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Abstract—Parallel loops are commonly used parallel constructs
to parallelize high-performance scientific applications. In the
paradigm of task parallelism, the parallel loop construct is used
to express the logical parallelism of the loop, indicating that
the iterations in a loop are logically in parallel and let an
underlying runtime scheduler determines how to best map the
parallel iterations onto available processing cores.

Researchers have investigated multiple scheduling schemes
for scheduling parallel loops, with the static partitioning and
dynamic partitioning being most prevalent. Static partitioning
obtains low scheduling overhead while potentially retaining
locality benefit in iterative applications that perform a sequence
of parallel loops that access the same set of data repeatedly.
But static partitioning may perform poorly relatively to dynamic
partitioning if the loop iterations contain unbalanced workloads
or if the cores can arrive at the loops in different times.

We propose a hybrid scheduling scheme, which first schedules
loops using static partitioning but then employs dynamic par-
titioning when load balancing is necessary. Moreover, the work
distribution employs a claiming heuristic that allows a core to
check for partitions to work on in a semi-deterministic fashion,
allowing the scheduling to better retain data locality in the case
of iterative applications. Unlike prior work that optimizes for
iterative applications, our scheme does not require programmer
annotations and can provide provably efficient execution time. In
this paper, we discuss the hybrid scheme, prove its correctness,
and analyze its scheduling bound. We have also implemented
the proposed scheme in a Cilk-based work-stealing platform and
experimentally verified that the scheme load balances well and
can retain locality for such iterative applications.

Index Terms—static partitioning, dyanmic partitioning, work
stealing, work, span

I. INTRODUCTION

Parallel loops are commonly used parallel constructs to
parallelize high-performance scientific applications. Take the
NAS benchmarks for example [1], most benchmarks are
parallelized using only parallel loops as many applications are
numeric in nature and have ample data parallelism.

In the paradigm of task parallelism, the parallel loop con-
struct is used to express the logical parallelism of the loop,
indicating that the iterations in a loop are logically in parallel
and let an underlying runtime scheduler determines how to
best map the parallel iterations onto available processing cores.
In practice, three strategies are commonly implemented in
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various task-parallel platforms for shared-memory multicore
machines: a) static partitioning [2], [3], b) dynamic fixed-size
partitioning [2], [4]–[13], and c) guided partitioning [2]. Each
of these strategies makes different trade-offs between loop
allocations, load balancing, and synchronization overhead.

With static partitioning, given a parallel loop with N
iterations running on P processing cores, the N iterations
are evenly divided into roughly equal-sized P partitions, with
each partition assigned to a processing core. The partitioning is
static because once a partition is assigned to a core, no other
cores can take part in the work belonging to the partition.
With dynamic partitioning, on the other hand, the iteration
space is divided into C fixed-size small chunks, where each
chunk is a set of small number of iterations that execute
sequentially on one core (i.e., typically P � C), and the
runtime dynamically distributes the C chunks to the available
P cores. Different platforms may utilize different scheduling
schemes to distribute the work. Some platforms utilize work
sharing, where a centralized queue is used to hold the chucks,
and cores synchronize on accesses to the queue in order to
claim a chunk of work. An alternative is work stealing, where
each core maintains its own local queue of work available;
when the need for load balancing arises, the cores “steals”
from each other to move work from one queue to another,
thereby balancing out the workload. Still, the chunk size, or
the number of consecutive iterations that execute sequentially
on one core, remains fixed. Finally, with guided partitioning,
the iteration space is divided into variable-sized chunks, where
the chunk size starts out large and decreases until it reaches
some small default size.

When executed on a multicore machine with shared mem-
ory, multiple factors can impact the performance of a parallel
loop: allocation of loop iterations (where an iteration is ex-
ecuted), how well the underlying runtime load balances the
loop, and synchronization / parallel overhead for enabling the
distribution of the loop iterations. Each of these schemes make
different trade-offs in these dimensions.

Static partitioning incurs small synchronization / parallel
overhead for enabling the distribution of the loop iterations,
since little scheduling decisions need to be made dynamically.
Moreover, it tends to work well for applications where the
loop iterations do in fact have an affinity for a particular core /
processor, such as iterative applications where the application
consists of multiple phases and each phase is encoded using
a parallel loop. Assuming each phase accesses similar data,
then iterations do have affinity — scheduling iterations that



share an index across parallel loops naturally retains data
locality. The static partitioning works well for such loops with
affinity because given the same number of iteration count,
the static scheme always distributes the loop iterations in
a deterministic fashion, thereby keeping iterations with the
same index on the same core across parallel loops. However,
since the partitioning is static, if the workloads are unbalanced
across the iterations, the core that finishes its partition last ends
up dictating the overall execution time.

Dynamic partitioning, in comparison, incurs higher synchro-
nization / parallel overhead in order to enable dynamic load
balancing; thus, it provides much more robust performance
when the iterations contain unbalanced workloads. Moreover,
depending on the implementation, a task-parallel platform can
schedule multiple parallel regions at the same time such that
not all P are always available to execute a given parallel
loop. In such a scenario, dynamic load balancing can be
important even if the iterations contain the same workloads
because different cores can arrive at the parallel loop at
different time. Nevertheless, due to the nature of dynamic load
balancing (where the result of the loop distribution depends
on scheduling), dynamic partitioning does not account for loop
affinity and cannot easily exploit the inherent data locality that
exists in such iterative applications.

Guided partitioning allows for some dynamic load balanc-
ing, but in a different way than dynamic partitioning that
makes different tradeoffs. In a scheduler that utilizes work
sharing, the iteration space is divided into decreasing chunk
sizes, and chunks are inserted a centralized queue. Cores syn-
chronize accesses to the shared queue. Once a core obtains a
chunk, it executes the chunk to completion before coming back
to the queue. Thus, like dynamic partitioning, the allocation
of iterations depends on scheduling and cannot easily exploit
the inherent locality that exists in the iterative applications.
However, due to the way iterations spaces are divided, it
generates fewer chunks than dynamic partitioning, leading
to slightly less synchronization / parallel overhead. Guided
partitioning is not typically implemented in a work-stealing
environment, where a distributed steal protocol is employed for
load balancing, and therefore difficult to maintain centralized
information necessary to determine chunk sizes.

In practice, different platforms implement different strate-
gies. OpenMP offers different strategies that the programmer
can choose by using the right compiler pragma [2]; it utilizes
work sharing for its dynamic and guided partitioning. Fast-
Flow [3], a C++-library based task-parallel platform, supports
static and dynamic partitioning with work sharing [14]. Fi-
nally, many task-parallel platforms including TBB [5], variants
of Cilk [6]–[9], variants of Habanero [10], [11], X10 [13] etc.,
employs dynamic partitioning with work stealing.

