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Abstract

A population’s spatial structure affects the rate of genetic change and the outcome of natural

selection. These effects can be modeled mathematically using the Birth-death process on

graphs. Individuals occupy the vertices of a weighted graph, and reproduce into neighboring

vertices based on fitness. A key quantity is the probability that a mutant type will sweep to

fixation, as a function of the mutant’s fitness. Graphs that increase the fixation probability of

beneficial mutations, and decrease that of deleterious mutations, are said to amplify selec-

tion. However, fixation probabilities are difficult to compute for an arbitrary graph. Here we

derive an expression for the fixation probability, of a weakly-selected mutation, in terms of

the time for two lineages to coalesce. This expression enables weak-selection fixation prob-

abilities to be computed, for an arbitrary weighted graph, in polynomial time. Applying this

method, we explore the range of possible effects of graph structure on natural selection,

genetic drift, and the balance between the two. Using exhaustive analysis of small graphs

and a genetic search algorithm, we identify families of graphs with striking effects on fixation

probability, and we analyze these families mathematically. Our work reveals the nuanced

effects of graph structure on natural selection and neutral drift. In particular, we show how

these notions depend critically on the process by which mutations arise.

Author summary

When a new mutation appears in a population, it may ultimately spread to all individuals,

or it may go extinct. Which outcome occurs depends on how the mutation affects the

organism’s fitness (i.e., natural selection), but also on random chance. The spatial arrange-

ment of organisms in the population can alter the balance between selection and random

chance: amplifying one, suppressing the other. However, these effects can be difficult to

predict or compute, even in simple, idealized mathematical models. We develop a method

to efficiently calculate the effects of spatial structure on natural selection, in the case that

mutations have only a weak effect on fitness. We use this method to comb through mil-

lions of distinct spatial structures, identifying those with the most extreme effects on natu-

ral selection. The question we study has applications to cancer research, with an
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individual’s cells considered as a population, of which cancer cells are an invading mutant

type.

Introduction

Evolution proceeds by the arrival and fixation of mutations. The fate of each new mutation

depends on selection (how the mutation affects the organism’s fitness) as well as drift (random

chance). The combined effects of selection and drift determine how a population evolves, with

selection driving adaptation to the environment, and drift maintaining genetic variety.

Spatial population structure can alter the balance between these two forces [1–13]. Some

spatial structures amplify selection, so that fitness plays a larger role in which mutations

become fixed. Other structures suppress selection, reducing the role of fitness and increasing

the role of random drift. Spatial structure can also change the accumulation rate of neutral

mutations, which do not affect fitness [14]. The effects of spatial structure on selection have

consequences for microbial evolution [15], cancer [16–20], aging [19, 20], and infectious dis-

ease [21].

These effects can be probed mathematically by modeling population structure as a graph.

Each vertex is occupied by a single haploid individual. Reproduction occurs along the graph’s

edges, according to a specified update rule (see below). The key quantity of interest is the fixa-

tion probability ρ(r), defined as the probability that a new mutation of fitness r will take over a

population of wild-type fitness 1.

The update rules most commonly considered in this context are Birth-death (Bd) and

death-Birth (dB). In this naming convention, the ordering indicates which event (birth or

death) occurs first, while the capitalization indicates which event(s) are affected by fitness

(birth, in this case). Most studies [1, 3–5, 8–11, 22–26] focus on Birth-death updating, in

which an individual is first selected to reproduce, proportionally to its fitness. The offspring

then replaces a neighbor chosen at random (independently of fitness). A minority of works [2,

6, 12, 13, 27–29] have considered death-Birth updating, in which an individual is first selected

for death, uniformly at random. A neighbor is then chosen, proportionally to fitness, to pro-

duce an offspring, which fills the vacancy.

Determining fixation probability on an arbitrary graph is computationally intensive. Cur-

rent methods [6, 9, 30, 31] require solving a system of linear equations whose size grows expo-

nentially with the graph size. This is prohibitive except for graphs that are small [6, 7, 9–11,

31], highly symmetric [1, 3–5, 22–25], or have other special properties [32].

However, most nonlethal biological mutations are either neutral (r = 1) or weakly selected

(r� 1). Our previous work [12, 14, 33] has shown that, in these cases, fixation probabilities

can be computed in polynomial time. For neutral mutations, the fixation probability deter-

mines the population’s “molecular clock”—the rate at which neutral genetic substitutions

accrue over time. Allen et al. [14] showed that spatial structure can either accelerate or slow

this molecular clock rate.

For weakly selected mutations, fixation probabilities can be computed by combining per-

turbative methods [33–37] with coalescing random walks [38–41]. Allen et al. [12] applied this

method to dB updating, and showed how it allows for the efficient identification of amplifiers

and suppressors of weak selection.

Here we apply these methods to Birth-death updating on arbitrary weighted graphs. We

show that fixation probabilities under weak selection can be expressed in terms of coalescence
times—the expected times for two independent random walks to meet. These coalescence
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times—and hence the fixation probability for weak selection—can be computed in polynomial

time. While our methods apply to arbitrary placement of the initial mutant, we focus in partic-

ular on temperature initialization (mutations arise only in new offspring) and uniform initiali-

zation (mutations arise uniformly in all individuals).

Using these methods, we compute weak-selection fixation probabilities for all simple con-

nected graphs up to size 10. For larger sizes, we employ a previously-developed genetic algo-

rithm [10] to identify graphs with extreme effects on fixation probability. These investigations

reveal a family of “Cartwheel” graphs, which strongly amplify selection under temperature ini-

tialization. They also show that a family of “Detour” graphs [10] can significantly decrease the

ratio of beneficial to neutral mutations accruing over time. Our results highlight previously-

unexamined subtleties in the notions of amplifier and suppressor, and in the way that spatial

structure affects neutral and selective genetic change.

Methods

Graph structure

We represent spatial structure by a weighted graph G. The edge weight from vertex i to j is

wij � 0. The graph may be directed (wij not necessarily equal to wji) and may contain self-loops

(wii may be positive). We require that the graph is strongly connected, meaning that there is a

path of directed edges with nonzero weight from any vertex to any other; for undirected graphs

(wij = wji), this reduces to the usual notion of connected.

We define the weighted (out-)degree of vertex i as wi = ∑j2G wij. The probability that a ran-

dom walker at vertex i will step to vertex j is pij = wij/wi. We also define the temperature of ver-

tex i as Ti = ∑j2G pji. We note that the total temperature is equal to the total population size:

∑i2G Ti = ∑i,j2G pji = N.

