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Summary

Plant–herbivore interactions have evolved in response to coevolutionary dynamics, along with

selection driven by abiotic conditions.We examine howabiotic factors influence trait expression

in both plants and herbivores to evaluate how climate change will alter this long-standing

interaction. The paleontological record documents increased herbivory during periods of global

warming in the deep past. In phylogenetically corrected meta-analyses, we find that elevated

temperatures, CO2 concentrations, drought stress and nutrient conditions directly and indirectly

induce greater food consumption by herbivores. Additionally, elevated CO2 delays herbivore

development, but increased temperatures accelerate development. For annual plants, higher

temperatures, CO2 anddrought stress increase foliar herbivory.Ourmeta-analysis also suggests

that greater temperatures and droughtmay heighten florivory in perennials. Human actions are

causing concurrent shifts in CO2, temperature, precipitation regimes and nitrogen deposition,

yet few studies evaluate interactions among these changing conditions. We call for additional

multifactorial studies that simultaneouslymanipulatemultiple climatic factors, whichwill enable

us to generate more robust predictions of how climate change could disrupt plant–herbivore
interactions. Finally, we consider how shifts in insect and plant phenology and distribution

patterns could lead to ecological mismatches, and how these changes may drive future

adaptation and coevolution between interacting species.

I. Introduction

Plant–herbivore interactions structure the ecology of natural
communities and evolutionary trajectories of interacting species
(Becerra, 2007). Herbivores first began to consume plant tissues in
the late Silurian to early Devonian (e.g. Edwards et al., 1995;
Labandeira & Currano, 2013), shortly after land plants evolved c.
475 Ma (Wellman et al., 2003). Since then, plants have evolved

complex mechanical and chemical defenses against herbivory
(Gong&Zhang, 2014; Burkepile & Parker, 2017), and herbivores
have evolved to circumvent these defenses (Karageorgi et al., 2019).
Coevolutionary dynamics can generate specialized interactions,
resulting in a diversity of species, forms and functional traits
(Jander, 2014; Karageorgi et al., 2019). However, even intense and
prolonged eco-evolutionary dynamics occur in the context of an
abiotic environment that can change. Given that the abiotic
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environment strongly influences trait expression of both plants and
herbivores, changes in abiotic conditions can alter this ecologically
important interaction. For example, during the intense planetary
warming and increased CO2 concentrations of the Paleocene-
Eocene thermal maximum (55.8 Ma), fossilized plants show clear
evidence of exposure to a greater degree and diversity of herbivory
than in cooler times (Currano et al., 2008; Pinheiro et al., 2016).

In contemporary landscapes, natural populations are encoun-
tering novel suites of abiotic and biotic conditions as a result of
rising atmospheric CO2 concentrations, global temperatures,
changing precipitation regimes, and increased nitrogen (N)
deposition (Bellard et al., 2012; IPCC, 2014). Shifts in plant–
herbivore interactions mediated by climate change could reshape
the ecological and evolutionary dynamics of entire communities
(Rasmann et al., 2014; Becklin et al., 2016). Insect herbivores
have short generation times, high reproductive rates and
extensive mobility (Men�endez, 2007). All of these traits could
enable them to track favorable climates more readily than plants,
through rapid migration, in situ population growth, and
adaptation to novel conditions (Rasmann et al., 2014; Becklin
et al., 2016), which could lead to no-analog biotic assemblages
(Parmesan, 2006). For these reasons, plant populations could
experience increased amounts of herbivory under continued
climate change.

Here, we synthesize existing literature and conduct meta-
analyses to evaluate the extent to which rapid anthropogenic
climate change disrupts plant–herbivore interactions. Specifically,
we hypothesize that climate change will expose native plants to
novel herbivore communities both in their home sites and
expanded distributions, and heightened herbivory because of
increased food consumption by resident and newly-established
herbivores. We review the proximate mechanisms by which
warming temperatures in concert with elevated CO2, novel
precipitation patterns and increased N deposition influence
herbivore biology and plant damage from herbivory. We consider
how multiple interacting climatic factors could result in additive,
synergistic or antagonistic effects for plant–herbivore interactions.
By reflecting on spatial and temporal shifts in plant–herbivore
interactions, we explore whether natural plant populations will
confront novel patterns of herbivory under future climates. Our
review primarily focuses on arthropods (Hexapoda), which
represent c. 62% of all c. 1.6 million described living species, as
approximately half of all insects are herbivorous (Wiens et al.,
2015; Roskov et al., 2019). Insects have received more attention
in the context of plant–herbivore interactions under climate
change, yet we draw on mammalian herbivore examples when
possible.

To complement the qualitative literature review, we test
whether climate change will alter herbivore biology and augment
herbivory in natural and agricultural systems in a series of meta-
analyses. To that end, we ask how abiotic factors associated with
climate change affect herbivore performance and feeding rates.
We consider whether climate change factors affect herbivores
directly or indirectly via plant-mediated effects and examine
potential differences across study systems. We then investigate
herbivore damage records under simulated climate change to

evaluate how plant populations – adapted to historical amounts
of herbivory – fare under novel herbivory associated with climate
change.

Several earlier reviews and meta-analyses concentrated on the
effects of elevated CO2 on plant chemistry and functional traits,
and herbivore performance (Bezemer & Jones, 1998; Zvereva &
Kozlov, 2006; Stiling&Cornelissen, 2007; Robinson et al., 2012).
Additionally, Robinson et al. (2012) examined pairwise interac-
tions between CO2 and temperature, CO2 and drought, and CO2

andN for plant phenotypes, but they did not consider the effects of
these interactions on insect performance or plant damage from
herbivores. As changes in plant chemistry and phenotypes have
been established in response to elevated CO2 and temperature, we
did not assess such responses. However, only 10 empirical studies
included in previous meta-analyses examined herbivore damage to
plants under climate change (Stiling & Cornelissen, 2007;
Robinson et al., 2012). Thus, we quantified herbivore responses
and plant damage to multiple climate change factors across
empirical studies. Moreover, while some previous studies consid-
ered the effects of feeding guilds or insect orders in their meta-
analyses (Bezemer & Jones, 1998; Stiling & Cornelissen, 2007;
Robinson et al., 2012), previous efforts did not account for
phylogenetic relatedness. Finally, we fill a gap in the literature by
examining differences in climate change responses in native vs
agricultural systems.

After evaluating how climate change factors influence plant–
herbivore dynamics in the short term, we discuss how these
proximate causes may ultimately alter plant–herbivore interactions
longer-term by examining the potential for plants and their
herbivores to adapt to novel abiotic and biotic pressures.

