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A B S T R A C T   

Cities account for over 75% of primary energy use in the world, with buildings making up a significant share of 
this energy use. Previous simulation-based research has established that building energy use can be greatly 
impacted by surrounding urban systems such as other buildings, vegetation, and roads. Understanding these 
relationships is thus critical to enhancing the efficiency of energy-intensive urban environments. Taking 
advantage of the recent profusion of urban data, this paper proposes a novel Context-aware Urban Energy An
alytics (CUE-A) framework to empirically extract and quantify the relationships between building energy use and 
the spatial proximity of multiple surrounding urban systems. We apply the CUE-A framework to a case study of 
477 buildings in a mid-size U.S. city to demonstrate its merits and the statistical significance of explored re
lationships. Results show that spatial proximity of other buildings, trees, and roads is associated with varied and 
significant changes in both the central tendency and variability of building energy use, indicating that empirical 
frameworks, which are a growing field of work, can serve as useful complements to existing simulation models. 
Further, our paper demonstrates that energy-aware urban planning and design has the potential to unlock energy 
efficiency and low-carbon pathways for cities around the world.   

1. Introduction 

Cities account for more than 75% of global energy use, with the 
majority of this consumption coming from buildings (United Nations, 
2015). Cities also account for more than 60% of global greenhouse gas 
emissions, making the energy efficiency of the urban built environment 
critical to meeting the world’s climate change and sustainability goals. 
Due to the development of new information technologies, massive 
amounts of data are now being collected on an array of urban systems, 
defined here as systems of urban elements such as buildings, trees, and 
roads (each building in an urban area, for instance, is an urban element, 
and the collection of all buildings forms the urban system of buildings). 
These data are opening up opportunities to optimize urban energy use in 
ways that were previously not possible. 

A building’s energy use often depends on a variety of building 
characteristics such as built area, age, construction materials, HVAC 
characteristics, occupant behavior, and building operation and main
tenance (O&M). More importantly, urban building energy use can be 

impacted not just by building characteristics, but also by surrounding 
urban systems, including surrounding buildings (e.g., due to heat 
islands, mutual shading and reflection, and occupant dynamics), roads 
(e.g., due to street surfaces and heat from traffic), and trees (e.g., due to 
shading and air flow) (Chen, Hong, & Piette, 2017; Liu, Heidarinejad, 
Gracik, & Srebric, 2015; Toparlar et al., 2015). These relationships are 
complex and context-specific. For instance, shade from surrounding 
trees can reduce cooling loads in the summer but increase heating loads 
in winter for buildings in some climates and contexts (Akbari, Kurn, 
Bretz, & Hanford, 1997). In other contexts, trees might shelter buildings 
from strong cold winds and reduce the heating load in winter depending 
on the tree type. 

While previous work has acknowledged that surrounding systems 
can affect urban building energy use, there is a need to empirically 
quantify the relationship between building energy use and spatial 
proximity of surrounding urban systems. The availability of building 
energy consumption data with greater spatiotemporal granularity and 
the ability to extract spatial relationships between urban features have 
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enabled researchers to explore empirical methods (in addition to sim
ulations) to understand how urban context - defined here as the spatial 
proximity of different urban systems such as buildings, roads, and 
vegetation - can influence building energy use. 

This paper proposes a Context-aware Urban Energy Analytics (CUE- 
A) framework to investigate and empirically quantify the relationships 
between building energy use and the spatial proximity of other urban 
systems. The CUE-A framework contains four steps: (1) Extract features 
on spatial proximity for each building in an urban area through a series 
of physical relationship learning algorithms, (2) Extract building energy 
use features from granular energy consumption data, (3) Model the re
lationships between building energy use features and spatial proximity 
features through multivariate multiple regression, and (4) Apply learned 
relationships in data-informed urban energy decision making. The 
physical relationship learning algorithms, developed in (Gupta, Yang, & 
Jain, 2019), consist of three modules: a pre-processing module for urban 
data structure standardization, a learning module to search and calcu
late the proximity relationships of urban elements, and a management 
module to reconstruct urban data in a graph database based on learned 
proximity relationships (for an in-depth understanding of the model, see 
(Gupta et al., 2019)). 

The rest of the paper is organized as follows: Section 2 presents the 
motivation for this research through a succinct review of existing liter
ature and the identification of gaps. Section 3 lays out the generalized 
CUE-A framework, including both the theoretical grounding and the 
process by which analysis can be conducted using the framework. To 
validate the CUE-A framework, a real-world case study on 477 buildings 
in a mid-size U.S. city is presented in Section 4, where we find that 
building energy use has varied relationships in both magnitude and 
direction to the spatial proximity of buildings, roads, and trees. Section 5 
discusses the implications of this work, while Section 6 lays out the 
limitations and offers insights into future work. 

2. Literature review 

In the following section, we offer a succinct review and classification 
of prior work on the relationships between urban building energy use 
and the spatial proximity of urban systems, with the goals of identifying 
research gaps and situating the current work. 

Prior work (see full list of citations in Table 1) has, through modeling 

and simulation, explored the impacts of a building’s own characteristics 
as well as urban contextual features on aspects of building energy use. 
Table 1 summarizes some common input and output variables employed 
in previous models, wherein research has typically explored relation
ships between one or two input variables and an output variable. We 
classify input variables from prior work into urban contextual features, 
microclimate/ local climate features and building features. The spatial 
proximity of contextual features is central to their effects on building 
energy use. For instance, the closer the surrounding buildings are, the 
greater the mutual shading potential from surrounding buildings and its 
effect on building energy use. The output variables are classified into 
two types - energy use features which directly quantify building energy 
use, and energy-relevant features that can influence (and be influenced 
by) building energy use such as temperature, air flow, and thermal 
comfort of occupants. In the following paragraphs, we summarize prior 
research by key input variable categories listed in the table. 

2.1. Relationships between urban contextual features and building energy 
use 

In urban areas, buildings, roads, and vegetation are clustered 
together in close spatial proximity. This adjacency and closeness can 
affect the energy use of urban buildings through mechanisms that are 
detailed in the following subsections. 

2.1.1. Buildings 
The higher proximity of buildings in dense urban areas can impact 

building energy use through mutual shading and reflection, together 
referred to as inter-building effects (IBE). Modeling these inter-building 
effects allows researchers to understand the mutual impacts of nearby 
buildings on building energy use instead of considering individual 
buildings as stand-alone objects. For instance, Pisello et al. find that 
neglecting mutual shading and reflection can result in substantial 
inaccuracies (up to 42% in summer and up to 22% in winter) of heating 
and cooling load prediction (Pisello, Taylor, Xu, & Cotana, 2012). 
Mutual shading can also affect lighting energy demand (Li & Wong, 
2007; Pisello, Castaldo, Taylor, & Cotana, 2014) and the energy per
formance of building retrofits (Chen et al., 2017). Further, the relative 
magnitude of inter-building effects is often context-dependent. For 
instance, Han, Taylor, and Pisello (2017) find that shading has a greater 

Table 1 
Summary of commonly used input and output variables in prior research.  

