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Anchor Selection for Topology Inference and
Routing in Wireless Sensor Networks

Taha Bouchoucha, Zhi Ding

Abstract—Anchor-based ad-hoc networks utilize hop
measurements to generate a virtual coordinate system for
topology inference and routing applications. A common
problem with such coordinate system is its sensitivity to
anchor placement. We present a general formulation to
the anchor node selection problem. Then, we relax the
optimization problem by deriving an upper-bound of
the objective function. We finally propose an iterative
algorithm that consists in choosing additional anchor
nodes based on the connectivity information provided by
the current anchor set. Numerical simulations indicate
that our anchor selection method is robust to missing
measurements and improves network topology inference
and routing performance.

Keywords—anchor selection, connectivity, hop distance,
routing

I. INTRODUCTION

Wireless ad-hoc networks are decentralized, easy to de-
ploy and scalable networks which can be applied in

several fields such as environment monitoring, health, de-
fense, etc. However, such peer-to-peer networks are usually
characterized by the highly dynamic multihops topology due
to random node mobility. Therefore, it is essential to keep
track of the network topology for optimal information rout-
ing between networked nodes. Most ad-hoc networks can
be modeled as connected graphs where nodes represent users
equipment, individuals, or sensors while edges characterize
connectivity and routing paths between nodes. We consider
a simple binary relationship where the network topology is
completely determined by the adjacency matrix of the corre-
sponding graph representation.

We focus in this work on anchor node selection which is
a common challenge faced in node localization for network
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topology inference and packet routing purposes. There exist
several localization coordinate systems that differ in terms of
measuring tools, complexity and cost. Geographical coordi-
nate system (GPS) is certainly one of the most efficient and
reliable localization systems. However, due to its high cost
and complex implementation requirement, it might be imprac-
tical to use in networks with scarce resources and equipment
complexity constraints. In addition, location estimation qual-
ity in GPS critically depends on the transmitted signal quality
and the channel disturbances such as noise, interference and
multi-path fading. An alternative localization method, known
as a virtual coordinate system (VCS)[1-4], uses much simpler
signals which make it easier and less expensive to implement.
A VCS is based on hop measurements collected from the net-
work using controlled flooding mechanism[5,6]. First, a subset
of nodes are selected as anchors. Second, each anchor mea-
sures the number of hops separated from the remaining nodes
by generating a beacon signal and collecting feedback from
each node that receives it. The role of each node during this
process is simply to increase and forward an integer signal to
its neighboring nodes. Therefore, using this controlled flood-
ing mechanism, we can collect hop counts from the anchors at
a low cost and with a small error rate thanks to the integer na-
ture of the transmitted signal which makes it robust to channel
distortion and noise. Besides, the virtual distance[1] defined in
a VCS provides more connectivity information than the phys-
ical distance obtained from GPS coordinates.

However, the accuracy of this virtual distance critically de-
pends on the anchor set responsible of collecting the hop mea-
surements. Our work lies in choosing the optimal anchor set
and thus improving the performance of VCS-based applica-
tions such as network topology inference and routing. The
first application uses dimension reduction techniques such as
principal component analysis (PCA) to generate a topology
that mimics the physical layout of the network using only
hop measurements[1,7,8]. The authors in Refs. [1,7] propose
a topology preserving map where each node is placed in a
two- or three-dimensional Euclidean space using virtual co-
ordinates. Such a visualization tool can be used for various
purposes such as the boundary node and backbone identifica-
tion and discovery of geographic voids. A different approach
in Ref. [8] consists in exploiting hop counts from three se-
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lected anchors to define zones of nodes with similar coordi-
nates rather than assigning virtual coordinates to each node.
The authors in Ref. [4] provide a theoretical proof of the PCA
approach which consists in projecting the hop measurement
matrix into the most significant principal components. Nu-
merical simulations show that this dimension reduction results
in a subspace that captures most of the connectivity informa-
tion of the network. The low rank property of the measure-
ment matrix is also leveraged in Ref. [4] to generate a VCS
that is robust to missing and noisy hop measurements. The
second application consists in using a VCS to establish logi-
cal distance between nodes which is then used to optimize the
path in packet routing applications. The logical distance[9] is
usually defined as the Euclidean distance between virtual co-
ordinates and it quantifies the connectivity strength between a
pair of nodes. A simple routing protocol consists in forward-
ing packets to the neighbor that is closest to the destination
in terms of logical distance[10]. One challenge that can hinder
successful delivery of the packet is the problem of loop and lo-
cal minima. Ref. [2] proposes a dynamic anchor selection to
ensure the convexity of the distance function between source
and destination. A tree-based recovery method is proposed in
Ref. [3] to avoid local minimum solutions.

