ�

SM

����
2

= 6.5⇥ 10�6GeV. (4.15)

Again neglecting corrections / (ḡ
SM

)
4

(16⇡2)2
, the partial-square correction is

�m̂W

p.s. (h ! Z�)

�m̂W

SM
(h ! Z�)

' 1� 237f m̂W

3
+ 1182 (f m̂W

3
)2 � 131 (C̃(6)

HB
� C̃

(6)

HW
)2 � 670 �G(6)

F
f
m̂W

3

� 616 C̃(6)

HWB
(C̃(6)

HB
� C̃

(6)

HW
+ 0.02C̃(6)

HWB
)� 265 C̃(6)

HD
(C̃(6)

HW
� C̃

(6)

HB
� 0.54C̃(6)

HWB
).

Finally, the full (CP-even) SMEFT result in the m̂W scheme to O(v4/⇤4) is

�m̂W

SMEFT
(h ! Z�)

�m̂W

SM
(h ! Z�)

=
�m̂W

p.s. (h ! Z�)

�m̂W

SM
(h ! Z�)

� 237

" 
C̃

(6)

H⇤ �
C̃

(6)

HD

4

!
f
m̂W

3
+ f

m̂W

4

#
(4.16)

� 296 (f m̂W

3
)2 � 237f m̂W

3

⇣
3.8C̃(6)

HB
+ 0.20C̃(6)

HW

⌘
,

where f
m̂W

4
' f

↵̂ew

4
=
h
C̃

(8)

HW
+ C̃

(8)

HW,2
� C̃

(8)

HB
� 0.66 C̃(8)

HWB

i
.

4.4 �(Z !  ̄ )

For �(Z !  ̄ ) the di↵erence between the partial-square and O(v4/⇤4) results is dictated

by the di↵erence in
���gZ, 

e↵,pr

���
2

for each input-parameter case. We add the two chiral final states
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for each fermion pair to obtain a partial-square correction of

�̄p.s.

Z! ̄p p

�̄SM

Z! ̄p p

' 1 + 2
Re
h
hgZ, L

SM,pp
i hgZ, L

e↵,pp
iO(v2/⇤2) + hgZ, R

SM,pp
i hgZ, R

e↵,pp
iO(v2/⇤2)

i

|hg
Z, L

SM,pp
i|2 + |hg

Z, R

SM,pp
i|2

+
|hg

Z, R

e↵,pp
iO(v2/⇤2)|

2 + |hg
Z, L

e↵,pp
iO(v2/⇤2)|

2

|hg
Z, L

SM,pp
i|2 + |hg

Z, R

SM,pp
i|2

, (4.17)

while the full O(v4/⇤4) result is

�̄SMEFT

Z! ̄p p

�̄SM

Z! ̄p p

=
�̄p.s.

Z! ̄p p

�̄SM

Z! ̄p p

+ 2
Re
h
hgZ, L

SM,pp
i hgZ, L

e↵,pp
iO(v4/⇤4) + hgZ, R

SM,pp
i hgZ, R

e↵,pp
iO(v4/⇤4)

i

|hg
Z, L

SM,pp
i|2 + |hg

Z, R

SM,pp
i|2

. (4.18)

In the {m̂W , m̂Z , ĜF } input-parameter scheme, the leading-order SM results are

�̄SM

Z!ūu = 0.29GeV, �̄SM

Z!d̄d
= 0.37GeV, (4.19)

�̄SM

Z! ¯̀̀ = 0.08GeV, �̄SM

Z!⌫̄⌫ = 0.17GeV. (4.20)

For up-type quarks, we find the following expressions for hg
Z, L/R

e↵,pp
i:

hg
Z,uL

SM,pp
i = �0.26, (4.21)

hg
Z,uL

e↵,pp
iO(v2/⇤2) = �0.13C̃(6)

HD
� 0.21 C̃(6)

HWB
+ 0.18 �G(6)

F
+ 0.37 (C̃(6)

Hq
pp

� C̃
3,(6)

Hq
pp

), (4.22)

hg
Z,uL

e↵,pp
iO(v4/⇤4) = �

 
C̃

(6)

HD

4
+
�G

(6)

F
p
2

!
hg

Z,uL

e↵,pp
iO(v2/⇤2) (4.23)

+ C̃
(6)

HWB

⇣
0.13C̃(6)

HD
� 0.21(C̃(6)

HB
+ C̃

(6)

HW
)
⌘

� 0.01(C̃(6)

HD
)2 + 0.05C̃(6)

HD
�G

(6)

F
+ 0.03C̃(8)

HD
� 0.16C̃(8)

H,D2
� 0.10C̃(8)

HWB

� 0.38C̃(8)

HW,2
�

0.37

2
(C̃2,(8)

Hq
pp

+ C̃
3,(8)

Hq
pp

� C̃
(8)

Hq
pp

)� 0.07(�G(6)

F
)2 + 0.18�G(8)

F
,

hg
Z,uR

SM,pp
i = 0.11, (4.24)

hg
Z,uR

e↵,pp
iO(v2/⇤2) = �0.22 C̃(6)

HD
� 0.21 C̃(6)

HWB
� 0.08 �G(6)

F
+ 0.37 C̃(6)

Hu
pp

, (4.25)

hg
Z,uR

e↵,pp
iO(v4/⇤4) = �

 
C̃

(6)

HD

4
+
�G

(6)

F
p
2

!
hg

Z,uR

e↵,pp
iO(v2/⇤2) (4.26)

+ C̃
(6)

HWB

⇣
0.13C̃(6)

HD
� 0.21(C̃(6)

HB
+ C̃

(6)

HW
)
⌘

+ 0.003(C̃(6)

HD
)2 � 0.02C̃(6)

HD
�G

(6)

F
� 0.01C̃(8)

HD
� 0.21C̃(8)

H,D2
� 0.10C̃(8)

HWB

� 0.38C̃(8)

HW,2
+

0.37

2
C̃

(8)

Hu
pp

+ 0.03(�G(6)

F
)2 � 0.08�G(8)

F
.