II. Literature review: proximate ecological responses
of plants and herbivores to climate change

1. Elevated atmospheric CO2

Atmospheric CO2 concentrations have risen from 280 ppm during
preindustrial times to the current 410 ppm, and are predicted to
exceed 600 ppm by the end of the 21st century (NOAA, 2020).
Although elevated CO2 has little direct effect on insect herbivores
(Kerr et al., 2013), it can indirectly influence herbivores via changes
in plant chemistry (Pincebourde et al., 2017). Increased atmo-
spheric CO2 concentrations alter the carbon (C) and nitrogen (N)
economy within the plant (increased C : N ratio), decreasing the N
concentrations in plant tissue (Strain, 1987; Fajer, 1989; Johnson
& Lincoln, 1990). As N is a limiting nutrient for insects (Mattson
1980), higher CO2 concentrations diminish the nutritional quality
of plant tissues by reducing concentrations of proteins and certain
amino acids in leaves (Lincoln et al., 1993; Docherty et al., 1997).
To compensate, insect herbivores can increase their food uptake
(Johnson & Lincoln, 1990, 1991; Stiling & Cornelissen, 2007).
Decreased foliar N content and increased defenses can reduce the
conversion efficiency of ingested food (Fig. 1). The most extensive
meta-analysis on herbivore responses to elevated CO2 confirmed
these patterns by examining 270 papers published between 1979
and 2009 (Robinson et al., 2012). In response to a 19% increase in
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foliar C : N and a 10% decline in foliar proteins, insect herbivores
increased their relative consumption rates by 14%, yet the
conversion efficiency decreased by 15% under elevated CO2

(Robinson et al., 2012). However, in line with an earlier study
showing that only leaf chewers significantly increased their food
uptake in elevated CO2 conditions (Bezemer & Jones, 1998),
Robinson et al. (2012) found that consumption rates increased
mainly in foliage feeders, particularly in Lepidoptera and
Coleoptera. A taxonomic bias towards Lepidopteran herbivores
(Bezemer & Jones, 1998; Stiling & Cornelissen, 2007) may drive
the conclusion that herbivore consumption will increase under
climate change, although this patternmaynot hold across herbivore
orders and feeding guilds.

Plants do not necessarily suffer more damage even when per-
capita consumption rates increase, because plants can accumulate
more biomass under elevated CO2 (Hunter, 2001; Reddy et al.,
2010). Thus, enhanced plant growth from elevated CO2 could
compensate for increased leaf damage (Hughes & Bazzaz, 1997;
Hall et al., 2005). However, multiple climatic factors are changing
simultaneously, and increased herbivore population growth rates
induced by warming temperatures could compound the per-capita

consumption rates. Increased herbivory could impose strong
selection on plant populations for constitutive and inducible
defenses . Future studies can evaluate evolutionary responses by
quantifying genetic variation in defenses within and across
populations in conjunction with estimating gene flow rates,
comparing patterns of selection on defenses under historical,
contemporary and future climates, and taking resurrection
approaches to test directly for adaptive responses to climate change
and increased herbivory (see Section IV on evolutionary responses)
(Agrawal et al., 2006; Franks et al., 2018a).

2. Rising temperatures

Greenhouse gas emissions have increased global temperatures by
1.0� 0.2°C since 1880, and temperatures are projected to rise 2–
4°Crelative to preindustrial climates by 2100 under current rates of
climate change (IPCC, 2018). Temperature regulates the
metabolism and physiology of ectotherms and directly influences
all components of the life history of arthropod herbivores (Bale
et al., 2002). Accelerated metabolic rates of herbivores under
elevated temperature could lead to higher consumption, growth
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Fig. 1 Effects of single climate change factors (middle) on plant growth, tissue nutrients status and defenses (top), and insect growth, consumption and food
conversion efficiency (bottom). Lines endingwith arrowheads represent positive effects, lines ending in a vertical bar represent negative effects, and lines with
both symbols represent either positive or negative effects. We supplemented the represented effects with references from reviews or quantitative meta-
analyses (represented by numbers).
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and faster development (Fig. 1), which would increase population
growth rates and reduce generation times (Cornelissen, 2011;
Jamieson et al., 2012). At the same time, warming temperatures
could favor thermal plasticity (Rodrigues & Beldade, 2020).
Furthermore, warmer winters and earlier springs associated with
climate change could increase herbivore overwinter survival (Bale
et al., 2002). Warming could induce more frequent insect
outbreaks (Coley, 1998). A particularly eruptive outbreak was
documented for the mountain pine beetle (Dendroctonus
ponderoae), an aggressive bark beetle that kills its host: under
recent warming, D. ponderoae shifted from a semivoltine to a
univoltine lifecycle, leading to outbreaks and increased damage to
whitebark pine trees (Pinus albicaulis) in Yellowstone National
Park (Logan et al., 2010). These rapid changes in herbivore
performance and life-history traits could render plant populations
more vulnerable to herbivores.

While increased temperatures tend to have positive effects on
insects (Bale et al., 2002;Cornelissen, 2011), the biological impacts
of rising temperatures depend on the magnitude of the change and
on the herbivore’s thermal sensitivity. Insect performance typically
increases with temperature until reaching a maximum at an
intermediate temperature and then rapidly decreasing (Kingsolver,
2009). The asymmetry in thermal performance curves could result
in very different short-term responses to increased temperatures,
depending on the current location along the curve (Fig. 2).
Additionally, projected climate warming could augment insect
performance at temperate and higher latitudes, where species have
broader thermal tolerance, but warming could have deleterious
consequences for tropical species with more narrow thermal
tolerances where temperatures may already be close to optimal
(Deutsch et al., 2008; Angilletta et al., 2010). In the longer term,
rapid generation times and intraspecific genetic variation in heat
resistance could result in rapid adaptation of thermal performance
curves as temperatures continue to increase (Mu~noz-Valencia et al.,
2016;Ranga et al., 2017).We can turn to a non-herbivorous system
as an example Carbonell & Stoks (2020) recently documented
evolutionary changes in the thermal performance curves of the
European damselfly (Ischnura elegans) during its range expansion
toward warmer regions. Yet examples of the evolution of thermal
performance curves under climate change are rare (T€uz€un& Stoks,
2018), and more such studies are needed in herbivores , as it
remains unclear whether standing genetic variation for heat
resistance is adequate for sustained responses to selection (Keller-
mann et al., 2012; Kellermann & van Heerwaarden, 2019).

