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Abstract Coral reefs are home to the greatest diversity of
marine life, and many species on reefs live in symbiotic asso-
ciations. Studying the historical biogeography of symbiotic
species is key to unravelling (potential) coevolutionary pro-
cesses and explaining species richness patterns. Coral-dwelling
gall crabs (Cryptochiridae) live in obligate symbiosis with a
scleractinian host, and are ideally suited to study the evolu-
tionary history between heterogeneous taxa involved in a
symbiotic relationship. The genus Opecarcinus Kropp and
Manning, 1987, like its host coral family Agariciidae, occurs in
both Indo-Pacific and Caribbean seas, and is the only cryp-
tochirid genus with a circumtropical distribution. Here, we use
mitochondrial and nuclear DNA gene fragments of Opecarci-
nus specimens sampled from 21 Indo-Pacific localities and one
Atlantic (Caribbean) locality. We applied several species
delimitation tests to characterise species diversity, inferred a
Bayesian molecular-clock time-calibrated phylogeny to esti-
mate divergence times and performed an ancestral area
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reconstruction. Time to the most recent common ancestor
(tMRCA) of Opecarcinus is estimated at 15—6 Mya (middle
Miocene—Ilate Miocene). The genus harbours ~ 15 unde-
scribed species as well as several potential species complexes.
There are indications of strict host-specificity patterns in certain
Opecarcinus species in the Indo-Pacific and Atlantic, however,
a robust phylogeny reconstruction of Agariciidae corals—
needed to test this further—is currently lacking. The Indo-West
Pacific was inferred to be the most probable ancestral area, from
where the Opecarcinus lineage colonised the Western Atlantic
and subsequently speciated into O. hypostegus. Opecarcinus
likely invaded from the Indo-West Pacific across the East
Pacific Barrier to the Atlantic, before the full closure of the
Isthmus of Panama. The subsequent speciation of O. hyposte-
gus, is possibly associated with newly available niches in the
Caribbean, in combination with genetic isolation following the
closure of the Panama Isthmus.

Keywords Coral reef - Marine biodiversity - Historical
phylogeography - Panama Isthmus - Scleractinia -
Symbiosis

Introduction

Coral reefs are home to the greatest diversity of marine life,
and many species on reefs live in symbiotic associations.
Symbiosis plays a key role in maintaining the health and
balance of diversity of reef systems (Stewart et al. 2006).
The biodiversity of coral reefs is dominated by inverte-
brates, many of which rely on hosts for food, habitat, or
settlement cues (Stella et al. 2011; Hoeksema et al. 2012).
While the diversity, distribution, and relationships of some
reef organisms are fairly well-studied, we know relatively
less about coral symbionts other than zooxanthellae. The
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study of the historical biogeography of symbiont taxa is
important for our understanding of the evolution of sym-
biotic relationships and their species richness gradients
(Pinto-Ledezma et al. 2017).

While reefs and reef corals exist in all four tropical marine
regions, they are best developed and most diverse in the Indo-
West Pacific (IWP) and the West Atlantic (WA), and occur to a
more limited extent in the East Pacific (EP) and East Atlantic
(EA). The origin and evolution of reef biota in the two great reef
regions have been complex. Within the IWP the Coral Triangle
(CT) is the centre of marine biodiversity (Renema et al. 2008),
and diversity of most marine organisms declines from there
with both latitude (Ukuwela et al. 2016) and longitude (Miller
et al. 2018). These diversity clines have long been studied and
numerous hypotheses advanced to explain them (Rosen 1988;
Paulay 1997; Bellwood et al. 2005; Huang et al. 2018).

Diversity in the IWP is about an order of magnitude
greater than in the WA (Paulay 1997). Part of the biota of
both regions have radiated in situ, while other lineages
have not diversified since their arrival. In situ radiations
dominate the IWP fauna, while migrant lineages that have
not diversified are more common in the WA. In situ
diversification is nevertheless common in the WA, and
characterises much of the biota, as exemplified by several
coral clades (Fukami et al. 2004, 2008), mithracid crabs
(Windsor and Felder 2014), and cone snails (Kohn 2014).
Other WA species represent isolated lineages that have not
diversified within the basin (e.g. O’Hara et al. 2019).