This paper proposes a hybrid partitioning scheme that
combines static and dynamic partitioning with work stealing.
At a high level, a hybrid loop is scheduled first using static
partitioning, where the iteration space is divided into P
partitions with one partition designated for each core. When
a worker thread, a surrogate of a processing core, arrives at

the execution of the loop (either because the worker starts the
loop or happens to steal into it), the worker first tries to claim
a partition designated to it based on the static partitioning. To
accommodate unbalanced iterations and the fact that not all
workers may arrive at the loop at the same time, once the
worker finishes its designated partition, it utilizes a claiming
heuristic that checks for the next partition to work on in a
semi-deterministic fashion. Using this claiming heuristic, a
worker will check whether it can claim the other partitions in
a deterministic sequence, computed based on its worker ID.
The heuristic produces partitions to work on as long as the
checked partition has not been claimed by any other worker.
After performing the claiming heuristic, a worker then reverts
back to dynamic partitioning using classic work stealing.

Some nondeterminism in how the iterations are scheduled
can still play out but it helps with retaining loop affinity
and at the same time allows for dynamic load balancing.
Moreover, we show that the proposed claiming heuristic
ensures that each partition executes exactly once and incurs
at most lgP failed claims per worker before a worker moves
onto dynamic partitioning using classic work stealing. Given a
parallel loop with N iterations, a work-stealing scheduler with
dynamic partitioning can schedule the loop in expected time
T1/P + O(lgN + maxN

i=0(T∞(i)), where T1 is the time it
takes to execute the loop on one core, and maxN

i=0(T∞(i))
denotes the maximum span of any iteration of the loop.
In contrast, the hybrid scheme executes in expected time
T1/P +O(P +lgN +maxN

i=0(T∞(i)), which helps with loop
affinity with an additive O(P ) overhead.

Researchers have studied scheduling mechanisms to trade
off between loop affinity and load balancing. Some approaches
adjust chunk sizes [15]–[24] which requires some centralized
control (e.g., requires a centralized queue or needs to know
which processor is most loaded). We took a different approach
by using a distributed work-stealing protocol that allows parti-
tioning to adjust dynamically without maintaining centralized
information. Others have investigated improving locality in
iterative applications running on a work-stealing platform [25],
[26]. These works require programmer annotations and do not
focus on providing a provable execution time bound.

We have implemented the hybrid partitioning scheme in
OpenCilk [9], an open-source version of Cilk that comes
with a compiler and a work-stealing runtime scheduler. We
experimentally evaluate the proposed scheme by comparing it
against OpenMP, FastFlow, and Cilk with dynamic partition-
ing. Our results indicate that the proposed scheme performs
comparably to static partitioning when the iterations have
balanced workload and incurs lower overhead and thus better
scalability compared to other partitioning schemes when the
iterations have unbalanced workload.

In summary, this paper makes the following contributions:
• We propose a hybrid partitioning scheme that combine

static and dynamic partitioning with a semi-deterministic
claiming heuristics (Section III).
• We show that the claiming heuristic is correct (every

partition executes exactly once) and that the hybrid scheme



executes a loop in expected time T1/P + O(P + lgN +
maxN

i=0(T∞(i)) (Section IV).
• We empirically evaluate the hybrid scheme and show that

it performs comparably or better depending on the workload
compared to other schemes (Section V).

II. PRELIMINARIES

This section briefly summarizes the necessary background.
Since our hybrid scheme is implemented by extending a
variant of Cilk [9], which utilizes a work-stealing scheduler,
we briefly summarize the task-parallel constructs supported
in Cilk, how its scheduler operates, and how we analyze the
performance of a Cilk computation.

The basic Cilk supports three keywords to allow for parallel
execution: spawn, sync, and cilk_for. When a function
F spawns another function G (preceding the invocation with
the spawn keyword), it indicates that the continuation of
F after the spawn statement can potentially execute in
parallel with the invocation of G. The sync statement is
the counterpart, which indicates that all previously spawned
child subroutines must return before the control can pass
sync. The cilk_for keyword indicates that iterations of
the loop are logically in parallel. In Cilk, a loop parallelized
with cilk_for is implemented using the divide-and-conquer
strategy that performs binary spawning on the iteration space
until the number of iterations reaches a particular chunk
size, in which case a sequential version (i.e., containing no
parallelism) of the loop is invoked to process those iterations.
By default, the chunk size is set to the minimum of 2048 and
N/8P where N is the number of iterations and P the number
of cores used.

Cilk schedules a parallel computation using a work-stealing
scheduler, which works as follows. At the runtime startup,
P workers are created, where each worker is a surrogate of
a processing core. Each worker has its own deque holding
available work, and for the most part a worker operates only
on its own deque. When a worker executes F that spawns G,
the frame for F is pushed onto the bottom of its deque. When a
worker returns from G, it pops the parent frame F off its deque
and continue execution of F , assuming that F has not been
stolen. The one-core execution of a Cilk computation mirrors
that of its serial counterpart (the sequential code obtained
by removing spawn, sync, and converting cilk_for to
for). The behavior of a worker diverges, however, when it
runs out of work — it turns into a thief and randomly chooses
another victim worker to steal from. A thief always steals
the top-most frame from the victim, and a successful resulted
in actual parallelism, where the continuation of the function
corresponding to the stolen frame now executes in parallel (by
the thief) with its subroutine (by the victim).

A parallel execution can be modeled as a computation
dag [27], where each node denotes a sequence of instructions
containing no parallel control and each edge denotes a de-
pendence — a node cannot execute until all its predecessors
have executed. When F spawns G, the spawn terminates
the current node and forms two outgoing edges, one to the

instance of G spawned and one to the continuation of F . When
F invokes a sync, it forms a node with multiple incoming
edges, one from each of the spawned subroutines and one from
the last continuation, where the node denotes the continuation
after the sync statement.

A work stealing scheduler provides provably good execution
time bound [27]. To state the bound, there are two important
performance metrics that one cares about. First is the work,
denoted as T1, or the time it takes to execute the all the
nodes in the dag on one core. Second is the span, denoted
as T∞, or the time it takes to execute a longest chain of
dependences in the computation dag. Given a computation
with work T1 and T∞, Cilk’s work-stealing scheduler can
execute the computation in expected time T1/P + O(T∞)
when running on P cores.

To state the execution time bound of a cilk_for loop,
we have to consider how it is implemented. A cilk_for
is effectively translated into a recursive function that spawns
off itself with the first half of the iteration space and calls
the itself in the continuation to process the second half,
until the function reaches the base case where the number
of iterations reaches the chunk size. This divide-and-conquer
recursive binary spawning incurs a little overhead. Specifically,
a cilk_for with N iterations and a constant chunk size has
the span of lgN + maxN

i=0(T∞(i)), where maxN
i=0(T∞(i))

denotes the maximum span of any iteration of the loop.

III. THE HYBRID LOOP SCHEDULING SCHEME

This section overviews the scheduling scheme for the pro-
posed hybrid loop. To simplify the presentation of the hybrid
loop, we shall first assume that the number of workers P is
always a power of 2. Then we discuss how to generalize hybrid
loops to avoid this assumption.