CATEGORY VARIABLES 

INPUT VARIABLES 
Urban contextual features  

Buildings Mutual shading, Mutual reflection (Chen et al., 2017; Han et al., 2017; Li & Wong, 2007; Liu et al., 2015; Pisello et al., 2012; Pisello, Castaldo, 
Taylor et al., 2014) 

Roads Surface reflection, Heat from vehicles (Ihara et al., 2008; Karan et al., 2016; Lee & Kim, 2015; Mohammadi & Taylor, 2017) 
Vegetation Shading, Air flow (Akbari et al., 1997; Djedjig et al., 2016; Morakinyo et al., 2016; Perini & Magliocco, 2014; Wang, 2014) 

Microclimate and local climate 
features 

Relative humidity, Wind speed and direction, Temperature, Precipitation, Radiation, Anthropogenic heat sources, Evapotranspiration, Heating 
degree days, Cooling degree days (Barry & Blanken, 2016; Bouyer et al., 2011; Heidarinejad et al., 2016; Lauzet et al., 2019; Toparlar et al., 
2015) 

Building features  
Building geometry Surface characteristics, Building height, Building shape, Window to wall ratio (WWR), Orientation, Location, Floor-to-area ratio (FAR) (Abanda 

& Byers, 2016; Anton & Tănase, 2016; Barry & Blanken, 2016; Bouyer et al., 2011; Heidarinejad et al., 2016; Pacheco et al., 2012; Samuelson 
et al., 2016; Toparlar et al., 2017; Tuhus-Dubrow & Krarti, 2010; Yi & Malkawi, 2009) 

Building type Type of building/ type of land use (e.g. residential/ commercial/ industrial) (Aksoezen et al., 2015; Porse et al., 2016) 
Building condition Age, Operation and maintenance (O&M) characteristics, Occupancy characteristics (Aksoezen et al., 2015; Porse et al., 2016) 

OUTPUT VARIABLES 
Energy use features Building energy use, Building energy use intensity 

Energy-relevant features Temperature, Air flow, Thermal comfort  
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effect than reflection on energy consumption in an urban building 
network in Perugia, Italy. Inter-building effects can also vary with 
different urban layouts. For instance, using a simulation approach, Liu 
et al. (2015) find that building cooling loads increase and heating loads 
decrease with increasing plan area density due to convective heat 
transfer from exterior surfaces that alter building temperatures. 

2.1.2. Roads 
Recent work has begun to establish clear connections between 

transportation networks and building energy use (Karan, Mohammad
pour, & Asadi, 2016; Mohammadi & Taylor, 2017). For instance, Lee 
and Kim (2015) find that transportation accounts for a significant share 
of anthropogenic heat emissions in the urban Gyeong-In region, Korea, 
which can affect building energy use. Incorporating the effect of exhaust 
heat from automobiles into a building energy model, Ihara, Kikegawa, 
Asahi, Genchi, and Kondo (2008) find that reducing waste heat from 
automobiles can result in reduced cooling loads in buildings. However, 
the explicit modeling of the effects of road proximity on building energy 
use is quite nascent and presents an opportunity for further research. 

2.1.3. Vegetation 
Research has long recognized, through detailed simulations, that 

urban vegetation such as parks, trees, and green roofs can reduce energy 
use in buildings by moderating shade and air flow (Akbari et al., 1997). 
The magnitude of these effects depends on the degree of proximity of 
vegetation, their relative abundance in urban areas, and local climate 
conditions. Perini and Magliocco (2014) find that urban vegetation can 
mitigate summer temperatures and decrease the indoor cooling demand. 
Morakinyo, Dahanayake, Kalani, Adegun, and Balogun (2016) find that 
tree shade on a building can result in lower indoor and outdoor tem
peratures and higher relative humidity. Similarly, using Monte Carlo 
simulation, Wang (2014) establishes that shade from trees can lower 
temperatures of a street canyon and reduce energy use in buildings. 
Focusing on the interfaces between buildings and roads, Djedjig, 
Bozonnet, and Belarbi (2016) find that green walls can reduce building 
energy use and street air temperature. 

Together, the clustering of buildings, roads, and other human-made 
elements in a dense urban environment contributes to the urban heat 
island effect (UHI) (Arnfield, 2003; Howard, 1833), defined by higher 
local air temperatures in dense urban environments compared to sur
rounding rural areas (Kim, Gu, & Kim, 2018; Oke, 1982; Santamouris, 
2001), which can in turn affect building energy use. However, since the 
case study in this paper explores intra-urban relationships in a small 
downtown area of a single city, a detailed consideration of local varia
tions in the heat island effect is outside the scope. Such variations will, 
however, need to be considered in greater depth for larger study areas. 

2.2. Microclimate/ local climate conditions 

Extensive literature in urban climatology has established that a va
riety of local climate factors – such as solar irradiance (Bouyer, Inard, & 
Musy, 2011; Heidarinejad et al., 2016), temperature (Toparlar et al., 
2015), pressure, and air flow – can significantly impact building energy 
use. While definitions vary, local climate is typically defined at a 
neighborhood/ city scale while microclimates are confined to smaller 
areas, such as a street canyon between two rows of buildings (Barry & 
Blanken, 2016) (city and regional scales are often called ‘meso’ scales). 
It is thus important to account for these variables since oversimplifying 
or neglecting microclimatic effects can lead to substantial inaccuracies 
in building energy models (Lauzet et al., 2019). For a detailed review of 

microclimatic effects on building energy use, including recent de
velopments in computational fluid dynamics (CFD) methods, see the 
comprehensive review by Toparlar, Blocken, Maiheu, and van Heijst 
(2017). 

2.3. Effects of building features 

A building’s own characteristics can not only impact energy use, but 
also mitigate or exacerbate the effects of other urban systems. For 
instance, older buildings with less efficient HVAC systems and poor 
insulation might be affected more by heat from traffic than newer 
buildings with more efficient HVAC systems and better insulation. It is 
thus important to account for inherent effects of building characteristics 
when studying the effects of urban context on building energy use. The 
following subsections briefly review key building features that can 
impact building energy use. 