Hence, even if we have a sufficient number of anchors, if
they are not properly placed in the network, the generated
VCS will suffer from identical coordinates and local minima
problems. In fact, when anchors are randomly placed, there is
a possibility that two arbitrary nodes have the exact same co-
ordinates in the VCS because they are separated by the same
hop distance from those anchors. This results in an ambiguous
coordinate system and a poor routing performance. Therefore,
it is necessary to optimize the choice of anchor nodes.

In most of the aforementioned works, the anchor nodes are
randomly selected. Anchors selection is still an open problem.
To the best of our knowledge, this work is the first attempt
to investigate the problem of anchor placement for network
topology inference and routing purposes. Few recent attempts
have proposed an anchor placement for outlier detection[11]

as well as an energy efficient anchor deployment[12]. In this
work, we develop an anchor selection method that improves
network connectivity inference and results in an accurate and
reliable VCS for routing. We start by formalizing the prob-
lem in function of the probability of topology inference error.
We then break down the optimization problem into an iterative
process and relax the objective function by providing a tight
upper-bound. After investigating different selection criteria,
we propose an iterative anchor selection algorithm which pro-
vides a near-optimal performance in terms of network connec-
tivity inference. We then test our method for routing applica-
tions.

This manuscript is organized as follows. Section II presents
the system model and the anchor selection problem formula-

tion. In section III, we detail our approach to solve the prob-
lem and provide an iterative algorithm. Section IV is ded-
icated to VCS-based routing applications. We finally pro-
vide numerical results in section V to demonstrate the ben-
efits and robustness of our anchor selection method through
several simulation test examples before concluding the paper
in section VI.

II. SYSTEM MODEL

We consider a network of an unknown topology consisting
of N nodes given by the set N = {n1,n2, · · · ,nN}. We denote
the network topology by its N ×N connectivity (adjacency)
matrix A in which A(i, j) = 1 denotes the existence of a link
between node ni and node n j whereas A(i, j) = 0, otherwise.

We consider in this work networks that are represented by
connected and undirected graphs, i.e., we can always find a
path connecting any pair of distinct nodes and the adjacency
matrix A is symmetric. Let E denote the space of all possible
solutions of the adjacency matrix A. Since A(i, j) = A( j, i)

and A(i, i) = 0, it is clear that E ⊂ {0,1}
N(N−1)

2 .
We then designate a subset of M < N network nodes A =

{A1,A2, · · · ,AM} ⊂N as anchors which use a controlled net-
work flooding method[5] to collect hop measurements from
the remaining nodes. More specifically, anchor nodes start
by transmitting probing packets to other nodes within the net-
work. Each node records and forwards the number of hops it
has taken from the originating anchor node while keeping the
smallest value in case a packet is received multiple times from
the same anchor. At the end of this network flooding process,
anchor nodes collect the hop distance reports from the nodes
and generate a hop distance matrix of dimension N×M de-
noted as H(A ). More details about this flooding technique
are provided in Ref. [6]. Note that H(i, j) records the short-
est hop distance between node ni and anchor A j. Since each
node ni collects a hop vector hi consisting of hop distances
to the M anchors, we can write the hop measurements matrix
relative to anchor set A as

