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High-rate dynamic systems are defined as systems experiencing dynamic events of typical
amplitudes higher than 100 gn for a duration of less than 100 ms. They are characterized by
1) large uncertainties on the external loads; 2) high levels of nonstationarity and heavy dis-
turbance; and 3) generation of unmodeled dynamics from changes in mechanical configu-
ration. To fully enable these systems, feedback capabilities must be developed. This
includes computationally fast software and low latency hardware. This paper presents a
pure time-based online parameter estimation algorithm for high-rate dynamic systems
with real-time applicability. The algorithm is based on a model reference adaptive system
architecture consisting of a reference system and an adaptive model. The adaptive model is
built on a reduced order physical representation of the system and uncertainties are lin-
earized. Uncertain coefficients are adapted leveraging instantaneous measurements and
historical input–output data sets, termed history stack data, based on concurrent learning
theory for coping with the lack of persistent excitation. The history stack is sequentially
modified based on a singular value maximizing algorithm to accelerate convergence. The
algorithm is numerically verified and experimentally validated on a testbed consisting of
a cantilever beam with a moving cart. Numerical verifications show that the algorithm pro-
vides fast and accurate convergence when concurrent learning is used. Experimental vali-
dations show that the algorithm can successfully identify static positions of the cart, and
can also track its movement relatively well, with large chattering and overshoots during
travel time. The average computation speed of the algorithm per sample step, imple-
mented in MATLAB, is 93 ls. It is envisioned that the implementation of the algorithm
on an FPGA, along with refined coding, will greatly reduce computation time.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Recent advances in technologies have empowered high-rate dynamic systems with new capabilities, enabling enhanced
operations and field deployments. These systems, here defined as those experiencing dynamic events of typical amplitudes
higher than 100 gn for a duration of less than 100ms, include active blast mitigation systems, advancedweaponry, and hyper-
sonic vehicles [1]. Because of the harsh environments in which high-rate systems evolve, an important challenge is in design-
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ing feedback systems capable of real-time decisions in order to ensure critical functionalities to preserve structural integrity
and users’ safety. However, these feedback systems are currently limited by computation time and mechanical latency.

Of interest to this paper is the development of system identification capabilities in the high-rate realm. Note that the term
high-rate relates to sub-millisecond feedback requirements, not to the dynamic properties of the engineering system itself.
There are several challenges associated with high-rate systems: 1) large uncertainties on the external loads; 2) high levels of
nonstationarity and heavy disturbance; and 3) generation of unmodeled dynamics from changes in mechanical configuration
[1]. A successful algorithm for high-rate systems is one capable of rapidly detecting and quantifying damages, learning from
input–output data, ensuring robustness to sensor noise and unmodeled dynamics, and adapting to changes in the environ-
ment [2]. In the introductory paper on high-rate state estimation [1], it was argued that the general class of adaptive obser-
vers and estimators offers a path to producing microsecond convergence rates, but that their accuracy comes at higher
computation costs. The authors have studied adaptive data-based techniques for real-time state estimation based on a
sequential neural network with a self-organizing input space [3]. While the data-based technique showed great promise
at high-rate state estimation, it did not provide insights into the system’s physical characteristics, as it is generally the case
for data-based techniques.

A solution is to integrate physical knowledge in order to produce physical state estimation capabilities. Such techniques
for real-time applications include time–frequency and Bayesian methods. For example, [4] tracks time-varying frequency to
detect the progressive degradation of motor bearing using time–frequency transforms, and [5] developed an adaptive sparse
time–frequency analysis method that estimates the instantaneous frequency of tensioned bridge cables. Generally,
frequency-based techniques only produce physical information at the global (i.e., structure) level, and more complex/com-
putationally expensive signal processing is required for further damage assessment and localization. Alternatively, Bayesian
approximation techniques have been studied [6,7] due to their capabilities to locate damage [8]. They have been applied, for
example, to real-time fatigue crack growth monitoring and characterization [9,10]. While promising, nonlinearities and non-
Gaussian distributions of the probability density of the states may limit the application of these techniques.

Alternatively,methods based onmodel reference adaptive systems (MRAS) [11] have showngreat promise at handling non-
linearities, uncertainties, and perturbations. MRAS consists of adaptive algorithms designed to minimize the discrepancies
between the reference model and the adaptive model. Examples of MRAS-based algorithms include disturbance observers
[12] and sliding mode observers [13]. MRAS has been applied to high-rate systems in [14]. The algorithm consisted of identi-
fying, online, thepositionof amoving cart ona cantileverbeamthrough theadaptive identificationof the system’s fundamental
frequency using a slidingmode observer. Experimental data for themoving cartwas generated on a new testbed termedDROP-
BEAR (Dynamic Reproduction of Projectiles in Ballistic Environments for Advanced Research). DROPBEAR was used in [15] to
validate a real-time system identification algorithm experimentally using a field-programmable gate array (FPGA). The algo-
rithmconsisted of identifying the system’s fundamental frequency, related to the cart position, bymatching extracted frequen-
cies to pre-generated finite element models within 202ms with a 4.04ms processing time per step. The testbed data was also
used in [16] for validating a sensor network design methodology based on model updating using a sliding mode observer.