Overview of the implementation

A hybrid loop augments standard randomized work stealing
with a custom algorithm for mapping iterations to workers.
Conceptually, work in a hybrid loop is divided into P equally
sized partitions, with each partition earmarked for a particular
worker. To handle load imbalance or different worker (loop)
starting time, the hybrid loop algorithm employs a claiming
heuristic for dynamic load balancing in a way that accounts
for loop affinity.

Algorithm 1: Pseudocode for InitHybridLoop
Data: Start index start, end index (exclusive) end, number

of partitions R
1 A← initPartition(start, end);
2 spawn DoHybridLoop(my_wid(), R, A);
3 sync;

To describe the implementation of a hybrid loop, we first
discuss how a hybrid loop is compiled. Algorithms 1, 2, and 3
present the pseudocode for the compiler-runtime ABI of a
hybrid loop’s implementation. Conceptually, a hybrid loop is
compiled into the code shown in Algorithm 1. This code first



Algorithm 2: Pseudocode for Claim
Data: Index i, worker ID w, partition data structure A

4 r ← i⊕w;
5 if fetch_and_or(A[r], 1) then
6 return 0;
7 else
8 return 1;

Algorithm 3: Pseudocode for DoHybridLoop
Data: Worker ID w, number of partitions R, partition data

structure A
9 i← 0;

10 if Claim(i, w, A) then
11 spawn doWork(i⊕w);
12 i← i+ 1;
13 else
14 return;
15 while i < R do
16 if Claim(i, w, A) then
17 spawn doWork(i⊕w);
18 i← i+ 1;
19 else
20 i← i+ (i & −i); /* increment i by */

/* its least-significant set bit */
21 sync;
22 return;

initializes a partition data structure A necessary to execute
the hybrid loop heuristic (line 1), where the iteration space is
evenly divided into P partitions, each designated to a worker,
where P is the number of workers. The code then spawns off
a function named DoHybridLoop (line 2) implemented by
the runtime system.

Algorithms 2 and 3 present pseudocode for
DoHybridLoop, and an auxiliary method Claim, that
implement the claiming heuristic used by a hybrid loop to
account for loop affinity. The heuristic partitions the iterations
of a loop into R = 2k partitions, for some integer k ≥ 0. The
heuristic uses a worker-specific mapping of each partition to
an index number i ∈ {0, 1, 2, . . . , R− 1}, using that worker’s
ID w ∈ {0, 1, 2, . . . , P − 1}. For simplicity, we shall refer to
a worker interchangeably with that worker’s ID. For worker
w, line 4 in Algorithm 2 maps each index i to a partition
r = i⊕w, where ⊕ is the bitwise XOR operator. Because ⊕
is bijective and ⊕ is its own inverse, for each worker w, each
partition r maps to a distinct index i = w⊕ r, and each index
i maps to a distinct partition r = w⊕ i. We say that a worker
w successfully claims a partition r if a call to Claim(i, w,
A), where i = r⊕w, returns 1 (line 8). Otherwise the claim
is unsuccessful when it returns 0 (line 6).

Since each worker w entering the heuristic in Algorithm 3
starts with i = 0 and its own unique worker ID w, a worker
w effectively tries to first claim the partition earmarked for it.
If this claim fails, some other worker w′ has claimed it and
w moves onto dynamic load balancing with work stealing. On
the other hand, if this claim succeeds, w executes the iterations
in the claimed partition via doWork, updates i (line 12), and

continues on with the heuristic (lines 15–20). As the heuristic
continues, w tries to claim other partitions by updating i
(line 18 or line 20), which generates a claim sequence unique
to worker w.

The body of the original loop is lifted into the routine
doWork, which is called on lines 11 and 17 to execute a
partition of iterations. In particular, this routine performs an
ordinary divide-and-conquer parallel loop with binary spawn-
ing as described in Section II over the iterations of a partition,
to allow for dynamic load balancing of the work of a partition.

We now address the simplifying assumption that the number
of workers P is a power of 2. If P is not a power of 2, the
hybrid loop uses R equal to the next power of 2 greater than
P , and only earmarks the first P partitions for the workers.
The DoHybridLoop routine ensures that these additional
unassociated partitions are nevertheless executed.

Steal protocol for DoHybridLoop frames
Recall from Section II that each worker maintains its own

deque of frames and utilizes steals to load balance. The ran-
domized work-stealing scheduler handles a DoHybridLoop
frame differently from other frames in the runtime. First, a
DoHybridLoop frame contains a pointer to a partition data
structure A, which keeps track of the process of the loop.
Second, a worker stealing a DoHybridLoop frame follows
a custom protocol for stealing work.

When a worker w attempts to steal a DoHybridLoop
frame, it first checks whether its designated starting partition,
r = w⊕ 0, has been claimed, that is, if A[r] is 1. If
the partition has been claimed, then the worker performs
ordinary randomized work stealing. If the partition has not
been claimed, then the worker creates its own copy of a
DoHybridLoop frame executing DoHybridLoop (w, R,
A), that is, a DoHybridLoop frame executing with the same
arguments R and A but with the worker ID w of the thief.
As a result, if the worker’s designated starting partition r is
available, then the worker starts executing DoHybridLoop
in a manner so as to start by executing partition r.

This DoHybridLoop steal protocol means that, when
stealing a DoHybridLoop frame, a worker may begin exe-
cuting a different partition than the partition that the victim
would normally execute next. As a result, a partition may
execute out-of-order, compared to the order implied by the
fork-join code in Algorithms 1, 2, and 3 executed by the
worker that started the hybrid loop. For example, suppose
that worker 0 starts executing a hybrid loop. If no workers
steal from worker 0, then worker 0’s call to DoHybridLoop
spawns off the execution of the partitions in order 0, 1, 2, etc.
But if worker 2 steals the DoHybridLoop frame from worker
0 before worker 0 claims partition 1, then worker 2 starts
executing partition 2, before worker 0 spawns execution of
partition 1. Section IV proves the correctness of this protocol,
as well as its worst-case parallel performance.

IV. THE ANALYSIS OF THE HYBRID LOOP SCHEDULER

This section analyzes the hybrid loop algorithm described
in Section III. We prove its correctness of hybrid loop and



analyze its running time a hybrid loop using work/span analy-
sis [28, Ch. 27]. This analysis shows that, when the number of
partitions matches the number of workers P , then the worst-
case parallel running time of a hybrid loop on n iterations is
TP ≤ T1/P +O(P + lg n+maxn

i=0(T∞(i)), where T1 is the
total work of the hybrid loop and maxn

i=0T∞(i) denotes the
maximum span of any iteration of the loop.

Correctness

To justify the correctness of hybrid loop, we first argue that
the Claim routine in Algorithm 2 ensures that any partition
that any worker attempts to claim is executed exactly once.
We then argue that the execution of DoHybridLoop by any
nonempty set of workers ensures that each partition is claimed.
As a result, we conclude that the hybrid loop heuristic ensures
that every partition is executed exactly once.