H(A ) = [hT
1 ,h

T
2 , · · · ,hT

N ], (1)

where hi is the raw virtual coordinate vector associated with
node ni. Fig. 1 is a simple example showing the graphical
representation of a network composed of 9 nodes as well as
the hop measurement matrix relative to the anchor set A =

{n1,n6}.
Using this virtual coordinate system, we define the logical

distance dA relative to anchor set A

dA (ni,n j) = ‖hi−h j‖2. (2)

We study hereafter the joint problem of adjacency ma-
trix inference and anchor node selection. Let us denote by
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Figure 1 System model: controlled flooding and generation of hop mea-
surements matrix H

P(ek|A ) the probability that ek ∈ E is the solution to the ad-
jacency matrix, given the hop measurements relative to the
anchor set A which is provided by H(A ). We denote by êk

the estimated adjacency matrix. The probability of adjacency
inference error is then given by

Pe(A ) = ∑
ek∈E

∑
j 6=k

P(ek|A ) P(êk = e j|ek;A ), (3)

where P(êk = e j|ek;A ) is the probability that the inferred
adjacency matrix êk is equal to an adjacency matrix e j that is
different from the ground truth ek.

The problem of anchor node selection with a given anchor
budget M consists in finding the optimal anchor set A ∗ that
minimizes the probability of error

min
A

Pe(A ),

s.t. |A |6 M.
(4)

Therefore, given the probability of adjacency inference er-
ror Pe, the goal of problem (4) is to choose a subset A ∗ from
the set of nodes N to be anchors. However, the estimation of
Pe can be challenging since the network topology is unknown.
In the next section, we approximate the probability Pe and pro-
pose an iterative approach to find a near-optimal solution.

III. PROPOSED ANCHOR SELECTION

We notice that the optimization problem (4) is equivalent
to the NP-complete subset sum problem[13]. Therefore, it re-
quires exponential running time as well as the assumption that
hop measurements from all the networked nodes would be
known. However, in practice, we have limited computational
power and we can only obtain hop measurements for a limited
set of anchor nodes.

We therefore propose to solve the problem iteratively
where, at each iteration, the connectivity knowledge acquired
in the previous iteration is used to select the next anchor. Let
A (i) denote the anchor set at the ith iteration. We assume that
we have no prior knowledge about the network topology, so

Algorithm 1 Iterative anchor selection

Data: N
Result: A (M)

A (1)← random node from N ;
for i← 2 to M do

n(i) = argmin
n∈N \A (i−1)

µ(A (i−1) ∪n);

A (i)←A (i−1) ∪n(i);
end

we initialize A (1) with a random node. At the ith iteration,
we increase the previous anchor set A (i−1) with an optimal
anchor n(i) that minimizes the probability of error Pe

n(i) = argmin
n∈N \A (i−1)

Pe(A
(i−1)∪n). (5)

Unfortunately, the probability of error Pe(·) is hard to for-
mulate or estimate due to a limited amount of hop measure-
ments. Therefore, we propose to relax it by providing an up-
per bound that is easily derived in each iteration using the hop
measurements provided by the current set of anchors. We de-
rive our upper bound using a previous network connectivity
study[4] in which we provided a quantitative measure of how
informative the hop distance matrix H(A ) is about the ad-
jacency matrix A. The idea consists in organizing the nodes
into layers. Then, based on a search strategy and a number
of nodes in each layer, the connectivity relationships between
each pair of nodes are classified into connected, disconnected,
or ambiguous nodes. This classification results in a partial
adjacency matrix inference and allows us to reduce the size
of the set of connectivity solutions E . It is also shown in
Ref. [4] that the non-ambiguous inferred edges are perfectly
determined with zero error probability. Further details and ex-
amples about adjacency matrix inference from anchor-based
hop measurements can be found in section V-A of Ref. [4].
Therefore, if we denote by µ(A ) the connectivity inference
ambiguity relative to the set of anchors A given by the per-
centage of ambiguous entries in the partial inferred adjacency
matrix, we can easily conclude that Pe(A ) < µ(A ). Using
this upper-bound, the problem of anchor node selection with
a given anchor budget M is then relaxed as

n(i) = argmin
n∈N \A (i−1)

µ(A (i−1)∪n). (6)

The iterative approach is summarized in Algorithm 1 where
we start by initializing the anchor set with a random node.
Next, we choose anchors based on their marginal gain in terms
of ambiguity function according to problem (6).