Birth-death process

We consider a well-studied model of natural selection [1–11, 22–30]. There are two types of

individuals: residents (or wild-types), which have fitness 1, and mutants, which have fitness r.
The mutant is advantageous if r> 1, deleterious if r< 1, and neutral if r = 1.

In each state of the process, each vertex is occupied by a single individual, either mutant or

resident. Selection proceeds according to the Birth-death (Bd) update rule. First, an individual

i is selected at random, proportionally to its fitness. The chosen individual i produces an off-

spring; this offspring replaces another individual j, chosen with probability pij. Offspring

inherit the type of the parent.

This process is a finite Markov chain with two absorbing states: one in which only residents

are present, and one in which only mutants are present.

Initialization

The key biological question is, if a new mutation arises in a single individual, how likely is this

type to take over the resident population? The answer depends on where the initial mutant

arises. In the general case, we can consider an arbitrary probability distribution {μi} over the

vertices of G, such that the initial mutation arises at vertex i with probability μi.
Most previous works [1, 3, 4, 6, 7, 9, 10, 22–25, 30] consider only uniform initialization,

meaning that the mutant is equally likely to appear at each vertex, μi = 1/N for all i. Uniform

initialization corresponds to a biological assumption that heritable mutations arise primarily

in adult individuals, with constant probability per unit time.
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If we instead suppose that mutations occur primarily in new offspring, then mutations will

be more likely to arise in sites that are replaced more often. This leads to temperature initializa-
tion [5, 8, 11, 14, 42], meaning that the initial mutant’s location i is chosen proportionally to

the temperature Ti, μi = Ti/N.

Here we consider both initialization schemes, with a particular focus on temperature ini-

tialization because it leads to a rich interplay of selection and drift. More generally, the meth-

ods we present apply to any probability distribution {μi} of initial mutant locations.

Fixation probability

We define the fixation probability ρG(r), for a mutant of fitness r on a graph G, as the probabil-

ity that the state of all mutants is reached, from an initial state chosen according to the speci-

fied initialization scheme.

For the complete graph KN, representing a well-mixed population of size N, the fixation

probability is [43]

rKN ðrÞ ¼
1 � r� 1

1 � r� N
: ð1Þ

More generally, Eq (1) holds for any graph that is isothermal, meaning that Ti = 1 for each ver-

tex i. This is known as the Isothermal Theorem [1]. For Bd updating, the isothermal condition

means that each vertex has the same probability of being replaced per time-step. For any iso-

thermal graph G of size N, the fixation probability is given by [1]:

rGðrÞ ¼
1 � r� 1

1 � r� N
: ð2Þ

This result is valid for both uniform and temperature initialization, since the two schemes are

equivalent on isothermal graphs.

Although calculating fixation probability is computationally intensive in general [6, 7, 30,

31], it simplifies when selection is weak; that is when mutations are nearly neutral (r� 1). In

this case, we may form the Taylor expansion

rGð1 þ dÞ ¼ r� þ dr0 þ Oðd
2
Þ: ð3Þ

The constant term, ρ� = ρG(1), is the fixation probability of neutral mutations, while the linear

term, r0 ¼ d
dr rGðrÞjr¼1

, represents the effect of weak selection (Fig 1A).

For isothermal graphs, Taylor expansion of Eq (2) gives

rGð1 þ dÞ ¼
1

N
þ d

N � 1

2N
þ Oðd

2
Þ: ð4Þ

So ρ� = 1/N and ρ0 = (N − 1)/(2N) for all isothermal graphs.

Results of Allen et al. [14] imply that, for uniform initialization, ρ� = 1/N for all graphs.

Thus spatial structure does not affect the rate of neutral drift when mutations appear uni-

formly. In contrast, for temperature initialization, Result 3 of Allen et al. [14] implies that

ρ� � 1/N, with equality if and only if the graph is isothermal.

Amplifiers and suppressors

Our goal is to understand how spatial structure affects selection, neutral drift, and the relation-

ship between the two. More specifically, we are interested whether a graph amplifies or sup-

presses selection, compared to the baseline of a well-mixed population. However, there are (at

least) two distinct ways of making this comparison.
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First, we can examine how the probability of fixation increases with fitness, as quantified by

the first-order term, ρ0. It is intuitive that the rate of increase should be greater for amplifiers,

and less for suppressors, relative to the well-mixed value of ρ0 = (N − 1)/(2N). This leads us to

define a graph G as an absolute amplifier of weak selection if ρ0 > (N − 1)/(2N), and an absolute
suppressor of weak selection if ρ0 < (N − 1)/(2N).

Second, to quantify the relationship between selection and neutral drift, we can compute

the ratio of fixation probabilities for selected versus neutral mutations:

rGð1 þ dÞ

rGð1Þ
¼
r� þ dr0

r�
þ Oðd

2
Þ ¼ 1 þ d

r0

r�
þ Oðd

2
Þ: ð5Þ

We see that the ratio of fixation probabilities, for weakly selected versus neutral mutations, is

determined by ρ0/ρ�. Consequently, ρ0/ρ� determines the ratio of beneficial to neutral muta-

tions that accumulate over time. (This idea is reminiscent of the dN/dS or Ka/Ks ratios that are

used to study genetic sequence evolution [44].) For a well-mixed population (or any isothermal

graph), ρ0/ρ� = (N − 1)/2. We therefore define a graph G to be a relative amplifier of weak selec-
tion if ρ0/ρ� > (N − 1)/2, and a relative suppressor of weak selection if ρ0/ρ� < (N − 1)/2.

For a family of graphs of unbounded size (N! 1), we can compare limN!1 ρ0 to 1/2 to

determine absolute amplifiers or suppressors, and limN!1 ρ0/(Nρ�) to 1/2 to determine rela-

tive amplifiers or suppressors, in the large-population limit.

For uniform initialization, there is no distinction between the relative and absolute defini-

tions, since ρ� = 1/N for all graphs. But for temperature initialization, the two notions are dis-

tinct. Moreover, since ρ� � 1/N for all graphs [14], we have ρ0/ρ� � Nρ0. This rules out the

possibility that a graph can be simultaneously an absolute amplifier and a relative suppressor,

leaving three possible classifications for non-isothermal graphs: (i) absolute and relative ampli-

fier; (ii) absolute suppressor and relative amplifier; and (iii) absolute and relative suppressor.

We illustrate these cases in Fig 1B.

