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Motivated by the increasing need to understand the distributed algorithmic foundations of large-scale graph

computations, we study some fundamental graph problems in a message-passing model for distributed com-

puting where k ≥ 2 machines jointly perform computations on graphs with n nodes (typically, n � k). The
input graph is assumed to be initially randomly partitioned among the k machines, a common implementa-

tion in many real-world systems. Communication is point-to-point, and the goal is to minimize the number

of communication rounds of the computation.

Our main contribution is theGeneral Lower Bound Theorem, a theorem that can be used to show non-trivial

lower bounds on the round complexity of distributed large-scale data computations. This result is established

via an information-theoretic approach that relates the round complexity to the minimal amount of informa-

tion required by machines to solve the problem. Our approach is generic, and this theorem can be used in

a “cookbook” fashion to show distributed lower bounds for several problems, including non-graph problems.

We present two applications by showing (almost) tight lower bounds on the round complexity of two fun-

damental graph problems, namely, PageRank computation and triangle enumeration. These applications show

that our approach can yield lower bounds for problems where the application of communication complexity

techniques seems not obvious or gives weak bounds, including and especially under a stochastic partition of

the input.

We then present distributed algorithms for PageRank and triangle enumeration with a round complexity

that (almost) matches the respective lower bounds; these algorithms exhibit a round complexity that scales

superlinearly in k , improving significantly over previous results [Klauck et al., SODA 2015]. Specifically, we

show the following results:

• PageRank: We show a lower bound of Ω̃(n/k2) rounds and present a distributed algorithm that com-

putes an approximation of the PageRank of all the nodes of a graph in Õ (n/k2) rounds.
• Triangle enumeration:We show that there exist graphs withm edges where any distributed algorithm

requires Ω̃(m/k5/3) rounds. This result also implies the first non-trivial lower bound of Ω̃(n1/3) rounds
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for the congested clique model, which is tight up to logarithmic factors. We then present a distributed

algorithm that enumerates all the triangles of a graph in Õ (m/k5/3 + n/k4/3) rounds.
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1 INTRODUCTION

Distributed processing of large-scale data, in particular graph data,is becoming increasingly impor-
tant with the rise of massive graphs such as the Web graph, social networks, biological networks,
and other graph-structured data. Several large-scale graph processing systems such as Pregel [45]
and Giraph [1] have been recently designed based on the message-passing distributed computing
model [44, 58]. In these systems, the input graph, which is simply too large to fit into a single
machine, is distributed across a group of machines connected via a communication network, and
the machines jointly perform computation in a distributed fashion by exchanging messages. A
key goal in distributed Big Data computing is to minimize the amount of communication across
machines, as this typically dominates the overall cost of the computation [60].
We study fundamental graph problems in a message-passing distributed computing model and

present almost tight bounds on the number of communication rounds needed to solve these prob-
lems. In the adopted model, called the k-machine model [34], the input is distributed across a
group of k machines that are pairwise interconnected via a communication network. The k ma-
chines jointly perform computations on an arbitrary n-vertex input graph (where typically n � k)
distributed among the machines. Communication is point-to-point via message passing. The goal
is to minimize the round complexity, i.e., the number of communication rounds, given some (band-
width) constraint on the amount of data that each link of the network can deliver in one round.
We address a fundamental issue in distributed computing of large-scale data: What is the dis-
tributed (round) complexity of solving problems when each machine can see only a portion of

the input and there is a limited bandwidth for communication? We would like to quantify the
round complexity of solving problems as a function of the size of the input and the number of ma-

chines used in the computation. In particular, we would like to quantify how the round complexity
scales with the number of machines used: More precisely, does the number of rounds scale lin-
early (or even super-linearly) in k? And what is the best possible round complexity for various
problems?
The main contribution of this article is a technique that can be used to show non-trivial lower

bounds on the distributed complexity (number of communication rounds) of large-scale data com-
putations and its application to graph problems.