The remaining expressions for final-state fermions are listed in Appendix D. The total width

is the linear sum of the partial widths.
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5 Coe�cient sampling analysis

The final step required to numerically compare the full O(v4/⇤4) result to the partial-square

calculation for each process is to choose the coe�cients C
(d). The processes examined in

Sec. 4 depend on O(30) coe�cients7. While 30 is far less than the O(1000) coe�cients in

the full dimension-6 plus dimension-8 SMEFT (Nf = 1), it is still too many to analyze

coherently without making further assumptions (outside of a global fit). We explore two

options for choosing coe�cients: a sampling approach (this section), and an ultraviolet (UV)

model-based approach (Sec. 6).

In a sampling study, coe�cient values are drawn from assumed distributions. This ap-

proach treats the SMEFT as a bottom-up e↵ective field theory, irrespective of a particular

UV completion of the SM. The decoupling theorem [46, 47] establishes the SMEFT as a dis-

tinct theory, so this approach is favored in EFT studies of experimental data. Absent any

UV model constraint on the parameters, the simplest assumed distribution is a uniform flat

distribution with all coupling values equally likely, consistent with perturbation theory. One

can add a mild assumption by noting that UV models typically introduce particles whose

parameters can be mapped to a few coe�cients, and in these cases the majority of the coef-

ficients will have small values. This scenario can be approximated by a gaussian distribution

for the coe�cient values. We find that the di↵erences between the uniform and gaussian

distributions are imperceptible, and we sample from a gaussian distribution for the results in

this section.

We start with a qualitative assessment of the variations in the partial widths as terms at

O(v4/⇤4) are included in the calculation (Sec. 5.1). We then turn to a study of procedures

for coe�cient uncertainty estimates in Sec. 5.2.

5.1 Partial-width variations

In order to compare partial-square and full O(v4/⇤4) results for the partial widths, we proceed

as follows:

1.) We sample coe�cients a↵ecting the calculation to O(v2/⇤2). Coe�cients of tree-level

operators are drawn from a gaussian (or uniform) distribution with a mean of zero and a

root mean square (r.m.s.) equal to one. For loop-level coe�cients the r.m.s. and range

are reduced by a factor of 100, since larger values give large relative corrections to the

SM predictions that are inconsistent with experimental results. The categorization of

operator coe�cients as tree-level or loop-level is determined using the results of Ref. [48–

50]. For example, the h ! �� tree-level matching coe�cients for SMEFT operators are

C
(6)

HD
, C

(6)

H⇤, C
1,(6)

H 
, C3,(6)

H 
, and �G(6)

F
, while the loop-level coe�cients are C(6)

HB
, C

(6)

HW
, and

C
(6)

HWB
. We draw random values for the C

(6) coe�cients, and the C̃
(6) coe�cients that

appear in Secs. 2 and 3 can be obtained by multiplying by v̄
2

T
/⇤2.

7This number assumes flavor universality and treats �G(d)
F

as a single coe�cient rather than separating

out the di↵erent contributions as shown in Appendix C. Relaxing either of these assumptions will change the

count by a small amount.
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With these coe�cients and using the procedure outlined in Appendix C to connect to

experimental EW inputs, the O(v2/⇤2) and partial-square calculations are determined

up to the value of ⇤. The result after this step is schematically

� = �SM +
#

⇤2
+

#0

⇤4
. (5.1)

2.) For each set of coe�cients obtained above, we perform 10,000 separate samplings of

the remaining coe�cients a↵ecting the the full O(v4/⇤4) result. The coe�cients are

again separated into tree- and loop-level, with dimension-8 operators with Higgs and

gauge field strengths (e.g. C(8)

HB
, C

(8)

HW
, C

(8)

HWB
) classified as tree-level following [50] (their

dimension-6 counterparts are classified as loop-level for the Higgs boson partial widths

we consider).

3.) We calculate the deviation from the SM for each �SMEFT(⇤),

�SMEFT(⇤) =
�SMEFT(⇤)� �SM

�SM

(5.2)

and determine the standard deviation �� of the �SMEFT(⇤) distribution.

4.) We compare the �O(v2/⇤2)(⇤) and �p.s.(⇤) curves, defined in the same way as Eqn. (5.2),

to the ±1, 2, 3�� �SMEFT curves.

Following this procedure for h ! �� in the m̂W scheme gives the results in Figure 1 for

two sets of O(v2/⇤2) coe�cients. The green shaded region shows the ±1�� deviations of the

partial width from the SM prediction with the full O(v4/⇤4) SMEFT calculation, for given

O(v2/⇤2) (red line) and partial-square (black line) results. The ±2, 3�� regions are shown in

yellow and gray, respectively. The figure shows the expected dependence of the partial width

on O(v4/⇤4): as ⇤ increases the impact of these terms decreases. For ⇤ . 1 TeV neither the

O(v2/⇤2) nor the partial-square calculation provides a good approximation. Equivalently, for

a given measured partial width the inferred coupling or scale is a↵ected by higher order terms

if the scale is low. A 10% deviation in the partial width corresponds to a scale of ⇡ 3 TeV for

the chosen coe�cients at O(v2/⇤2), but the scale can be much lower if there are cancellations

from higher-order terms.