A common challenge in applying state estimators to high-rate systems is in the lack of persistent excitations, where con-
vergence to the correct state cannot be guaranteed [17]. Joyce et al. [18] investigated the tradeoffs between robustness,
noise, and convergence speed for high-rate systems and discussed the need for persistently exciting inputs. Algorithms have
been developed to improve the robustness of parameter convergence in such operating regimes characterized by high
impact forces, heavy noise, and fast convergence speed requirements. This can be done through the modification of the adap-
tive law [19], and relaxing the restriction on the persistence of the excitation with concurrent learning (CL) [20]. CL consists
of concurrently using real-time measurements augmented with a temporally limited historical data set to guarantee expo-
nential convergence. The concept of CL for non-persistent excitations has also been studied in [21,22].

In this paper, a time-based state estimator for high-rate systems with non-persistent excitations is developed and applied
to the online identification of the position of a sliding cart using the DROPBEAR testbed. The algorithm is based on an MRAS
architecture consisting of a reference system and an adaptive model. The adaptive model is built on a reduced order physical
representation of the system. Uncertainties in the system are written as basis functions of unknown coefficients. These coef-
ficients are adapted leveraging instantaneous measurements and historical input–output data sets, termed history stack
data, based on CL theory. The history stack is sequentially modified based on a singular value maximizing algorithm to accel-
erate computation time with respect to a batch process.

The rest of the paper is organized as follows. First, the background is provided on the testbed used to verify and validate the
algorithm and on the construction of its reduced order physical representation, and the research problem is formulated. Sec-
ond, the online parameter estimation algorithm is presented, which includes its adaptation law and stability analysis. Third,
the algorithm is numerically verified for the identification of one and two unknown parameters for a single-degree-of-
freedom (SDOF) system. Fourth, the algorithm is experimentally validated using testbed data. Lastly, the paper is concluded.
2. Background

This section provides the background on the DROPBEAR testbed, and on its physical representation and reduction into a
lower order system. After, the parameterization of the uncertain system and the associated requirements on parameter
estimation are introduced.
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2.1. DROPBEAR Testbed

DROPBEAR is an experimental testbed designed in collaboration between the Air Force Research Laboratory and Michigan
Technological University to validate online parameter estimation algorithms for high-rate dynamic systems [14]. Shown
Fig. 1, the testbed features a cantilevered steel beam (505 mm in length) configuration with an electromagnet at the tip
and a moveable cart. The electromagnet is an added mass that can be detached in real-time. The movable cart acts as a vari-
able pin and is displaced along the beam with a linear actuator. These unique features provide repeatable, fast-changing
dynamics that can be experienced during high-rate events, such as a sudden change in stiffness from damage, a gradual
change in stiffness from changes in boundary conditions, or slow deformations in the system. To generate experimental data
used in this research, one PCB 353B17 accelerometer was attached to the beam, 300 mm away from the clamp. A PCB 086C01
modal hammer was used to excite the beam, applied at the tip. A NI-9234 IEPE analog input module hosted in a NI cDAQ-
9172 eight-slot chassis acquired data in the range of 25,000 Hz. In this study, the electromagnet is fixed at the tip of the
beam, and various cart positions are evaluated: fixed at 50 mm, 100 mm, 150 mm, and 200 mm from the clamp, and moving
back and forth from 50 mm to 200 mm from the clamp. Remark that such spatial variations in the cart position change the
fundamental frequency of the system between 17.7 Hz and 31.0 Hz, which is deemed adequate to test high-rate state esti-
mation algorithms. The construction of testbeds in the higher dynamic frequency ranges is left to future work.

2.2. Reduced order model

A physical representation of DROPBEAR was developed in [14]. Briefly, it has the form:
M€x tð Þ þ C _x tð Þ þ Kx tð Þ ¼ r tð Þ ð1Þ

where, for an n degree-of-freedom (nDOF) system, M 2 Rn�n is the mass matrix, C 2 Rn�n the damping matrix, K 2 Rn�n the
stiffness matrix, r 2 Rn�1 the external excitation, x 2 Rn�n the displacement vector, and the dot denotes a time derivative. A
model reduction technique is applied based on the System Equivalent Reduction Expansion Process (SEREP) [23,24] to obtain
a computationally faster physical representation. With SEREP, the full model (Eq. 1) is divided into master (subscript m) and
slave (subscript s) DOFs, written:
Mmm Mms

Msm Mss

� �
€xm tð Þ
€xs tð Þ

� �
þ Cmm Cms

Csm Css

� �
_xm tð Þ
_xs tð Þ

� �
þ Kmm Kms

Ksm Kss

� �
xm tð Þ
xs tð Þ

� �
¼ rm tð Þ

rs tð Þ

� �
ð2Þ
Modal truncation is conducted using the first p eigenvectors, yielding an expression for x tð Þ:

x tð Þ ¼ Uq tð Þ ¼ Upqp tð Þ ð3Þ
where U is the full eigenvector matrix, q tð Þ is modal coordinates, and subscript p denotes the truncated quantities. Dividing
the displacement vector into terms associated with the master and slave DOFs, Eq. (3) can be written:
x tð Þ ¼ xm tð Þ
xs tð Þ