WA lineages that have IWP ancestry range broadly in
age. Phylogenetic analyses reveal that some species that
range across the IWP and WA show little differentiation
and are recently or currently connected (Collin et al. 2020).
Other species that were thought to be so wide-ranging
turned out to be cryptic complexes, with divergent lineages
in the IWP and WA (Michonneau 2015; Dudoit et al.
2018). Many well-characterised and older WA endemics
are nestled in IWP clades (O’Hara et al. 2019).

Some clades or lineages that range across the IWP and
WA have attained their wide ranges by crossing the East
Pacific Barrier (EPB) prior to when the Isthmus of Panama
separated the EP and WA (Glynn and Ault 2000; Lessios
and Robertson 2006; Baraf et al. 2019), others have colo-
nised the WA around the Cape of Good Hope via the
Benguela Current (Rocha et al. 2005; Andrews et al. 2016),
and some have done both (Bowen et al. 2001). The more
species-rich IWP has typically been the source for inter-
regional dispersal, with some notable exceptions (Levinton
et al. 1996; Huang et al. 2018).

To what extent is the diversification and distribution of
symbiotic groups coordinated? Here we investigate the evo-
lutionary dynamics of a crab lineage that is obligately sym-
biotic with stony corals. The modern scleractinian faunas of
both IWP and WA are dominated by locally diversified
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lineages, such as the endemic Faviidae, Meandrinidae, and
Agaricia Lamarck, 1801 of the WA, and most coral clades in
the IWP. In contrast, local radiations appear to be common in
coral-symbiotic crabs in the IWP, but not in the WA.

Several crab lineages have evolved obligate or faculta-
tive symbioses with scleractinian corals (Castro 2015), and
these symbionts are much more diverse in the IWP than
WA. Cryptochiridae and Domeciidae (not Maldivia Bor-
radaile, 1902, which associates with gorgonians) include
representatives in both the IWP and WA, while the
Tetraliidae, Trapezia Latreille, 1828 (Trapeziidae),
Tanaocheles Kropp, 1984 (Tanaochelidae) and Cymo De
Haan, 1833 (Xanthidae) associate with scleractinians in the
Indo-Pacific (Lai et al. 2009; Castro 2015). Currently 47
cryptochirid species have been described from the IWP,
and only four are known from the WA in three genera, with
one of these genera endemic to the WA (Kropp and
Manning 1987; Ng et al. 2008; Van der Meij 2014b; Castro
2015; WoRMS 2021). Five domeciids are known from the
IWP and only one from the WA (Castro et al. 2004). Thus
it appears that symbiotic crabs may not have diversified
within the WA, although this needs further testing given
the high diversity of undiscovered and cryptic species in
these groups (as we also demonstrate below) (Van Tien-
deren and Van der Meij 2017).

Our goal is to explore the diversity and distributional
dynamics of the cryptochirid genus Opecarcinus, obligate
symbionts of the scleractinian coral family Agariciidae.
These crabs are a prime example of species living in obli-
gate symbiosis with a scleractinian coral host (Castro 1988).
Van der Meij and Schubart (2014) demonstrated that the
Cryptochiridae is monophyletic, and their most recent
common ancestor (MRCA) is estimated at 50-23 Mya (Van
der Meij and Klaus 2015). The cryptochirid MRCA was
previously estimated at ~ 83 Mya in a study on the infra-
order Brachyura by Tsang et al. (2014), however, the clade
containing the cryptochirid specimen has poor support. The
Agariciidae currently includes seven genera that range
across the IWP, EP, and WA, although ongoing taxonomic
revisions will likely lead to changes in generic classification
(Terraneo et al. 2017). Agariciidae are mostly zooxanthel-
late reef corals, common in tropical shallow-waters and also
well represented in mesophotic reefs (Terraneo et al. 2017).
The genera Agaricia and Helioseris Milne Edwards &
Haime, 1849 are restricted to the WA; Leptoseris Milne
Edwards and Haime, 1849 occurs in both the Indo-Pacific
and WA, and the remaining four genera are limited to the
IWP, with two (Pavona Lamarck, 1801 and Gardineroseris
Scheer and Pillai, 1974) extending to the EP.