Figures 2 and 3 show the results of similar coe�cient sampling studies for h ! Z� and

Z ! `` in the m̂W scheme. The loop-level h ! Z� and h ! �� processes are similar,

with a broad band of deviations from O(v4/⇤4) contributions at low scales. In the right

panel of Fig. 2 an accidental cancellation in the partial-square result leads to essentially

zero deviation, while the O(v4/⇤4) band is just as broad as in the left panel. The band of

deviations is narrower for the Z ! `` partial width, which is tree-level in the SM.

5.2 Coe�cient variations

In global fits for SMEFT coe�cients at O(v2/⇤2), it is appropriate to consider the e↵ect of

the EFT truncation on the extracted values. We investigate two possible procedures for esti-

mating this e↵ect: (1) using the di↵erence between the partial-square result and the O(v2/⇤2)
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Figure 1. The deviations in h ! �� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.004, C(6)
HWB

= 0.007, C(6)
HD

= �0.74, and �G(6)
F

= �1.6. In the right panel they are

C
(6)
HB

= 0.007, C(6)
HW

= 0.007, C(6)
HWB

= �0.015, C(6)
HD

= 0.50, and �G(6)
F

= 1.26.

��� ��� ��� ��� ��� ��� ���
-���
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-���

-���

-���

���

���

���

Λ (���)

δ(
�→
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���������� �� Γ(�→�γ)

��� ��� ��� ��� ��� ��� ���
-���

-���

���

���

���

Λ (���)

δ(
�→
�γ

)

���������� �� Γ(�→�γ)

Figure 2. The deviations in h ! Z� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.02, C(6)
HWB

= �0.011, C(6)
HD

= 0.53, and �G
(6)
F

= 0.13. In the right panel they are

C
(6)
HB

= 0.002, C(6)
HW

= 0.001, C(6)
HWB

= �0.001, C(6)
HD

= 0.28, and �G(6)
F

= �1.15.
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δ(
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Figure 3. The deviations in Z ! `` from the O(v2/⇤2) (red line) and partial-square (black line)
results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions). In the left
panel the coe�cients determining the O(v2/⇤2) and partial-square results are C1,(6)

H`
= �0.46, C3,(6)

H`
=

1.24, C(6)
He

= 1.53, C(6)
HD

= �0.79, C(6)
HWB

= 0.007, and �G
(6)
F

= 0.16. In the right panel they are

C
1,(6)
H`

= 1.55, C3,(6)
H`

= �0.71, C(6)
He

= 0.23, C(6)
HD

= �0.51, C(6)
HWB

= �0.008, and �G(6)
F

= �0.44.

SMEFT result as an estimate of a ‘truncation uncertainty’; and (2) taking the fractional un-

certainty on each coe�cient to be v
2
/⇤2. The former procedure uses the partial O(v4/⇤4)

information in the L(6) operators to take all the calculable terms when complete higher orders

are not available. The latter procedure instead only scales the measured coe�cient by the

ratio of dimensionful parameters.

We test the uncertainty procedures by taking the full O(v4/⇤4) SMEFT calculation to

provide the ‘true’ value of a given coe�cient. The shift in the partial width relative to the

SM is calculated for a set of coe�cients drawn from a gaussian distribution. Fixing the value

of this shift and taking a given value of ⇤, we determine the change in one of the coe�cients

when calculating the partial width at O(v2/⇤2), or with the partial-square procedure. The

deviation in the coe�cient value relative to its initial value is taken as the ‘truncation error’.

Figure 4 shows the distribution of this error for C(6)

HW
in the O(v2/⇤2) (left) and partial-

square (right) calculations of �(h ! ��) using 50,000 samplings of the coe�cients and taking

⇤ = 2.5 TeV. This error distribution can be compared to the distribution of uncertainty

estimates shown in Fig. 5, where the distribution in the left panel is the di↵erence between

the O(v2/⇤2) and partial-square calculations, and in the right panel it is v
2
/⇤2 times the

coe�cient. The uncertainty estimate is 1-2 orders of magnitude smaller than the error, with

the v
2
/⇤2 distribution narrower by a factor of a few.

The validity of an uncertainty estimate is typically demonstrated by the pull distribution,

defined as the error divided by the uncertainty. An unbiased estimate of the central value
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Figure 4. The distribution of C
(6)
HW

deviations between O(v4/⇤4) and either O(v2/⇤2) (left) or
partial-square (right) calculations, where the impact on �(h ! ��) relative to the SM is fixed to the
value obtained from the O(v4/⇤4) calculation. These deviations represent the truncation errors on
the C

(6)
HW

coe�cients extracted from the L
(6) calculations.
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Figure 5. Left: The distribution of the C
(6)
HW

deviation between O(v2/⇤2) and partial-square cal-
culations, where the impact on �(h ! ��) relative to the SM is fixed. Right: The distribution of
(v2/⇤2)C(6)

HW
for the same parameter sets. The two calculations estimate the di↵erence between the

calculations atO(v4/⇤4) andO(v2/⇤2), and we consider their applicability as truncation uncertainties.

and uncertainty would have a pull distribution with a mean of zero and a standard deviation

of one. Figure 6 shows this distribution for �(h ! ��) (top) and �(Z ! ``) (bottom) for
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the two estimates of the uncertainty using the O(v2/⇤2) calculation for the central value of

the coe�cient. The least biased estimate of the uncertainty comes from the partial-square

calculation, and has an O(1) width when applied to the tree-level �(Z ! ``) process. An

uncertainty of 10(v2/⇤2)C(6)

i
could give a reasonable estimate, as it would scale down the

entire x-axis by a factor of 10. Such an uncertainty would imply that a scale of & 1 TeV

would be required to reduce the truncation uncertainty to . 100%.