Fig 1. Classifying the effects of graph structure on weak selection. (A) The fixation probability ρG(r), for a mutation

of fitness r on a graph G, can be expanded under weak selection as rGð1 þ dÞ ¼ r� þ dr0 þ Oðd
2
Þ. The zeroth-order

coefficient, ρ�, is the fixation probability of a neutral mutation, while the first-order coefficient, ρ0, determines the effect

of weak selection. (B) The effects of graph structure on weak selection can be classified using ρ� and ρ0. All isothermal

graphs (black dot) have ρ� = 1/N and ρ0 = (N − 1)/(2N). We say a graph is an absolute amplifier if ρ0 > (N − 1)/(2N),

and an absolute suppressor if ρ0 < (N − 1)/(2N). We say a graph is a relative amplifier if ρ0/ρ� > (N − 1)/2 and a relative
suppressor if ρ0/ρ� < (N − 1)/2. The three possible combinations for temperature initialization are shown in the colored

regions.

https://doi.org/10.1371/journal.pcbi.1008695.g001
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Results

Here we present our analytical and numerical results. Derivations are given in S1 Text

Calculating fixation probability

To calculate the zeroth- and first-order coefficients, ρ� and ρ0 respectively, in the weak-selec-

tion expansion, Eq (3), we apply methods developed in previous works [14, 33, 45]. We address

the zeroth-order (neutral drift) and first-order (weak selection) terms separately.

Neutral drift. To obtain the neutral fixation probability, ρ�, we must first derive the fixa-

tion probability πi of a neutral mutation arising at a particular vertex i. This probability πi can

also be understood as the reproductive value of vertex i [45, 46]. For Birth-death updating, the

reproductive values πi are the unique solution to the system of equations

Tipi ¼
X

j2G

pijpj for all i 2 G; ð6aÞ

X

i2G

pi ¼ 1: ð6bÞ

In the undirected case (wij = wji), Eq (6) has an explicit solution in which reproductive

value is inversely proportional to weighted degree: pi ¼ w� 1
i =

~W , where ~W ¼
P

i2Gw
� 1
i . In the

directed case, Eq (6) appears not to have an explicit solution, but can be solved straightfor-

wardly as a system of N + 1 linear equations (one redundant) in N variables.

The overall neutral fixation probability ρ�, from an arbitrary probability distribution {μi} of

initial mutant locations, is then given by

r� ¼
X

i2G

mipi: ð7Þ

For uniform initialization, we have r� ¼ 1

N

P
i2Gpi ¼ 1=N by Eq (6b), in agreement with previ-

ous work [14]. For temperature initialization (μi = Ti/N) on an undirected graph (wij = wji),
substituting μi = Ti/N and pi ¼ w� 1

i =
~W gives

r� ¼
1

N ~W

X

i2G

Ti
wi

¼
1

N ~W

X

i;j2G

wij

wiwj
: ð8Þ

Weak selection. To obtain the first-selection coefficient, ρ0, we turn to a method devel-

oped by McAvoy and Allen [33]. Consider an arbitrary initialization, characterized by a proba-

bility distribution {μi} of initial mutant locations. Let τij be the expected time, from

initialization to fixation, that vertices i and j have different types. We prove in S1 Text that

these τij are uniquely determined by the recurrence relation

tij ¼

Nðmi þ mjÞ þ
P

k2Gðpkitkj þ pkjtkiÞ
Ti þ Tj

i 6¼ j;

0 i ¼ j:

8
>><

>>:

ð9Þ

In particular, for temperature initialization (μi = Ti/N), we have

tij ¼
1 þ

P
k2Gðpkitkj þ pkjtkiÞ

Ti þ Tj
i 6¼ j;

0 i ¼ j:

8
>><

>>:

ð10Þ
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In this case, τij can be interpreted as the coalescence time from i and j [12, 36, 39–41, 47]; that

is, the expected time for independent random walks from i and j to meet each other. These

random walks can be taken to represent the ancestral lineages of the occupants of i and j, and

τij can be understood as the expected time to their most recent common ancestor [40, 41]. Eq

(10) can be understood as follows: If i and j are the same vertex, the coalescence time is zero.

Otherwise, we consider all the ways that either i or j could be replaced by the offspring of a

neighbor, under neutral drift. Given that either i or j is replaced, the conditional probability

that i is replaced by offspring of another vertex k is pki/(Ti + Tj), and the conditional probability

that j is replaced by k’s offspring is pkj/(Ti + Tj). When either of these events occurs, we incre-

ment time by one and consider the coalescence time of k and the vertex that was not replaced.

In the more general case of Eq (9), τij can be thought of as a rescaled coalescence time, with

the time spent at each vertex k 2 G scaled proportionally to μk. For uniform initialization (μi =

1/N) the recurrence becomes

tij ¼

2 þ
P

k2Gðpkitkj þ pkjtkiÞ
Ti þ Tj

i 6¼ j;

0 i ¼ j:

8
>><

>>:

ð11Þ

For any initialization, we show in S1 Text that the weak-selection coefficient, ρ0, can be

expressed in terms of the τij as

r0 ¼
1

2N ~W

X

i;j

wij

wiwj
tij: ð12Þ

Together, Eqs (7), (9), and (12) allow for fixation probabilities to be computed under weak

selection, for Bd updating on an arbitrary weighted graph, in polynomial time. In this way,

one can efficiently determine the amplification and suppression properties of any given graph.

Exhaustive analysis of small graphs

To explore the variety of possible effects of graph structure on fixation probabilities, we per-

formed an exhaustive analysis of all connected simple graphs (unweighted, undirected, and

with no self-loops) up to size 10, obtained from an online database [48]. For each graph, we

calculated ρ0 and ρ� numerically, for both temperature and uniform initialization, by solving

Eqs (10) or (11) and applying Eqs (8) and (12). We provide code to compute ρ0 and ρ� in

Ref. [49].

Temperature initialization. Our results for temperature initialization are summarized in

Table 1 and Fig 2. We find that the vast majority of small unweighted graphs (99.6%, for

N = 10) are relative amplifiers but absolute suppressors of weak selection. After that, for 8 �

N� 10, absolute and relative suppressors are the next most abundant, followed by absolute

and relative amplifiers, and finally isothermal graphs. (Note that an unweighted, undirected

graph is isothermal if and only if it is regular.) Overall, there is a positive relationship between

ρ� and ρ0, meaning that the graphs that slow the neutral molecular clock are also likely to sup-

press the (absolute) effects of weak selection.

We are particularly interested in the graphs that maximize or minimize ρ0 and ρ0/ρ� (Fig 3);

these are the graphs with the most pronounced effects of spatial structure on natural selection.

We find that the graphs that maximize ρ0 consist of several “islands” that are joined by single

edges.

Interestingly, for all graphs up to size 10, the Star, Sn, minimizes ρ0 and also maximizes the

ratio ρ0/ρ�. This suggests that in a star-structured population (with Bd updating and constant
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probability of mutation per birth), both neutral and advantageous mutations accrue much

more slowly—but the ratio of advantageous to neutral is much larger—than in a well-mixed

population of the same size.