We explore the diversity of the genus using a multi-
marker dataset to assess how much undiscovered and
cryptic diversity exists and where these additional species
live. With a time-calibrated, multigene phylogeny we then
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explore how the diversity of this group has evolved across
the tropical reefscape, with special attention to how WA
and IWP species are related. Do Opecarcinus in these
regions represent sister lineages or are they nested? What is
the timing and likely route of colonisation?

Materials and Methods
Sample collection and data collection

Species of Opecarcinus and Pseudohapalocarcinus ransoni
Fize and Seréne, 1956 (and cryptochirid outgroups) were
collected from 21 localities in the IWP and WA (Fig. 1,
Table S1), between 2006 and 2017. Nine species belonging
to seven cryptochirid genera were chosen as outgroups
according to Van der Meij and Nieman (2016). Specimens
were photographed alive to document colour patterns, then
fixed and stored in 80% ethanol. The material collected
from the Red Sea, Maldives, Coral Triangle, Japan, New
Caledonia, and Curacao is deposited in Naturalis Biodi-
versity Center, Leiden, The Netherlands (RMNH), whereas
specimens from the remaining localities are deposited in
the Florida Museum of Natural History, University of
Florida, Gainesville, USA (UF) (Table S1). Most sampled
localities were extensively explored for gall crabs, with the
exception of Japan, Taiwan, Hawaii and New Caledonia,
for which a limited number of Opecarcinus specimens
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were available for analyses. DNA extractions, PCR and
sequencing followed the protocol in Van der Meij (2015).
Specimens were identified using Kropp (1989) and Van der
Meij (2014b), using morphological characters combined
with host and distribution data. Provisional names were
assigned to species that did not fit established described
taxa, using the prefix SET (for SET van der Meij) and a
numeric designation. These names will be consistently
applied to these OTUs in the future until a proper name is
established for each.

Phylogenetic analyses and divergence time
estimation

All analyses were performed on a concatenated
Opecarcinus dataset of two mitochondrial genes (Cy-
tochrome Oxidase I (COI) and 16S rRNA) and a nuclear
gene (Histone H3). The total data set consisted of 1539 bp:
658 bp for COI, 594 bp for 16S rRNA and 287 bp for H3.
The sequences of each marker were aligned separately
using Clustal W 2.1 (Thompson et al. 1994) and then
adjusted manually. All sequences were concatenated by
Phylosuite 1.2.1 (Zhang et al. 2020); subsequently Parti-
tionFinder 2 (Lanfear et al. 2017) was applied to find the
best partition scheme for the complete dataset consisting of
230 terminals. The best-fit scheme corresponded with the
markers (COI, 16S, H3) in the original dataset. Parti-
tionFinder was also used to find the best-fit nucleotide
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Fig. 1 Map of sampling sites, constructed in ArcGIS v10.5.1 (ESRI,
Redlands, CA, USA). SAU-Saudi Arabia, Red Sea; MAD-Faafu
Atoll, Maldives; LAX-Layang-Layang, Spratly Islands, Malaysia;
TMP-Tun Mustapha Park, Kudat, N Borneo, Malaysia; SEM-—
Semporna, N Borneo, Malaysia; MEN-Manado, N Sulawesi, Indone-
sia; LEM—-Lembeh, N Sulawesi, Indonesia; TER-Ternate, Halmahera,

Maldives
@® New Caledonia @ SE Polynesia

Coral Triangle @ Japan & Taiwan
@ Hawaii @ Caribbean

Indonesia; RAJ-Raja Ampat, Papua, Indonesia; RYU-Okinawa,
Ryukyus, Japan; TWI-Taiwan Island; NC-New Caledonia; CAO-
Curagao. Hawaii includes Maui and Oahu; SE Polynesia includes
Moorea; A, B and D are Scattered Islands, C is Nosy Be, Madagascar,
and E is Réunion
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substitution models for the respective partitions, based on
the Bayesian Information Criterion (BIC; Schwarz 1978).