1.1 The Model

We now describe the adopted model of distributed computation, the k-machine model, introduced
in Reference [34], and further investigated, e.g., in References [6, 26, 29, 35, 55]. The model con-
sists of a set of k ≥ 2 machines {M1,M2, . . . ,Mk } that are pairwise interconnected by bidirectional
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point-to-point communication links. Eachmachine executes an instance of a distributed algorithm.
The computation advances in synchronous rounds where, in each round, machines can exchange
messages over their communication links and perform some local computation. Each link is as-
sumed to have a bandwidth of B bits per round, i.e., B bits can be transmitted over each link in
each round; unless otherwise stated, we assume B = Θ(polylogn).1 Machines do not share any
memory and have no other means of communication. We assume that each machine has access to
a private source of true random bits. We say that algorithm A has ϵ-error if, in any run of A, the
output of the machines corresponds to a correct solution with probability at least 1− ϵ . The round
complexity of an algorithmA is the maximum number of communication rounds required by any
machine when executing A.
Local computation within a machine is considered to happen instantaneously at zero cost, while

the exchange of messages between machines is the costly operation. This assumption is standard
in the context of large-scale data processing. In fact, even assuming communication links with a
bandwidth of order of gigabytes per second, the amount of data that typically has to be exchanged
can be in the order of tera- or peta-bytes, and this generally dominates the overall computation
cost [42]. However, we note that in all the algorithms of this article, every machine in every round
performs lightweight computations; in particular, these computations are bounded by a polyno-
mial (typically, even linear) in the size of the input assigned to that machine.
In this article, we focus on investigating graph problems in this model. Specifically, we are given

an input graphG with n vertices, each associated with a unique integer ID from [n], andm edges.
To avoid trivialities, we will assume that n ≥ k (typically, n � k). Initially, the entire graph G is
not known by any single machine, but rather partitioned among the k machines in a “balanced”
fashion, i.e., the nodes and/or edges of G must be partitioned approximately evenly among the
machines. We assume a vertex-partition model, whereby vertices (and their incident edges) are
partitioned across machines. Specifically, the type of partition that we will assume throughout is
the random vertex partition (RVP), i.e., vertices (and their incident edges) of the input graph
are assigned randomly to machines. This is the typical way used by many real graph processing
systems, such as Pregel [45] and Giraph [1, 13], to partition the input graph among the machines;
it is easy to accomplish, e.g., via hashing.
More formally, in the random vertex partition model each vertex ofG is assigned independently

and uniformly at random to one of the k machines.2 If a vertex v is assigned to machine Mi ,
then we say that Mi is the home machine of v and, with a slight abuse of notation, write v ∈
Mi . When a vertex is assigned to a machine, all its incident edges are known to that machine
as well, i.e., the home machine initially knows the IDs of the neighbors of that vertex as well as
the identities of their home machines (and the weights of the corresponding edges in case G is
weighted). For directed graphs, we assume that out-edges of vertices are known to the assigned
machine. (However, we note that our lower bounds hold even if both in- and out-edges are known
to the home machine.) An immediate property of the RVP model is that the number of vertices

at each machine is balanced, i.e., each machine is the home machine of Θ̃(n/k ) vertices with high
probability (see Reference [34]); we shall assume this throughout the article. A convenient way to

1There is an alternative (but equivalent) way to view this communication restriction: Instead of putting a bandwidth

restriction on the links, we can put a restriction on the amount of information that each machine can communicate (i.e.,

send/receive) in each round. The results that we obtain in the bandwidth-restricted model will also apply to the latter

model [34]. Also, our bounds can be easily rewritten in terms of the B parameter.
2An alternative partitioning model is the so-called random edge partition (REP) model [55, 72]: Here, each edge of G

is assigned independently and randomly to one of the k machines. One can extend our results to get bounds for the REP

model, since it is easy to show that one can transform the input partition from one model to the other in Õ (m/k2 + n/k )
rounds.
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implement the RVP model is through hashing: each vertex (ID) is hashed to one of the k machines.
Hence, if a machine knows a vertex ID, then it also knows where it is hashed to.
Eventually, in a computation each machine Mi , for each 1 ≤ i ≤ k , must set a designated local

output variable oi (which need not depend on the set of vertices assigned to machineMi ), and the
output configuration o = 〈o1, . . . ,ok 〉 must satisfy certain feasibility conditions w.r.t. problem P.
For example, when considering the PageRank problem, each oi corresponds to PageRank values
(of one or more nodes), such that the PageRank value of each node of the graph should be output
by at least one machine.