Climate change can also affect the number of life cycles that can
be completed in a single season (voltinism). Insect species typically
respond to warmer temperatures with faster developmental rates
and greater reproductive potential, which can increase both the
number of generations within a season and the rate of population
growth (J€onsson et al., 2009; Altermatt, 2010; Fand et al., 2014).
These changes could intensify herbivory pressures and increase
amounts of damage to plants, especially to long-lived species
(DeLucia et al., 2012; Forrest, 2016). Yet climate change will not
induce advanced emergence or voltinism in all species (Grevstad&
Coop, 2015), especially those that have obligate diapause with
required chilling periods that may be disrupted under warmer

winters (Harrington et al., 1999; Forrest, 2016). Additionally,
rapid development at higher temperatures is often accompanied by
smaller size atmaturity and reduced fecundity (Kingsolver&Huey,
2008). Yet, accelerated population growth rates increases the
general abundance of insect herbivores, regardless of changes in
voltinism and emergence times, andmay increase herbivory on host
plants.

Temperature directly influences plant growth and development
(Grace, 1987). A moderate rise in temperature can increase plant
productivity and production of secondary metabolites (Rustad
et al., 2001; Zvereva & Kozlov, 2006; Pincebourde et al., 2017).
However, severe drought could accompany heat waves associated
with climate change and have adverse effects on plant productivity
(Fig. 1). Plant populations located in regions that historically
experienced low amounts of herbivory could be susceptible to
decline if herbivore populations expand in situ and migrate into
those areas. Biotic interactions, including herbivory, have histor-
ically been considered less intense in temperate and polar latitudes,
where plants have, in turn, evolved fewer defense traits (Coley &
Aide, 1991; but see Moles et al., 2011); thus, plants could be
particularly susceptible to increased herbivore pressures in those
regions. It thus remains an open question whether plants will suffer
greater damage if herbivore performance increases or generation
times decrease with rising temperatures.

3. Drought

Under climate change, precipitation may increase in some parts
of the world, but many other regions are projected to suffer more
frequent and severe drought events (Knapp et al., 2008; IPCC,
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Fig. 2 Ahypothetical thermalperformancecurve for an insectherbivorewith
optimal performance (Topt) at 28.6°C.Owing to the asymmetry of the curve,
an increase in temperature of 5°C leads to a much larger rise in performance
at low temperatures (a) than when the temperature approaches the
optimum (b). As temperatures rise above the optimum, insect performance
declines precipitously (c), as shown by a 45% reduction in performance in
temperatures that are 5°C greater than the optimum. We simulated this
hypothetical curve using the R package THERMPERF (v.0.0.1) (Bruneaux,
2016).
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2014; Swain et al., 2014). In combination with elevated
temperatures and heat waves, drought is likely to affect many
ecosystems (Jentsch et al., 2007; Knapp et al., 2008; Bloor et al.,
2010). Additionally, in snow-dominated ecosystems at high
elevations and high latitudes, climate change is causing a
reduction of winter snowpack (Fyfe et al., 2017), which is
critical as water availability to plants in the growing season can be
determined by snowmelt (Jamieson et al., 2012). In general,
drought negatively affects plant productivity (Fig. 1) and alters
plant chemical defenses as well as nutritional quality, digestibility
and palatability (Jamieson et al., 2017). Traditionally, herbivo-
rous insects were thought to perform better on water-stressed
plants (Huberty & Denno, 2004). During droughts, herbivore
outbreaks could result from accumulations of N compounds in
plant tissue, which enhance herbivore growth and reproduction
(White, 1984). However, Huberty & Denno (2004) showed that
prolonged water stress in plants negatively affects phloem and
mesophyll feeders and other sap feeders, while the responses of
leaf chewers differed between subguilds. Although foliar N
concentrations generally increase during times of water deficit,
decreased turgor and water availability can interfere with the
herbivore’s ability to access N, especially in continuously stressed
plants (Huberty & Denno, 2004). Intermittent and moderate
droughts may increase chemical defenses in plants, while
prolonged and severe droughts could reduce these defenses; in
both cases, limited access to nutritional compounds could depress
herbivore performance (Gely et al., 2019). The effect of drought
stress on chemical defense production and nutritional quality has
not yet been tested as rigorously as the effects of elevated
temperature or CO2.

4. Fertilization and N deposition

Fertilization is commonly used in agricultural systems, leading to
agricultural runoff and increasedN deposition inmany parts of the
world (Hattenschwiler & Schafellner, 1999; Driscoll et al., 2003).
Intensified N deposition can stimulate plant growth in the short
term (Tamm, 1991; Hattenschwiler & Schafellner, 1999) and
increase the nutritional value of plant tissues (Henn & Schopf,
2001). However, Hattenschwiler & Schafellner (1999) found that
the stimulating effects of increased N deposition were lower in
magnitude than the adverse effects of elevated CO2, such that
climate change may still impair herbivore growth and develop-
ment.N deposition could allow plants to allocatemore resources to
herbivore defenses (plant vigor hypothesis) or could exacerbate
herbivory because the stress caused by the pollution reduces
investment in defense (plant stress hypothesis) (Mur et al., 2017;
Miles et al., 2019). Moreover, drought severely limits the ability of
plants to acquire soil nutrients (Bista et al., 2018). Thus, it is
important to consider fertilization at a regional level and in
combination with other climate change factors.

5. Interactions between abiotic factors

Climate change is simultaneously altering key agents of selection,
including CO2, temperature, and precipitation patterns, while

increasing the frequency and severity of extreme weather (IPCC,
2014). In addition, habitat fragmentation restricts migration and
could hinder adaptive responses to novel environments, as small
fragmented populations often lack genetic variation (Young et al.,
1996; Leimu et al., 2006). Global change factors interact in
complex ways that could have additive, synergistic or antagonistic
effects on plant–herbivore interactions (Jamieson et al., 2017; Gely
et al., 2019). While elevated CO2 is increasing at similar rates
globally, changes in temperature and precipitation patterns vary
regionally and interannually (Jentsch et al., 2007; IPCC, 2014;
Swain et al., 2018). Yet, few empirical studies explore herbivore and
plant performance under realistic,multifactorial scenarios (Zvereva
& Kozlov, 2006; Cornelissen, 2011). By contrast, plant physio-
logical responses to climate changehave been relativelywell-studied
in a multifactorial framework (e.g. Veteli et al., 2002; Williams
et al., 2003; Murray et al., 2013). For example, elevated CO2 and
temperature significantly increased foliar C : N ratios in two
Eucalyptus species (E. robusta and E. tereticornis), especially under
ambient temperatures (Murray et al., 2013; Gherlenda et al.,
2015). In other studies, N content decreased strongly under
combined elevated CO2 and temperature, while elevated temper-
atures alone had little effect (Williams et al., 2000; Murray et al.,
2013; Gherlenda et al., 2015). In a synthesis of 42 studies, Zvereva
& Kozlov (2006) confirmed that the combined effects of elevated
CO2 and temperature on plant physiology and chemistry were
often different from the effects of factors taken separately. Thus,
multifactorial experiments can reveal unique biological responses
to climate change that are not apparent from single factor studies
(e.g. Zvereva & Kozlov, 2006; Robinson et al., 2012).