� �
¼ Ump

Usp

� �
qp tð Þ ð4Þ
Eq. (4) describes displacement responses associated with the first p eigenvectors. Matrix Ump contains p eigenvectors of
the master DOFs m, and matrixUsp contains p eigenvectors of the slave DOFs s. MatrixUmp is a square matrix when the mea-
sured/master DOFs are equal to the number of modes of interest (m ¼ p). When m > p, Eq. (4) can be modified using:
yp tð Þ ¼ UT
mpxm tð Þ ¼ UT

mpUmp~qp tð Þ ð5Þ

where ~qp tð Þ denotes an estimation of qp tð Þ, written
Fig. 1. (a) Picture; and (b) schematic of the DROPBEAR testbed.
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q̂p tð Þ ¼ UT
mpUmp

� ��1
yp tð Þ ð6Þ
yielding
q̂p tð Þ ¼ Uþ
mpxm tð Þ ¼ UT

mpUmp

� ��1
UT

mpxm tð Þ m > pð Þ ð7Þ
whereUþ
mp is the pseudo inverse of matrixUmp. Alternatively, Eq. (7) can be obtained using a least squares estimation of xm tð Þ

from Umpq̂p tð Þ.
Substituting Eq. (6) into Eq. (3), the coordinate transformation matrix is obtained:
T ¼ UpU
þ
mp

T ¼ UmpU
þ
mp

UspU
þ
sp

" #
ð8Þ
The DOFs of the full order can be reduced in the form:
x tð Þ ¼ xm tð Þ
xs tð Þ

� �
¼ Txm tð Þ ð9Þ
Using the coordinate transformation matrix T, and reducing the system matrix to a single DOF (m ¼ 1), the system matri-
ces in Eq. 1 has the form:
m€x tð Þ þ c _x tð Þ þ kx tð Þ ¼ r tð Þ ð10Þ

with:
k ¼ TTKT ¼ Uþ
mp

TKppU
þ
mp;m ¼ TTMT ¼ Uþ

mp
TUþ

mp; c ¼ TTCT ¼ aUþ
mp

TKppU
þ
mp; r ¼ TTr ¼ Uþ

mp
TUpr ð11Þ
where Kpp is the eigenvalue matrix containing the first p eigenvalues, and damping matrix C is proportional to K.
In this paper, the FEM of DROPBEAR is used to create a simplified representation by means of SEREP, with an number of

DOFs equal to the number of sensors, here yielding an SDOF representation.

2.3. Problem formulation

The reduced order dynamic system can be written:
_x ¼ f x; rð Þ ¼ f 0 x; rð Þ þ g x; rð Þ ð12Þ
where x ¼ x1; x2; . . . ; x2m½ �T 2 R2m�1 is the state vector, r ¼ r1; r2; . . . ; rn½ �T 2 Rn�1 is the input vector, f : R2m�1 � Rn�1 ! R2m�1is

a function describing the dynamics with f 0 : R2m�1 � Rn�1 ! R2m�1denoting the known dynamics and
g : R2m�1 � Rn�1 ! R2m�1 the unknown dynamics.

The state estimation problem becomes the estimation of the unknown function g. This can be done by linearizing the
function using a basis function r x; rð Þ and lumping the unknown parameters in a matrix h that is convenient to the param-
eter estimation task:
g x; rð Þ ¼ hTr x; rð Þ ð13Þ

where r : R2m�1 � Rn�1 ! RP�1; P denotes the number of basis functions, and h 2 RP�2m.

An adaptive model is constructed based on the knowledge of f 0, and function g is adaptively estimated using:
ĝ x; rð Þ ¼ ĥTr x; rð Þ ð14Þ

where the hat denotes an estimation. The estimation error ~g x; rð Þ is formulated:
~g x; rð Þ ¼ g x; rð Þ � ĝ x; rð Þ ¼ h� ĥ
� �T

r x; rð Þ ¼ ~hTr x; rð Þ ð15Þ
It follows that an adaptive algorithm needs to be designed such that ĥ tð Þ ! h tð Þ for t ! 1. However, this convergence can
only be guaranteed if and only if the vector signal r is persistently exciting [25]. A signal r 2 R2m�1 is persistently exciting at
a level q0 if it satisfies
Sp ¼
Z tþT0

t
r tð ÞrT tð Þdt P q0I ð16Þ
for some q0 > 0; T0 > 0 and 8 t P 0, where I denotes the identity matrix. The signal is termed persistently exciting of order p
if matrix Sp 2 Rp�p is positive definite over any finite interval. A force applied over a short period of time, like that, typically
experienced by high rate systems, is non-persistent because of Sp ! 08p. The algorithm proposed in this research is
4
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designed to provide an accurate estimate of ĝ by relaxing the restrictive condition on the persistence of the excitation, based
on CL.