1.2 Our Results

We present a general information-theoretic approach for showing non-trivial round lower bounds
for certain graph problems in thek-machinemodel. This approach can be useful for showing round
lower bounds for many other (including non-graph) problems in a distributed setting where the in-
put is partitioned across severalmachines and the output size is large, complementing the approach
based on communication complexity (see, e.g., References [18, 21, 22, 34, 47, 50, 52, 53, 55, 59] and
references therein). Using our approach, we show almost tight (up to logarithmic factors) lower
bounds for two fundamental, seemingly unrelated, graph problems, namely, PageRank computa-
tion and triangle enumeration. These lower bounds apply to distributed computations in essen-
tially all point-to-point communication models, since they apply even to a synchronous complete
network model (where k = n), and even when the input is partitioned randomly, and thus they ap-
ply to worst-case balanced partitions as well (unlike some previous lower bounds, e.g., Reference
[72], which apply only under some worst-case partition).

To demonstrate the near-tightness of our lower bounds, we present optimal (up to a polylog(n)
factor) distributed algorithms for these problems. All these algorithms exhibit a round complexity
that scales superlinearly in k , improving significantly over previous results.

1. PageRank Computation. In Section 2.3, we show an almost tight lower bound of Ω̃(n/k2)
rounds.3 In Section 3.1, we present an algorithm that computes the PageRank of all nodes of a

graph in Õ (n/k2) rounds, thus improving over the previously known bound of Õ (n/k ) rounds [34].
2. Triangle Enumeration. In Section 2.4, we show that there exist graphs with m edges where

any distributed algorithm requires Ω̃(m/k5/3) rounds. In Section 3.2, we present an algorithm that

enumerates all the triangles of a graph in Õ (m/k5/3 + n/k4/3) rounds. This improves over the

previously known bound of Õ (n7/3/k2) rounds [34].
Our technique can be used to derive lower bounds in other models of distributed comput-

ing as well. Specifically, the approach used to show the lower bound for triangle enumeration
can be adapted for the popular congested clique model (discussed in Section 1.4), yielding an
Ω(n1/3/ logn) lower bound for the same problem.4 (Notice that this does not contradict the result
of Reference [21], which states that proving any super-constant lower bound for the congested
clique would give new lower bounds in circuit complexity: In particular, because of the size re-
quired by any solution for triangle enumeration, Remark 3 in Reference [21] does not apply.) To
the best of our knowledge, this is the first super-constant lower bound known for the congested
clique model. (Previous bounds were known for weaker versions of the model, which, e.g., allowed
only broadcast communication, or which applied only to deterministic algorithms [21], or for im-
plementations of specific algorithms [12].)

3Notation Ω̃ hides a 1/polylog(n) factor, and Õ hides a polylog(n) factor and an additive polylog(n) term.
4A preliminary version of this article appeared on arXiv [54], contained a slightly worse lower bound of the form

Ω(n1/3/ log3 n); later, a subsequent work by Izumi and Le Gall [30] showed a lower bound of the form Ω(n1/3/ logn)
using our information-theoretic approach.
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Our bounds for triangle enumeration also apply to the problem of enumerating all the open

triads, that is, all the sets of three vertices with exactly two edges. Our techniques and results can
be generalized to the enumeration of other small subgraphs such as cycles and cliques.

1.3 Overview of Techniques

Lower Bounds. In Theorem 2.1, we give a general result, the General Lower Bound Theorem,
which relates the round complexity in the k-machine model to the minimal amount of information
required by machines for correctly solving a problem. This theorem gives two probabilistic bounds
that must be satisfied to obtain a lower bound on the round complexity of any problem. The two
bounds together capture the decrease in uncertainty (called surprisal; see Section 2) that happens
to some machine as a result of outputting the solution. We can show that this “surprisal change”
represents the maximum expected “Information Cost” over all machines that can be used to lower
bound the runtime. The proof of the General Lower Bound Theorem makes use of information-
theoretic machinery, yet its application requires no knowledge of information theory.
The General Lower Bound Theorem gives, in a fairly straightforward way, non-trivial lower

bounds for problems where the application of communication complexity techniques seems not
obvious, including and especially under a stochastic/random partition of the input. As an example,

the work of Klauck et al. [34] showed a (tight) lower bound of Ω̃(n/k2) for connectivity by appeal-
ing to random-partition communication complexity. This involved proving a lower bound for the
classical set disjointness function assuming the inputs are randomly—rather than adversarially—
distributed to the players, and this required non-trivial work. However, a lower bound of the same
form for MST can be shown directly via the General Lower Bound Theorem—with a possible lower
bound graph being the complete graph with random edge weights.
We also note that tight round complexity lower bounds do not always directly follow from ex-