The following lemma shows that, after some worker w calls
Claim(i, w, A) for index i, the partition i⊕w is guaranteed
to be executed to be executed exactly once.

Lemma 1. After a worker w attempts to claim a partition
r = w⊕ i for some index i, partition r has been executed
exactly once.

Proof. Consider the pseudocode in Algorithms 2 and 3. If
worker w executes the fetch_and_or instruction on line 5
and it succeeds, then w executes partition r on on line 11
or line 17. Otherwise the flag A[r] for partition r was pre-
viously set to 1, which means another worker w′ must have
successfully executed line 5, in which case w′ executes r.

To argue the correctness of the hybrid loop, for each worker
w, we consider the set of R partitions in a hierarchy of groups,
based on the index that maps to each partition. For 0 ≤ n ≤ k,
define the level-n index group to be the set I(x, n) =
{x · 2n, (x · 2n) + 1, (x · 2n) + 2, . . . , (x · 2n) + 2n − 1}
of 2n of indices, where x ∈ {0, 1, 2, . . . , R/2n − 1}.
For example, suppose we have R = 23 = 8 indices,
{0, 1, 2, 3, 4, 5, 6, 7}. These indices subdivide into the level-1
index groups {0, 1}, {2, 3}, {4, 5}, and {6, 7}, and they
also subdivide into the level-2 index groups {0, 1, 2, 3} and
{4, 5, 6, 7}. Index groups have the following properties:

• For n > 0, we have I(x, n) = I(2x, n − 1) ∪ I(2x +
1, n− 1).

• For n < 2k, we have that I(x, n) is a subset of a single
level-n + 1 index group, I(bx/2c , n + 1).

For each level-n index group and worker w, define
the level-n partition group to be the set G(w, x, n) =
{w⊕(x · 2n), w⊕((x · 2n) + 1), . . . , w⊕((x · 2n) + 2n − 1)},
that is, the set obtained by computing w⊕ i for every
i ∈ I(x, n). For convenience, we denote the partition
group G(w, x, n) = w⊕ I(x, n). For instance, for worker
w = 5 and the previous example of R = 8 indices, the
level-2 partition groups are 5⊕{0, 1, 2, 3} = {5, 4, 7, 6} and
5⊕{4, 5, 6, 7} = {1, 0, 3, 2}. In addition, we say a worker
w attempts to claim index group I(x, n) when it attempts to

claim partition w⊕(x · 2n), that is, when w attempts to claim
the partition mapped to the first index in I(x, n).

The following lemma analyzes the pseudocode in Algo-
rithm 3 to justify that all partitions are claimed.

Lemma 2. If any worker attempts to claim a partition within
a partition group, then all partitions in that group are claimed.

Proof. The proof follows by induction on the level n of the
partition group. Consider the pseudocode in Algorithm 3, and
suppose that a worker w is claiming a partition in a partition
group G(w, x, n) for some x.

In the base case, n = 0 and partition group G(w, x, 0)
contains exactly one partition. When that partition is claimed
on line 10 or line 16, all partitions in G(w, x, 0) are claimed.

For n > 0, we suppose the lemma holds for level n − 1.
Lines 12 and 18 implies that a worker claims an index group
I(x, n) by first recursively claiming index I(2x, n − 1) and
then recursively claiming index I(2x+ 1, n−1). We consider
the possible outcomes.

Suppose first that worker w succeeds in recursively claiming
I(2x, n − 1). By the inductive hypothesis, all partitions in
G(w, 2x, n−1) = w⊕ I(2x, n−1) are claimed when partition
r = w⊕(2x·2n−1) is claimed. When w subsequently attempts
to recursively claim I(2x + 1, n − 1), then whether or not
w succeeds, by the inductive hypothesis, every partition in
w⊕ I(2x + 1, n− 1) is claimed.

Suppose instead that w fails to recursively claim I(2x, n−
1). Line 20 increments the current index by its least-significant
set bit. This code implies that w next attempts to recursively
claim an index group at a higher level, which does not contain
index group I(2x + 1, n− 1). We shall see that all partitions
in G(w, x, n) = w⊕ I(x, n) are nevertheless claimed.

Let worker w′ be the worker that successfully claimed
partition y = w⊕(2x ·2n−1), thus causing worker w to fail to
claim I(2x, n−1). Partition y is contained in some level-n−1
partition group G(w′, x′, n− 1) = w′⊕ I(x′, n− 1) for some
x′ ∈

{
0, 1, 2, . . . , R/2n−1 − 1

}
.

We first show that all partitions in G(w, 2x, n− 1) are also
in G(w′, x′, n− 1). Consider a partition r ∈ G(w, 2x, n− 1),
and let v = w′⊕w. For some a ∈

{
0, 1, 2, . . . , 2n−1 − 1

}
,

we observe that

r = w⊕((2x · 2n−1) + a)

= w′⊕w′⊕w⊕((2x · 2n−1) + a)

= w′⊕((
⌊
v/2n−1

⌋
⊕ 2x) · 2n−1 + (v mod 2n−1⊕ a))

= w′⊕((x′ · 2n−1) + a′) ,

where x′ =
⌊
v/2n−1

⌋
⊕ 2x and a′ = v mod 2n−1⊕ a.

Because a′ ∈
{

0, 1, 2, . . . , 2n−1 − 1
}

, we have r ∈
w′⊕ I(x′, n − 1), and thus r ∈ G(w′, x′, n − 1). Hence,
G(w, 2x, n − 1) = G(w′, x′, n − 1). Because the inductive
hypothesis implies that all partitions in G(w′, x′, n − 1) are
claimed, all partitions in G(w, 2x, n− 1) are claimed.

To argue that the partitions in G(w, 2x+ 1, n− 1) are also
claimed, we consider two cases, based on the parity of x′.



Case 1: x′ is even. Because x′ =
⌊
v/2n−1

⌋
⊕ 2x, we have

x′+1 =
⌊
v/2n−1

⌋
⊕(2x+1), which implies that any partition

in G(w, 2x+1, n−1) is also in G(w′, x′+1, n−1). Because
worker w′ attempts to recursively claim G(w′, x′ + 1, n− 1)
after G(w′, x′, n−1), by the inductive hypothesis, all partitions
in G(w, 2x + 1, n− 1) are claimed.

Case 2: x′ is odd. Because x′ =
⌊
v/2n−1

⌋
⊕ 2x and

2x is even, we have that
⌊
v/2n−1

⌋
is odd. Therefore,⌊

v/2n−1
⌋
⊕(2x + 1) = x′ − 1, and any partition in

G(w, 2x + 1, n− 1) is also in G(w′, x′ − 1, n− 1). Because
worker w′ claims the partitions in group G(w′, (x′− 1)/2, n)
by recursively claiming G(w′, x′ − 1, n − 1) followed by
G(w′, x′, n − 1), worker w′ must have already recursively
claimed G(w′, x′ − 1, n− 1). Therefore, by the inductive hy-
pothesis, all partitions in G(w, 2x+1, n−1) are claimed.