The graphs that minimize the ratio ρ0/ρ� belong to a particular family, termed “Detours” by

Möller et al. [10]. Detours are formed by starting with a complete graph and replacing one of

the edges with a path of length �2.

Uniform initialization. Our results for uniform initialization are presented in Table 2

and Fig 4. We find that the vast majority of small graphs (94%, in the case N = 10) are amplifi-

ers of weak selection. This is consistent with previous numerical analyses [6, 9–11] which

found that most small unweighted graphs are amplifiers for Bd with uniform initialization. In

particular, the results for N = 6 and N = 7 agree with those from an exhaustive analysis per-

formed by Cuesta et al. [9], who computed fixation probabilities for arbitrary mutant fitness r.
The Star emerged as the strongest amplifier of weak selection, again consistent with previ-

ous results [10, 11, 50]. Stronger unweighted amplifiers of selection have been found for much

larger populations [25], but not for population sizes N� 100. Meanwhile, the strongest sup-

pressors of weak selection have a well-connected portion joined by one or two edges to a tail—

a structure we explore further below.

Table 1. Classification of small graphs with temperature initialization.

Size, N 3 4 5 6 7 8 9 10

Absolute and relative suppressors 0 0 0 0 5 51 1,035 43,249

Absolute suppressors, relative amplifiers 1 4 19 106 838 11,006 259,776 11,671,038

Absolute and relative amplifiers 0 0 0 1 6 43 247 2,117

Isothermal (regular) 1 2 2 5 4 17 22 167

Total 2 6 21 112 853 11,117 261,080 11,716,571

https://doi.org/10.1371/journal.pcbi.1008695.t001

Fig 2. Exhaustive analysis of fixation probabilities under weak selection for small graphs. (A) The values of ρ� and ρ0 are plotted for all 11,716,571

connected unweighted graphs of size 10. Colors correspond to the classification of graphs as shown in Fig 1B. (B) Scatter plot of ρ0 versus Nρ� for all graphs

up to size 10. Note that Nρ� � 1 for all graphs, with equality if only if the graph is isothermal (or regular, in the context of unweighted graphs).

https://doi.org/10.1371/journal.pcbi.1008695.g002

PLOS COMPUTATIONAL BIOLOGY Fixation probabilities in graph-structured populations under weak selection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008695 February 2, 2021 8 / 25

https://doi.org/10.1371/journal.pcbi.1008695.t001
https://doi.org/10.1371/journal.pcbi.1008695.g002
https://doi.org/10.1371/journal.pcbi.1008695


Fig 3. Small graphs with extreme effects for temperature initialization. The graphs with the largest or smallest values of ρ0 (which

characterizes the likelihood of selected mutations to become fixed), and ρ0/ρ� (which quantifies the balance of selection versus drift) are

shown for sizes 7 to 10. The Star graph minimizes ρ0 but maximizes ρ0/ρ� for these sizes. The largest ρ0 values arise for graphs with

multiple components joined by single edges, while the smallest ρ0/ρ� ratios occur for Detour graphs.

https://doi.org/10.1371/journal.pcbi.1008695.g003

Table 2. Classification of small graphs with uniform initialization.

Size, N 3 4 5 6 7 8 9 10

Suppressors 0 0 1 7 55 671 14,890 659,784

Amplifiers 1 4 18 100 794 10,429 246,168 11,056,620

Isothermal (regular) 1 2 2 5 4 17 22 167

Total 2 6 21 112 853 11,117 261,080 11,716,571

https://doi.org/10.1371/journal.pcbi.1008695.t002
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Genetic algorithm

For graphs of size greater than 10, an exhaustive analysis is no longer feasible. To identify

larger graphs that have extreme effects on fixation probability, we employed a genetic algo-

rithm previously developed by Möller et al. [10]. The idea is to begin with a random ensemble

of graphs, and select a subset with the largest or smallest values of a quantity of interest. These

graphs are then “mated” with each other to produce an ensemble of “offspring” graphs, and

the process is repeated. A formal description of the genetic algorithm and the parameters used

is provided in S1 Text.

Fig 4. Small graphs with extreme effects for uniform initialization. The graphs with the largest or smallest values of

ρ0 are shown for graphs of size 7 to 10. (Only ρ0 is shown because, for uniform initialization, ρ� = 1/N for every graph.)

Star graphs have the largest ρ0, while the smallest ρ0 values appear for graphs with a highly connected component

linked to a tail.

https://doi.org/10.1371/journal.pcbi.1008695.g004
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Based on our analysis of small graphs, we chose three targets to explore using the genetic

algorithm: (i) maximal ρ0 for temperature initialization, (ii) minimal ρ0/ρ� for temperature ini-

tialization, and (iii) minimal ρ0 for uniform initialization. The other possible targets (minimal

ρ0 and maximal ρ0/ρ� for temperature initialization, maximal ρ0 for uniform initialization)

were optimized by the Star graph for all N� 10, and so are presumably less interesting to

explore.

The results from the genetic algorithm extend and illuminate the patterns that were seen in

the exhaustive analysis of smaller graphs. For temperature initialization, searching for large ρ0

(strong absolute amplifiers; Fig 5) leads to the emergence of a densely connected “hub”, joined

by single edges to a number of “islands” consisting of two or more vertices each. Detour

graphs, on the other hand, continue to appear when searching for small ρ0/ρ� (strong relative

suppressors; Fig 6). We analyze both of these structures in-depth in later sections.

For uniform initialization, searching for small ρ0 (strong suppressors; Fig 7) led to graphs

with a well-connected part and a tail. The tails are longer than those found in the exhaustive

search for N� 10 (Fig 4). In some cases (N = 11, 12, 13, and also N = 7 in the exhaustive analy-

sis) the tail connects at a single vertex to a clique, forming what is known as a Lollipop graph

(also called a “standard kite” by Möller et al. [10]). Random walks on Lollipop graphs are

known to have maximal hitting times [51], cover times [52], and commute times [53], so it is

unsurprising that they have extreme effects on ρ0, which Eq (12) expresses in terms of the

closely-related notion of coalescence times. However, in other cases (N = 14, 15, and N = 8, 9,

10 in the exhaustive search), the tail connects to two of the well-connected vertices, which are

not connected to each other, forming what might be termed a “Balloon graph”. Additionally,

other exploratory analyses (not shown) revealed some Balloon-like graphs for which the tail

ends in a star; we call this a “Balloon-star”. We numerically computed the minimal ρ0 for all

three of these families (Lollipop, Balloon, and Balloon-Star); the results are compared to the

genetic algorithm results in Fig 7.