We do not address here the case where measurements do not have sensitivity to the true

values of the coe�cients, which are thus consistent with zero within experimental uncertain-

ties. In this situation the procedures discussed here would be dominated by the noise in the

measurement and would not provide an accurate estimate of the uncertainty. When using

these results to constrain specific models, a truncation uncertainty based on the measurement

uncertainty may be su�cient, e.g. a(v2/⇤2)�
C

(6)
i

with a of order 1.

6 Model example: Kinetic mixing of gauge bosons

In the previous section we investigated the numerical di↵erences between the various calcu-

lations using coe�cient sampling. Here we examine the di↵erences that arise when using

experimental results to infer UV model parameters. To this end, we explore a simple two-

parameter model where a heavy U(1) gauge boson Kµ with mass mK kinetically mixes with

Bµ, the U(1)Y gauge boson in the SM.

6.1 Matching to L
(8)

We follow and extend the treatment of this model in Ref. [51], where the SM Lagrangian is

supplemented with the UV Lagrangian

�L = �
1

4
Kµ⌫K

µ⌫ +
1

2
m

2

KKµK
µ
�

k

2
B

µ⌫
Kµ⌫ , (6.1)

where the field strength is Kµ⌫ = @µK⌫ � @⌫Kµ. Integrating out the heavy K state, a

particular matching pattern results in the SMEFT. The equation of motion for Kµ is

@⌫K
µ⌫

�m
2

KK
µ + k (@⌫B

µ⌫) = 0, (6.2)

which can be split into two equations:

@µK
µ = 0, (6.3)

�
@
2 +m

2

K

�
K

µ = k (@⌫B
µ⌫) . (6.4)

To find the tree-level matching, it is su�cient to insert the solution for the equation of motion

for Kµ back into the Lagrangian. The classical solution is

K
µ

cl =
k

@2 +m
2

K

(@⌫B
µ⌫) =

k

m
2

K

(@⌫B
µ⌫)�

k

m
4

K

�
@
2
@⌫B

µ⌫
�
+ . . . (6.5)
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Figure 6. The pull distributions for coe�cients a↵ecting �(h ! ��) (top) and �(Z ! ``) (bottom),
using as the uncertainty the di↵erence between the partial-square and O(v2/⇤2) calculations (left) or
(v2/⇤2)C(6)

i
(right).

Plugging this solution back into the Lagrangian, we find [51]

�L =
1

2
Kcl,µ

⇥
@
2 +m

2

K

⇤
K

µ

cl
�

1

2
K

µ

cl
@µ@⌫K

⌫

cl
�

k

2
Bµ⌫K

µ⌫

cl

=�
k

2
(@⌫B

µ⌫)Kcl,µ

=�
k
2

2m2

K

(@⌫B
µ⌫) (@↵Bµ↵) +

k
2

2m4

K

(@⌫B
µ⌫)
�
@
2
@
↵
Bµ↵

�
. (6.6)
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The induced operators are reducible by the equations of motion. The relevant terms in the

Lagrangian are

LB = �
1

4
Bµ⌫B

µ⌫ +
X

 

 ̄�
µ
iDµ + (DµH)† (Dµ

H) +�L, (6.7)

with  = {q, `, u, d, e} possessing hypercharges y = {1/6,�1/2, 2/3,�1/3,�1}. By redefin-

ing the field,

Bµ !Bµ +
k
2

2m2

K

[(@⌫B⌫µ)� jµ]

+
1

m
4

K

"✓
�
k
2

2
+

3k4

8

◆�
@
2
@
⌫
B⌫µ

�
�

k
4

4

✓
1

2
g1

◆
2

(H†
H) (@⌫B⌫µ)

#

+
1

m
4

K

"✓
k
2

2
�

5k4

8

◆�
@
2
jµ

�
+

3k4

4

✓
1

2
g1

◆
2

(H†
H)jµ

#
, (6.8)

the Lagrangian becomes

LB =�
1

4
Bµ⌫B

µ⌫ +
X
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where8

jµ =
X

 

(�g1y )  ̄�µ +

✓
�
1

2
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◆
H

†
i

$

DµH. (6.10)

Up to L
(8) it is su�cient to use the marginal equations of motion to simplify the matching to

an operator basis consistent with the geoSMEFT formulation [9] (and the Hilbert series [52–

55]).

The L
(6) matching is given in Table 2. The reduction of the derivative terms in the current

8We use a positive sign convention in the covariant derivative.

– 22 –



H
2
 
2
D

C
1,(6)

H`
�

y`g21
2m

2
K

b1

C
(6)

He
�

yeg21
2m

2
K

b1

C
1,(6)

Hq
�

yqg21
2m

2
K

b1

C
(6)

Hu
�

yug21
2m

2
K

b1

C
(6)

Hd
�

ydg21
2m

2
K

b1

H
4
D

2

C
(6)

H⇤ �
g
2
1k

2

8m
2
K

C
(6)

HD
�

g
2
1k

2

2m
2
K

 
4 : (L̄L)(L̄L)

C
(6)

``
�

1

8

g
2
1k

2

m
2
K

C
1,(6)

qq �
1

72

g
2
1k

2

m
2
K

C
1,(6)

`q

1

12

g
2
1k

2

m
2
K

 
4 : (R̄R)(R̄R)

C
(6)

ee �
1

2

g
2
1k

2

m
2
K

C
(6)

uu �
2

9

g
2
1k

2

m
2
K

C
(6)

dd
�

1

18

g
2
1k

2

m
2
K

C
(6)

eu
2

3

g
2
1k

2

m
2
K

C
(6)

ed
�

1

3

g
2
1k

2

m
2
K

C
1,(6)

ud

2

9

g
2
1k

2

m
2
K

 
4 : (L̄L)(R̄R)

C
(6)

`e
�

1

2

g
2
1k

2

m
2
K

C
(6)

`u

1

3

g
2
1k

2

m
2
K

C
(6)