Even less is known about interactive effects of climate change
factors on herbivore performance than on plant physiology. In
single-factor studies, insect performance declines under elevated
CO2 and increases under warmer temperatures, but when manip-
ulated simultaneously, the effects often cancel each other out (Johns
et al., 2003; Johns & Hughes, 2002; Veteli et al., 2002; Williams
et al., 2000, 2003; Chong et al., 2004). More recently, Zhang et al.
(2018) found that elevated CO2 and temperature significantly
decreased growth rates and conversion efficiency of consumed food
in Spodoptera litura, but other studies detected no significant
interactions between these climate change factors (Himanen et al.,
2009; Murray et al., 2013; Niziolek et al., 2013; Gherlenda et al.,
2015). The stimulating effects of temperature on insect perfor-
mance may not ameliorate the negative plant-mediated effects of
elevated CO2. Yet, enhanced temperature and CO2 could both
increase foliar damage via increased insect abundance, growth and
consumption (Niziolek et al., 2013). We cannot make reliable
predictions about plant–herbivore interactions under climate
change until future studies explicitly evaluate the combined effects
of climate change factors on herbivore performance, changes in
host plant quality and plant damage.

6. Spatial and temporal mismatches between plants and
herbivores

Climate governs the geographic distribution of many species (e.g.
Sexton et al., 2009), and climate change has already led to shifts in
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the ranges of a diversity of species (Parmesan & Yohe, 2003; Root
et al., 2003; Thuiller, 2004; Pereira et al., 2010). These distribu-
tional changes include expansions into new areas, especially
towards the historically cooler, upper elevations and poles (leading
edges), and local extinctions in areas that have become climatically
unsuitable, especially at the warm lower elevational and latitudinal
limits of species ranges (trailing edges) (Men�endez, 2007; Sheth &
Angert, 2018). As a result, ecological communities may disassem-
ble as individual species shift their ranges idiosyncratically, and new
assemblages are likely to emerge (Thuiller, 2004; Leimu et al.,
2012; Maron et al., 2019), which will probably influence plant–
herbivore interactions (Harrington et al., 1999; Men�endez, 2007).

Plant species could confront novel herbivore communities and
novel amounts of herbivory both in their home sites and during
distributional shifts. Herbivores may have greater migratory
potential than plants, and fossil records show that many insect
species tracked climate change via migration during geological
periods of climate change (Coope, 1970; Lawton, 1995). As
climates change, thermal limits may no longer constrain native
herbivores to their historical ranges. For example, the mountain
pine beetle (D. ponderoae), native to western North America, is
currently expanding its range northeastwards, establishing on novel
host trees, such as jack pines (Pinus banksiana), as it spreads through
the boreal forest (Cullingham et al., 2011; Rosenberger et al.,
2017). This example illustrates how the oligophagous or
polyphagous diet of many insect herbivores may facilitate host
shifts during range expansion, exposingmany plant species to novel
herbivory and driving host range evolution in insects (Agrawal,
2000).

Climate change is accelerating the timing of life-history events
formany species (Parmesan&Yohe, 2003). Yet, the environmental
cues that trigger phenological transitions, and their relative
importance, often differ between plants and herbivores, resulting
in phenological mismatches between interacting species and
trophic levels (Choi et al., 2019). In general, arthropod herbivores
are advancing their phenology faster than plants, as they are more
sensitive to temperature, while plants often have specific photope-
riod thresholds (Visser & Christiaan, 2005; Men�endez, 2007;
K€orner & Basler, 2010; but see Forrest & Thomson, 2011).
Asynchronous phenological shifts may generate temporal mis-
matches, which could amplify or dampen herbivore damage
(Dewar&Watt, 1992;Diamond et al., 2011;DeLucia et al., 2012;
Abarca & Lill, 2015; Ren et al., 2020). Warm springs in temperate
regions often induce earlier insect emergence and activity,
especially for insects that overwinter as adults (Diamond et al.,
2011; Bell et al., 2015). Consequently, herbivory could increase
early in the season, and herbivores may have extended growing
seasons (Forrest, 2016). In specialized interactions, phenological
asynchronymay reduce herbivore growth and abundance if climate
change causes larvae to emerge earlier than budburst of the host
species (Visser &Holleman, 2001; Schwartzberg et al., 2014). Yet,
many generalist herbivore species may be resilient to phenological
changes in host plants (Forrest & Thomson, 2011). For example,
spring herbivore species have often evolved starvation tolerance,
enabling them to survive when hatching occurs before budburst
(Abarca & Lill, 2015; Kharouba et al., 2018). Phenological shifts

can also remove temporal barriers (Kharouba et al., 2018). For
example, warming synchronized the hatching time of forest tent
caterpillar (Malacosoma disstria) eggs and budburst of one tree host,
but reduced synchrony with an alternate host (Visser &Holleman,
2001). Starvation endurance and broad dietary breadth may
dampen the effects of altered plant phenology for herbivores, but
shifting temporal dynamics could augment herbivore damage on
plants.

III. Meta-analysis

1. Aims and hypotheses

We conducted phylogenetically corrected meta-analyses (Adams,
2008) to evaluate: the direct, indirect (i.e. plant-mediated), and
total effects of climate change on arthropod herbivore performance
and foraging biology; and the effects of climate change on plant
damage, in natural and agricultural systems. We tested whether
rapid contemporary climate change augments herbivory, similar to
what occurred during periods of elevated atmospheric [CO2] in the
geological record (Currano et al., 2008). We aimed to assess the
interactive effects of climate change factors, but our statistical
power was restricted by the low numbers of multifactorial studies
(see Section III.3: Results and discussion ).