2.3.1. Building geometry and orientation 
A wide range of energy modeling and simulation studies have 

established that the shape, size, and orientation of buildings can affect 
building energy use. For instance, Samuelson, Claussnitzer, Goyal, Chen, 
and Romo-Castillo (2016) find that various early-stage parameters for 
building design such as shape, window to wall ratio (WWR), envelope, 
and shading can affect the energy use of a residential building. For a 
comprehensive review, see Pacheco, Ordóñez, and Martínez (2012). 
Many algorithms have been developed to optimize building geometry 
for enhanced energy efficiency (Tuhus-Dubrow & Krarti, 2010; Yi & 
Malkawi, 2009), including recent work on parametric building modeling 
and simulation (Anton & Tănase, 2016). Building orientation can impact 
the internal solar gain of a building, affecting its energy use (Abanda & 
Byers, 2016). 

2.3.2. Building type and condition 
The type of building - commercial, industrial, residential, or other - 

can impact its energy use due to variations in building characteristics 
and the relative energy intensity of activities being performed. Com
mercial and industrial buildings are typically larger in area and have 
more energy intensive activities than residential buildings. Porse, Der
enski, Gustafson, Elizabeth, and Pincetl (2016) find that complex 
interrelated social and structural factors can influence building energy 
use, including age, area, and land use type. Building age, often used as a 
proxy for building condition, is an important but mixed indicator of 
energy use, since older buildings might have lower energy efficiency 
measures but are typically more compact than newer dwellings 
(Aksoezen, Daniel, Hassler, & Kohler, 2015). 

In conclusion, we find that a large variety of factors influence 
building energy use. In particular, Section 2.1 highlighted that the 
spatial proximity of urban systems can influence building energy use 
through a range of complex and often interactive mechanisms. Since this 
is the relationship of interest explored in this paper, the microclimate 
and building features described in Sections 2.2 and 2.3 are treated as 
critical control variables that must be accounted for in quantifying the 
relationship between building energy use and spatial proximity of other 
urban systems. 

2.4. Addressing gaps in prior research 

The literature review reveals that there is a wealth of simulation- 
based methods in prior work that help us understand relationships be
tween building energy use and the spatial proximity of urban systems. 
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Simulation approaches offer significant advantages – substantial control 
over the urban environment being modeled, the ability to isolate con
founding factors, and greater confidence in results subject to specific 
assumptions. These advantages also pose three specific challenges that 
can be addressed by empirical methods as detailed below, especially as 
simulation-based models are time-consuming and computationally 
expensive. 

First, empirical methods enable researchers to model real-world 
urban environments as they actually exist in cities today. Past work, 
especially when simulation-based, uses either just a single test building 
(Bouyer et al., 2011), or a test building in combination with simplified 
urban grids of building blocks that are often 10 m cubes (Han et al., 
2017; Liu et al., 2015). Only in a few cases, some complexity is intro
duced by varying the urban context. For instance, Samuelson et al. 
(2016) use stochastic urban context models generated using the soft
ware Grasshopper, and Toparlar et al. (2015) generate an actual 
geometrical model of a section of Rotterdam using municipal building 
data. So, by extracting spatial proximity features that represent build
ings, roads and vegetation in actual cities, we can begin to address 
problems associated with simplification of urban layouts in existing 
research. 

Second, while building layouts are still varied to some extent in prior 
research, other urban features such as trees, cars, and other anthropo
genic heat sources are often neglected or not considered concurrently in 
a single integrated model. A significant opportunity thus exists to 
simultaneously consider the relationships between the proximity of 
building, street and vegetation features and building energy use, 
capturing their interactions. 

Third, recent benchmarking policy efforts have made energy con
sumption data at the individual building level readily available (Chen 
et al., 2017). So, we now have the opportunity to employ data on actual 
energy use in buildings as an output variable in empirical models, 
enabling real-world validation of the hypothesized/ simulated effects of 
urban context on building energy use. Integrating data streams on urban 
systems from multiple sources (e.g., municipal records, in-situ sensors, 
surveys) and the extraction of relationships between them is also a 
growing area of research. Prior work (Gupta et al., 2019) classifies 
existing data integration methods into three categories - domain-centric, 
demand-centric and data-centric. To address deficiencies in these 
methods, (Gupta et al., 2019) develops an Urban Data Integration (UDI) 
framework that uses a series of proximity relationship learning algo
rithms to automatically integrate urban data in a graph database. In this 
paper, we utilize the output of the UDI framework to extract information 
on urban context, i.e., spatial proximity of urban systems. 

3. CUE-A framework 

The generalized CUE-A framework comprises of the following steps 
(Fig. 1): (1) extract features to represent the spatial proximity of 
buildings to other urban systems (other buildings, vegetation and 
roads); (2) extract features to depict the characteristics and patterns of 
building energy use; and (3) learn relationships between spatial prox
imity features and energy use features, while accounting for confound
ing variables. The ultimate goal of this process is to offer data-based 
evidence to complement existing simulation models in informing urban 
planning and design decisions (Step 4). The following subsections 
describe these steps in detail. A case study that employs this framework 
for a city is presented in Section 4. 

3.1. Step 1: feature extraction and spatial proximity determination for 
urban context 

The spatial proximity features used in previous studies to represent 
urban context can be divided into three categories: features related to 
buildings, features related to vegetation, and features related to roads. 
The features related to buildings generally describe the spatial relations 
among buildings, such as the number of nearby buildings and the dis
tance between buildings (Pearlmutter, Berliner, & Shaviv, 2007; San
tamouris et al., 2001). The features related to vegetation represent the 
spatial connections between buildings and vegetation that are either on 
the buildings (e.g., green roofs) or along the buildings (e.g., density of 
vegetation around a building) (Perini & Magliocco, 2014). The features 
related to roads indicate the spatial relations between buildings and 
roads such as the distance between a building and nearby roads (Alle
grini, Dorer, & Carmeliet, 2012; Tong, Chen, Malkawi, Adamkiewicz, & 

Fig. 1. Overview of the CUE-A framework.  

Table 2 
Spatial proximity features extracted for each building.  