However, it is challenging to solve problem (6) because it
requires the knowledge of connectivity information relative to
the nodes in N \A (i−1) which is not available at the ith iter-
ation. To overcome this problem, we adopt a greedy approach
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to estimate µ that only requires available connectivity infor-
mation relative to A (i−1).

At the ith iteration, we propose the following anchor selec-
tion criteria.
• SDFS. Choose the furthest node, in terms of logical dis-

tance dA (i−1)(·), of the current set of anchors A (i−1). The
intuition behind this criterion is to choose an anchor that is
logically far from the current anchor set to explore network
depth similarly to a depth-first search (DFS) algorithm

n(i) = argmax
n∈N \A (i−1)

(
min

m∈A (i−1)
dA (i−1)(n,m)

)
.

• SBFS. Choose the node with the maximum number of
ambiguous edges based on the adjacency matrix inferred from
the set of anchors A (i−1). The idea of this criterion is to se-
lect the anchor node that minimizes the local ambiguity by
revealing as much neighboring connectivity links as possible
similarly to a breadth-first search (BFS) algorithm

n(i) = argmax
n∈N \A (i−1)

(
µ
(i−1)(n)

)
,

where µ(i−1)(n) is the local ambiguity of node n at the (i−
1)th iteration given by the number of ambiguous entries in the
column of the inferred adjacency matrix relative to node n.
• SProp (our proposed criterion). After testing the two

previous criteria, we noticed that SBFS does not guarantee a
unique solution and SDFS does not perform as well as SBFS.
So our proposed criterion is that if we obtain multiple candi-
dates from criterion SBFS, we use SDFS to decide on a unique
solution.

In the numerical simulation section, we show that the per-
formance of the proposed criterion is very close to the optimal
solution.

IV. ROUTING APPLICATION

A VCS is a useful coordinate system for routing and finding
the shortest path[3,9,10]. Most of the previous works rely on the
logical distance dA to optimize the path for packet forward-
ing. For example, in Ref. [9], the authors defined the logical
distance using the K < M most important principal compo-
nents of the virtual coordinates. Reducing coordinates dimen-
sion from M to K lowers redundancy and improves routing
performance. The routing protocol[9] simply lets each node
forward its packets to its neighbor node that is closest to the
packet destination node in terms of logical distance. More
specifically, consider a source node S with a reduced dimen-
sion virtual coordinate vector gs = [s1,s2, · · · ,sK ]

T in a K-
dimensional space after PCA. Similarly, let T be the destina-
tion node with coordinate vector gt = [t1, t2, · · · , tK ]T. Based
on logical distance, node S searches among its neighbors to

find the next intermediate hop that has minimum logical dis-
tance to the destination node T . In case such an intermediate
node is not unique, a fallback mechanism is activated. It con-
sists in incrementally reducing the dimension of the virtual
coordinates space until an intermediate node with a unique
minimum logical distance to T is found. Despite its simplic-
ity, this method has some drawbacks such as falling in local
minimum or infinite loop.

We propose another approach that leverages the ability of
our anchor selection method to infer the adjacency matrix of
the network. When the recovered adjacency matrix is obtained
without edge errors, the shortest path is guaranteed to exist
and can be found using a simple algorithm such as Dijkstra.
So, the only source of delivery failure in our case is an error in
the recovered adjacency matrix which is less likely to happen
as the number of anchors increases, as it is shown in the next
numerical simulation section.