Bayesian Inference (BI) analyses and divergence time
estimations were conducted on the concatenated data set in
BEAST v1.10.4 (Suchard et al. 2018) by running the
Markov chain for 100 x 10° steps iterations, sampling
every 5000 iterations. The TN93 4+ I" + I + X substitu-
tion model was applied to COI, while the best model for
16S and H3 was GTR + I' + 14+ X. A Yule tree prior
with default settings for the speciation rate and an uncor-
related relaxed clock with lognormal distribution were
applied. Tracer v1.7.1 (Rambaut et al. 2018) was used to
test for convergence, where Effective Sample Size (ESS) of
all parameters exceeded 200. Maximum Clade Credibility
(MCC) tree was obtained through TreeAnnotator v1.10.4,
with the first 10% trees discarded as burn-in. The phy-
logeny reconstruction was visualised using Figtree v1.4.4
(Rambaut and Drummond 2018).

Calibration information for divergence time estimation
can come from several sources, such as substitution rates,
fossils, and geological data (Heath 2015). There are no
known cryptochirid fossils (only trace fossils, see Klomp-
maker et al. 2016), hence substitution rates for each of the
three gene fragments were used for calibration (Van der
Meij and Klaus 2015). The priors for substitution rates
were set as follows. Substitution rates of the COI locus in
arthropods range between 0.7% and 2.0% per Myr (e.g.
Schubart et al. 1998; Daniels et al. 2015). Here the mean
rate of 1.17% per Myr for COI locus was used with an SD
of 0.9%, and 95% highest posterior density (HPD) was
from 0.20 to 2.69%. The base substitution rate of 16S
rRNA was set to 1.09 £ 0.24% (mean £ SD) per Myr and
95% HPD was from 0.63 to 1.41%. Histone H3 was set to
0.19 £ 0.04% per Myr distribution and 95% HPD was
from 0.12 to 0.26% (Van der Meij and Klaus 2015). Sub-
stitution rates for the latter two genes are derived from
divergence time estimates of freshwater crabs from the Old
World (Asia, Africa and Europe) based on three fossil
calibration points (Klaus et al. 2010). All priors of gene
fragments were calculated using a normal distribution.

In addition to the time-calibrated phylogenetic recon-
struction, a ML analysis based on three concatenated
markers (COI, 16S rRNA and H3) including Opecarcinus,
Pseudohapalocarcinus ransoni and nine cryptochirid out-
groups was conducted by IQ-TREE (Nguyen et al. 2015)
for 10,000 ultrafast bootstraps (Minh et al. 2013). The best-
fit nucleotide substitution model for each marker was
GIR + 1+ G.

Three species delimitation tests were applied to the
Opecarcinus dataset, separately for the COI and the three-
marker concatenated dataset (Reid and Carstens 2012): (1)
a General Mixed Yule-Coalescent (GMYC) approach
(Fujisawa and Barraclough 2013) implemented with the R

@ Springer

package ‘splits’ (Ezard et al. 2009; R Core Team 2020); (2)
Automatic Barcode Gap Discovery (ABGD) (Puillandre
et al. 2012); and (3) the Poisson Tree Processes (PTP)
method (Zhang et al. 2013). The most conservative out-
come from these three tests was used for delimiting
Opecarcinus species (Table S1).

Ancestral area reconstruction

The Opecarcinus samples were collected from ITWP and
WA, and these two regions were applied to ancestral area
reconstruction. To estimate ancestral ranges across the
Opecarcinus phylogeny, a Maximum Clade Credibility
(MCC) tree was implemented with BEAST using the same
process as described above for the divergence time esti-
mation. The best-fit nucleotide substitution model for 16S
was GTR based on PartitionFinder 2. However, the
eigenvalues did not converge, likely because the GTR
model was applied to small partitions with too few taxa
(Drummond and Bouckaert 2015), so HKY was used
instead for 16S. Parametric methods (e.g. DEC and its
extension; Yu et al. 2015) have been developed as a
response to the shortcomings in event-based methods,
which focus on integrating biogeographic processes and
patterns (e.g. Dispersal-Vicariance Analysis, DIVA)
(Ronquist 1997). Hence, ancestral range estimation was
computed using the R package ‘BioGeoBEARS’ under the
Dispersal-Extinction Cladogenesis model (DEC) (Ree et al.
2005; Ree and Smith 2008; R Core Team 2020). Consid-
ering the criticism of the DEC + j model (Ree and San-
martin 2018), ‘jump’ speciation was not considered in our
analyses.