Analysis of particular graph families

Here we analyze particular families of graphs that are found to have interesting properties.

Derivations and proofs are given in S1 Text.

Star. The Star, Sn (Fig 8), consists of a single hub connected to each of n� 2 leaves by an

edge of weight 1. The Star was one of the first-identified amplifiers of selection for uniform ini-

tialization [1, 22]. For graphs of size N� 10, our numerical investigation found Stars to be

extremal in three different ways: the best absolute suppressors and relative amplifiers for tem-

perature initialization, and the best amplifiers for uniform initialization.

For temperature initialization, solving Eqs (8), (10), and (12) yields

r� ¼
2n

ðnþ 1Þðn2 þ 1Þ
ð13aÞ

r0 ¼
nð2n2 � nþ 1Þ

ðnþ 1Þ
2
ðn2 þ 1Þ

: ð13bÞ

This agrees with Taylor expansion of previous results for the Star graph [22, 23, 54]. In S1 Text

we prove that the Star is a relative amplifier and absolute suppressor for all population sizes. As

the number of leaves n tends to infinity, the weak-selection coefficient ρ0 behaves as 2/N while

the ratio ρ0/(Nρ�) converges to one. Thus, for large sizes N, the Star is an arbitrarily strong

absolute suppressor, and a relative amplifier by a factor of two (relative to the well-mixed pop-

ulation, for which limN!1 ρ0/(Nρ�) = 1/2).
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For uniform initialization, ρ� = 1/N (as for any graph), and Eqs (11), and (12) yield

r0 ¼
n2ðn2 � nþ 2Þ

ðnþ 1Þ
2
ðn2 þ 1Þ

: ð14Þ

This again agrees with Taylor expansion of previous results for the Star [22, 23, 54]. We

Fig 5. Discovering absolute amplifiers for temperature initialization. We used a genetic algorithm to discover

graphs with large weak-selection effect ρ0. The resulting graphs (middle column) have a central “hub” joined by single

links to outlying “islands”. To formalize this structure, we introduce a family of “Cartwheel” graphs CWn,m,h,

consisting of a hub of size h and n islands ofm vertices each (rightmost column). We find that the optimal Cartwheel

graph has ρ0 exceeding that found by the genetic algorithm, except for N = 12 for which the same graph was identified

by both methods. All graphs found by both methods are absolute amplifiers of weak selection, meaning ρ0 > (N − 1)/

(2N).

https://doi.org/10.1371/journal.pcbi.1008695.g005
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observe that limn!1 ρ0 = 1, meaning that the Star amplifies weak selection by a factor of two

in this limit (relative to the well-mixed population, for which limN!1 ρ0 = 1/2). Although the

Star is the strongest amplifier of weak selection for N� 10, it is eventually (for sufficiently

large N) surpassed by graphs in the Cartwheel family, as we describe below.

Fig 6. Discovering relative suppressors for temperature initialization. When seeking to minimize the ratio ρ0/ρ�, the

genetic algorithm, in all cases, found Detour graphs [10], consisting of a complete graph with one edge replaced by a

path. For comparison, we calculated ρ0/ρ� for all Detour graphs of the given sizes. The results were identical to those of

the genetic algorithm except in the caseN = 14, for which the genetic algorithm found a Detour graph with a non-

optimal number of ring vertices.

https://doi.org/10.1371/journal.pcbi.1008695.g006
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Complete bipartite graph. The complete bipartite graph, KnA;nB
, is formed by partitioning

the vertex set into two subsets, of respective sizes nA and nB, and drawing an edge between

each pair of vertices belonging to different subsets. No edges are drawn between vertices from

the same subset. The Star, Sn, is the special case K1,n, where one subset contains only the hub

and the other subset contains all leaves. Tkadlec et al. [11] showed that complete bipartite

graphs can amplify selection with only a relatively small increase in fixation time (relative to

the well-mixed population).

In S1 Text we use our method to derive

r� ¼
2nAnB

ðnA þ nBÞðn2
A þ n2

BÞ
; r0 ¼

nAnBð2ðn2
A þ n2

BÞ � ðnA þ nBÞÞ

ðnA þ nBÞ
2
ðn2

A þ n2
BÞ

; ð15Þ

Fig 7. Discovering suppressors for uniform initialization. When seeking to minimize the ratio ρ0/ρ�, the genetic

algorithm produced structures consisting of a well-connected part and a tail. We compared these to Lollipop graphs

(known for their random walk properties [51–53]), and two new families, which we call Balloons and Balloon-Stars.

The minimal ρ0 from these families improved on the genetic algorithm results for N = 12, 13, 14 (albeit by less than

10−4 forN = 14), and matched the genetic algorithm results for N = 11 and N = 15.

https://doi.org/10.1371/journal.pcbi.1008695.g007
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for temperature initialization, and

r� ¼
1

N
; r0 ¼

ðn2
A þ n2

BÞ
2

� ðn3
A þ n3

BÞ

ðnA þ nBÞ
2
ðn2

A þ n2
BÞ

; ð16Þ

for uniform initialization. These agree with previously-obtained results for the complete bipar-

tite graph [4, 23], as well as with Eqs (13) and (14) for the Star. We prove in S1 Text that, for

nA 6¼ nB, KnA;nB
is a relative amplifier but absolute suppressor of weak selection for temperature

initialization, and an amplifier of weak selection for uniform initialization. For nA = nB, KnA ;nB
is isothermal, and so has the same fixation probabilities as a well-mixed population.

Cartwheel. Both the exhaustive search and the genetic algorithm identified strong abso-

lute amplifiers (large ρ0), for temperature initialization, consisting of a highly intraconnected

“hub” joined by single edges to a number of “islands”. To formalize this pattern, we define a

family of “Cartwheel” graphs CWn,m,h (Fig 9A), consisting of an h-vertex hub and n islands of

m vertices each. The hub and each island are cliques [55], meaning that within each subpopu-

lation, each vertex is connected to each other. Each island is connected, by a single edge, to a

distinct hub vertex. We generalized to a weighted graph by setting the hub-to-island edge

weight to be a free parameter � > 0; all other edge weights are 1. We consider only temperature

initialization here, since this was the context in which Cartwheel graphs arose.

We have obtained closed-form expressions for ρ� and ρ0 for the Cartwheel using Mathema-

tica. The formula for ρ� is given in S1 Text, while the formula for ρ0 is too lengthy to print. The

behavior of ρ� and ρ0 as � varies is illustrated in Fig 9C. As shown in Fig 5, there are unweighted

Cartwheel graphs whose ρ0 values exceed those found by the genetic algorithm, suggesting that

this family contains very strong absolute absolute amplifiers of weak selection. Table 3 shows

the unweighted (� = 1) Cartwheel graphs with the largest values of ρ0 for fixed sizes N. These ρ0

values eventually surpass 1, which is an upper bound for ρ0 values on the Star. We have not

determined whether the ρ0 values for the unweighted Cartwheel are bounded, or whether they

diverge to infinity as N increases.