Spatial proximity features Feature category Feature 

Number of proximate elements – Number 

Distance of proximate 
elements 

Central 
tendency 

Mean distance 
Median distance 

Variability 

Minimum distance 
Maximum distance 
Standard deviation 
Interquartile range of 
distance 

Distribution Skewness of distance 
Kurtosis of distance  
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Spengler, 2016). 
Our proposed CUE-A framework builds on this previous work by first 

extracting features that depict spatial proximity between buildings in an 
urban area and the surrounding buildings, roads and trees through a 
series of physical relationship learning algorithms introduced in (Gupta 
et al., 2019). The algorithms rely on spatial data on the locations and 
geometry of buildings, roads, and trees in an urban area that can be 
obtained through open data from cities or extracted from map providers 
such as OpenStreetMap (OSM), satellite imagery such as from NASA, 
commercial data providers such as SafeGraph, or obtained from 
photogrammetry. Based on their geometric properties, buildings are 
abstracted to polygonal urban elements, roads are abstracted to linear 
urban elements, and trees are abstracted to point urban elements. Then, 
the relationship learning algorithm utilizes an iterative process to 
determine the degree to which spatial proximity exists between any two 
urban elements (see Appendix A for a brief explanation and (Gupta et al., 
2019) for details). The algorithm iterates through all the buildings in the 
dataset and the results are aggregated to construct a set of spatial 
proximity features for each building with respect to other buildings, 
trees, and roads. Table 2 shows suggested features that could be 
extracted to represent the spatial proximity of each building to every 
distinct surrounding urban system. 

3.2. Step 2: feature extraction for building energy use 

The first step in feature extraction for building energy use is to 
choose key performance indicators (KPIs) that are easy to compute and 
interpret. Commonly used KPIs in prior work include (1) total energy 
use, (2) heating and cooling loads, and (3) energy use intensity (EUI). 
Each KPI can be of different types, such as site KPI to indicate the unit 
primary and secondary energy directly used at the building, source KPI 
to express site KPI plus delivery and production energy losses, weather- 
normalized site KPI to indicate the site KPI if the building experienced 
30-year average outside temperature, and weather-normalized source 
KPI to account for the weather-normalized site KPI plus losses for total 
building energy use intensity (New York City Mayor’s Office of Sus
tainability, 2016; US EPA, 2017). The temporal granularity of KPIs can 
be hourly, daily, monthly, and yearly, depending on the study (ASHRAE, 
2002; IPMVP Committee and others, 2002; US DOE, 2008). (Note that 
building source energy use intensity (source EUI), where building en
ergy use is normalized by building area, is recommended by the Port
folio Manager in EnergyStar (Scofield, 2013). Users of the CUE-A 
framework can choose KPIs that are appropriate to their specific context 
of study. In the case study presented in this paper, building area can be 
added as an independent variable in the regression model and so, we 
utilize total energy use as the primary KPI. 

Next, statistics can be calculated to capture trends and patterns in the 
KPIs, especially if the temporal granularity of energy use data is small. 
These statistics become the building energy use features. Commonly 
used statistics can be employed to represent the central tendency (me
dian, mean), variability (standard deviation, interquartile range (IQR), 
mean absolute deviation, and median absolute deviation), distribution 
(skewness and kurtosis) as well as kernel density, categorization and 
percentage (Kontokosta, 2012). 

3.2.1. Control variables 
In Table 1, we discuss how a variety of microclimatic features and 

building characteristics can impact building energy use. In order to 
disentangle the specific relationships between the spatial proximity of 
urban systems and building energy use, it is important to account for 
these potentially confounding characteristics. In the CUE-A framework, 
this can be done by adding microclimate (heating and cooling degree 
days, relative humidity etc.) and building characteristics (building ge
ometry, type, and condition) as control variables to the regression model 
based on contextual relevance and data availability. 

3.3. Step 3: Multivariate multiple regression model 

The CUE-A methodology models the relationships between spatial 
proximity features and building energy use through a multivariate 
multiple regression, wherein there are several independent variables 
(’multivariate’) and several dependent variables (‘multiple’). This 
regression model allows us to adequately capture time-series energy use 
data through a set of energy use features that describe not just the 
central tendency but also the variability and distribution of energy use, 
which are then used as independent variables (’multivariate’). Then, 
spatial proximity features which describe the adjacency and closeness of 
various urban elements (buildings, trees and roads) to buildings are 
employed as dependent variables (‘multiple’). The spatial proximity 
features are assumed to be time-invariant, although a future version 
could model changes in the urban environment over time, providing a 
basis for causal deductions. Note that including multiple urban elements 
simultaneously enables us to investigate their co-effects on building 
energy use, offering a useful addition to prior models that typically ac
count for each type of urban element individually. In addition, there are 
control variables that account for microclimatic features and building 
characteristics that could potentially confound the effects of the pre
dictors on the outcomes. 

As a result, the data has P independent variables x1, x2..., xP that are 
spatial proximity features and Q dependent variables y1, y2…, yQ that 
are building energy use features as detailed in Section 3.2. The objective 
is to model the statistical mapping from building spatial proximity fea
tures to energy use features, which is represented by the nonzero entries 
in the P by Q coefficient matrix B = (βpq) from the N i.i.d. buildings: 

yq =
∑P

p=1
xpβpq + εq (q = 1, ….Q)

The error term ε has a joint distribution of mean 0 and 
covariance Σε. With the normality assumption, βpq is interpreted as 
proportional to the conditional correlation Cor(yq, xp|x− (p)), where 
x− (p) : {xp’ : 1 ≤ p’ ∕= p ≤ P}. To identify the significant impacts of 
proximity features on building energy use and improve the generaliz

Fig. 2. Location of case study city in California, United States. 
(Source: OpenStreetMap). 
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ability of the proposed method to other urban areas with more features, 
an l1-norm is imposed to coefficient matrix B as regularization in order 
to control for overfitting and the overall sparsity of the multivariate 
multiple regression model. It is assumed that there exist master regu
lators of building characteristics and spatial proximity features for 
building energy use. Therefore, the objective of the model could be 
specified to find these master regulators: 

L(B; λ) =
1
2

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒
Y −

∑P

p=1
XpBp

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒

2

F

+ λ
∑P

p=1

⃒
⃒
⃒
⃒Bp||1  

Where Y is the N by Q dependent variable matrix, and X is the N by P 

independent variable matrix (Xp = (x1
p, x2

p,…, xN
p )

T is the sample of pth 

independent variable). B represents the impacts of different building 
characteristic features and spatial proximity features on energy use 
features (Bp is the pth row of B). ||∙||F and ||∙||1 indicate the Frobenius 
norm and the l1-norm, respectively. The final computed coefficient 
matrix is B̂(λ) = argminBL(B; λ ). Cross-validation estimation is applied 
to calculate the best hyperparameter. R-squared values are applied to 
denote how closely the multivariate multiple regression model fits the 
data. 