3. Online parameter estimation algorithm

The adaptive algorithm for online parameter estimation is diagrammed in Fig. 2. The reference model consists of the
reduced-order physical representation of DROPBEAR, written in the state-space format:
_z ¼ Azþ bg z; rð Þ ð17Þ

where z 2 R2m�1 is the state vector, A 2 R2m�2m is the state-space matrix, b 2 R2m�1 is the input position vector, and g z; rð Þ is
the input, with:
A ¼ 02m�1�1 I2m�1�2m�1

0T
2m�1

� �
; b ¼ 02m�1�1

1

� �
ð18Þ
The formulation of the adaptive model starts using:
_̂z ¼ Aẑþ bĝ z; rð Þ ð19Þ

along with the estimation law for g proposed by [21]:
g z; rð Þ � 2 _zm þ LT z� ẑð Þ � ĝ z; rð Þ ð20Þ

giving:
_̂z ¼ Aẑþ b 2 _z2m þ LT z� ẑð Þ � ĝ z; rð Þ
� �

ð21Þ
where _z2m ¼ g z; rð Þ is the state’s time derivative of the 2m-th measurement, and LT ¼ L1; L2; . . . ; L2m½ �T 2 R2m�1 is an observer
gain vector with positive elements.

Consider the tracking error ~z ¼ ẑ� z. Expanding Eq. (21) yields
_̂z2m�1
_̂z2m

" #
� _z2m ¼ 0 1

0 0

� �
ẑ2m�1

ẑ2m

� �
þ 0

1

� �
g z; rð Þ þ LT z� ẑð Þ � ĝ z; rð Þ
� �

ð22Þ
Extracting the last row of Eq. (22), and considering the parameter estimation error in Eq. (14) yields:
_~z2m ¼ �LT~zþ ~g z; rð Þ ð23Þ

Lastly, substituting Eq. (23) back into Eq. (22), the error dynamics becomes:
_~z ¼ A~zþ b �LT~zþ ~g z; rð Þ
� �

¼ AL~zþ b~g z; rð Þ ð24Þ
where AL ¼ A� bLT is a Hurwitz matrix, for which all eigenvalues have strictly negative real parts, yielding a tracking error ~z
that converges to zero exponentially if _z2m � ĝ z; rð Þ ¼ 0 and z� ẑ ¼ 0 [26]. It follows from Lyapunov theory that there always
exists a unique positive definite matrix P 2 R2m�2m for any positive-definite symmetric matrix Q 2 R2m�2m for AL stable:
AT
LPþ PAL þ Q ¼ 0 ð25Þ
3.1. Adaptation law

Take the following adaptive law that uses instantaneous data for updating the estimates:
Fig. 2. Block diagram of the online parameter estimation algorithm.
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_̂
h ¼ �Cr z; rð Þ~zTPb ð26Þ
where C is a diagonal learning rate matrix constructed of positive definite elements, and basis function r z; rð Þ 2 RP�1 is the
vector defined in Eq. 12 and consists of reduced system parameters k;m; c, and r. To relax the requirement on the persistence

of the excitation based on CL [26], a history stack H ¼PJ
j¼1r z; rð Þr z; rð ÞT containing a finite number of past input–output

data is combined with instantaneous data points to update the estimate ĥ. Eq. 27 is augmented with the state derivative esti-
mation error ej ¼ _z2mj � ĥTr zj; rj

� �
for data points j ¼ 1;2; . . . ; J:
_̂
h ¼ �Cr z; rð Þ~zTPb� c

XJ

j¼1

Cr zj; rj
� �

_z2mj � ĥTr zj; rj
� �� �

¼ �Cr z; rð Þ~zTPb� c
XJ

j¼1

Cr zj; rj
� �

ej ð27Þ
where c > 0 is a constant learning gain used to adjust the contribution of past error e. The adaptation law in Eq. (26) drives
the parameter estimation to a ball around the origin without a persistent excitation if H is sufficiently rich, where H must
contain a number of basis larger than that for r. The size of the ball around the origin follows the order of ej. If large deriva-
tive estimation errors are contained in H, the parameter estimation will converge to a large error, in particular during the
transient phase [27]. The convergence error be reduced by removing inaccurate data points, here done using the singular
value maximizing algorithm developed by [28] and shown in Algorithm 1.

The singular value of matrix H is incremented with the arrival of new data points selected by Algorithm 1. In real-time
implementations, the size of H is limited by a given threshold of J due to convergence rate considerations. The convergence
rate is dependent on the spectral properties of H, and directly proportional to the minimum singular value of the history
stack matrix kmin Hð Þ where k denotes a singular value. Matrix H is full rank only if rank Hð Þ ¼ J. The objective of updating
the history stack using Algorithm 1 is to feed in new data points into empty slots or to replace an existing slot with an
increase in the instantaneous minimum singular value of H. It follows that the estimation is Eq. (22) is guaranteed to per-
form better than that using the older data set, therefore resulting in a lower steady-state parameter estimation error.

Algorithm 1. Singular value maximizing algorithm for selecting data points in history stack.