Fig 8. Star. Fixation probability, ρ(r) is plotted against mutant fitness r, for the Star and the complete graph. Dotted lines show the

linear approximation ρ(1+ δ) � ρ� + δρ0, accurate for weak selection (δ� 1). (A) For temperature initialization, the Star is an

absolute suppressor of weak selection, ρ0 < (N − 1)/(2N), but a relative amplifier, ρ0/ρ� > (N − 1)/2. (B) For uniform initialization, the

Star is an amplifier of weak selection, ρ0 > (N − 1)/(2N). Note that ρ(1) = ρ� = 1/N for both graphs, as is true for any graph under

uniform initialization.

https://doi.org/10.1371/journal.pcbi.1008695.g008
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For arbitrary mutant fitness r, we derive (in S1 Text) the following closed-form expression

for fixation probability in the �! 0 limit:

lim
�!0
rCWn;m;h

ðrÞ ¼
ð1 � r� 1Þðrmþh � 1Þ

ðnmþ hÞðrmþh � xn� 1Þ

�

nm
m � 1

� �

r� m
1 � r� h

h � 1

� �

þ
1 � r� m

m � 1

� �þ

h
h � 1

� �

1 � r� h

h � 1

� �

þ r� h
1 � r� m

m � 1

� �

0

B
B
@

1

C
C
A:

ð17Þ

Fig 9. Cartwheel. (A) The Cartwheel graph CWn,m,h contains n islands ofm vertices each and h� n hub vertices. Each

island is connected to a distinct hub vertex by an edge of weight �; vertices within the hub and within each island are

joined by edges of weight 1. (B) The special case n = h andm = 2 has a “spider” structure; this graph has the largest ρ0

in the �! 0 limit. (C) Plot of ρ� vs ρ0 for various Cartwheel graphs of size N = 30, with temperature initialization.

Points are shown for each � = 2k, where k varies from −5 to 9 in increments of 0.2. Larger points correspond to � = 1

and the �! 0 limit, as derived in Eq (19). Note that lim�!0 ρ� = 1/N for all Cartwheel graphs. CW10,2,10 (the “spider”

case) has by far the largest ρ0 in the �! 0 limit; it also has the largest ρ/ρ�, for all �, among the graphs displayed.

However, CW6,3,12 has the largest ρ0 for � = 1 among Cartwheels of size 30. CW4,6,6 and CW2,10,10 both have h =m and

therefore have the same fixation probability as a well-mixed population in the �! 0 limit, according to Eq (18).

CW3,8,6 has h<m and is therefore a suppressor of weak selection in the �! 0 limit.

https://doi.org/10.1371/journal.pcbi.1008695.g009
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This result holds for both temperature and uniform initialization. In fact, the two initialization

schemes become equivalent as �! 0 since the temperature of each vertex converges to 1/N.

(However, the Isothermal Theorem does not apply in this limit, since the graph is not exactly

isothermal for any nonzero value of �.) Several cases of Eq (17) are illustrated in Fig 10A.

If the hub is the same size as the islands, h =m, then Eq (17) reduces to

lim
�!0
rCWn;m;m

ðrÞ ¼
1 � r� 1

1 � r� ðmnþmÞ
: ð18Þ

This is exactly the fixation probability for a well-mixed population of the same size, N =mn +

m. Thus for h =m and �! 0, a mutant of arbitrary fitness r has the same fixation probability

on the Cartwheel as in a well-mixed population.

Table 3. Unweighted Cartwheel graphs CWn,m,h that maximize ρ0.

Size, N n m h ρ0

9 3 2 3 0.4622

10 2 3 4 0.4744

11 2 3 5 0.4835

12 4 2 4 0.4937

13 3 3 4 0.5030

14 3 3 5 0.5171

15 3 3 6 0.5273

20 4 3 8 0.5732

40 7 3 19 0.7082

60 10 3 30 0.7999

80 9 4 44 0.8827

100 11 4 56 0.9569

120 13 4 68 1.0183

140 12 5 80 1.0775

https://doi.org/10.1371/journal.pcbi.1008695.t003

Fig 10. Nonweak selection on the Cartwheel graph. In the limit as the hub-to-island weight � goes to zero, the fixation probability for arbitrary mutant

fitness r is expressed in closed form by Eq (17). Temperature and uniform initialization are equivalent in this limit. Dashed lines show the weak-

selection approximation, with slope ρ0 given by Eq (19). (A) Fixation probability is plotted against r for two Cartwheels of size 12. CW4,2,4 has h>m
and is therefore an amplifier of weak selection. CW2,5,2 has h<m and is therefore a suppressor of weak selection (but appears to amplify selection for

r> 2.4219). Cartwheels with h =m have the same fixation probability as the well-mixed population, for all r, in the �! 0 limit. (B) In the limits �! 0

and n = h! 1, withm = 2, the fixation probability jumps discontinuously from 0 to 1/3 as r crosses 1; the expression for r> 1 is given in Eq (20). For

comparison we also show the upper bound ρ(r) � 1 − (r + 1)−1, derived by Pavlogiannis et al. [8], which applies to all weighted graphs with no self-loops

under temperature initialization.

https://doi.org/10.1371/journal.pcbi.1008695.g010
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Performing a Taylor expansion of Eq (17) around r = 1, we obtain ρ� = 1/N and

r0 ¼
N � 1

2N
þ

mnhðh � mÞðmðn � 2Þðh � 1Þ þ hðm � 1ÞÞ

2ðhðm � 1Þ þ mðh � 1ÞÞðmnþ hÞðmnðh � 1Þ þ hðm � 1ÞÞ
: ð19Þ

The second term has the sign of h −m. It follows that the Cartwheel, in the �! 0 limit, is an

amplifier of weak selection for h>m and a suppressor of weak selection for h<m. These

results hold in both the relative and absolute senses, for both temperature and uniform

initialization.

The Cartwheel most strongly amplifies selection in the case �! 0,m = 2, and h = n� 1.