Lemmas 1 and 2 combine to complete the correctness proof.

Theorem 3. Every partition in a partition group is executed
exactly once.

Proof. Lemma 2 implies that every partition is claimed, and
Lemma 1 implies that each claimed partition is executed
exactly once.

Running-time analysis

We now analyze the parallel running time of a hybrid loop,
based on the fork-join dependencies of Algorithms 1, 2, and 3.
Because the steal protocol for a DoHybridLoop implies that
a partition may be executed sooner than implied by these fork-
join dependencies, this analysis provides a worst-case bound
on the parallel running time of a hybrid loop.

To begin, the following lemma bounds the work involved
in successfully claiming a partition.

Lemma 4. After at most lgR unsuccessful claims, a
worker either performs a successful claim or returns from
DoHybridLoop.

Proof. As Algorithm 3 shows, when a call to Claim returns
0, either line 14 or line 20 executes. Line 14 causes the
worker to exit DoHybridLoop immediately, whereas line 20
increments the current index i by the least significant set bit
in the binary representation of i. After at most lgR executions
of line 20 without a successful call to Claim on line 16, i
must be at least R. In this case, the worker exits the loop on
lines 15–20 and return on line 22.

We now consider the steal protocol on DoHybridLoop
frames, which allows a worker upon stealing a
DoHybridLoop frame to begin executing a partition
other than the partition that the continuation of the
DoHybridLoop frame would execute. We analyze the
effect of this DoHybridLoop steal protocol.

We first note that the DoHybridLoop steal protocol ex-
ecutes in Θ(1) work. When a worker w begins executing
DoHybridLoop— either by executing line 2 or by stealing a
DoHybridLoop frame — it checks the A structure in Θ(1)
work to check if its designated partition is available. If so, w

creates its own copy of the DoHybridLoop frame onto its
deque, in Θ(1) work, in which it invokes DoHybridLoop
using its own worker ID. Otherwise, the worker performs
ordinary randomized work stealing.

To study how this steal protocol affects the theoretical per-
formance of the scheduler, we model the execution of a hybrid
loop using a nondeterministic computation dag as follows.
When a worker steals a continuation of a DoHybridLoop
frame — which corresponds with the continuation of lines
11 and 17 — and begins executing partition r, we model the
execution of r as a successor of the corresponding spawn
node in the computation dag. Thus, unlike an ordinary spawn
node, this node can end up with more than two successors.
Because the DoHybridLoop steal protocol allows at most
P steals from DoHybridLoop frames for a hybrid loop to
behave differently from normal steals, the DoHybridLoop
steal protocol nondeterministically produces a tree of O(P )
nodes in the computation dag to model how the partitions of
a hybrid loop are enabled for parallel execution.

Although the subdag modeling a hybrid loop is nonde-
terministic, the worst case — in which the subdag has the
longest span — occurs when the processing of each partition
of the hybrid loop is spawned off serially, as described by
the fork-join code in Algorithms 1, 2, and 3. Therefore, to
bound the parallel running time of a hybrid loop, the following
theorem analyzes the hybrid loop according to the fork-join
dependencies implied by this fork-join code and ordinary
randomized work stealing.

Theorem 5. Consider a loop of n iterations divided into
R < n partitions and scheduled using a hybrid loop. For
j ∈ {0, 1, 2, . . . , n− 1}, let T1(j) and T∞(j) denote the
work and span, respectively, of the jth iteration of the loop.
Then the parallel loop executes on P workers in time TP ≤∑n

j=0 T1(j)/P + Θ(R + n/R)/P + O(R lgR)/P + O(R +
lg n + maxn

j=0 {T∞(j)}).

Proof. We analyze the execution of a hybrid loop using
work/span analysis [28, Ch. 27].

Initializing a partition data structure A, on line 1 of Algo-
rithm 1, takes Θ(R) work and Θ(lgR) span.

Each call to Claim performs constant work and is either
successful or unsuccessful. Lemma 4 shows that any worker
performs at most lgR unsuccessful claims before successfully
claiming a partition or returning to ordinary randomized work
stealing. Hence a total of O(R lgR) work is incurred to claim
all R partitions, and O(lgR) span is incurred to claim a single
partition.

The iterations in each partition are executed using a
cilk_for loop, to support efficient dynamic load balanc-
ing of partitions with different amounts of work. Therefore,
after some worker w successfully claims a partition r, the
execution of r incurs work Θ(n/R) +

∑
j∈r T1(j) and span

Θ(lg(n/R)) + maxj∈r T∞(j). Hence, the loop on lines 15–
20, which, in the worst case, iteratively spawns the execution
of each partition, incurs work Θ(R+n/R)+

∑
j∈r T1(j) and

span O(R) + Θ(lg(n/R)) + maxj∈r T∞(j).



Combining these analyses, executing a hybrid loop incurs
work

∑n
j=0 T1(j) + O(R lgR) + Θ(R + n/R) and span

maxn
j=0 T∞(j) + O(R) + Θ(lg n). Plugging these terms into

the parallel running-time bound TP yields the bound.

The following corollary, which follows from Theorem 5,
analyzes the common case where R = P .

Corollary 6. When the number of partitions R is set equal
to the number of workers P and n > P , a hybrid loop
with work T1(j) and span T∞(j) per iteration j runs on P
workers in time TP ≤ Θ(

∑n
j=0 T1(j))/P + O(P + lg n +

maxn
j=0 {T∞(j)}).

V. EMPIRICAL EVALUATION

In this section, we empirically evaluate our proposed
scheduling scheme for hybrid loops against static partitioning,
dynamic partitioning, and guided partitioning implemented in
various popular task-parallel platforms. We have evaluated
these schemes using microbenchmarks and the five kernels
from NAS parallel benchmarks [1] — since the original NAS
benchmarks are based in Fortran (even the OpenMP port), we
used the C/C++ port by Griebler et al. [29] which included
the five kernels based on NBP3.3.1 with ports to OpenMP
and FastFlow, two platforms that we compare to.1 Empirical
results indicate that our proposed hybrid scheme performs
comparably to static partitioning when the iterations have
balanced workload and incurs lower overhead and thus better
scalability compared to other partitioning schemes when the
iterations have unbalanced workload. Moreover, our hybrid
scheme tends of retain loop affinity as well as the static parti-
tioning strategy and retain loop affinity much better compared
to other dynamic schemes.

Experimental setup

We ran our experiments on a 32-core machine with 2.20-
GHz cores on four sockets (Intel Xeon E5-4620) (8-core per
socket). Each core has a 32-KByte L1 data cache, 32-KByte
L1 instruction cache, and a 256-KByte L2 cache. Each socket
shares a 16-MByte L3-cache, and the overall size of DRAM
is 512 GByte.