`d
�

1

6

g
2
1k

2

m
2
K

C
(6)

qe
1

6

g
2
1k

2

m
2
K

C
1,(6)

qu �
1

9

g
2
1k

2

m
2
K

C
1,(6)

qd

1

18

g
2
1k

2

m
2
K

Table 2. L(6) matching coe�cients; here b1 = k
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. Flavour indicies are suppressed

and the heavy field does not violate U(3)5 flavour symmetry. Fierz rearrangements of the four-fermion
operators are allowed.

at L(8) requires non-trivial manipulations. These terms can be reduced into the form
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where a sum is implied over all  L,  , and  
0 pairs, and terms proportional to Yukawa

couplings are neglected. The conventions used for reducing to the operator basis in the L
(8)

matching are those of the geoSMEFT formulation [9], which allows all-orders results in the

v̄T /⇤ expansion to be defined. In this convention derivatives have been moved onto scalar
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fields and o↵ of fermion fields. A useful identity in deriving this result is
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The matching at L(8) illustrates a number of interesting features:

• At L
(6), the matching results are only dependent on the model parameters and the

SM gauge coupling g1. This is consistent with naive expectations in a U(1) kinetic

mixing model. At L
(8), the result in Eqn. (6.9) is expressed in terms of derivatives

and U(1) currents. Dependence on g2 is introduced in the rearrangement of higher-

derivative terms, as required to be consistent with the geoSMEFT conventions. This

coupling dependence comes about via commutators of derivatives acting on the Higgs

field. Further dependence on g2, and more L
(8) terms, are introduced through map-

ping the SM gauge coupling g1, present in the L
(6) matching, to input measurements,

including SMEFT corrections. As a result, the input-parameter scheme dependence is

enhanced at O(v4/⇤4) in the SMEFT.

• A naive interpretation of UV physics acting as a mediator leading to a L
(6) operator at

tree level is frequently possible by inspection. For example, the tree-level exchange of

an SU(2)L triplet field or singlet field leads to

Q
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 , (6.13)
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DµH

◆
 ̄�µ , (6.14)

respectively at L(6). Such naive intuition fails at L(8) and beyond. Specifically, at L(8)

operators can be reduced due to the SU(2)L completeness relations acting on the scalar

coordinates as

 ̄�µ H
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�
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D
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◆
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. (6.15)

This rearrangement is present in the SMEFT at L(8) when using a non-redundant opera-

tor basis. Such simplifications lead to Eq. (6.11) in part. This reduces the transparency

of the underlying UV field content and the interactions leading to tree-level matchings

to higher-dimensional operators.

• At L
(6), there can be patterns that classify Wilson coe�cients as tree-level or loop-

level [48], with the latter in particular applying to coe�cients of operators with gauge

– 24 –



H
4
 
2
D

C
1,(8)

H`

y`g41
4m

4
K

k
4
�

g
2
1 y`
m

4
K

(k2 � k
4)(2�+

g
2
1+g

2
2

4
)

C
1,(8)

He

yeg41
4m

4
K

k
4
�

g
2
1 ye
m

4
K

(k2 � k
4)(2�+

g
2
1+g

2
2

4
)

C
1,(8)

Hq

yqg41
4m

4
K

k
4
�

g
2
1 yq
m

4
K

(k2 � k
4)(2�+

g
2
1+g

2
2

4
)

C
1,(8)

Hu

yug41
4m

4
K

k
4
�

g
2
1 yu
m

4
K

(k2 � k
4)(2�+

g
2
1+g

2
2

4
)

C
1,(8)

Hd

ydg41
4m

4
K

k
4
�

g
2
1 yd
m

4
K

(k2 � k
4)(2�+

g
2
1+g

2
2

4
)

C
2,(8)

H`
�

g
2
1 g

2
2

16m
4
K

(k2 � k
4)

C
2,(8)

Hq
�

g
2
1 g

2
2

16m
4
K

(k2 � k
4)

C
3,(8)

H`
�

g
2
1 g

2
2

16m
4
K

(k2 � k
4)

C
3,(8)

Hq
�

g
2
1 g

2
2

16m
4
K

(k2 � k
4)

H
6
D

2

C
(8)

H,D2

g
4
1 k

4

8m
4
K

�
g
2
1 g

2
2

2m
4
K

(k2 � k
4)

C
(8)

HD

3 g
4
1 k

4

16m
4
K

�
g
2
1 g

2
2

2m
4
K

(k2 � k
4)

X
2
H

4

C
(8)

HB
�

g
4
1

16m
4
K

(k2 � k
4)

C
(8)

HW

g
2
1 g

2
2

16m
4
K

(k2 � k
4)

Table 3. Matching coe�cients onto operators in L
(8) relevant for �(h ! ��) and �(Z !  ̄ ). In ad-

dition to these matching contributions, there are four-fermion operators and four-point contributions.
See the results in Eqn. 6.11, which include these terms and neglect only e↵ects suppressed by Yukawa
couplings.

field strengths. This is an accidental pattern due to the renormalizability of some

UV physics models. Such matching patterns are not present in non-renormalizable

UV theories in general [49]. They also do not apply to operators with higher mass

dimensions. The result in Eqn. (6.11) shows that gauge field-strength operators can

receive tree-level matching contributions at L
(8) in a weakly-coupled renormalizable

UV model. This is consistent with the results in Ref. [49, 50]. At L
(7), the seesaw

model also leads to operators with gauge field strengths [56] in tree-level matching.

These examples show that the operator normalization pattern of Ref. [48] does not

extend to operators of arbitrary mass dimension in the SMEFT.