This results in a “spider” structure, in which a large number of fully interconnected hub verti-

ces are each joined (by an edge of vanishingly small weight) to a two-vertex “leg”. In this case,

the fixation probability ρ(r) becomes (in the �! 0 limit) discontinuous as a function of r: ρ(r)
= 0 for disadvantageous mutations (r< 0), but for advantageous mutations (r> 0) we have

rðrÞ ¼
1 � r� 2=3

1 þ r� 1
: ð20Þ

In particular, the fixation probability jumps from zero to 1/3 as r increases past 1. Any benefi-

cial mutation has a fixation probability greater than one-third for such a structure, making this

an especially powerful amplifier of natural selection.

We also show in S1 Text that the Cartwheel CWn,2,n, with n� 7 and sufficiently small �, is a

stronger relative amplifier of weak selection than a Star of the same size.

Detour. In the exhaustive analysis and genetic algorithm, Detour graphs [10] (Fig 11A)

emerged as the strongest relative suppressors of weak selection (minimal ρ0/ρ�) under tempera-

ture initialization. The Detour graph Dc,d is constructed by starting with a complete graph of

size c, and replacing one edge with a path containing d vertices. The total size is N = c + d.

We have numerically determined the minimal ρ0/ρ� ratio for all sizes up to 100 (Fig 11B

and 11C). As N increases beyond 8, the minimal ρ0/ρ� decreases, making these graphs increas-

ingly strong relative suppressors. We also observe that the minimizing number of detour verti-

ces d increases sublinearly with N.

Minimal absolute amplifier. According to our small graph analysis in Table 1, there are

no absolute amplifiers of weak selection of size �5, and only one of size 6. This graph of size 6

has a bowtie shape (Fig 12A) and is the minimal absolute amplifier of weak selection.

Fig 11. Detour. (A) The Detour graphDc,d begins with a complete graph of size c, and replaces the edge between two vertices by a path with d interior

vertices. (B) Values of ρ� and ρ0 are plotted as d varies, for N = 100. The DetourDc,d is a relative suppressor of weak selection except for d = 1. The minimal

ratio ρ0/ρ� is achieved for d = 15 (marked with a star). (C) The minimal ρ0/(Nρ�) ratio, and the value of d achieving this ratio, is plotted for eachN. Note that

the minimizing d grows sub-linearly withN.

https://doi.org/10.1371/journal.pcbi.1008695.g011
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Due to its small size and symmetry, the fixation probability for this graph can be computed

in closed form for arbitrary mutant fitness r. Employing an algorithm developed by Cuesta

et al. [7, 9], adapted for temperature initialization, we obtained the fixation probability ρG(r) as

a ratio of 17th-degree polynomials (shown in S1 Text).

We find (Fig 12B) that, despite being an absolute amplifier of weak selection, this graph has

fixation probability less than that of the complete graph K6 for all r> 0. This is possible

because, although this graph increases the first-order term ρ0, relative to K6, it decreases the

neutral term ρ�, leading to a smaller overall fixation probability.

Fan. Finally, we exhibit a graph family that displays all possible classifications of behavior

as a particular edge weight is varied. The Fan, Fn,m [12] (or Windmill [56]), consists of a hub

vertex attached to n� 2 blades (Fig 13A). Each blade is a clique ofm� 2 vertices joined by

edges of weight 1. The hub is connected to each blade vertex by an edge of weight �. The total

population size is N =mn + 1.

For the Fan Fn,m with temperature initialization, we find a neutral fixation probability of

r� ¼
mn�ðm � 1 þ 2�Þðmnþ 2Þ

ðm � 1 þ �Þðmnþ 1Þðm � 1 þ �ðm2n2 þ 1ÞÞ
: ð21Þ

The first-order term is ρ0 = num/denom, with

num ¼ mn�ð2ðm � 1 þ �Þ
3

þ 2mnðm � 1 þ �Þ
2
ð2m � 1 � �Þ

þ2m2n2ðm � 1 þ �Þð2�2 � �þm2 � mÞ

þ2m4n3�ðmþ 2� � 1 þ nm2 � nÞÞÞ;

ð22aÞ

denom ¼ 2ðm � 1 þ �Þðmn þ 1Þðm � 1 þ �ðm2n2 þ 1ÞÞððm � 1 þ �Þ
2

þmnð1 þ �Þðm � 1 þ �Þ þm3n2�Þ:
ð22bÞ

We find that, as � increases, Fn,m displays all three classifications of behavior. First, for 0< �

< (m − 1)/(mn − 1), the Fan is both an absolute and relative suppressor. At � = (m − 1)/(mn
− 1), the graph is isothermal, and therefore has the same fixation probability as the well-mixed

population. The graph is both an absolute and relative amplifier for (m − 1)/(mn − 1)< � < ��,

where �� is a particular cubic root for which ρ0 = (N − 1)/(2N). Then, for � > ��, the graph is a

relative amplifier but absolute suppressor. As �! 1, the values of ρ� and ρ0 approach those of

the star Snm, as given by Eq (13).

Fig 12. Minimal absolute amplifier. (A) This bowtie-shaped graph is the smallest absolute amplifier of weak selection

under temperature initialization. (B) The difference in fixation probabilities between this graph and the complete

graph K6 is plotted against mutant fitness, r. The dashed line shows the linear approximation to this difference at r = 1,

computed using our weak-selection methods. Although this difference is increasing at r = 1 (because the graph is an

absolute amplifier of weak selection), the difference is negative for all values of r. Thus this graph does not amplify

selection in the usual sense of rGðrÞ > rKN ðrÞ for all r> 1.

https://doi.org/10.1371/journal.pcbi.1008695.g012
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In the limit of many islands, n! 1, the curve formed by Nρ� and ρ0 approaches a triangle

(Fig 13D), the sides of which correspond to three scalings of � with n: constant, inverse (� =

kn−1), and inverse square (� = kn−2). The maximum value of ρ0 is achieved when n! 1 with

� ¼ ðm � 1Þ=ðm
ffiffiffi
n

p
Þ; in this limit, ρ0 approaches (m + 1)/(2m).