1: if
kr z tð Þ;r tð Þð Þ�r zp;rpð Þk

kr z tð Þ;r tð Þð Þk 6 e or rank H;r z; rð Þ½ � > rank Hð Þ
2: if J < J then
3: J ¼ J þ 1
4: p ¼ J
5: H :; Jð Þ ¼ r z tð Þ; r tð Þð Þ
6: D Jð Þ ¼ _z2m
7: else
8: Hold ¼ H

9: Sold ¼ min SVD Hð Þð Þ
10: H ¼ Hold

11: for j ¼ 1 to J do
12: H :; Jð Þ ¼ r z tð Þ; r tð Þð Þ
13: S jð Þ ¼ min SVD Hð Þð Þ
14: H ¼ Hold

15: end for
16: find Smax and let p denote the corresponding column index.
17: if Smax > Sold then
18: H :; Jð Þ ¼ r x tð Þ; r tð Þð Þ
19: Store D Jð Þ ¼ _z2m
20: end if
21: end if
22: end if
3.2. Stability analysis

To show stability of the adaptation law, consider the following Lyapunov function V:
V nð Þ ¼ 1
2
~zTP~zþ 1

2
~hTC�1~h ð28Þ
6
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where n ¼ ~z; ~h
� 	T

, with V positive definite and containing all time-varying parameters. Using the Raleigh-Ritz Theorem, the
Lyapunov function V is bounded by:
1
2 min kmin Pð Þ; kmin C�1

� �n o
knk2 6 V nð Þ 6 1

2 max kmax Pð Þ; kmax C�1
� �n o

knk2 ð29Þ
Taking the time derivative _V and substituting Eqs. (25) and (27) yields:
_V nð Þ ¼ �1
2
~zTQ~zþ ~zTPb~hTr z; rð Þ þ ~hT �r z; rð Þ~zTPb� c

XJ

j¼1

r zj; rj
� �

r zj; rTj
� �

ĥ

 !
¼ �1

2
~zTQ~z� ~hTr zj; rj

� �
r zj; rj
� �T~h ð30Þ
The derivative of Eq. (30) satisfies the following inequality:
_V nð Þ 6 �1
2
kmin Qð Þk~zk2 � kmin Xð Þk~hk2 6 �1

2
min kmin Qð Þ;2kmin Xð Þf gk~nk2 ð31Þ
Eq. (31) shows that _V is negative outside of the compact set � 1
2 min kmin Qð Þ;2kmin Xð Þf gk~nk2. Combining the bounded error

of V in Eq. (30), _V can be reduced to:
_V nð Þ 6 � min kmin Qð Þ;2kmin Xð Þf g
max kmax Qð Þ; kmax C�1� �
 �V nð Þ ð32Þ
In Eq. (32), kmin Xð Þ is guaranteed to be monotonically increasing through the singular value maximization (Algorithm 1),
and matrices Q and P are positive definite matrix. Hence, _V is guaranteed to be negative, and exponentially stability is estab-
lished, with ĥ ! h.

4. Numerical validation

The proposed algorithm is first validated through numerical simulations by assessing the performance of the CL algorithm
at conducting high-rate state estimation. The example model consists of an SDOF mass-spring-damper system of dynamics:
_z1
_z2

� �
¼ 0 1

0 0

� �
z1
z2

� �
þ 0

1

� �
g z; rð Þ ð33Þ
with
g z; rð Þ ¼ hTr z; rð Þ ¼ h1h21½ � � k
m

z1 � c
m

z2
r
m

� �T
ð34Þ
Simulations are conducted for one and two uncertain parameters, all ran over 1 s using a synthetic sampling rate of
25,600 Hz. The one uncertain parameter consists of an uncertain stiffness mimicking an uncertain boundary condition, while
the two uncertain parameters consists of both a varying mass and stiffness mimicking DROPBEAR’s drop in mass and change
in cart position.

4.1. One uncertain parameter

For the single uncertain parameter simulations, it is assumed that parameters c and k are known, and the external exci-
tation r is taken as unmeasurable, treated as an unmodeled disturbance whereas the system is assumed under free vibration.
The single uncertain parameter k is implicitly contained in h1 that pre-multiplies k=m. It follows that the reference model is
given by
g z; rð Þ ¼ hTr z; rð Þ ¼ h11½ � � k
m

z1 � c
m

z2

� �T
ð35Þ
with known parameters m ¼ 1 kg and c ¼ 1 Ns/m, assumed uncertain parameter k ¼ 500 N/m, and unknown parameter
h1 ¼ 0:8. The system is excited by the impulse signal r tð Þ with an amplitude of 100 gn at 50 ms plotted in Fig. 3. The initial
conditions are set to z ¼ 0 0½ �T and h1 ¼ 0. The observer gain is taken as L ¼ 500 1½ �T, and learning rates C ¼ 100 and
c ¼ 0:5. The history stack includes J ¼ 30 input-out data sets, where the oldest data point is constantly replaced by the new-
est data point selected based on Algorithm 1. The positive-definite symmetric Q matrix is taken as Q ¼ I.