2. Methods

In Supporting Information Methods S1, we describe study
eligibility criteria and the literature search (illustrated in Fig. S1),
data extraction, phylogeny reconstructions, data analysis and
publication bias diagnostics (see Funnel plots in Figs S6, S9). In
short, we used Web of Science to conduct literature searches from
1900 to 6 August 2020 on herbivore performance and herbivory
in climate manipulation studies (we retained studies from 1989 to
2020 for the herbivore dataset, and from 1994 to 2020 for the
plant dataset). We also extracted data from studies cited in
previous meta-analyses (Stiling & Cornelissen, 2007; Robinson
et al., 2012) that measured herbivore performance and consump-
tion rates in response to different CO2 concentrations. Finally, we
performed a forward search from Robinson et al. (2012) for
publications that reported herbivore performance or herbivory in
response to climate change. For herbivores, we concentrated on
individual growth rates, development time and consumption
rates, and population-level metrics, including abundance and
population growth rates. For plants, we focused on measures of
tissue damage caused by herbivore feeding, such as damaged leaf
area, percentage tissue loss and feeding marks. We extracted data
directly from tables, archived datasets or figures using
WEBPLOTDIGITIZER (Rohatgi, 2019) for all papers fitting our
eligibility criteria (N = 62 studies for herbivore performance, 26 of
which had not been included in previous meta-analyses, and
N = 47 for plant damage, 33 of which were unique to this meta-
analysis; Figs S1, S4, S5, S7, S8; Tables S12, S13).

Studies in the herbivore dataset used three different experimental
designs. Some studies evaluated the direct effects of climate change
factors on herbivores by exposing individuals to experimental
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manipulations while feeding them an artificial diet or leaves of
plants grown under ambient conditions. Other studies assessed the
indirect effects of climate change on herbivores mediated through
plants by rearing herbivores under ambient conditions and feeding
them tissue from plants exposed to climate change manipulations.
Finally, the last set of studies tested the total effects of climate
change by exposing both the plants and the herbivores to
manipulations and monitoring herbivore responses. We present
results from the full dataset and then dissect the direct, indirect and
total effects of climate change through separate analyses of subsets
of data.

Our datasets also included agricultural, biocontrol and native
plant and herbivore species. To our knowledge, previous meta-
analyses have not tested whether shifts in plant–herbivore inter-
actions under climate change are consistent across wild and
domesticated systems. However, a recent phylogenetically cor-
rected meta-analysis showed that plant resistance to herbivores was
lower in domesticated crops relative to their wild relatives
(Whitehead et al., 2017). We present results for the full herbivore
and plant datasets, and then evaluate herbivore performance and
plant damage under climate change factors in agricultural and
biocontrol vs. native systems.

We constructed phylogenies (Figs S2, S3) based on publicly
accessible data in the Open Tree of Life (Michonneau et al., 2016)
to include a phylogenetic correlation matrix in our models. We
implemented multilevel mixed-effects meta-analysis in the R
package METAFOR, using Hedges’ g as our effect size metric
(Viechtbauer, 2010).We computed effect sizes such that values < 0
indicated that treatments consistent with climate change projec-
tions (e.g. increased CO2) depressed herbivore performance or leaf
damage fromherbivores, and effect sizes > 0 indicated that climatic
manipulations augmented herbivore performance or leaf damage
from herbivores. The final models included fixed effects (moder-
ating factors) for climatic manipulations and herbivore or plant
traits and other attributes of the studies (publication year, latitude,
longitude, elevation, study setting, etc.), and random effects for
publication (to account for multiple species or traits in a study) and
the phylogenetic correlation matrix.

3. Results and discussion

Herbivore dataset Our analyses revealed significant effects of
herbivore trait, climatic treatment and their interaction (Fig. 3; see
Notes S1, Tables S1–S7). Across analyses, elevated CO2, temper-
ature, drought stress and fertilization increased herbivore con-
sumption rates (Fig. 3), suggesting that herbivore pressures are
intensifying under most climate change scenarios.

Elevated temperatures significantly accelerated herbivore devel-
opmental rates (Fig. 3). In analyses of the direct effects of climatic
factors on herbivores, increased temperatures depressed growth
rates and did not influence consumption (Fig. 3c). Yet, in analyses
of the indirect effects of climate change (when only plants were
exposed to climate change factors), elevated temperature aug-
mented consumption and growth rates, and accelerated develop-
mental time (Fig. 3d). While we did not examine effects of
temperature on plant chemistry, Zvereva&Kozlov (2006) showed

that elevated temperature decreased carbohydrates and phenolics,
increased terpenoids and had little effect on leaf C : N ratio. These
changes in plant chemistry could reduce food conversion efficiency,
prompting a compensatory feeding behavior in insects. Results of
our meta-analysis suggest that consumption rates increase not only
because of faster development and growth, but also to compensate
for depressed host plant nutritional quality under higher temper-
ature.

Our analyses detected increased consumption rates exclusively
in agricultural systems and nonnative herbivore or plant food
species, but not in native ecosystems (Fig. 4). Yet, in native systems,
herbivores also had accelerated developmental times and increased
growth rates (Fig. 4a). In diverse natural ecosystems, herbivores
can feed selectively across hosts (Bernays et al., 1994) and optimize
foraging efficiency by regulating pre- and post-ingestive nutrient
intake (Behmer, 2009). These mechanisms and the polyphagous
nature of many herbivores may allow them to compensate for
reductions in nutritional quality in certain host species in natural
systems (Behmer, 2009). Additionally, reductions in plant nutri-
tional quality may be more likely to arise in agricultural species,
which have generally been subject to strong artificial selection for
higher nutritional quality (Newell-McGloughlin, 2008; White-
head et al., 2017). Agricultural systems are typically species-poor,
restricting the dietary options of herbivores; therefore, increased
consumption rates may emerge more frequently in agricultural
than in natural systems under climate change. By stimulating
herbivore consumption in agricultural systems, and herbivore
growth and development in natural systems, warmer climates
could increase herbivore pressures on plants, as long as temper-
atures do not exceed performance thresholds (Angilletta et al.,
2010). We encourage additional empirical studies on native
herbivore–plant systems to verify whether accelerated herbivore
development and growth rates also increase consumption rates and
plant damage.