For uniform initialization, ρ� = 1/N and ρ0 = num/denom, where

num ¼ m2n2�ðm3ðmþ 1Þn3�þ 2m2n2ð� � 1Þ�

þmnð3m � 2�þ 1Þðm þ � � 1Þ þ 4ðmþ � � 1Þ
2
Þ;

ð23aÞ

denom ¼ 2ðmnþ 1Þðm2n2� þmþ � � 1Þ

�ðm3n2�þmnð�þ 1Þðm þ � � 1Þ þ ðmþ � � 1Þ
2
Þ:

ð23bÞ

We show in S1 Text that the Fan with uniform initialization is a suppressor of weak selection

for 0< � < (m − 1)/(mn − 1) and an amplifier of weak selection for � > (m − 1)/(mn − 1). As

Fig 13. Fan. (A) The Fan Fn,m (or Windmill [56]) consists of one hub and n blades containingm vertices each. We

consider a weighted version, with edge weights as shown. Pictured here is the case n =m = 3. (B,C) The neutral

fixation probability ρ� and weak selection coefficient ρ0, plotted as � varies from 0 to infinity, for all Fan graphs of sizes

N = 13 and N = 101. As � increases, the behavior changes from absolute and relative suppressor, to absolute and

relative amplifier, to relative amplifier but absolute suppressor. For �! 1, the ρ� and ρ0 values approach those of the

Star graph Snm (marked by a red star). (D) As n! 1, there are three regimes of behavior, depending whether � is held

constant (blue line) or scales as n−1 (purple line), or as n−2 (green line). The maximal ρ0 for fixedm is ρ0 = (m + 1)/

(2m), achieved for n! 1 with � ¼ ðm � 1Þ=ðm
ffiffiffi
n

p
Þ.

https://doi.org/10.1371/journal.pcbi.1008695.g013
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n! 1 with m and � held constant, ρ0 converges to (m + 1)/(2m), matching the maximal limit-

ing value of ρ0 that was found with temperature initialization.

Discussion

The problem of identifying spatial structures that amplify or suppress selection has been

actively investigated for the past decade and a half [1–13]. Our work introduces new methods

for studying this problem in the weak selection regime. These methods allow for the effects of

spatial structure on fixation probability (for r� 1) to be computed in polynomial time,

enabling analytical and computational investigations that would previously have been infeasi-

ble. However, this weak-selection approach does not tell us the behavior of ρ(r) away from

r = 1, which may include complex phenomena such as multiple transitions between amplifica-

tion and suppression [4, 9, 57]. We also have not explored the question of fixation time [10, 11,

26], which can significantly affect the overall rate of evolution [58].

Our work underscores the critical role that initialization schemes play in the determining

how spatial structure affects selection [5, 11]. Different initialization schemes arise from differ-

ent assumptions on how mutations occur. Uniform initialization, which is taken as the default

in most previous works, corresponds to an assumption that mutation strikes all individuals

equally regardless of age. Temperature initialization arises from instead considering a constant

probability of mutation in each new offspring [14].

With temperature initialization comes new considerations, since the neutral fixation proba-

bility ρ� is affected in addition to the weak-selection coefficient ρ0. This leads to a distinction

between relative versus absolute amplification and suppression. The absolute notions refer to

the rate of increase fixation probability with respect to mutant fitness, while the relative

notions refer to the expected ratio of beneficial to neutral mutations that fix over time. Of

these, the relative notions are arguably more empirically relevant since they are directly related

to observable genetic change.

A caveat with these definitions is that, for temperature initialization, absolute amplifiers of

weak selection do not necessarily have larger fixation probability than the well-mixed popula-

tion for any particular value of r. The minimal absolute amplifier (Fig 12) shows why: under

temperature initialization, the neutral fixation probability ρ� is typically reduced from the

well-mixed value, which may outweigh any increase in ρ0. On the other hand, it is certainly

possible for a graph to have larger fixation probability than a well-mixed population under

temperature initialization; the Cartwheel family provides examples of this.

Other initialization schemes aside from temperature and uniform may be considered. Since

mutations can strike both existing organisms as well as new offspring, the relevant scheme for

a given population may be a blend of uniform and temperature. Alternatively, for unicellular

populations, mutations may occur in the parent cell upon reproduction; this would lead to ini-

tialization schemes that depend on the birth rate as well as the death rate. Fortunately,

our method can be applied to any initialization scheme, using Eq (9) for coalescence times.

We have found that, for temperature initialization, the vast majority of small (unweighted,

undirected) graphs are relative amplifiers but absolute suppressors of weak selection. This

means that, for a spatially structured population satisfying the relevant modeling assumptions,

one would typically see a greater ratio of beneficial-to-neutral mutations, but a slower overall

rate of genetic change, compared to a well-mixed population. For uniform initialization, we

find that the vast majority of graphs are amplifiers of weak selection, which accords with find-

ings from other works using different methods [6, 10, 11].

Our findings reveal new families of graphs with interesting effects on selection, and shed

new light on known families. In particular, our work has identified Cartwheel graphs (Fig 9) as

strong absolute amplifiers for temperature initialization—with the “spider” case, n = h and
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m = 2, having especially interesting properties. In one limit, the fixation probability jumps dis-

continuously, from zero for all deleterious mutations, to more than one-third for all beneficial

mutations (Fig 10). Stronger amplifiers for temperature initialization were found by Pavlo-

giannis et al. [8], but only with self-loops, meaning that new offspring can displace their own

parents. Among graphs with no self-loops, Cartwheels appear to be the strongest family of

amplifiers for temperature initialization that have been discovered thus far.

Detour graphs, in contrast, are shown to strongly suppress the ρ0/ρ� ratio for temperature

initialization. This family of graphs was previously identified by Möller et al. [10] for their

extreme properties under uniform initialization. In that context, Möller et al. found that

Detours are powerful suppressors of selection for fitness values of r close to 1, but transition

into amplifiers as r increases beyond a threshold value r� > 1. Overall, Detours appear to be a

particularly interesting example for evolutionary graph theory. We have not come up with

closed-form solutions for ρ� or ρ0 for Detours; doing so appears difficult although perhaps not

impossible.

Our analysis of the Fan, meanwhile, highlights the determinative role that edge weight can

play. By increasing the weight of a single type of edge, one can change the graph from a relative

suppressor, to an absolute amplifier, to an absolute suppressor but relative amplifier. Interest-

ingly, both ρ� and ρ0 are maximized for intermediate values of this edge weight. Attention to

edge weight will therefore be crucial in connecting this theory to applications.

Although our general results apply to arbitrary (strongly connected) weighted digraphs, we

focused our numerical exploration and examples on undirected graphs without self-loops.

Extending this analysis to directed graphs would allow for many more possible structures, and

may reveal new phenomena with regard to the amplification or suppression of selection.

Conclusion

Our work and other recent contributions [5, 6, 9, 11–13, 27, 28] make clear that whether a

population structure amplifies for suppresses selection depends not only on the graph, but also

on the update rule, the initialization scheme, and the regime of fitness values being considered,

and whether absolute or relative genetic change is of interest. This combinatorial explosion of

modeling choices may seem daunting, but it also suggests an increased opportunity for appli-

cations of the theory. Different modeling choices will be relevant to animal, plant, and micro-

bial populations, to somatic tissue [18–20], and to infectious diseases [15, 21]. Given recent

advances in theory [8–13, 26, 33], the toolkit now exists to apply evolutionary graph theory in

a wide range of biological settings.

Supporting information
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