ploitingmessage (bit) complexity lower bounds obtained by leveraging communication complexity
results. For example, for the problem of triangle enumeration, even assuming the highest possible

message lower bound of Ω(m), this would directly imply a round lower bound of Ω̃(m/k2) (since
Θ(k2) messages can be exchanged in one round) and not the tight Ω̃(m/k5/3) shown in this arti-
cle. Furthermore, our approach can show round-message tradeoffs giving stronger message lower
bounds for algorithms constrained to run in a prescribed round bound compared to what one can
obtain using communication complexity approaches. In particular, for triangle enumeration, we
show that any round-optimal algorithm that enumerates all triangles with high probability in the

k-machine model needs to exchange a total of Ω̃(mk1/3) messages in the worst case.
We emphasize that our General Lower Bound theorem gives non-trivial lower bounds onlywhen

the output size is large enough, but it still works seamlessly across all output sizes. To illustrate

this, we note that the triangle enumeration lower bound of Ω̃(m/k5/3) is true only for dense graphs,
i.e.,m = Θ(n2). In fact, the real lower bound derived through our theorem is Ω̃((t/k )2/3/k ), where
t is the number of triangles in the input graph; this bound can be shown to apply even for sparse
(random) graphs by extending our analysis.

Entropy-based information-theoretic arguments have been used in prior work, such as in Ref-

erence [34], where it was shown that Ω̃(n/k ) is a lower bound for computing a spanning tree

(ST) of a graph. However, this lower bound holds under the criterion that the machine that hosts
the vertex (i.e., its home machine) must know at the end of the computation the status of all of its
incident edges, that is, whether they belong to the ST or not. The lower bound proof exploits this
criterion to show that any algorithmwill require some machine receiving Ω(n) bits of information,

and since any machine has k − 1 links, this gives a Ω̃(n/k ) lower bound. This argument fails if we
require the final status of each edge to be known by somemachine (different machines might know
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the status of different edges); indeed, under this output criterion, it can be shown that MST can be

solved in Õ (n/k2) rounds [55]. However, the lower bound proof technique of this article applies
to the less restrictive (and more natural) criterion that any machine can output any part of the
solution. In Reference [7], a direct sum theorem is shown that yields a communication complex-
ity lower bound for set disjointness. The method of Reference [7] can be applied to obtain lower
bounds for functions F that can be “decomposed” as F (x, y) = f (д(x1,y1), . . . ,д(xn ,yn )), by reduc-
tion from the information complexity of the function д. These methods do not seem applicable to
our setting, as we are considering problems where the output size is large.

Upper Bounds. The Conversion Theorem of Reference [34] directly translates algorithms de-
signed for a message passing model for network algorithms to the k-machine model, and almost
all the previous algorithms [15, 34] were derived using this result. In contrast, the present article
does not use the Conversion Theorem; instead, it gives direct solutions for the problems at hand in
the k-machine model, leading to improved algorithms with significantly better round complexity.
While our algorithms use techniques specific to each problem, we point out a simple, but

key, unifying technique that proves very useful in designing fast algorithms, called randomized

proxy computation. Randomized proxy computation is crucially used to distribute communica-
tion and computation across machines to avoid congestion at any particular machine, which in-
stead is redistributed evenly across all the machines. This is achieved, roughly speaking, by re-
assigning the executions of individual nodes uniformly at random among the machines. (Similar
ideas have been used in parallel and distributed computation in different contexts; see, e.g., Refer-
ences [65, 66].) Proxy computation allows one to move away from the communication pattern
imposed by the topology of the input graph, which can cause congestion at a particular ma-
chine, to a more balanced communication overall. For example, a simple use of this strategy in
the triangle enumeration algorithm (see Section 3.2) is as follows: Each edge in the graph is as-
signed a random machine as its proxy; the proxy does computation “associated” with the edge.
This alleviates the congestion associated with machines having high-degree nodes. A slightly
more sophisticated use of randomized proxy computation is made in our PageRank algorithm
(see Section 3.1).