We compare to various loop scheduling schemes used
in OpenMP [2] (omp_static, omp_dynamic, and
omp_guided for OpenMP with static, dynamic, and guided
partitioning respectively), FastFlow [3] (ff) and vanilla Cilk
from the OpenCilk release [9] (vanilla with dynamic parti-
tioning using work stealing). FastFlow supports both static and
dynamic partitioning with work sharing. As its performance
tends to lag behind other platforms, we ran FastFlow with
both schemes and only displayed the data point with better
performing scheme (always shown as (ff). For all platforms,
we pin threads to cores in a compact fashion during executions,
i.e., if less than 8 threads are used, only one socket is
employed.

1The codebase that we adopted can be found at https://github.com/
dalvangriebler/NPB-CPP.

All Cilk-based benchmarks are compiled with Tapir [30],
a LLVM/Clang (version 7) based Cilk compiler. Others are
compiled using the same version of LLVM/Clang that Tapir is
based on. We used OpenMP 4.5 that came with LLVM/Clang.
We obtained the FastFlow runtime via codebase found at https:
//github.com/fastflow/fastflow. We have used the vanilla Cilk
Plus originally released by Intel [4] that came with the Tapir
compiler. All software is compiled using -O3 and run on
Linux kernel version 4.15 with NUMA support enabled and
dynamic frequency scaling and hyperthreading disabled. For
all platforms, we have used NUMA-aware memory allocation
to distribute the data across sockets to allow the static parti-
tioning to exploit the locality benefit.

Benchmarks

We have constructed two microbenchmarks simulating iter-
ative applications with heavy data accesses, one with balanced
parallel loop iterations (balanced) and one with unbalanced
(unbalanced). Each microbenchmark consists of an outer
sequential loop with an inner parallel loop, where each parallel
loop iteration operates on an array in strides of 13 modulo the
size of the array (which prevents the prefetcher from prefetch-
ing on the machine we used). Each parallel iteration in the
balanced accesses the same amount of data, whereas that
parallel iterations in unbalanced access variable amounts.
The arrays accessed by different parallel iterations do not
overlap in memory.

We have used the five kernels from the NAS parallel bench-
mark suite [1], which can be mostly parallelized using parallel
loops. The kernels include mg, a V-cycle multigrid algorithm,
ft, fast Fourier transforms, ep, an embarrassingly parallel
kernel that generates pairs of Gaussian random deviates, is,
a sorting algorithm, and cg, conjugate gradient.

Results on microbenchmarks

Absolute performance. We ran the two microbenchmarks
on three different working set sizes, one with which data
accessed by cores on a socket is well within the L3 cache
capacity (< 12MB), one at about the L3 cache capacity
(< 16MB), and one that exceeds the L3 cache capacity but
fits within the DRAM of a socket (266MB).

The plots in Figure 1 show the scalability results of the
microbenchmarks, namely T1/TP , where T1 is the running
time on one core, including overhead necessary to enable
parallelism, and TP is the running time on P cores. The fist
column shows the work efficiency, namely Ts/T1, where Ts

is the running time of the sequential code without any parallel
constructs. Each data point corresponding to the running times
used to compute the scalability plots are the average of 5 runs
with standard deviation less than 4% except for a couple data
points with standard deviation less than 5% (hybrid and
vanilla for unbalanced running on 32 cores with the
largest working set size).

The reason why we separately show Ts/T1 and scalability
(as opposed to speedup, TP /Ts) is that it conveys more
information. For configuration where the partitioning is done at
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Fig. 1. The work efficiency and scalability results of running balanced (top) and unbalanced (bottom) microbenchmarks on three different working set
sizes (from left to right, well under L3 cache size, at about L3 cache size, and above L3 cache size).

runtime (e.g., dynamic partitioning), the chunk size — number
of consecutive iterations that can only be run on one core
— can impact the work efficiency. By default most platforms
(OpenMP and FastFlow) utilize chunk size of one for dynamic
partitioning, which can incur high parallel overhead and causes
the performance to suffer. We thus configured the platforms to
use a larger chunk size (but small enough to still have sufficient
parallelism). All platforms are run with the same chunk size
of either N/8P or 2048, whichever is smaller. As the work
efficiency column indicates, all platforms are adjusted to have
similar work efficiency (close to one, which is the desired
value).

For the balanced workload, all platforms perform com-
parably when the P used are all within a single socket. Here,
FastFlow (ff) shown uses the static partitioning scheme as it
performs better than the dynamic scheme on the balanced
workload. The performance differences become more evident
when the executions are cross-sockets, i.e., on 16 and 32 cores.
The omp_static configuration outperforms all the other
platforms, which is not surprising, as the workload is designed
to be well suited for static partitioning. The partitioning for
omp_static is done primarily by the compiler and incurs
little scheduling overhead (which mainly includes the runtime
startup cost, which is amortized across the sequence of parallel
loops as it is only done for the very first parallel loop). Never-
theless, the performance of our hybrid scheme follows closely.
Our hybrid scheme incurs slightly more scheduling overhead,
as the partitioning is done at runtime with some bookkeeping
to allow for dynamic load balancing when necessary.

The performance for the non-static partitioning solutions
(vanilla, omp_dynamic, and omp_guided) tend to lag

behind when the executions cross sockets. The omp_guided
tends to outperform omp_dynamic as both use work shar-
ing and omp_guided incurs lower scheduling overhead (as
threads access the shared queue less frequently). Cilk Plus
(vanilla) uses work-stealing and lags behind for the smaller
working sets but come slightly ahead in the larger working set.
It is a little surprising that the performance of ff also lags
behind in the smaller working set size, despite the fact that it
uses static partitioning.

For the unbalanced workload, the FastFlow shown
(ff) uses the dynamic partitioning with the adjusted chunk
size. Here the non-static schemes (except for ff) clearly
win out. It’s a bit surprising how well omp_guided and
omp_dynamic perform, especially for the smaller working
set size. In general, the OpenMP implementations seem to have
stronger performance when the loops are small (i.e., smaller
working sets translate to less work in our microbenchmarks).
As the working set size increases (and work increases),
however, our hybrid scheme performs comparably or better.
Similar trend can be observed between the omp_dynamic
(dynamic partitioning with work sharing) and vanilla (dy-
namic partitioning with work stealing), where the work steal-
ing variant performs better as the amount of work increases.

Retaining loop affinity. Finally, we use the microbench-
marks to evaluate how well our scheme retains loop affinity
compared to other schemes. We focus on comparing the hybrid
scheme against the dynamic partitioning in Cilk (vanilla)
and the various OpenMP schemes (omp_*) and omit Fast-
Flow, as the schemes used by FastFlow are also supported by
OpenMP, and the OpenMP schemes performed better than the
FastFlow ones on these microbenchmarks.