Elevated CO2 increased consumption rates despite delayed
insect development and a tendency towards decreased population
growth rates (Fig. 3) in both native and agricultural systems
(Fig. 4). As we also identified these patterns in the analysis of
plant-mediated indirect effects (Fig. 3d), we conclude that
increased consumption rates are likely driven by decreased
nutritional value of plant tissues (see also Stiling & Cornelissen,
2007; Robinson et al., 2012). Across the six studies of the direct
effects of climate change, elevated CO2 also increased consump-
tion rates and delayed development, yet accelerated population
growth rates (Fig. 3c). However, in half of these studies of direct
effects, herbivores were fed artificial diets (Xie et al., 2015; Akbar
et al., 2016; Liu et al., 2017), or examined in growth chamber
feeding trials (Ipekdal & Caglar, 2012; Lemoine et al., 2013,
2014), and may not be representative of natural field conditions.
Effects of elevated CO2 and other climatic factors on herbivore
performance under field conditions should become a priority of
future research. Taken together, our results strengthen the general
conclusion that elevated CO2 concentrations affect insect perfor-
mance through plant-mediated mechanisms (Pincebourde et al.,
2017). However, herbivore compensatory feeding behavior does
not seem sufficient to counteract declines in leaf nutrient quality,
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and insect performance and population growth rates may suffer
under elevated CO2.

Drought stress augmented herbivore consumption in agricul-
tural – but not natural – systems (Figs 3, 4), but did not affect
insect abundance, developmental time, growth rates or popula-
tion growth rates in either agricultural or natural settings (Fig. 3).
The effects of drought on insects depend on the length and
severity of drought episodes and on the insect feeding guilds
(Huberty & Denno, 2004; Gely et al., 2019). Our meta-analysis

is dominated by Lepidoptera, mainly represented by leaf chewers.
For these species, increased consumption rates under drought
does not appear to translate into elevated individual or population
growth rates. For instance, drought depressed larval growth rates
in Hyalophora cecropia (Lepidopetra) (Scriber, 1977), and survival
and fecundity in Neodiprion gillettei (Hymenoptera) (Mcmillin &
Wagner, 1995). As for other feeding guilds, severe drought
reduces plant turgor, which can restrict the availability of N-
containing compounds, limiting performance of sap feeders (Gely
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Fig. 3 Results of phylogenetically correctedmeta-analysis of herbivore responses at the individual and population levels to climate changemanipulations in the
field and controlled conditions. Plotted are Hedges’s g effect sizes and 95% confidence intervals. (a) The full dataset includes 61 studies that varied in
experimental design. This panel represents the results of all studies combined. We also conducted meta-analyses of three subsets of data, representing: (b)
studies that exposedbothherbivores andplants to experimental treatments, documenting bothdirect and indirect effects of climate changeonherbivores; (c) a
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climate change on herbivores; and (d) studies that exposed plants (but not herbivores) to experimental manipulations, revealing indirect effects of climate
changeonherbivores. Positive valueswith 95%confidence intervals > 0 indicate that climate change increases trait values (e.g. climate change factors increase
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et al., 2019). Additionally, drought can induce greater leaf
toughness (Wright & Westoby, 2002), which could reduce
palatability for herbivores, and can increase the concentrations of
chemical defenses, which could deter herbivores (Gely et al.,
2019). In our meta-analysis, increased consumption rate under
drought was entirely driven by studies that exposed plants but not
herbivores to drought (Fig. 3d). Thus, it seems more likely that
plants become less resistant to herbivores under drought condi-
tions.

Nutrient fertilization increased consumption rates and tended to
enhance herbivore growth rates (Fig. 3) in native but not agricul-
tural systems (Fig. 4). Fertilization is already commonly used in
agricultural systems. However, in natural systems, increasing N
deposition has been accelerated in many parts of the world, which
may change plant–herbivore interactions (Hattenschwiler &
Schafellner, 1999). Under intensified N fertilization, plants have
enhanced growth and increased protein concentrations in their
tissue, which could increase susceptibility to herbivores (Henn &
Schopf, 2001).Congruentwith expectations, fertilization enhances
insect performance via plant-mediated effects (Fig. 3d), but these
indirect effectsmay be counteracted by elevatedCO2. For example,
the negative CO2 effects were greater than the positive N effects on
Lymantria monacha larval performance (Hattenschwiler &
Schafellner, 1999). Our results indicate that increased fertilization
may enhance herbivore performance, particularly in natural
systems where nutrient limitation may have been important
historically.

Our analyses of interactive effects of climate change factors on
herbivore performance and foraging behavior were restricted to 16
studies that evaluated interactions between CO2 and drought
(n = 2 studies), CO2 and temperature (n = 8 studies), CO2 and

fertilizer (n = 5 studies), and temperature and drought stress (n = 1
study) (Fig. S5). The overall meta-analysis captures additive effects
of these climatic factors from these studies, but does not evaluate
whether these factors interact to dampen or exaggerate herbivore
responses. We conducted a complementary analysis to evaluate
synergistic effects using multifactorial studies only (following
Gurevitch et al., 2000); however, we failed to detect interactive
effects because of the limited numbers of studies and their highly
species-specific results. For example, Zhang et al. (2018) showed
that the combination of elevated temperatures and CO2 decreased
growth rate and food conversion efficiency for S. litura, an
agricultural pest particularly destructive for soybean. However,
studies conducted with multiple herbivore species, feeding on
several host species, often reported contrasting results. Williams
et al. (2000) detected no interactive effects of CO2 and temper-
atures on gypsy moth (Lymantria dispar) performance fed on sugar
maple (Acer saccharum), but the negative effects of elevatedCO2 for
herbivore performance were slightly dampened under elevated
temperatures when gypsy moth fed on red maple (Acer rubrum).
Similarly, Johns et al. (2003) detected increased feeding under
elevated CO2 and temperatures in only one of two chrysomelid
beetles. Finally, other studies failed to detect any interactive effects
between climate change factors (Veteli et al., 2002; Himanen et al.,
2009;Niziolek et al., 2013; Gherlenda et al., 2015).We suggest the
differences in patterns observed by these empirical studies stem
from varying experimental designs, where herbivores and/or plants
were under climate factor manipulations, and differences in study
systems or settings.

Plant dataset Our meta-analysis revealed that some plants may
suffer more damage from herbivory under climate change (see
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Notes S1; Tables S8–S11). For one, floral herbivory increased
under elevated temperature and drought, yet this result is based on
only two studies conducted on native perennial plants (Fig. 5a,b),
and should be interpreted cautiously. We observed significantly
increased leaf damage for annual plants under elevated CO2,
temperature and drought, which is probably driven by dynamics in
natural – not agricultural – ecosystems (Fig. 5c). We observed no
overall change in leaf damage for perennial plants under climate
change factors. Annual plants reproduce during a single growing
season, and the developmental switch from vegetative growth to
reproductive growth occurs early in their life cycle. Therefore,
annuals often have a higher investment in reproductive structures vs
vegetative growth than do perennials (Bazzaz et al., 1987) and may
not be able to compensate for herbivore damage as effectively as
perennials, which continuously invest in growth, even after
reproduction.Additionally, perennialsmay allocatemore resources
to physical and chemical herbivore defenses than annuals (Bazzaz
et al., 1987). Additional studies on both perennial and annual
native species are needed to evaluate how climate change factors
influence above- and below-ground herbivory.