Results

Phylogenetic inference and divergence time
of Opecarcinus

The phylogenetic reconstruction and species delimitation
tests recovered 25 species in Opecarcinus by all species
delineation methods (Fig. 2, Table S1) and all with high
branch support. Additional species were recovered by
some, but not all, delineation methods within seven spe-
cies: O. hypostegus Shaw and Hopkins, 1977, O. pholeter
Kropp, 1989, O. SET7, O. SETS, O. SET12, O. SET14, and
0. SET16 (Table S1). We treated each of these latter as
single species.

Time to the Most Recent Common Ancestor (tMRCA)
of Opecarcinus was estimated at 15-6 Mya (middle Mio-
cene—late Miocene). Within Opecarcinus two main clades
can be discerned (Fig. 2, Fig. S2). Clade I (tMRCA 12-4
Mya) contains two deeply divergent species: (1)
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Fig. 2 Time-calibrated, three-
marker MCC tree of
Opecarcinus highlighting the
diversity in the genus. Three
inner circles (yellow to soft
pink) in different colours are the
results of species delimitation
tests (GMYC, ABGD, and PTP)
based on a single gene (COI),
and three outer circles (blue to
light green) are based on three
concatenated markers.
Photographs by Sancia van der
Meij / Bastian Reijnen

Opecarcinus SET11 inhabiting Pavona venosa Ehrenberg,
1834 and P. varians Verrill, 1864 in the Red Sea and
0. SET13 inhabiting various Pavona species and Gar-
dineroseris planulata Dana, 1846 from the Red Sea to SE
Polynesia.

Clade II (tMRCA 10-5 Mya) contains all other
Opecarcinus species. Within this clade several groupings
can be discerned, and several potential species complexes
are revealed (Fig. 2, S2). Potential (cryptic) speciation and/
or high levels of intraspecific genetic diversity is observed
in O. pholeter, O. hypostegus, O. SET7, O. SETS,
0. SET12, 0. SET14, and O. SET16. Opecarcinus SET]1,
O. SET2 and O. SETS all inhabit Leptoseris yabei Pillai &
Scheer, 1976, however, there are no indications that L.
yabei is a species complex (F. Benzoni, pers. comm).
Opecarcinus cathyae van der Meij, 2014a, b, O. SET10,
and O. SET19 inhabit Pavona minuta Wells, 1954, P.
clavus Dana, 1846 and P. bipartita Nemenzo, 1979,
whereas Opecarcinus lobifrons Kropp 1989 and O. pho-
leter inhabit Gardinoseris planulata and Pavona explanu-
lata Lamarck, 1816, respectively. A well-supported clade
containing Opecarcinus SET3, O. SET4, O. SET7,

ﬁ P
peliops W

‘ hypostegus

SET14

lobifrons cathyae

0. SET12, O. SET15, 0. SET17, and O. SET18, associates
with a range of Leptoseris and Pavona corals, similar to the
remaining species Opecarcinus sierra Kropp, 1989,
Opecarcinus peliops Kropp, 1989, O. SET9, O. SET14,
and O. SET16. Opecarcinus peliops and O. SET9 are
morphologically very similar and further work is needed to
understand the morphological boundaries between the two
species. The closely related species O. SET5 and O. SET6,
inhabit various plate-forming Leptoseris and Pavona spe-
cies. Both species are restricted to the Coral Triangle, and,
interestingly, are sister taxa to the Atlantic species O.
hypostegus inhabiting Agaricia and Helioseris (Van der
Meij 2014a; Hoeksema 2017). The latter shows high levels
of intraspecific divergence.

Ancestral area reconstruction
The IWP was recovered as the most probable ancestral area
for Opecarcinus as a whole, as well as for all nodes within

the genus (Fig. 3). Opecarcinus colonised the WA from the
IWP, and speciated into O. hypostegus. Our divergence
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54256_Ope_pholeter
24253 Ope SET17
54461 Ope SET3
54212_Ope_SET4
23823 Ope SETI18
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I:: 54198 Ope SET19
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B West Atlantic
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Fig. 3 Ancestral area estimation for Opecarcinus, implemented in
BiogGeoBEARS under the DEC model. Each terminal clade is
represented by one sequence. The most likely ancestral area is

time estimation indicates that Opecarcinus colonised the
Atlantic ca. 3.25 Mya (95% CI [2.07, 4.82]; Fig. S2).