11.90MB 15.87MB 79.35MB
hybrid balanced 99.99% 99.99% 99.99%

vanilla balanced 3.16% 3.15% 3.16%
omp_static balanced 100.00% 100.00% 100.00%
omp_dynamic balanced 9.31% 10.29% 11.95%
omp_guided balanced 4.83% 4.75% 4.64%

hybrid unbalanced 67.52% 67.31% 67.15%
vanilla unbalanced 3.19% 3.19% 3.19%

omp_static unbalanced 100.00% 100.00% 100.00%
omp_dynamic unbalanced 4.20% 4.21% 4.27%
omp_guided unbalanced 4.31% 4.27% 4.14%

Fig. 2. The percentage of loop iterations executed by the same core in
consecutive parallel loops running microbenchmarks on 32 cores using our
scheme (hybrid), the dynamic partitioning in Cilk (vanilla), and various
OpenMP schemes (omp_*).

Figure 2 shows the percentage of iterations that got executed
by the same core in consecutive parallel loops (i.e., the fraction
of the iterations such that an iteration j from loop i executed
on the same core as the iteration j from loop i − 1) when
running on 32 cores. The percentage shown is the median
out of three runs. As expected, the omp_static is able
to maintain 100% loop affinity across parallel loops. Our
hybrid scheme works well for the balanced workload and
was able to retain 67% of loop affinity for the unbalanced
workload. As such, our scheme was able to outperform
omp_static for the unbalanced workload (per Figure 1)
as it load balances better and can retain some locality at
the same time. All the other dynamic schemes (vanilla,
omp_dynamic and omp_guided had a hard time retaining
loop affinity. As such, they perform obviously worse than
omp_static for the balanced workload, but still win out
for the unbalanced workload due to their ability to better
load balance. One interesting thing to note is that, even though
both omp_dynamic and omp_guided have a hard time re-
taining loop affinity, omp_guided still performed better than
omp_dynamic on these microbenchmarks. We suspect that
this is because omp_guided incurs lower synchronization
overhead as it needs to access the centralized work queue less
frequently compared to omp_dynamic.

Results on NAS benchmarks

Absolute performance. We ran the five NAS benchmarks on
all platforms using input class size C for mg, ft, and cg and
input class size B for ep and input class size D for is. We
have used input class size B for ep because the benchmark is
embarrassingly parallel with ample parallelism and at the same
time without much data usage; as such, using the input class
size C would not provide much more information compared to
using class size B. For is, we chose to use input class size D
so that the workload incurs computation that runs sufficiently
long on 32 cores.

Each benchmark consists of multiple parallel loops. We
manually examined the codebase to see if the parallel loops
have balanced or unbalanced workloads judging by the number
of memory accesses done in the loop body. For OpenMP, we
used omp_static for balanced loops and omp_guided for

the unbalanced loops. For FastFlow, we used the default static
partitioning for balanced loops and the dynamic partitioning
for the unbalanced loops. It turns out that most loops seem
balanced except for one in is that is unbalanced.

The plots in Figure 3 show the scalability of the NAS
benchmarks, namely T1/TP . As for the plots in Figure 1, the
fist column in each plot shows the work efficiency, namely
Ts/T1. Each data point corresponding to the running times
used to compute the scalability plots is the average of 10 runs
with standard deviation less than 4%.

There is no one platform that performs the best across
all benchmarks. Our hybrid scheme outperforms the other
platforms on ft, is, and ep, and OpenMP outperforms the
others on mg and cg. However, our hybrid scheme performs
second best in mg and cg whereas, interestingly, FastFlow
outperforms OpenMP on ft. Moreover, unlike OpenMP or
FastFlow, the programmer using the hybrid scheme does not
need to manually examine the code and guess as to which
scheme to use, which can change depending on the input.

Retaining loop affinity. The the NAS benchmarks, we eval-
uate how well each strategy retains loop affinity using hard-
ware counters to measure the numbers of memory accesses
serviced at the different levels of memory hierarchy (i.e., L1,
L2, L3 cache hits, and L3 misses serviced by local DRAM,
remote L3 cache, and remote DRAM) using the LIKWID
performance monitoring suite [31]. The specific CPUs (Intel
Xeon E5-4620) used for the experiments contains a hardware
bug that causes certain performance counters (specifically on
L3 cache and DRAM) to under count [32] However, a software
patch is available from [33] (the latego.py script in the
repository) which mitigates, but does not completely eliminate
the bug. We have applied this patch for the data shown in
Figure 4. Due to the limited number of hardware counters
supported on the CPUs used, these numbers are collected in
two sets of runs. Within each set, a subset of hardware counters
shown were collected, and the median out of three runs are
used. We started the hardware count collection right before the
beginning of the first top-level parallel region and stopped the
collect right after the end of the last top-level parallel region.
Therefore, all counts included memory accessed incurred by
the scheduling code.

Note that, the absolute hardware counter numbers do not
accurately reflect the relative performance of the benchmarks
among different strategies, for multiple reasons. First, the per-
formance of a benchmark running using a particular strategy
is not purely a function of memory access latency; it is also a
function of the scheduling overhead and idle time (i.e., time
incurred by an idling core that does not have work to do).
Second, the latency incurred by memory accesses are spread
out among cores used but not necessarily evenly. Finally, it
turns out that, code written using OpenMP actually performs
more overall work across all cores because its parallel regions
are always executed by all cores. That means, certain computa-
tions exist in the parallel region that could have been computed
sequentially and communicated to all cores, but the code is
written explicitly to incur redundant computation to avoid this
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Fig. 3. The work efficiency and scalability results of the NAS benchmarks (input class size C for mg, ft, and is and input class size B for ep and cg).

local local remote remote latency
bench L1 L2 L3 DRAM L3 DRAM w/out L1

hybrid mg 1.18e11 3.42e9 5.67e8 2.73e8 1.69e7 4.41e7 1.70e11
vanilla mg 1.18e11 3.44e9 5.61e8 8.40e7 3.10e7 2.16e8 2.42e11

omp mg 2.44e11 3.50e9 5.78e8 1.75e8 3.47e6 1.06e8 1.80e11
hybrid ep 3.69e10 3.13e7 8.15e6 4.66e4 6.70e5 7.98e4 1.13e9
vanilla ep 3.69e10 3.38e7 8.17e6 4.61e4 7.48e5 8.45e4 1.20e9

omp ep 3.97e10 3.27e7 8.13e6 3.29e4 3.42e5 1.18e5 9.96e8
hybrid cg 7.92e10 1.11e10 5.46e10 2.90e9 1.90e8 2.37e8 3.36e12
vanilla cg 7.49e10 1.10e10 5.24e10 6.35e8 1.87e8 1.35e9 3.43e12

omp cg 3.13e11 1.10e10 5.34e10 1.42e9 1.11e8 1.57e9 3.77e12
hybrid ft 8.38e10 7.48e9 2.46e9 7.30e8 8.77e7 4.53e8 7.12e11
vanilla ft 8.40e10 7.58e9 2.30e9 3.10e8 1.12e8 8.54e8 8.75e11

omp ft 1.43e11 7.10e9 2.87e9 6.39e8 1.12e8 4.72e8 7.26e11
hybrid is 1.15e11 5.21e9 1.39e10 3.39e8 4.28e7 2.63e8 9.17e11
vanilla is 1.23e11 5.15e9 1.39e10 2.17e8 3.18e8 4.42e8 1.14e12

omp is 1.85e11 5.43e9 1.37e10 3.13e8 3.39e7 4.10e8 9.91e11

Fig. 4. The hardware counts for memory accesses serviced by each level
of memory hierarchy running the benchmarks ion 32 cores using our
scheme (hybrid), the dynamic partitioning in Cilk (vanilla), and various
OpenMP schemes (omp), where omp_static was used for balanced loops
and omp_guided was used for unbalanced loops.