4. Empirical validation: Case Study 

4.1. Case study data and feature extraction 

To validate the CUE-A framework, a real-world case study is con
ducted for the downtown area of Palo Alto, a mid-size city in California, 
USA. Fig. 2 shows the location of the city and Fig. 3 shows a map of the 
buildings, trees, and roads in the case study area. The case study area 
contains 477 buildings of varying sizes and mixed functions, including 
residences, offices, stores, and restaurants. The buildings studied are a 
mix of 43.4 % commercial, 43.1 % multi-family residential and 13.5% 
single-family residential building types (the 43.4% commercial category 
includes four land use designations employed by the City of Palo Alto - 
Community Commercial (CC) (39.4%), Neighborhood Commercial (CN) 
(1.0%), Major Institution/Special Facilities (MISP) (0.4%), and South of 
Forest Area (SOFA) (2.6 %)). Both the data assembly (extraction of 
spatial proximity features, energy use features, and control variables) 
and the multivariate multiple regression were conducted in Python 
(version 3.6). 

4.1.1. Feature extraction for urban context 
Spatial proximity features were computed for each building in the 

case study area with respect to other buildings, roads, and trees. The 
algorithms to extract spatial proximity rely on open data on building, 
street, and vegetation obtained from the City of Palo Alto (City of Palo 
Alto, 2020). Fig. 4 describes these spatial relationships through discrete 
probability distributions for the number (top row) and mean distance 
(bottom row) of surrounding buildings, trees, and roads for the buildings 
in the case study area. While the number and mean distance of 

Fig. 3. Map of buildings (centroids shown as dots in red color), roads (lines in 
grey color) and vegetation (i.e., trees) (centroids shown as dots in green color) 
in case study area. 

Fig. 4. Number (top row) and mean distance (bottom row) of surrounding buildings, trees, and roads for the buildings in the case study area.  
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surrounding buildings are approximately normally distributed, the 
number of surrounding trees and roads have unimodal distributions and 
the distance of surrounding roads and trees have bimodal distributions. 
A key insight from Fig. 4 is that the majority of buildings in the case 
study have four to five surrounding buildings, one surrounding tree, and 
one to two surrounding roads. Similarly, most buildings have a mean 
distance of around 10 m from other buildings, of 1− 2 m or 6− 8 m from 
trees, and of 5-6m or 15-16m from roads. 

4.1.2. Feature extraction for building energy use 
Monthly metered energy use data for 477 buildings in the case study 

area for two years (2015 and 2016) was obtained from the City of Palo 
Alto. The building energy use features extracted from this data are the 

mean and standard deviation of monthly building energy use for each 
building, representing the central tendency and variability of energy use 
respectively. These features are extracted for total energy use, cooling 
seasonal energy use, and heating seasonal energy use for each building. 
For Palo Alto, June to October are assumed to be cooling months and 
November to May are heating months, based on heating and cooling 
degree day data as shown later in Fig. 7. Note that, as part of data 
cleansing, we discarded 53 buildings with missing energy consumption 
from an initial dataset of 530 buildings. 

Fig. 5 shows that the total monthly energy use of all buildings in the 
case study area does not show significant seasonal variation by year, 
which can be explained by the less varied weather conditions in Palo 
Alto. Note that the building energy use is the sum of electricity use 
measured in kWh and gas consumption measured in thm (therms) and 
converted to kWh. Fig. 6 shows the mean monthly energy use for all 
buildings in the case study area. The energy use is skewed as there are 
some buildings with large amount and variation of energy use. The mean 
monthly energy use across buildings is 10,729.5 kW h, with a mean 
standard deviation of 2087.5 kW h and a mean range of 6802.9 kW h. 
Single-family and multi-family residential buildings have a mean 
monthly energy use of 1916.41 kW h and 2320.75 kW h respectively. In 
contrast, commercial buildings have higher monthly energy use, with an 
average of 20830.11 kW h, necessitating the incorporation of the 
building type variable in our regression model. 

4.1.3. Control variables 
As stated in Section 3, there are two primary types of control vari

ables to be accounted for, with some customization based on the context 
of analysis - microclimatic features and building characteristics. In terms 
of microclimatic features, the city of Palo Alto has a warm-summer 
Mediterranean climate (Köppen Climate Classification system), with 
low variation in temperature, humidity and precipitation. Fig. 7 shows 
the Heating Degree Days (HDD) and Cooling Degree Days (CDD) 
aggregated to the monthly level for each of the years 2015 and 2016. 
Heating and cooling degree days measure the degrees by which the daily 
average outdoor temperature is lower or higher than the baseline tem
perature (65◦F in the US) respectively, serving as a useful proxy for the 
amount of energy needed to heat or cool buildings for thermal comfort 
in that context. As the figure shows, there is no significant variation in 
Palo Alto in HDD and CDD between the two years. We thus exclude these 
microclimatic variables in our regression analysis for total energy use 
but note that these variables may become salient to case studies in other 
locations with significant seasonal and annual variations in weather 
conditions. In addition, we run the same regression model as total 
building energy use for the heating and cooling energy use separately to 
capture any variation across seasons. 

The next step is to control for building characteristics. Despite the 
profusion of urban data, it still remains difficult to assemble a 

Fig. 5. Total building energy use for all buildings in the case study area by 
month and year. 

Fig. 6. Mean monthly building energy use in the case study area.  

Fig. 7. Heating Degree Days (HDD) (left) and Cooling Degree Days (CDD) (right), aggregated by month for the case study area (2015-2016). 
Source: NOAA National Centers for Environmental Information; Data for NOAA Division “California CD 4. Central Coast Drainage”. 
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comprehensive dataset of characteristics for all buildings in an urban 
area from public data sources (Gupta et al., 2019). Due to this limitation, 
we accounted for a subset of building characteristics, focusing on the 
most critical features suggested by prior literature: building geometry 
and orientation, building type, and building condition. Building geom
etry is represented by building height and roof area, which is assumed to 
be a proxy for the typical floor area. Adding in building area as a control 
variable accounts for the variation in building size that results from 
building type (e.g. commercial buildings are typically larger than resi
dential buildings). Building orientation is a categorical variable with 
four values representing the axis along which the longest side of the 
building is facing one of the four directions (0 degrees Solar North, 45 
degrees West Solar North, 90 degrees Solar North, 135 degrees West 
Solar North). Building type is identified from parcel-level land use data 
obtained for the city. There are three types of buildings in the case study 
area – single-family residential buildings, multi-family residential 
buildings, and commercial buildings. Finally, we utilize building age as 
a proxy for building condition and construction practices given the fact 
that the California building code has progressed to more aggressive 

energy efficiency standards over the years. 

4.2. Case study results: Multivariate multiple regression model 

After the relevant features for each building were prepared, multi
variate multiple regression was implemented to understand the rela
tionship between building energy use and spatial features. The 
regression uses log-transformed dependent variables to account for 
skewness. Using L1 regularization, shrinkage is implemented to shrink 
coefficients to zero, producing a simple and sparse model that displays 
only the statistically impactful variables. 