Discussion
Diversity of Opecarcinus

Currently Opecarcinus contains nine described species
(Van der Meij 2014b; WoRMS 2021), however, our results
suggest that the genus includes at least 25 species
(Figs. 2, S2, Table S1). These results will form the basis of
a taxonomic revision of the genus. Moreover, substantial
genetic variation in several species (e.g. O. pholeter,
0. SET7, and O. SET12; see Figs. 2, S2), suggests further,
potential cryptic species diversity, which warrants

@ Springer

indicated by letters at nodes and corners, the latter are the immediate
states after species divergence

investigation. The only Atlantic species, O. hypostegus, is
also a potential species complex (Fig. 2, S2). This cryp-
tochirid inhabits species of Agaricia (Kropp and Manning,
1987; Van der Meij 2014a), and Helioseris cucullata Ellis
and Solander, 1786 (Hoeksema et al. 2017). Our results are
in line with those of Van Tienderen and Van der Meijj
(2017), who identified high levels of genetic divergence
within this species, with significant genetic differentiation
across its host species. The authors hypothesised that this
differentiation may represent early signs of host speciation
in O. hypostegus, but still considered this gall crab a single
species.

Opecarcinus is strictly associated with the Agariciidae
(Kropp 1989; Van der Meij 2014b). This coral family also
hosts the monotypic gall crab genera Pseudohapalocarci-
nus and Luciades Kropp and Manning, 1996, neither of
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which occurs in the Atlantic. The position of P. ransoni is
not fixed in the various reconstructions of the Cryp-
tochiridae (e.g. Van der Meij and Klaus 2015; Van der
Meij and Nieman 2016), however, our results show that it
falls well within Opecarcinus with full support (Fig. S1),
making Opecarcinus paraphyletic. Further study with
additional markers, combined with morphological data, is
needed to robustly place P. ransoni within Opecarcinus.
No fresh material of Luciades agana Kropp and Manning,
1996 is currently available for genetic analyses, hence we
cannot assess its phylogenetic position. However, the
overall morphology of this species is similar to Opecarci-
nus (distinguished only by the lack of a distal expansion of
pereopod 2), as is its association with the agariciid Lep-
toseris papyracea Dana, 1846, suggesting that L. agana
may also fall within Opecarcinus (Kropp and Manning
1996; Komatsu and Takeda 2013).

The origin of Opecarcinus

Van der Meij and Klaus (2015) established the first time-
calibrated phylogenetic reconstruction of Cryptochiridae,
including species belonging to 17 of 21 described genera.
They estimated the MRCA of Cryptochiridae at 50-23
Mya, much later than the estimated Middle Ordovician
origin of Scleractinia (Seiblitz et al. 2020). Such a dis-
crepancy in diversification between host and symbiont has
been observed in other taxa, such as coral-dwelling gobies
(Duchene et al. 2013). A more focussed approach studying
gall crab species in a single genus, allowing for the study of
biogeographic and host use patterns in more detail, has
been lacking.

Our divergence time estimation indicates that the
tMRCA for Opercarcinus is around 15-6 Mya (middle
Miocene—Ilate Miocene), in line with the results (11-5
Mya) of Van der Meij and Klaus (2015). Our ancestral area
reconstruction based on samples collected from IWP and
WA is the first analyses of the evolutionary history of
Opecarcinus, and indicates the IWP as the area of origin.

Timing and route of colonisation

How did the largely endemic biotas of the major reef
regions develop? Cryptochirids are most diverse in the
IWP, and only four species are currently recorded from the
WA. What are the origins of these WA gall crabs? Our
results indicate that Opecarcinus hypostegus is a relatively
recent (ca. 3.25 Mya) colonist in the WA from the
IWP. Limited phylogenetic information on two other WA
gall crabs (Kroppcarcinus siderastreicola Badaro, Neves,
Castro and Johnsson, 2012, Troglocarcinus corallicola
Verrill, 1908) suggests they also have sister taxa in the IWP
(Van der Meij and Klaus 2015; Van der Meij and Nieman

2016). These studies did not aim to trace the origin and
route of colonisation of the WA species. Van der Meij and
Klaus (2015) estimated that K. siderastreicola and T.
corallicola diverged early within their respective clades
[36-15 Mya], at a time when the connection between the
Atlantic/Mediterranean Sea and IWP across the Tethys
seaway was still open and thus may have served as a
colonisation route, in addition to the two other routes dis-
cussed below (Bialik et al. 2019).