• The rearrangement of derivative terms at L(8) leads to matching coe�cients proportional

to v̄
2

T
/m

2

K
for L

(6). Formally, an infinite series in (v̄2
T
/m

2

K
)n is present in matching

coe�cients for higher-dimensional operators. This is due to rearranging matching terms

in the non-redundant operator basis. However, as this dependence is an artifact of this

particular basis we expect it to cancel in the full result. This occurs as expected.

Restricting the results to the subset of operators that contribute to �(h ! ��) and �(Z !

 ̄ ), the matching results for L(8) operators are given in Table 3.
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6.2 Constraints to O(v̄4
T
/m

4

K
)

The kinetic mixing model allows a comparison of the constraints on an underlying UV physics

model at di↵erent orders in the SMEFT expansion, and for the partial-square calculation.

Consider an experimental bound on the deviation of �(h ! ��) from the SM prediction.

Substituting the results of Table 2 into the partial-square �(h ! ��) formula Eqn. (4.11)

yields no constraint on the model parameters, at least when considering tree-level match-

ing. However, using Eqn. (4.14) we find the partial width to be sensitive to this model at
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The width correction has ⇡ 5% scheme dependence, and we show its dependence on the model

parameters in Fig. 7 in the ↵̂ew scheme. Direct bounds on �(h ! ��) are not available,

since LHC cross sections depend on the production interaction and the total Higgs width.

Ratios of partial widths are available and could be applied as a constraint if a calculation of

h ! 4` and/or �h were available in the SMEFT to this order. A calculation has recently

been performed to O(v2/⇤2) [33] and could be extended to O(v4/⇤4) with the geoSMEFT

framework. However, this is beyond the scope of this work.

Experimental constraints can be considered in the case of the total width of the Z boson,

�Z = 2.4952 ± 0.0023 GeV. Defining this quantity as the sum of the decay widths to each

two-body final state, the partial-square calculations in the two input-parameter schemes are
P
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The results show significant scheme dependence. An interesting aspect of the scheme de-

pendence is the equivalence of the shifts in the partial widths in the m̂W scheme, while the

individual partial-width corrections di↵er in the ↵̂ew scheme.

The corresponding full SMEFT results matched onto the U(1) model at O(v̄4
T
/m

4

K
) are9
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9For this result we include the v̄2T /m
2
K correction in the parameter b1 that is formally present as a contri-

bution to matching onto L(6) operators. Doing so, the � dependence exactly cancels out, as expected.
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Figure 7. The dependence of �(h ! ��) on the parameters of a U(1) mixing model using the
SMEFT expansion to O(v̄4

T
/m

4
K
). The left plot shows the dependence of the ratio ��↵̂ew

SMEFT(h !

��)/�↵̂ew
SM (h ! ��) on the coupling parameter k for mK = {500, 1000} GeV, for the blue and orange

curves respectively. The right plot shows the relative deviations {±0.01,±0.1,±0.3} of the partial
width in the {mK , k} plane, with intermediate deviations represented by coloured regions. The results
are shown in the ↵̂ew scheme, though results in the m̂W scheme are qualitatively the same. The partial
width has no sensitivity to the model at O(v̄2

T
/m

2
K
) with tree-level matching. Direct experimental

bounds on �(h ! ��) are not available since only ratios of partial widths can be measured directly,
e.g. �(h ! ��)/�(h ! 4`) [57].

All di↵erences between partial-square and full SMEFT results are at order v̄
4

T
/m

4

K
. Such

di↵erences are most important when deviations from the SM are larger, e.g. for lower mass

scales, where experimental analyses are more likely to uncover deviations using the SMEFT

formalism. We show some of the implications of these results in Figs. 8 and 9. A number of

conclusions are apparent:

• The results show significant scheme dependence, which increases when a full SMEFT

result is used. This is expected on general grounds due to the decoupling theorem:

low-energy measured parameters are absorbing the e↵ects of high-scale physics. Scheme

dependence is expected to be reduced only through a global combination of constraining

measurements.

• The model parameters extracted from the partial-square result for the ↵̂ew input-

parameter scheme are constrained more tightly than those at O(v̄4
T
/m

4

K
), given the

< 0.1% precision on the �Z measurement (Fig. 9). The O(v̄2
T
/m

2

K
) constraints are also

overly tight, though less so.

• Results in the m̂W scheme are more consistent across the di↵erent orders in the calcula-

tion. The parameter constraints extracted from the partial-square andO(v̄2
T
/m

2

K
) calcu-
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lations are essentially the same, and slightly tighter than those from the full O(v̄4
T
/m

4

K
)

calculation.

• At L
(6) there is no dependence on g2 in the matching. The dependence on g2 at L

(8)

comes about due to the arrangement of operator forms in the middle term of Eqn. (6.9),

and when inferring Lagrangian parameter numerical values from input parameters. The

correction to the �Z width dependent on g2 in the U(1) model carries an overall k2�k
4

dependance, suppressing the numerical dependence of the results on g2. We also find

that the O(�) contributions cancel in the O(v̄4
T
/m

4

K
) result, as expected for a basis-

independent result.
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Figure 8. Illustrative bounds on a U(1) mixing model parameters due to bounds on �Z . Shown is
the {1, 2, 3}� allowed region in green, yellow, gray. Here 1� for ��Z = 0.0023/2.4952. Results shown
are for the ↵̂ew input-parameter scheme in the first row. The results in the second row are in the m̂W

input-parameter scheme.

These results are specific to the U(1) mixing model and should be considered as illus-

trative. Nevertheless, they highlight the need to combine multiple measurements to suppress
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Figure 9. Deviation in the Z width in the U(1) mixing model for fixed mK comparing the partial-
square result in red and the full SMEFT result at L(8) in green, and the full SMEFT result at L(6) in
blue.

scheme dependence, and they show that the inference of model parameters from partial-square

results can be less accurate than those from a O(v2/⇤2) calculation. A consistent truncation

order is preferred for measuring coe�cients and matching to UV models.