Fig. 8 shows a heatmap representation of the regression coefficients, 
where the x-axis shows building energy use features (dependent vari
ables, namely the mean and standard deviation of building total energy 
use) and the y-axis shows spatial proximity features for surrounding 
buildings, trees, and roads (independent variables, namely the number, 
mean and standard deviation of distance of proximate elements). The 
numeric values represent percent change in the dependent variable per 
unit change in the independent variable (log-transformed regression 

Fig. 8. Multiple multivariate regression coefficients for the relationship between building energy use features and spatial proximity features in the case study area. 
Note: Since the regression was conducted with log-transformed dependent variables, regression coefficients are exponentiated and converted to percent change in the 
figure to facilitate easier interpretation. 

Fig. 9a. Significant coefficients for building energy use and spatial proximity of other buildings. (b) Significant coefficients for building energy use and spatial 
proximity of trees. (c) Significant coefficients for building energy use features and spatial proximity of roads. 
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coefficients are exponentiated and converted to percent change to 
facilitate easier interpretation). The colors show the variation in coef
ficient values from large and positive (deep green) to large and negative 
(deep red). The subsequent Fig. 9a–c in this section further describe the 
coefficients for the mean and standard deviation of building cooling 
seasonal energy use and building heating seasonal energy use in addi
tion to the building total energy use (for the full regression table with 
control variables, refer to Appendix B (Table B1)). 

We see that building energy use has varied relationships in both 
magnitude and direction to the spatial proximity of buildings, trees, and 
roads. Having selected for the most impactful variables, we see that 
nearly every spatial proximity feature is associated with statistically 
significant changes in the central tendency (mean as seen in column 1) 
and variability (standard deviation as seen in column 2) of building 
energy use, pointing to the need to account for these variables in urban 
building energy models. The R-squared values for the mean of energy 
use and the standard deviation of energy use are 0.679 and 0.626 
respectively. 

A general guide to the interpretation of coefficients is as follows: 
coefficients for the numbers of buildings, trees, and roads indicate the 
percentage change in the mean or standard deviation of building energy 
use associated with a unit increase in the number of surrounding prox
imate elements. The coefficients for the mean distance of buildings, trees 
and roads indicate the percentage change in mean or standard deviation 
of energy use associated with a unit increase in the mean distance of 
surrounding proximate elements. Intuitively, it describes the association 
between energy use and surrounding urban elements being farther 
away. Coefficients for the standard deviation of distance of buildings, 
trees and roads indicate the percentage change in mean or standard 
deviation of energy use associated with a unit increase in the standard 
deviation of distance of surrounding elements. As standard deviation of 
distance increases, there is reduced concentration of surrounding ele
ments around the mean distance of that specific element, so these urban 
elements are more varied in their distance from buildings. Thus, it de
scribes the association between energy use and more spread-out sur
rounding urban elements. 

Looking across column 1 of the heat map, we see that the standard 

deviation of the distance of trees has the largest positive coefficient 
(+6.499) and is associated with the largest positive percent change in 
the mean of energy use controlling for all other variables. We can thus 
expect building energy use to increase when trees are more varied in 
their distance from the buildings. The number of proximate buildings 
has the largest negative coefficient (− 7.157), and therefore is associated 
with the largest negative percent change in mean of energy use. In other 
words, as more buildings are clustered together, we can expect building 
energy use to decrease. Looking across column 2 of the heat map, we see 
that the mean distance of buildings has the largest positive coefficient 
(+7.595), while the number of roads has the largest negative coefficient 
(− 7.560), controlling for all other variables. As a result, we can expect 
building energy use to be more varied as surrounding buildings are 
farther away and to be less varied as the number of surrounding roads 
increases. 

Fig. 9a–c offer further detail on the statistically significant regression 
coefficients for total building energy use, adding in the coefficients for 
building cooling and heating seasonal energy use for comparison (for the 
full regression table, refer to Appendix B (Table B1)). Note again that 
coefficients have been regularized to improve interpretability. In the 
following paragraphs, we interpret, in the same order, the association 
between the coefficients for the number, mean distance and standard 
deviation of distance of each urban element and the mean and standard 
deviation of total, cooling seasonal, and heating seasonal energy use. 

Digging deeper into coefficients for surrounding buildings in Fig. 9a , 
we see that an additional proximate building is associated with a 
decrease in the mean of building total energy use by 7.157 percent and 
with a decrease in the standard deviation of building total energy use by 
7.071 percent, controlling for all other variables. Intuitively, the clus
tering together of a larger number of buildings is associated with lower 
mean and lower variation in building energy use. This could point to 
mutual reflection and shading effects in larger clusters of buildings 
resulting in lower energy use across all seasons in temperate Palo Alto, 
and is consistent with earlier literature (Li & Wong, 2007; Pisello et al., 
2012). The direction of these effects is the same for both cooling and 
heating seasonal energy use, although the magnitude of the coefficients 
is higher for heating seasonal energy use. A possible explanation is that, 

Fig. 9b. Significant coefficients for building energy use and spatial proximity of trees.  

R. Shivaram et al.                                                                                                                                                                                                                              



Sustainable Cities and Society 72 (2021) 102978

10

in Palo Alto, the number of heating degree days is higher than cooling 
degree days, which means more heating is required. Urban heat island 
effects during the heating season could reduce the heating load and 
associated energy use. 

Surprisingly, every additional unit of mean distance of surrounding 
buildings is associated with no significant change in mean building total 
energy use, indicating its effects may be offset by the effects of number 
and standard deviation of surrounding buildings. It is, however, asso
ciated with small changes in mean building cooling and heating seasonal 
energy use, indicating that such seasonal loads are more impacted by 
inter-building effects (Pisello et al., 2012). Every additional unit of mean 
distance of surrounding buildings is associated with a 7.595 percent 
increase in the standard deviation of total energy use, and 6.908 and 
0.313 percent increases in the standard deviation of cooling and heating 
seasonal energy use respectively. This indicates that surrounding 
buildings being further away is associated with greater variation in 
building energy use. This could be explained by reduced mutual shading 
and reflection or by spatial separation of land uses in the U.S. context 
(Huang, Zhang, & Li, 2007), whereby energy-intensive commercial and 
industrial buildings are placed farther away from residential buildings. 
Finally, every additional unit of standard deviation of distance of sur
rounding buildings is associated with a decrease of 1.594 percent in 
mean of building total energy use and with a decrease of 2.406 percent 
in the standard deviation of building total energy use. This implies that, 
the more spread out the surrounding buildings are, the lesser the 
possible effects on energy use of other buildings. 