Our meta-analysis included only six studies that examined
interactive effects of CO2 and temperature (n = 2 studies),
temperature and drought (n = 2 studies), temperature and N
fertilization (n = 1 study), and CO2 and drought (n = 1 study)
(Fig. S8). Therefore, we were unable to analyze interactive effects
of climate change factors on plant damage that extended beyond
additive effects of each climate change factor. The two studies
that simultaneously examined CO2 and temperature found no
interactive effect on feeding damage (Johns et al., 2003;
Himanen et al., 2009). Yet, temperature and drought interacted
to augment herbivre damage on St John’s wort flowers (Fox
et al., 1999) and red oak leaves (Rodgers et al., 2018). In
addition, Lu et al. (2015) found greater rates of root galling
under elevated temperature and N.

Taxonomic and geographic breadth of plant and herbivore
datasets Our plant dataset included 71 angiosperm species,
spanning 52 genera and 27 plant families, most represented by
Fabaceae and Fagaceae (Fig. S7a). In ourmeta-analysis, 90% of the
studies examined perennials, 54% examined herbaceous plants,
and 90% of studies quantified foliar herbivory (Fig. S7b–d).
Woody plants represent c. 45–48% of species globally (FitzJohn
et al., 2014) and perennials represent c. 60% of all seed plants and
40% of domesticated species (Miller & Gross, 2011; Miller, pers.
comm.), illustrating that herbaceous and perennial species were
probably overrepresented in our datasets. More studies should
focus on plant–herbivore interactions with alternative life forms,
especially shrubs, and other tissues, such as roots (Johnson et al.,
2016), and reproductive structures.

The taxonomic breadth of our herbivore dataset included 57
species, spanning 34 families and eight insect orders, most
represented by Lepidopterans (Fig. S4a). This bias towards Lepi-
dopterans and the leaf-chewing feeding guildswas also documented
in earlier reviews (Bezemer & Jones, 1998; Stiling & Cornelissen,
2007). Are plant–herbivore studies taxonomically biased or is the
dominance of Lepidopterans representative of insect herbivore

diversity? Lepidopterans are among the three most diverse insect
orders (Goldstein, 2017). Although Coleoptera and Hymenoptera
are more diverse insect orders, 100% of Lepidopterans are
herbivorous species, while only 26% and 7% of Coleoptera and
Hymenoptera are herbivores, respectively (Wiens et al., 2015).
Thus, empirical studies are probably not unduly biased toward
Lepidopterans.

The most striking bias in both herbivore and plant datasets was
that the vast majority of studies were conducted in the Global
North. Only five studies examined plant damage and herbivore
performance in southern latitudes, illustrating a clear under-
representation of plant–insect interactions in theGlobal South.We
call for funding to support future studies on the consequences of
climate change for plant–insect interactions in the Global South,
especially in tropical biodiversity hotspots.

Future directions Our herbivore meta-analysis revealed that
studies are not always performed with herbivores and plants both
experiencing climate change manipulations. While having only
plants or herbivores under manipulated climate change factors can
help to disentangle direct and plant-mediated effects of climatic
factors, we suggest that the most realistic results would come from
exposing both plants and herbivores to changing environmental
conditions.

More studies using multifactorial designs are urgently needed
to achieve a realistic understanding of how current climate change
influences plant–herbivore interactions. The joint effects of
climate change factors probably depend on the magnitude of
changes, on herbivore feeding guilds, and on species-specific
interactions, and climate change factors may interact in complex
ways (Jamieson et al., 2017). For example, forest tent caterpillar
(Malacosoma disstria) consumption increased on aspen under
drought stress, regardless of CO2 concentrations, but declined
more strongly on drought-stressed maple leaves under elevated
CO2 (Roth et al., 1997). Similarly, population growth rates of
two-spotted spider mite (Tetranychus urticae) increased only when
elevated CO2 was combined with moderate drought stress (Sinaie
et al., 2019). Additionally, temperature affected the magnitude
and the direction of plant and herbivore responses to elevated
CO2 in three chrysomelid beetle species and two plant species
(Veteli et al., 2002; Johns et al., 2003). Furthermore, increasing
temperature and CO2 may have opposing effects on herbivore
performance. We strongly encourage future multifactorial studies
to evaluate plant and herbivore responses to the complex suite of
climatic conditions that are changing simultaneously, ideally
under field conditions that capture natural variation in numerous
biotic and abiotic conditions simultaneously (K€orner, 2003;
Moles et al., 2011; Rasmann et al., 2014). While we are certainly
not the first to call for multifactorial studies (Bale et al., 2002;
Massad & Dyer, 2010; Giron et al., 2018; Hartley & Beale,
2019), our literature search revealed a dearth of multifactorial
studies. Climate change factors could operate independently,
synergistically or antagonistically, and multifactorial experiments
are needed to generate robust predictions about plant–herbivore
interactions under simultaneous changes in CO2, temperature,
precipitation and other variables.
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IV. Evolutionary consequences of climate change for
plant–herbivore interactions

One fundamental question is whether species will be able to adapt
fast enough to track rapid environmental change (Visser, 2008).
Plants have evolved a variety of chemical and morphological traits
that allow them to resist or tolerate herbivores, and insects have
evolved traits that allow them to overcome many plant defenses
(Ratzka et al., 2002; Glauser et al., 2011; Jander, 2014; War et al.,
2018). The evolution of plant and insect traits related to herbivory
and defense can happen rapidly enough to influence ecological
dynamics. For example, Oenothera biennis plants protected from
herbivory evolved reduced resistance and increased competitive
ability over the course of a 4 yr experiment (Agrawal et al., 2012).
Additionally Brassica rapa plants evolved rapidly in response to
pollinators and foliar herbivores (Ramos & Schiestl, 2019).
Furthermore, heterogeneity in herbivore abundance across the
landscape can influence genetic variation in plant defenses. For
example, geographic variation in the defense locus GS-ELONG in
the model plant Arabidopsis thaliana is associated with aphid

abundance (Z€ust et al., 2012). Insect species often have fast
developmental rates, short generation times and high reproductive
rates, which can lead to rapid evolution to novel conditions, like
pesticides (Hawkins et al., 2019) and introduced plant hosts
(Carroll et al., 2005). Evolutionary changes in herbivorous insects
influence host preferences (Singer&Thomas, 1996; Thomas et al.,
2001) and herbivore distributional shifts (Haag et al., 2005).