Level Serviced Latency

L1 4.1
L2 12.2
L3 41.4
local DRAM 246.7
remote L3 381.5 - 648.8
remote DRAM 643.2 - 650.9

Fig. 5. Access latency serviced by dif-
ferent levels of memory hierarchy on
the machined used to collect data. The
latency for the remote L3 and remote
DRAM is given as a range because it
depends on the cache line state and
distance between the requesting core and
where the data resides.

communication overhead. Consequently, code written using
OpenMP actually incurred higher number of overall memory
accesses, which mostly showed up as additional L1 hits
compared to other strategies.

Nevertheless, these hardware counts can approximate how
well a strategy retains loop affinity. Since the redundant
computation done by OpenMP code seemed to mostly appear

as additional L1 hits, we have computed the inferred latency
based on these counts. Figure 5 shows the memory access
latency incurred when an access is serviced at each given
level of memory hierarchy on the system used to collect these
numbers. When the latency is shown as a range, we used the
middle value within the range. The latency measurements were
collected using the Intel Memory Latency Checker [34], which
was configured to access memory in a random pattern with
the hardware prefetcher on. Again, we focus our attention on
comparing the hybrid scheme against the dynamic partitioning
in Cilk (vanilla) and the OpenMP schemes (omp) and omit
FastFlow, as the schemes used by FastFlow are also supported
by OpenMP, and the OpenMP schemes outperformed FastFlow
for most benchmarks. As can be seem,

Based on the results shown in Figure 4, we can see that
all three schemes tend to have comparable numbers for L1,
L2, and L3 hits. However, as the execution starts incurring
L3 misses, for hybrid and omp, these misses tend to be
serviced by local DRAM more, where as vanilla incurred
more misses serviced by remote DRAM, which backs up our
intuition that the hybrid and omp_static tend to retain
loop affinity better. The inferred latency (without L1) also
suggests that vanilla tends to incur the highest latency, with
the exception of cg which has comparable numbers across
strategies.

VI. RELATED WORK

In the literature, researchers have investigated multiple
scheduling schemes for parallel loops. Beyond the various par-
titioning schemes mentioned in Section I, researchers have in-
vestigated in other dynamic chunking schemes that account for



load imbalance and different core starting time, making differ-
ent tradeoffs between load balancing and synchronization over-
head, including schemes with decreasing chunk sizes [15]–
[19] and schemes that adaptively determine chunk sizes based
on runtime statistics [20], [21]. These chunking strategies
can be beneficial and complementary to existing methods,
especially when the platform employs work sharing with a
centralized queue or when the program runs on distributed
memory system with distributed queues. In our scheme, since
we primarily focus on shared-memory environment and load
balancing is achieved via work stealing, changing the chunking
size from half of what’s remaining to variable size should
not significantly change the performance as successful steals
tend to be inexpensive. Thus, we do not focus on chunking
schemes to load balance, but instead we utilizes the claiming
heuristic to potentially enable better loop affinity while still
allows for distributed work stealing to guarantee the execution
time bound.

In distributed memory system setting, researchers have also
looked into combining static partitioning and dynamic load
balancing [22]–[24], where iterations are initially distributed
via static partitioning which incurs little scheduling overhead.
A dynamic load balancing phase can overlap with the static
phase (where processors executes the iterations obtained via
static partitioning). The dynamic load balancing phase requires
centralized coordination and assumes that processor loads are
known. In our scheme, we utilize a distributed protocol for
dynamic load balancing, which is necessary to achieve the
stated execution time bound.

Thoman et al. [35] propose an automatic OpenMP loop
scheduling scheme that combines both static information gath-
ered at compile time and via runtime monitoring to choose
the best scheduling strategy. Specifically, at compile time,
a polyhedral model [36] is used to obtain estimation of
computation load of a subrange of a given loop. At runtime,
input size and external workload are also collected. Based on
the gathered information, the scheduler than chooses a strategy
to schedule the given loop. If the loop is small (i.e., tiny work-
load), it is executed sequentially. If the external workload is
large enough to potentially impact scheduling of this process,
then a dynamic partitioning strategy is used. If the workload
estimator is available, the scheduler utilizes it to generate
balanced workload across available cores. Otherwise, it falls
back to the dynamic scheme. Our proposed hybrid scheme
can be complementary to this work, where the scheduler can
utilize our hybrid scheme in place of the dynamic scheme to
potentially retain loop affinity better.

Researchers have also investigated scheduling heuristics to
optimize for iterative applications by incorporating affinity
scheduling when assigning loop iterations [37], [38], where
the iterations are assigned to processors / cores that they have
affinity with. Lifflander et al. proposed a scheme to efficiently
record the steal operations in a work stealing platform [39] and
proposed a constrained work stealing scheme [25] to account
for loop affinity by replaying a recorded steal tree or one
provided by the programmer. These schemes do not focus on

providing provable execution time bound and the constraint
imposed by affinity scheduling can cause a processor / core
to be idle despite work exists in the system.

Shiina and Taura [26] proposed a work stealing scheme
in which the platform performs static partitioning of the
workload based on an estimate of the workload under each
task via the programmer-provided annotations, but allows for
dynamic load balancing using the normal work stealing when
necessary. Assuming that the programmer provided annotation
is accurate, the scheme can results in deterministic partitioning
of the iteration space while the partitioning should provide
balanced workloads. This work requires programmer annota-
tion, but it can be complementary to our scheme, where the
programmer annotation dictates how one performs the initial
static partitioning and the dynamic load balancing can play out
in a semi-deterministic fashion using our claiming heuristic.

VII. CONCLUSION

This paper proposes a hybrid partitioning scheme for paral-
lel loops, which combines the features of static and dynamic
partitioning of loop iterations. We show that the hybrid scheme
offers provable performance guarantees that are comparable
to those of traditional dynamic-partitioning schemes. We also
found that, in practice, the hybrid scheme performs compara-
bly to traditional static partitioning when loop iterations have
balanced workloads, but also incurs lower overhead and better
scalability compared to other schemes when loop iterations
have unbalanced workloads.
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