Looking at coefficients for trees in Fig. 9b, we see that an additional 
proximate tree is associated with an increase in mean of total energy use 
by 2.562 percent and with no significant change in the standard devi
ation of total energy use, controlling for all other variables. Our results 
indicate a relationship between having more trees and greater mean 
total building energy use as well as cooling and heating seasonal energy 
use. Additionally, it is worth noting that the number of surrounding trees 
has the largest impact on the variation of cooling seasonal energy use. 
This result points to the notion that shading provided by surrounding 
trees can impact cooling seasonal energy in varying degrees. This 

finding is a counter-intuitive finding since earlier literature has pointed 
to the moderating effects of surrounding trees on building energy use 
during both hot and cold seasons (Akbari et al., 1997). However, there 
are other explanations for this effect. First, this regression explores the 
co-effects of multiple urban system elements on building energy use, 
which means that there could be interactions between effects of different 
surrounding urban systems. Further, this relationship could be an arti
fact of sprawling American land use patterns whereby larger commercial 
buildings are located on tree-lined avenues while smaller residential 
buildings might have more sparse surrounding vegetation (Huang et al., 
2007). Similarly, every additional unit of mean distance of surrounding 
trees is associated with a decrease of 4.547 percent in the mean of 
building energy use, and with a 4.449 percent decrease in the standard 
deviation of energy use. As trees are farther away, building energy use is 
lower and less varied with the impact especially pronounced for cooling 
seasonal energy use. This finding contrasts with existing literature. We 
note that this result could be due to an artifact of land use patterns in our 
case study city in which trees are more prevalent in business districts 
that have buildings with higher energy use. However, further 
cross-analysis and comparison with other cities with different land use 
patterns is required to ascertain if this is the case. Finally, every addi
tional unit of standard deviation of distance of trees is associated with an 
increase of 6.199 percent in mean of building energy use and with an 
increase of 2.456 percent in the standard deviation of building energy 
use. The more spread out surrounding trees are, the lower the ability of 
the trees to buffer external environment loads. 

Looking at specific coefficients for roads in Fig. 9c, we see that an 
additional proximate road is associated with a decrease in mean build
ing energy use by 3.732 percent and with a decrease in the standard 
deviation of energy use by 7.560 percent, controlling for all other var
iables. Having more roads nearby is associated with lower mean build
ing energy use, probably due to a larger number of narrow roads 
surrounding residential buildings, while a smaller number of larger 
avenues and boulevards often surround larger commercial buildings. 
This relationship holds for the cooling and heating seasonal energy use 
regressions as well. Similarly, every additional unit of mean distance of 

Fig. 9c. Significant coefficients for building energy use features and spatial proximity of roads. 
Note: S.D. of distance refers to the standard deviation of distance of buildings. 
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surrounding roads is associated with a 2.454 percent increase in the 
mean of building energy use, and with a 3.776 percent increase in its 
standard deviation. Finally, every additional unit of standard deviation 
of distance of trees is associated with increases of 3.571 and 7.391 
percent in mean and the standard deviation of building energy use 
respectively. These findings deviate from previous studies and could be 
explained by heat from traffic offsetting the heating loads during the 
heating season and reducing energy use, given that there are more 
heating degree days than cooling degree days in the case study area. 

5. Discussion and implications 

In this paper, we propose the CUE-A framework to empirically 
quantify the relationships between building energy use and spatial 
proximity to other urban systems, and then test its applicability using a 
case study. The significance of the case study results indicates that using 
empirical data in the proposed framework can help validate the esti
mated impacts of urban context on building energy use and extend 
findings from previous simulation-based studies. 

First, let us consider the spatial proximity features extracted for 
different urban elements. While previous studies have often considered 
buildings as stand-alone elements (Pisello, Castaldo, Poli, & Cotana, 
2014) or employed simplified spatial relationships between a building 
and one proximate urban element, we are able to generate empirical 
data on the proximity relationships that exist not just between a building 
and a single urban system, but between buildings and multiple sur
rounding urban systems. This allows us to conduct analysis on re
lationships between urban building energy use and proximity of 
multiple urban systems at the building scale in an urban area, building on 
previous studies on the impact of urban form on energy use at the city 
scale (Güneralp et al., 2017; Yamaguchi, Shimoda, & Mizuno, 2007). 

Second, beyond just characterizing spatial proximity for multiple 
urban systems, the CUE-A framework incorporates that data into 
building energy analysis, presenting a step forward in considering the 
real-world urban context in urban energy efficiency research. The 
framework employs a novel application of the multivariate multiple 
regression model that allows us to simultaneously incorporate time- 
series building energy use data and “static” urban contextual data in a 
single model. Having multiple urban systems in a single model yields 
some insights that confirm previous studies and some that contrast 
existing work, indicating the value of investigating these phenomena in 
tandem as opposed to individually. For instance, the case study shows 
that having additional proximate buildings nearby is associated with 
lower energy use while controlling for all other variables including 
distance of surrounding buildings. At the same time, an increase in the 
central tendency and variation of distance of surrounding buildings is 
associated with decreases in the central tendency and variation in 
building energy use as well, while controlling for all other variables 
including the number of surrounding buildings. These results agree with 
previous work, where the clustering of buildings is associated with 
reduced energy use due to mutual shading and reflection (Pisello et al., 
2012). On the other hand, the presence of additional proximate trees is 
associated with an increase in building energy use while having addi
tional proximate roads is associated with decreased building energy use, 
controlling for all other variables. Both of these results are surprising 
and in contrast to previous literature. Further research is necessary to 
delve into how various planning and zoning regimes across different 
cities impact the relationships between urban systems and energy use to 
corroborate our empirical work. 

Third, the CUE-A framework is scalable and extensible to different 
cities in future work. Running the algorithms to extract spatial proximity 
relationships for other cities, large or small, is straightforward. It is also 
possible to experiment with different thresholds for what is considered 
“spatial proximity” between urban elements. For instance, proximity in 
a sprawling metropolis like Los Angeles, U.S.A. might be defined very 
differently from proximity in a dense neighborhood in Jakarta, 
Indonesia. Our proposed CUE-A methodology could be applied by other 
cities to understand more city-specific relationships between urban 
context on building energy use, and to compare urban energy efficiency 
across cities. More importantly, while the current framework offers 
correlational insights, a future version of CUE-A could substitute time- 
series urban contextual data in place of the time-invariant data 
assumed in this paper, allowing us to model changes in the urban 
environment over time and providing a basis for causal deductions. 