7 Conclusions

Using the geoSMEFT formalism we have calculated the first complete results in the SMEFT to

O(v4/⇤4). We have provided numerical expressions to this order for the operator dependence

of the partial widths �(h ! ��), �(h ! Z �), and �(Z !  ̄  ), for both the m̂W and ↵̂ew

input-parameter schemes. A necessary ingredient for these results is the theoretical formalism

of input-parameter schemes to all orders in the v̄T /⇤ expansion.

In addition to the full O(v4/⇤4) calculations, we have obtained numerical expressions

for the expansion of each partial width to O(v2/⇤2), and using a ‘partial-square’ procedure

whereby the amplitudes with dimension-6 operators are squared. We have used these results to

study the partial-width deviations from the SM for the di↵erent calculations and a common set

of parameters. As expected the e↵ect of the higher-order terms increase as the scale decreases,
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and are particularly important for the (SM) loop-level widths �(h ! ��) and �(h ! Z �). We

have investigated two procedures for estimating the e↵ects of O(v4/⇤4) relative to O(v2/⇤2),

and found that the partial-square calculation provides a reasonable estimate of the truncation

uncertainty for one of the operators a↵ecting the tree-level width of the Z boson, but both

procedures underestimate the uncertainty for the loop-level partial widths. Current global

fits find dimension-6 coe�cients consistent with zero, so we recommend using an uncertainty

based on the measurement precision and expected ⇤ dependence in order to minimize the

e↵ects of measurement noise. A total uncertainty assignment, due to missing higher order

e↵ects, should also include an estimate for missing perturbative corrections.

We have performed a matching of operators up to L
(8) for a kinetic mixing model, and we

have determined the di↵erences in inferred parameter values using the various calculations.

We have observed a significant dependence on the input-parameter scheme, highlighting the

importance of combining multiple measurements when fitting for Wilson coe�cients. The

partial width �(h ! ��) is only a↵ected at O(v4/⇤4), providing an example of the value

of determining coe�cients to this order. The total width �Z is a↵ected at O(v2/⇤2), and

the parameter constraints inferred from a partial-square calculation are tighter than those

inferred from either the O(v2/⇤2) or O(v4/⇤4) calculations in the ↵̂ew scheme. A consistent

expansion in the matching and the coe�cient measurement is preferred on general grounds,

and this example demonstrates that the use of a partial-square calculation in a fit can lead

to overly tight constraints. While a partial-square procedure can provide an indication of

the O(v4/⇤4) contributions, a full fixed-order calculation should be used when measuring

coe�cients in data, or when matching to UV models. We have demonstrated the power of

the geoSMEFT formalism to expand the canon of complete calculations at O(v4/⇤4) and

open up a new avenue to exploring the phenomenology of the SMEFT.
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A Gauge couplings and mixing angles

The geometric Lagrangian parameters are
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A set of useful results for Lagrangian parameters expanded out to O(v4/⇤4) as

P̄ = P̄
SM + hP̄ iO(v2/⇤2) + hP̄ iO(v4/⇤4) + . . . (A.5)
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It is also useful to note the relations
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where hh|�Zi
L(6) is defined in Eqn. (3.15) and hh|��i

L(6) is defined in Eqn. (3.5).

B All-orders vev

An all-orders form of the vev can be constructed as an infinite series by defining
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where (x)n is the Pochhammer symbol and
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This does not violate the Abel impossibility theorem, as the solution is not a solution in

radicals.

The same solution can be applied to solve for the Lagrangian parameter v̄T in terms of

the measured value of ĜF .
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C (v̄2
T
/⇤2)n mappings of input parameters to Lagrangian parameters

We use the “hat-bar” convention [17, 20, 29] in our input parameter analysis. Lagrangian

parameters directly determined from the measured input parameters are defined as having

hat superscripts. Lagrangian parameters in the canonically normalized SMEFT are indicated

with bar superscripts. These parameters are the geoSMEFT mass eigenstate Lagrangian

parameters. A numerical value of an SM Lagrangian parameter (P ) can be modified in the

SMEFT, and the di↵erence between these Lagrangian parameters (P ) is in general denoted

as �P = P̄ � P̂ . Note that defining the parameter shift in this manner introduces a sign

convention for �P . The Lagrangian parameters are defined to all orders in Appendix A.

C.1 Input parameter ĜF

The value of the vev of the Higgs field is obtained from the precise measurement of the decay

�(µ�
! e

� + ⌫̄e + ⌫µ). It is su�cient when considering corrections up to L
(6) to define the

local e↵ective interaction for muon decay as
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The modification of this input parameter in the SMEFT to O(v2/⇤2) in the Warsaw basis

was given in Ref. [20]
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At higher orders in the v̄T /⇤ expansion, the results in Ref. [9] define the contributions through

a W
± exchange to Eqn. (C.1) via
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Here we are neglecting corrections relatively suppressed by the light fermion masses and �W .