The tracking performance of the states are shown in Fig. 4 with and without the CL adaptation rule. Results show that the
adaptive algorithm is successful at tracking the states and identifying the uncertain parameter when CL is integrated with
the adaptation law, and that ignoring the CL component does not yield accurate information on the system due to erroneous
instantaneous data feedback during the transient phase. Under CL, the estimated h1 approaches the real value h1 ¼ 0:8, 59 ms
after the impulse (Fig. 5(a)). Note that the parameter estimation errors stay exponentially bounded within a neighborhood of
the reference values, and here the estimation is said to have converged when it falls and remains within a 5% error threshold.
7
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Fig. 5(b) shows the evolution of the minimum singular value selected in the history stack for the updating. The plot shows
that increasing the singular value using Algorithm 1 provides a fast and accurate convergence.
4.2. Two uncertain parameters

Simulations above are repeated, but this time is taking two uncertain parameters: k and m. Function g is modified to
Fig. 4.
trackin
g z; rð Þ ¼ hTr z; rð Þ ¼ h1h2½ � � k
m

z1 � c
m

z2

� �T
ð36Þ
The stiffness of the system starts with k ¼ 750 N/m, and reduces to k ¼ 500 N/m at 300 ms. The mass starts at k ¼ 1 kg
and reduces to k ¼ 0:5 kg at 300 ms. Damping c ¼ 1 Ns/m is kept constant through the simulations. The external excitation,
plotted in Fig. 6 has an impulse of 100 gn applied at 50 ms, an impulse of 150 gn amplitude applied at 300 ms that coincides
with the changes in the system parameters, and an impulse of 150 gn amplitude applied at 600 ms, that is, 50 ms after the
second set of changes in the system parameters. Values for k and m are initialized at k = 500 N/m and m = 1 kg, yielding h1 =
1.5 and h2 = 1 before t ¼ 300 ms, and h1 = 2 and h2 = 2 thereafter. These values are set back to their initial values at 550 ms.
Real versus estimated states with and without CL for one uncertain parameter: (a) tracking performance for z1; (b) tracking performance for z2; (c)
g error ~z1; and (d) tracking error ~z2.
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Fig. 5. Simulation results for one uncertain parameter: (a) evolution of parameter h1 with and without CL; and (b) evolution of the minimum singular value
of the history stack versus h1 with CL for the first 150 ms.
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The observer gain is set to L ¼ 100 5½ �T, and learning rates to C ¼ 1e2 0; 0 1e4½ � and c ¼ 0:5.Fig. 7 plots the time series
results for state estimation with and without the CL adaptation rule and the associated tracking errors. CL is exhibiting good
convergence and tracking of both states. Fig. 8(a) shows the parameter identification results along with the variation in the
minimum singular value (Fig. 8(c)). The solid dashed red and dashed-dotted blue lines represent the real and estimated
parameters of h1 and h2, respectively. The parameter identification results without CL is unsatisfactory as shown in 7 due
to large state estimation errors (Fig. 8(b)). In contrast, after the initial impulse is applied to the system, the estimation with
CL overshoots and exponentially converged to h1 after approximately 65 ms, and to h2 after approximately 85 ms. After the
change in mass at t ¼ 300 ms, the estimated parameters rapidly converge to the correct values h1 and h2, with a convergence
time of 138 ms and 82 ms after the second impulse, respectively. After h1 and h2 are back to their initial values at 550 ms, the
tracking error deviates until the impulse at 600 ms is applied, after which overshoots are observed before the estimations
converge. The parameter h1 took approximately 60 ms to converge after the third impulse, and h2 took approximately
129 ms to converge after the third impulse.

5. Experimental validation

After the numerical verification, the proposed algorithm is experimentally validated on the DROPBEAR testbed. A first set
of data sampled at 25,600 Hz was generated for various static cart positions and is examined in what follows. Another set of
data sampled at 25,000 Hz was generated by moving the cart back-and-forth along the beam to produce a time-varying
example, and will be examined in the subsequent section. Displacement and velocity measurements were obtained through
the integration of the acceleration using the Newmark-beta method. Data was pre-filtered using a low pass filter to improve
integration stability.

5.1. Static cart experiments

Static cart positions were produced by placing the rollers at 50 mm, 100 mm, 150 mm, and 200 mm from the clamp, while
maintaining the mass at the tip. Data from the accelerometer was used for the estimation. Tests, listed in Table 1, were
repeated five times under each configuration. A modal hammer was used to hit the beam at its tip at t = 250 ms. Fig. 9 plots
the frequency response functions (FRFs) computed from experimental data, and resulting values for the fundamental fre-
quencies listed in Table 1.

With the reduced SDOF representation, it is assumed that the change in position of the cart alters the stiffness and damp-
ing of the beam, and both k and c are taken as the uncertain parameters with the input force from the impact hammer taken
as unmeasurable:
g z; rð Þ ¼ hTr z; rð Þ ¼ h1h2½ � � k
m

z1 � c
m

z2

� �T
ð37Þ
The initial conditions and values of the parameter vector are all set to null. Thus, before the first impact, there is no mea-

surable response and the system’s initial frequency is 0. The observer gain L ¼ 1e6 1e3½ �T, matrix Q ¼ 1e7I, learning rates
C ¼ 1 0; 0 3e4½ � and c ¼ 1, and history stack length J ¼ 30 (see Fig. 10).