Finally, CUE-A offers a meaningful empirical complement to urban 
building energy models based on simulation, where significant progress 
has been made towards developing workflows (Reinhart & Cerezo 
Davila, 2016). The empirical approach that CUE-A proposes can, by no 
means, replace complex and vividly detailed simulation models that 
establish causal relationships. The CUE-A framework can, however, 
offer a useful “screening” model for more complex and time-consuming 
simulation models by identifying critical spatial proximity features 
associated with significant changes in building energy use in a specific 
urban context, so that they can be incorporated into a simulation model. 
It can also help identify proximity features that are not as important in a 
particular context, saving time and resources spent on accurately inte
grating those features into as simulation model. We thus envision CUE-A 
complementing the ever-growing body of simulation approaches by (1) 
offering empirical validation, (2) serving as “screening models” to 
develop more parsimonious simulation models, (3) serving as add-ons to 
physics-based models to decipher the level of detail needed for specific 
urban features, and (4) paving the path for hybrid models in the future. 

6. Limitations and future work 

This paper represents a first step in creating a scalable and extensible 
framework to empirically quantify the relationships between building 
energy use and spatial proximity of urban systems. However, our 
methodology has several limitations, both in the framework and the case 
study. 

First, the framework has limitations that offer many opportunities for 
future work. To specify spatial proximity, we employ simplified and 
abstracted two-dimensional features, while more informative features 
such as three-dimensional proximity properties could be explored to 
develop more comprehensive and generalizable relationships. Addi
tionally, we assume that the relationships between spatial proximity of 
urban systems and building energy use are linear, and therefore multi
variate multiple regression is appropriate. More advanced algorithms (e. 
g., conditional random fields) could be employed to examine whether 
non-linear relationships exist. Similarly, while our goal was primarily 
descriptive, i.e. understanding the relationships between energy use and 
spatial proximity, there is room for various machine learning algorithms 
to be employed in future work aimed at prediction. However, we point 
out that utilizing such advanced methods introduces challenges to 
interpretability and may limit the applicability of results. 

Second, our case study has some limitations. In this paper, we limit 
the case study to the downtown area of a mid-size city in the temperate 
climate of Northern California. While this serves as a useful small-scale 
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demonstration of the framework, there is a need for more case study 
cities of varying sizes and planning paradigms to corroborate the re
lationships uncovered in this work and to point out how relationships 
differ across cities. Further, while the case study results offer key 
correlational insights between spatial proximity and energy use, there is 
an opportunity for further in-depth causal research on the mechanisms 
and driving factors underlying these phenomena through an expansion 
of the CUE-A framework for randomized control trials and natural ex
periments. For instance, a future study could utilize a natural experi
ment on road closures to understand changes in building energy use 
using this framework. This could shine a light on whether the traffic 
intensity is a driving factor behind the observed association between 
road proximity and building energy use. 

Finally, there is a need to understand the application of this analysis 
in urban planning and decision-support. Future work aims to investigate 
the translation of analytical findings into actionable insights on sus
tainable urban design, management, and operations. For example, 
concrete reasoning rules (e.g., what-if-else) can be developed to 
formulate the relationships between building spatial proximity and en
ergy use for data-informed decision-making. The results also point to the 
need to explore how existing planning paradigms can affect these re
lationships. This framework can also complement simulation studies by 
identifying key relationships to be explored further through high-fidelity 
and detailed simulation models. 

7. Conclusion 

With the profusion of new data on urban systems and the ability to 
extract insights using novel analytical techniques, there is now 
tremendous potential to bring empirical evidence to test prevailing 
heuristics- or simulation-based approaches for energy analysis in urban 
design, planning and systems-level analysis. The objective of this paper 
was to propose an analytical framework (CUE-A) to operationalize and 
empirically quantify relationships between spatial proximity of urban 
systems and building energy use, enabling the inclusion of multiple 
urban elements in a single analysis. Further, by conducting a case study 
that utilizes this framework, we aimed to demonstrate the merits of 
using empirical data analysis to study these relationships. 

We find that the spatial proximity of other buildings, roads and trees 

is associated with varied and significant changes in both the central 
tendency and variability of building energy use. Our findings substan
tiate some insights from previous simulation-based studies, while of
fering some novel results that begin to account for varying planning 
paradigms and urban design factors that determine the urban form of a 
city. For instance, having additional proximate buildings nearby is 
associated with lower energy use, in agreement with previous studies on 
mutual shading and reflection. But, having additional proximate trees 
and roads is associated with increased and decreased building energy 
use respectively, controlling for all other variables, in contrast to pre
vious literature, showing that more work is needed to quantify and parse 
the effect of the urban design and land-use planning of the city. Our 
results are consistent for heating and cooling seasonal energy use in 
addition to total building energy use, which offers confidence on the 
robustness of the studied relationships. 

In conclusion, through the application to this scalable and extensible 
framework to other contexts, we aim to further catalyze data-driven 
research at the intersection of urban design, land-use planning and 
building energy use. Ultimately, insights from such data-driven methods 
will inform how we (re)design our energy-intensive cities to transition 
them to a more sustainable future. 
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Appendix A 

The relationship learning algorithm utilizes an iterative process to determine the degree to which spatial proximity exists between any two urban 
elements. For example, the relationship between two buildings is learned by calculating the projection of a building on a side of a target building as 
presented in the following vector equation: 

r = a + t(b − a) = a + tv (A.1)  

Where v = b − a. a and b are the vertices of the side (given as vectors) and t is a scaling parameter. The equation of a line segment which is 
perpendicular to the side ab and passes through a vertex (e.g., p1) of building B is: 

r1 = p1 + t2v’ (A.2)  

Where t2 is a scaling parameter and v’ is a vector perpendicular to v. The point of intersection of r and r1 is found, which gives a unique value of t. If 
0 < t < 1, the point of intersection of r and r1 lies on the side ab. Therefore, the projection of vertex p1 on the side ab is given by i1 = t. Similarly, for 
other vertices p2, p3, … pn of the building A, the projections i2, i3, … in, can be calculated. Let maxp = max(i1, i2, i3, … in) and minp = min(i1, i2, i3,
… in); The projection of the building B on the side ab of building A element is defined as intersection of interval [minp,maxp] with interval [0, 1]. The 
side of building A on which building B has the largest projection is identified as the side spatially proximate to building B. If the building B has the same 
projection on multiple sides of building A, then we pick the side closer to building B. A spatial proximity relationship is then defined between building 
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B and the proximate side of building A if the distance between them is less than a predefined threshold as specified by the user. Similarly, vegetation 
and roads that are within the threshold distance of the building A can be identified along with the side of building B upon which they are located (refer 
to (Gupta et al., 2019) for a detailed explanation of the methodology). 

Appendix B  

Table B1 
Results of the Multivariate Multiple Regression analysis.  

Note: The regression was implemented using a logarithmic transformation of dependent variables, which are then reconverted here. 
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