1.4 Related Work

Klauck et al. [34] present lower and upper bounds for several fundamental graph problems in
the k-machine model. In particular, they presented weaker upper bounds for PageRank and trian-
gle verification (which also works for triangle enumeration), which are substantially improved in
this article. They do not present any non-trivial lower bound for any of these problems. Also, as
pointed out earlier, some lower bounds shown in Reference [34], most notably the Ω(n/k2) lower
bound ofMST (under random input partition and under the requirement that eachMST edge has to
be output by some machine), can be shown in a simpler way using the General Lower Bound The-

orem of this article. Pandurangan et al. [55] showed Õ (n/k2)-round algorithms in the k-machine
model for connectivity, MST, approximate min-cut, and other graph verification problems. Except
for the randomized proxy computation, the algorithmic techniques used in Reference [55] do not
apply for PageRank computation and triangle enumeration. This model has been further investi-
gated in, e.g., References [6, 26, 29, 35].
Another popular model serving as an abstraction of many modern large-scale data processing

frameworks is theMassively Parallel Computation (MPC) model [33]. The distinguishing fea-
ture of this model is that a single machine of a large cluster cannot store the entirety of the input,
but just a sublinear fraction of it. In particular, if N denotes the size of the input, then the mem-
ory of each machine is assumed to have size s = O (N 1−ϵ ) for some constant ϵ > 0. Observe that
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limiting the amount of local memory also implicitly limits the communication bandwidth—you
can only send what you have in your memory; and vice versa, if you have limited communica-
tion bandwidth as in the k-machine model and a fast algorithm, then you do not have time to
accumulate a large amount of data in your local memory. Hence, these two models often lead
to similar algorithm design challenges. However, because of the relatively large available com-
munication bandwidth, there are barriers to achieving super-constant lower bounds in the MPC
model, and thus only conditional lower bounds are known—see Reference [48] and references
therein.
The k-machine model is also closely related to the classical Congest model [58], and in par-

ticular to the congested clique model, which recently has received considerable attention (see, e.g.,
References [12, 21, 25, 28, 32, 40, 41, 43, 46]). The main difference is that the k-machine model is
aimed at the study of large-scale computations, where the size n of the input is significantly bigger
than the number of available machines k , and thus many vertices of the input graph are mapped to
the same machine, whereas the two aforementioned models are aimed at the study of distributed
network algorithms, where n = k and each vertex corresponds to a dedicated machine. More “lo-
cal knowledge” is available per vertex (since it can access for free information about other vertices
in the same machine) in the k-machine model compared to the other two models. However, all
vertices assigned to a machine have to communicate through the links incident on this machine,
which can limit the bandwidth—in contrast with the other two models, where each vertex has a
dedicated processor. These differences manifest in the design of fast algorithms for these models.
In particular, the best distributed algorithm for the congested clique may not directly yield the
fastest algorithm in the k-machine model [55].
For a more detailed comparison of the k-machine model with other parallel and distributed mod-

els for large-scale data processing, such as the MPC model [33], the Bulk Synchronous Parallel

(BSP)model [67], themessage-passingmodel [72], and the congested clique, we refer to References
[55, 68].
PageRank and triangle enumeration have received considerable attention in other models of

distributed computing—see, e.g., References [27, 36–38, 57] and references therein. However, none
of these results and techniques therein can be translated to yield the bounds shown in this
article.

1.5 Preliminaries

PageRank. PageRank is one of the most important measures to rank the importance of nodes
in a graph and was first proposed to rank Web pages [11]. The PageRank of a graph G = (V ,E)
is defined as follows: Let ϵ be a small fixed constant. The PageRank (vector) of a graph (e.g., see
References [3, 5, 8, 17]) is the stationary distribution vector π of the following special type of
random walk: At each step of the random walk, with probability ϵ the random walk restarts from
a node chosen uniformly at random among all nodes in the graph, and with probability 1 − ϵ the
walk follows a randomly chosen outgoing (neighbor) edge from the current node andmoves to that
neighbor. ϵ is called the reset probability. The computation of PageRank and its variants has been
of tremendous research interest in both academia and industry. For a detailed survey of PageRank
see, e.g., References [8, 39].

There are mainly two broad approaches to the PageRank computation (see, e.g., Reference [4]).
One is the use of linear algebraic techniques (e.g., the Power Iteration [51]), and the other is Monte
Carlo method [3]. In the Monte Carlo method, the basic idea is to approximate PageRank by di-
rectly simulating the corresponding random walk and then estimating the stationary distribution
with the performed walk’s distribution [3, 19].
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Triangle enumeration. The triangle enumeration problem is to enumerate all the triangles in a
graph, where a triangle is a set of three vertices all adjacent to each other.5 This problem has
attracted much interest because of its numerous practical applications, including the analysis of
social processes in networks [23, 71], community detection [10], dense subgraphmining [69], joins
in databases [49], and the solution of systems of geometric constraints [24]. The interested reader
may refer to References [9, 14] for additional applications.