Values obtained for h1 were used to compute the estimated fundamental frequency of the system. The evolution of the
estimated frequencies are plotted in Fig. 9(a), where the gray line is the frequency obtained from the FRFs, the red dashed
line is the estimation of the frequency, and the blue dashed line is the convergence point. From the figures, one can observed
that all of the frequencies are tracked correctly. Table 1 summarizes the average estimated frequencies under each test group
compared against the frequencies obtained from the FRFs, and the average convergence time. A comparison of the average
9



Fig. 6. External excitation to the system, two uncertain parameters case..
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frequencies shows that the algorithm yields a very good estimation with a maximum error of 0.17% at the 50 mm position.
While the system’s damping is unknown, results in Fig. 9(b) show that the adaptive model converges to given damping val-
ues of adequate magnitude (see Fig. 11) through the estimation of h2. Fig. 11 is a graphical representation of the results,
showing the average and variance of the values. The frequencies are well estimated with high precision, and the convergence
time for both h1 and h2 decreases while the frequency of the beam increases.
5.2. Moving cart experiment

The last experiment, illustrated in Fig. 12, consists of locating the moving cart. Here, the cart starts at 50 mm from the
clamp at 0.61 s, moves to 200 mm from the clamp over 1 s, stays for 1.39 s, and then returns to the initial position at
4.26 s, plotted in Fig. 13(a). During the experiment, the beam is struck by the impact hammer at 0.39 s, 2.17 s, 4.16 s,
and 6.24 s with the amplitudes shown in Fig. 15(a).

A short-time fast Fourier transform using a moving Hanning window of 8192 data points is conducted in order to extract
the temporal variation in frequency. Results are plotted in Fig. 13. The frequency of the beam varies between 21 Hz (initial
cart position) and 37 Hz (farthest cart position).

Similar to the previous set of experiments, it is assumed that both k and c are uncertain, and the input force from the

impact hammer taken as unmeasurable (Eq. (37)). The observer gain L ¼ 1e5 1e3½ �T, matrix Q ¼ 1e8I, learning rates
C ¼ 1e1 0; 0 3e4½ � and c ¼ 1, and history stack length J ¼ 30.
Fig. 7. Real versus estimated states with CL for two uncertain parameters: (a) tracking performance for z1; (b) tracking performance for z2; (c) tracking error
~z1; and (d) tracking error ~z2..
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Fig. 8. Simulation results for two uncertain parameters: (a) evolution of parameters h1 and h2 with CL; (b) evolution of parameters h1 and h2 without CL;
and (c) evolution of the minimum singular value of the history stack with CL..

Table 1
Comparison of first natural frequency extracted from the FRFs (frequency) and from the online parameter estimation algorithm (estimated frequency), and
convergence time for the cart located at 50 mm, 100 mm, 150 mm, and 200 mm from the clamp.

Tests Pin position Frequency (Hz) Estimated frequency (Hz) Convergence time (ms)

1-5 17.7 17.67 780

6-10 21.0 21.00 400

11-15 25.0 24.99 160

16-20 31.0 31.01 100

Fig. 9. Frequency response functions (FRFs) for the beam with mass under various cart position.
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Fig. 10. Convergence of estimations for all tests: (a) frequency (from h1); and (b) damping (from h2).
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Fig. 11. Average and variance of the: (a) estimated frequency and convergence time under each cart position; and (b) estimated damping and convergence
time under each cart position.

Fig. 12. Schematic of the moving cart experiment.

Fig. 13. (a) Time history of the moving cart position; and (b) results from the short-term fast Fourier transform.
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The estimated states are plotted in Fig. 13 and compared with those from experimental measurements. The tracking
errors are plotted in Figs. 14(c) and (d), exhibiting errors that are more apparent during the cart travel time and at impacts.
An enlarged view of these tracking errors are plotted in Fig. 14(e) and (f).

Analogous to the previous subsection, it is assumed that there is a one-to-one map between the system’s frequency and
cart position. Note that the estimation of the map is out-of-the-scope of the paper but could easily be done through the finite
element model or by investigating a prior set of experimental data. The estimation of h1 is converted to the estimated fre-
quency, with results of the estimation plotted in Fig. 15(b) compared against the cart position. There is a good match
between the estimated frequencies and cart positions, except during travel time where the algorithm exhibits some chatter-
ing and overshoots, yet with the travel zone closer to 200 mm being well estimated when the frequency of the system is
higher, consistent with results from the static cart experiments. When the cart travels from 50 mm to 200 mm, an impact
load is applied, and the estimation is chattering around the real values. The chattering can be reduced by setting the learning
rates to smaller values, yet at the cost of the longer convergence time. When the cart moves back from 200 mm to 50 mm,
13



Fig. 14. Tracking performance results for moving cart experiment: (a) tracking performance for z1; (b) tracking performance for z2; (c) tracking error ~z1; (d)
tracking error ~z2; (e) enlarged view of tracking error ~z1; and (f) enlarged view of tracking error ~z2..