Adaptive responses to climate change depend on the magnitude
of novel selection and the degree of genetic variation in functional
traits. These quantitative genetic parameters are hard enough to
quantify in response to changing abiotic conditions (Etterson &
Shaw, 2001; Bemmels & Anderson, 2019; Torres-Mart�ınez et al.,
2019). The situation becomes even more challenging when
interacting species also impose strong selection on each other,
and when one partner (often the insect herbivore) has amuch faster
generation time than the other (often the plant host). Is existing
genetic variation within plant and herbivore populations sufficient
to adapt to ongoing climate change? Will rapid contemporary
evolution of arthropod herbivores further depress the fitness of
native plant species? Could gene flow across plant populations
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Fig. 5 Results of phylogenetically corrected meta-analysis of herbivore-induced plant damage to climate change manipulations in the field and controlled
conditions. Plotted are Hedges’s g effect sizes and 95% confidence intervals. We present the results for separate meta-analyses including the full dataset
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accelerate adaptation if gene flow occurs primarily from popula-
tions that evolved with a diverse and abundant herbivore commu-
nity into populations that historically experienced a more
depauperate community? Could adaptive responses to climate
change in plants or herbivores be constrained by increased
herbivory or defenses, respectively? Our meta-analysis suggests
that climate change likely exerts strong selection on plant and
herbivore traits, but we know very little about the longer-term
evolutionary consequences of ongoing environmental change for
plant–herbivore interactions.

Anthropogenic environmental changes such as climatic change,
habitat fragmentation, pollution and urbanization probably
interact to influence the coevolutionary dynamics of plants and
herbivores (Leimu et al., 2012; Miles et al., 2019). Changes in
temperature can influence plant chemistry and phenology, as well
as insect growth and feeding rates (Bale et al., 2002; Huberty &
Denno, 2004; Zvereva & Kozlov, 2006). Because of the complex
interactions involved, the long-term consequences of these
environmental changes on community dynamics are likely to be
difficult to predict. Our review has focused primarily on
arthropod herbivores because fewer studies have evaluated
changing plant–herbivore interactions under climate change for
mammalian herbivores or other taxonomic groups (but see Brodie
et al., 2012; Choi et al., 2019). Nevertheless, mammalian
populations are declining globally (Collen et al., 2008; Harris
et al., 2009; Ripple et al., 2015), which could decrease plant
damage from larger herbivores. Future studies using a variety of
complementary approaches will be needed to predict how
environmental changes will influence plant–herbivore eco-evolu-
tionary dynamics.

Traditional approaches to investigating plant–herbivore coevo-
lution have used techniques such as phylogenetic analysis (Ehrlich
& Raven, 1964). However, plant–herbivore eco-evolutionary
dynamics can occur rapidly and can also be studied via laboratory
and field experiments (Agrawal et al., 2012; Z€ust et al., 2012;
Ramos & Schiestl, 2019). Another promising technique is the
resurrection approach of comparing ancestors and descendants
under common conditions to directly examine evolutionary change
(Franks et al., 2018b). One study used ancestral and descendant
seeds of B. rapa plants and showed that the evolutionary changes
that occurred through artificial selection for rapid cycling resulted
in changes to herbivore preference and performance (Franks et al.,
2018a). Resurrection studies may be more challenging to use for
insects than plants, as seeds can often be stored long-term.
However, for certain herbivore species, dormant eggs may be
retrievable from the soil bank, or frozen and revived for comparison
with contemporary generations (Kerfoot &Weider, 2004; Franks
et al., 2018b). Alternatively, laboratory coloniesmay bemaintained
over generations and serve as a link to the past (Cooper et al., 2003).
Similarly, in experimental evolution studies, colonies could be
reared on artificial diets to eliminate selection by plant traits.

Resurrection studies and experimental or artificial selection
experiments can be combined with genomics to study adaptation
from standing genetic variation (Schl€otterer et al., 2015). Genomic
studies can examine how spatially variable selection, mediated by
plant–herbivore interactions, canmaintain genetic variationwithin

natural populations of host plants and herbivores (Gloss et al.,
2013). For example, geographic variation in herbivory can drive
adaptive evolution and maintenance of polymorphism in plant
defense genes (Prasad et al., 2012), while spatial mosaics of host
plants may also maintain phenotypic variation in herbivores (Kant
et al., 2008). Experimental evolution studies (Ramos & Schiestl,
2019), studies using genome-wide sequencing (Gloss et al., 2016),
and studies that involve experimental manipulations of factors that
are being altered with anthropogenic environmental change
(Leimu et al., 2012) will all be useful in helping to understand
and predict changes in dynamic interactions between plants and
herbivores.

V. Conclusions

Our meta-analysis revealed that climate change factors can
increase herbivore consumption rates, probably leading to greater
foliar damage to annual plants and floral damage to perennial
plants. Furthermore, we found that increased CO2 concentrations
delayed the development of arthropod herbivores, whereas
increased temperatures accelerated development. We hypothesize
that some insect herbivores may shift from one to multiple
generations per year under climate change. We caution that these
results focus almost entirely on interactions between arthropod
herbivores and foliar tissues in temperate systems, and that most
studies manipulated a single climatic condition at a time. Funding
for studies in the tropics and more broadly in the Global South
will enable more robust generalizations to emerge while simul-
tanesoulsly enhancing our understanding of how climate change
could alter plant-herbivore interactions in diverse ecosystems. We
encourage future studies that evaluate additional plant–herbivore
dynamics under climate change, including florivory and seed
predation, both of which are tightly associated with plant
fecundity (Parachnowitsch & Caruso, 2008). Future studies will
reveal how climate change is likely to influence below-ground
interactions and plant–soil feedback responses (Bezemer et al.,
2013; Lu et al., 2015; Ourry et al., 2018). Finally, several studies
have evaluated mammalian herbivory under climate change
(Brodie et al., 2012), and future experiments that disentangle
the contributions of multiple taxonomic groups to increased
herbivory under climate change will increase our capacity to
predict plant and herbivore population persistence. Given the
strong immediate effects of climate change on plant and herbivore
functional traits, novel conditions could impose strong selection
and alter long-term evolutionary dynamics.
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