Subsequent to the closure of the Tethys in the early
Miocene, dispersal between the IWP and the Atlantic could
occur around the Cape of Good Hope, or across the EPB
prior to the rise of the Isthmus of Panama. Reef organisms
appear to have utilised both paths. Atlantic populations that
established after the closure of the Isthmus had to have
dispersed around the Cape of Good Hope as has been
demonstrated in brachyuran crabs (Guinot and Castro
2007; Rahayu and Ng 2014; Shih et al. 2016) and other
organisms, such as Etelis Cuvier, 1828 snappers, Gnatho-
lepis Bleeker, 1874 gobies, Stenopus Latreille, 1819
shrimp, and the sea star Valvaster Perrier, 1875, some
potentially facilitated by unusual life history strategies,
such as larval cloning (Rocha et al. 2005; Andrews et al.
2016; Dudoit et al. 2018; Collin et al. 2020).

The EPB is a semipermeable biogeographic barrier as
evidenced by comparisons of populations across this vast
expanse of open ocean. There are some examples from
corals (Glynn and Ault 2000) and molluscs (Emerson and
Chaney 1995). Dispersal from the IWP to the WA across
the EPB prior to the closure of the Isthmus has been put
forward to account for the presence of numerous marine
taxa in the Atlantic (e.g. Barber and Bellwood 2005; Baraf
et al. 2019), including several crabs (Harrison and Crespi
1999; Thiercelin and Schubart 2014; Magalhdes et al.
2016).

Opecarcinus appears to have crossed the EPB, one of
the world’s most potent marine biogeographic barriers,
multiple times. Two Opecarcinus species are recorded
from both the IWP and EP. Opecarcinus crescentus
Edmondson, 1925 has been recorded from Vietnam, Palau
and Johnston Island in the IWP (Garth 1965), and from
Clipperton Island to the Gulf of California in the EP (Garth
and Hopkins 1968). Opecarcinus lobifrons is known from
the Red Sea to French Polynesia in the IWP, and Clip-
perton Atoll off the American mainland in the EP (Kropp
1989). Unfortunately, we lack samples from the EP, hence
have not been able to assess the origin and diversity of
Opecarcinus from this region directly. Opecarcinus SET5
and O. SET6, the likely sister taxa of O. hypostegus, are
currently only known from the Pacific and not from the
Indian Ocean. The estimated divergence time of O.
hypostegus at ca. 3.25 Mya (Fig. S2) roughly coincides
with the closure time of the Isthmus of Panama at 2.8 Mya
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(O’Dea et al. 2016), suggesting that this lineage could have
arrived in the Atlantic by crossing the EPB, before the
closure of the Isthmus of Panama.

Agariciids have a well-established fossil record in the
Caribbean indicating that suitable hosts were available at
the time Opecarcinus colonised the region. Pavona and
Gardineroseris, currently restricted to the Indo-Pacific,
have a Caribbean fossil record from the late Miocene to the
Middle Pleistocene (Budd et al. 1994). The Caribbean
endemic Agaricia first appeared in the Early to Middle
Miocene (Budd 2000). Trace fossils (dwellings) of gall
crabs are recorded from late Pliocene—Pleistocene corals
from the WA, including Agaricia (Klompmaker et al.
2016). Given Opecarcinus’ high levels of host specificity,
we hypothesise that gall crabs diverged over closely related
coral species, and subsequently speciated through host-
switching to newly available niches (i.e. Agaricia) in the
Atlantic. This result is in contrast with a study on coral-
associated hydrozoans of the genus Zanclea Gegenbaur,
1856, where the Caribbean harbours the same generalist
hydrozoan species as the Indo-Pacific (Maggioni et al.
2020), highlighting the suitability of Cryptochiridae crabs
for co-evolutionary studies.

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/s00338-
021-02163-1.
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