V. NUMERICAL SIMULATIONS

We test hereafter the efficiency of our anchor selection
method in terms of network topology inference and routing
performance. We also test its robustness to missing hop mea-
surements. We generate random wireless networks by deploy-
ing N nodes in a two-dimensional area. Next, we randomly as-
sign edges between pairs of nodes such as the generated graph
remains connected. We denote by γ = |E|/(N(N− 1)/2) the
edge density or the percentage of non-zero entries in the ad-
jacency matrix A. After deploying this network with the un-
known topology, we select a subset of anchor nodes according
to different methods discussed in section III. Next, we gather
the hop measurements from the anchors using the controlled
flooding method presented in section II. We finally compare
the quality of the measurements provided by each anchor se-
lection method for network connectivity and routing applica-
tions. Unless otherwise stated, all simulation results are av-
eraged over 100 independent Monte Carlo runs with the net-
work nodes and edges independently generated for each run
according to a uniform distribution. We also fix N = 100 and
γ = 15% and vary the number of anchors M.

In Fig. 2, we estimate the probability of error Pe(·) and
compare it to the upper-bound provided by the connectivity
inference ambiguity µ(·). We notice that upper-bound is tight
which allows us to provide near-optimal solution by solving
the relaxed iterative version (6) of the original optimization
problem (4).

Fig. 3 shows the performance of different anchor selection
methods in terms of network connectivity inference. We plot
the connectivity inference ambiguity in function of the num-
ber of anchors for different selection criteria and we compare
them with the optimal solution of the iterative problem (5)
as well as the solution of the original NP-complete problem
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Figure 2 Upper-bound of the probability of error Pe, N = 100, γ = 15%
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Figure 3 Anchor selection methods comparison, N = 100, γ = 15%

(4) obtained through exhaustive search. We notice that the
performance of our proposed greedy criterion overlaps with
the optimal solution. A higher performance gap between our
proposed method and the exhaustive search solution is only
noticed for a low number of anchors due to the lack of previ-
ous connectivity information. In fact, in Algorithm 1, the first
anchor A (1) is randomly chosen.

Fig. 4 is dedicated to routing performance comparison. We
randomly choose a source and a destination node and ap-
ply logical distance-based routing, a.k.a, LCR as well as our
proposed adjacency matrix-based routing. We plot for each
method the successful delivery rate. We notice that the pro-
posed anchor selection method improves the performance of
both routing algorithms by at least 20%. In addition, our pro-
posed routing outperforms the logical distance-based routing.
In fact, by choosing the appropriate set of anchors, the deliv-
ery failure risk decreases (especially for larger sets of anchor
nodes), which results in a low percentage of ambiguous edges.

Hop measurements are collected using controlled network
flooding where nodes transmit back to the anchors a simple
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Figure 5 Robustness of anchor selection method to missing hop measure-
ments, N = 100, γ = 15%

integer value in response to a received beacon signal. Even
though transmitted signals in a VCS are noise-resilient and
more reliable compared to GPS, we still have to deal with
missing measurements due to random failure of report chan-
nels, power outage, or hacking of certain anchor nodes. The
work in Ref. [4] proposes a robust VCS based on low rank
matrix completion. We investigate in Fig. 5 the robustness of
our anchor selection method to missing hop measurements us-
ing the robust VCS proposed in Ref. [4]. We label 20% of the
hop measurements as missing. Then we compare the network
inference performance using complete, incomplete and robust
VCSs. We notice that the performance of our robust method
is close to the performance of complete data especially for a
higher number of anchors.

VI. CONCLUSION

We have proposed a novel solution to the anchor selection
problem in generative ad-hoc networks to capture the under-
lying structure from multihops observations. We use a simple
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ambiguity function that exploits available connectivity infor-
mation to approximate the probability of network inference
error. We then adopt an iterative approach to construct the op-
timal anchor set based on the selection criterion derived from
the ambiguity function. Our anchor selection method gener-
ates an accurate VCS and results in a percentage of edge er-
ror comparable to the exhaustive search solution. Various ex-
periments on synthetic networks show that our anchor set se-
lection method improves both network connectivity inference
and routing performance. For future work, this anchor selec-
tion method could be generalized to other types of networks
and it can possibly be adapted to other applications such as
virus blocking and disease outbreak detection.
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