The cross terms of the field-space connections hL
`
i are examples of “double insertions” of

higher-dimensional operators in the SMEFT, generically present when developing analyses to

O(v4/⇤4) or higher. To generalize to higher orders in the power counting expansion we define
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The tower of higher-dimensional operators that directly give a four-point function can interfere

with the SM contribution. Four-fermion operators that can contribute to muon decay have the

chirality combinations LLLL or LLRR. At O(v2/⇤2) only LLLL terms interfere with the SM

amplitude, and such contributions are from C
(6)

ll
in Eqn. (C.1). When considering corrections
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to O(v4/⇤4) and higher, self-interference terms are also present in the Wick expansion that

need not interfere with (C.1). For example, in the Warsaw basis [18] for L(6), a contribution

from
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µ
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is present when n = 0. Here p, r, s, t are flavour indicies that run over 1, 2, 3. The generaliza-

tion for LLRR operators to higher mass dimensions introduces an additional operator of the

form
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We use a dot product in the operator label to indicate an SU(2)L triplet contraction and

define a short-hand notation for these contributions
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When considering four-fermion operators of the chirality LLLL that can contribute to

muon decay, it is su�cient to define
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where �i are the Pauli matrices. Fermi statistics imposes a non-trivial counting in the allowed

prst, as is also the case for L(6), see Refs. [20, 58, 59]. An operator form with an explicit ✏ijk

can be related to those above using the Pauli matrix commutation and completeness rela-

tions. We also introduce the short-hand notation for the set of higher-dimensional-operator

contributions that interfere with the SM amplitude
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which interferes with the SM when r = 2, s = 1.

There are also self-interference terms present in the Wick expansion at O(v4/⇤4) and

higher that need not interfere with Eqn. (C.1). For example, in the Warsaw basis [18] contri-

butions from Q
(6)

ll
eµrs

arise when r 6= 2,s 6= 1 [20].10 These contributions are also given by G
4 pt

``
rs

,

when r 6= 2, s 6= 1.
10 The muon decay width is measured without identification of the produced neutrino species, but the SM

weak interaction eigenstates are defined to be the flavour labels in Eqn. (C.1), so only contributions from the

same weak neutrino eigenstates interfere with the SM contribution.
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A measurement of the inclusive decay width of µ�(p1) ! e
�(p4) + ⌫̄e(p3) + ⌫µ(p2) and

an assumed value of the muon mass m̂µ yields
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The value of G2

F
in a theoretical prediction of the right-hand side above corresponds to the

amplitude squared via
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The same sum over phase space and spin sum is present for all contributions considered here.

The mapping of these results to the Lagrangian parameters is then given by
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Inverting this equation and solving for v̄
2

T
order by order in the v̄T /⇤ expansion defines

�GF order by order. Consistent with past works [29] we define this correction with the

normalization

v̄
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which can be defined at any order in (v̄T /⇤)(2n) using (C.12).

C.2 Input parameter ↵̂ew

For the U(1)ew current we have

LA = �ē  ̄p /✏
A
Q �pr  r (C.14)

The extraction of ↵̂ew occurs in the measurement of the Coulomb potential of a charged

particle in the low momentum limit (q2 ! 0). A low-scale measurement of this coupling must

be run up through the hadronic resonance region q
2
⇠ ⇤2

QCD
to be used at higher scales, and

this introduces the dominant error in the use of this input parameter. See the discussion in

Ref. [60] for more details.

C.3 Input parameters m̂Z , m̂W

The remaining input parameters are more directly generalized to higher orders in the power

counting. The experimental measurements of these parameters are discussed in Ref. [60]. For

mZ,W we use the geometric definitions of the bar parameters, which are valid to all orders in

the v̄T /⇤ expansion:
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ḡ
2

2

4

p
h11

2

v̄
2

T , (C.15)

– 35 –



where in the Warsaw basis
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D {m̂W , m̂Z , ĜF} input-parameter scheme at all orders in (v̄2
T
/⇤2)n

In this scheme we can again use Eqn. (E.2) to define a shift to ḡZ . We also use
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The remaining Lagrangian parameters can then be defined via
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In both schemes, ḡZ and s
2

✓Z
have the same definition in terms or other “barred” Lagrangian

parameters.

– 36 –



D.1 �(Z ! b̄b)

The e↵ective coupling results to O(v4/⇤4) in the case of down quarks are given by
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D.2 �(Z ! ¯̀̀ )

The e↵ective coupling results to O(v4/⇤4) in the case of charged leptons are given by
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D.3 �(Z ! ⌫̄⌫)

The e↵ective coupling results to O(v4/⇤4) are given by
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E {↵̂ew, m̂Z , ĜF} input-parameter scheme at all orders in (v̄2
T
/⇤2)n

For the {↵̂ew, m̂Z , ĜF } input-parameter scheme we use the inputs [29, 60]
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to numerically fix values for the U(1)ew coupling, the vev, and the Z and Higgs pole masses.

From these inferred numerical values for Lagrangian parameters, one derives numerical values

for the remaining Lagrangian parameters. When considering the geoSMEFT formalism an

e�cient way to derive the shifts in the remaining Lagrangian parameters is to first determine
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11When comparing to past work [17, 20, 29] the sign of a defined ĝZ has conventionally absorbed a factor of

i2 = �1 when only considering L(6) corrections.
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Further, Eqn. (A.3) combined with Eqn. (E.4) allows s2
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to be defined in terms of quantities
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The remaining electroweak Lagrangian parameters are then determined in terms of the

inputs by using
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To utilize these relations, one expands out to a fixed order in (v̄T /⇤)(2n), thereby relating each

“barred” Lagrangian parameter to parameters defined by input measurements via P̄ = P̂+�P .

This determines �P up to the fixed order in (v̄T /⇤)(2n) one is examining.

The following subsections provide numerical results for the partial widths in the SMEFT

in this scheme. For reference the corresponding SM predictions are given by
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The partial-square calculation of the partial decay width �(h ! ��) is
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while the full O(v4/⇤4) SMEFT result is
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E.3 �(Z ! ūu)

The e↵ective-coupling results in the ↵̂ew scheme dictating Z boson decay to up-type quarks

are
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The e↵ective coupling results defining Z decay to O(v4/⇤4) in the case of down quarks are

given by
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E.5 �(Z ! ¯̀̀ )

The e↵ective coupling results to 1/⇤4 in the case of charged leptons are given by
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The e↵ective coupling results to O(v4/⇤4) are given by
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