Fig. 15. (a) Time history plot of the impact force applied to the beam; and (b) estimated frequencies versus the cart positions.
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the estimation starts to deviate about 47 ms after the cart initiates movement. A similar deviation is observed in the numer-
ical simulation when parameter varies without synchronous impact. At the third impact at 4.16 s, the estimation rapidly
converges back to the real value. The larger estimation error occurring during movement of the cart could be attributable
to unmodeled dynamics having significant effects in the reduced order representation. This could be alleviated by the inte-
gration of nonlinear terms in the model. The larger errors during the travel time could also be attributed to the integration of
acceleration measurements to obtain displacement and velocity states feeding in the algorithm. Alternative techniques
include the use of other algorithms to improve the state estimates, as demonstrated by the authors in [29] using a neuro-
estimator applied to high-rate systems and other types of sensors. This is left to future work.
5.3. Real-time applicability

Simulations of the algorithm were ran in MATLAB 2019a, with an Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz. Under that
platform, the average computation time per sample is 93 ls with CL. The average computation time decreases to 87 ls with
CL but without the singular value maximization, and 6 ls without the CL component. The computation time of the algorithm
per sample compares well with the sampling rate of 25,000 Hz (samples were taken each 40 ls), although more than twice
higher. It is envisioned, however, that the implementation of the algorithm on an FPGA along with refined coding will greatly
reduce computation time, likely enabling applications above 25,600 Hz. Computation time can also be influenced by the his-
tory stack length, but so does the convergence time. Table 2 lists convergence time after the second, third, and fourth impact,
for J ¼ 10, 30, and 50, along with the average computation time. These values compare well with results obtained from
Downey et al. [15], where the authors reported an average convergence time of 202 ms and average computation time
per step of 4.04 ms. Remark that these performance values were obtained experimentally, while work reported in this paper
is conducted numerically. Results from Table 2 exhibit a clear trade-off between convergence time and computation time,
whereas sub-millisecond capabilities in feedback are to be enabled on less accurate estimations. Acceptable performance
on convergence time, linked to estimation accuracy, will be governed by the feedback application, while that on computation
time by the desired sampling or application rate for real-time applicability.
6. Conclusion

This paper presented a time-based online parameter estimation algorithm for high-rate dynamics systems. The algorithm
is based on a model reference adaptive system theory, where an adaptive model is constructed to reach a reference model or
plant. The adaptive model consisted of a reduced order physical representation. The unknown parameters were represented
linearly, and their adaptation was conducted based on the instantaneous error augmented with the error computed on a
finite number of past events, a technique known as concurrent learning (CL). CL was leveraged to handle the lack of persis-
tent excitation. Those past events were stored in a vector termed history stack, which vector was modified sequentially
based on a singular value maximizing algorithm to accelerate convergence.

The proposed algorithm was first numerically verified on a single-degree-of-freedom model, investigating the capability
of the algorithm to identify an uncertain stiffness (one uncertain parameter case), and to identify both a change in stiffness
and a drop in mass after an impact (two uncertain parameters case). Under both cases, the algorithm exhibited great con-
vergence properties. It was also demonstrated that the CL component was required to yield convergence to the correct value.

After, the algorithm was experimentally verified on the testbed DROPBEAR (Dynamic Reproduction of Projectiles in Bal-
listic Environments for Advanced Research), consisting of a cantilever beam with a moving cart that acted as a moving pin
connection, defacto altering the beam’s stiffness and damping. The beam was equipped with an accelerometer and excited
with an impact hammer. Experimental data were generated for static cart locations and for a moving cart. The investigation
also showed that the use of concurrent learning was critical in ensuring convergence when excitation persistence was not
satisfied. Results from the static locations experimental tests showed that the algorithm was capable of correctly identifying
the static cart locations with great accuracy and fast convergence time, where it was found that the convergence time sub-
stantially decreased with the increasing beam frequency. This relationship is also confirmed through the moving cart exper-
iment, where results showed that the algorithm was capable of tracking the cart’s position through the estimated frequency
when impacts were applied. However, the estimate on the position exhibited chattering and overshoots during travel time
that reduced when the beam frequency increased. The average computation speed of the algorithm per sample step,
Table 2
Comparison of convergence time after second, third, and fourth impulse under J ¼ 10, 30, and 50, along with average computation time per sample.

Convergence time (ms) Computation

J 2nd impulse 3rd impulse 4th impulse time/sample (ls)

10 161 432 327 64
30 144 289 264 95
50 131 249 136 112
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implemented in MATLAB, was 93 ls. It is envisioned that the implementation of the algorithm on an FPGA along with refined
coding will greatly reduce computation time, empowering real-time applications at high sampling rates.

It was hypothesized that the integration of acceleration measurements to obtain displacement and velocity states feeding
in the algorithm could have been an important source of error in the estimation. It follows that further developments of the
algorithm should include pure acceleration feedback strategies in order to improve the applicability to high-rate systems. In
addition, the addition of nonlinear terms in the model could improve convergence by reducing the effects of unmodeled
dynamics and other uncertainties. Overall, the results presented in this paper demonstrated the promise of the algorithm
at high-rate state estimation, empowering field deployments of these systems through enhanced feedback capabilities.
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