Triangle detection and triangle counting are also well-studied problems, and potentially sig-
nificantly easier than triangle enumeration; however, we emphasize that for many applications,
including all the aforementioned ones, triangle detection or triangle counting is not enough, and
a complete enumeration of all the triangles is required.
In general, the enumeration of small subgraphs, cliques, or triplets of vertices that consist of

exactly two edges (usually called open triads), also has numerous applications [9, 14, 69, 70].

2 LOWER BOUNDS

2.1 A General Lower Bound Theorem

In this section, we present a result, called General Lower Bound Theorem, which provides a general
way to obtain round lower bounds in the k-machine model. In Section 2.2, we provide the full
proof of this result. We will then apply it to derive lower bounds for two graph problems, namely,
PageRank computation (Section 2.3) and triangle enumeration (Section 2.4).

Consider an n-vertex input graph G partitioned across the machines via the random-vertex
partition in the k-machine model. Note that the input graphG is sampled from a probability distri-
bution on a (suitably chosen) set of graphs G. (For example, in the case of PageRank, G is the set
of all possible instantiations of the lower bound graph H shown in Figure 1.) Consider a partition
p = (p1, . . . ,pk ) of an input graphG. We use boldface p to denote a vector, and pi to denote the ith
entry of p. In our analysis, we frequently condition on the event that a subgraph pi ⊆ G is assigned
to a certain machineMi . To simplify notation, we also use pi to denote the event that this happens,
e.g., Pr

[
E | pi

]
is the probability of event E conditioned on the assignment of pi to machineMi .

Let Πi be the random variable representing the transcript of the messages received by machine
Mi across its k − 1 links when executing a given algorithm A for (at most) T rounds, and let GP
be the set of all possible partitions of the graphs in G among the k machines. The execution of
algorithm A is fully determined by the given input partitioning p ∈ GP and the public random
bit string r ∈ RS, where RS is the set of all possible strings that are used as random bit string
by the algorithm. We use R to denote the random variable of the sampled public random string.
Similarly as above, we write Pr

[
E | pi , r

]
when conditioning event E on the events that the public

random string is r and machineMi obtains subgraph pi as its input, where p = (p1, . . . ,pi , . . . ,pk )
and (p, r ) ∈ GP × RS. We use the random variable Outi to denote the output of machine Mi

when executing the given algorithm. To simplify notation, we simply write “x” to denote the event
{X =x }, for random variableX . For technical reasons, we assume that the output also includesMi ’s
initial graph input pi and the public random string r .6

Theorem 2.1 (General Lower Bound Theorem). Let IC = IC(n,k ) be a positive integer-valued
function called information cost, and let Z be a random variable depending only on the input graph,

where IC ≤ H[Z ] and where H[Z ] is the entropy of Z . Consider a T -round ϵ-error algorithm A, for

some ϵ = o(IC/H[Z ]). Let Good ⊆ GP×RS be a set of pairs (p, r ) where p = (p1, . . . ,pk ) is an input

5Sometimes this problem is also referred to as triangle listing, although there is a small difference: In triangle listing the

output must be generated and stored in memory, whereas in triangle enumeration the output is not required to be stored.

This distinction is relevant in bounded-memory models.
6Any given algorithm can be modified to achieve this behavior without increasing the complexity.

ACM Transactions on Parallel Computing, Vol. 8, No. 2, Article 7. Publication date: June 2021.



On the Distributed Complexity of Large-Scale Graph Computations 7:9

partition and r is a public random string, and |Good| ≥ (1 − ϵ − n−Ω(1) ) |GP × RS|. Suppose that,
for every (p, r ) ∈ Good, there exists a machine Mi receiving input graph pi and outputting Ai (p, r ),
such that

Pr
[
Z = z | pi , r

] ≤ ( 12
)H[Z ]−o (IC)

, (1)

Pr
[
Z = z | Ai (p, r ),pi , r

] ≥ ( 12
)H[Z ]−IC

, (2)

for every z that has nonzero probability conditioned on events Outi = Ai (p, r ), Pi = pi , and
R = r . Moreover, assume that, for all (p, r ) ∈ GP × RS, and every i ∈ [k], it holds that

H[Z ] ≥ H[Z | Outi =Ai (p, r )
]
. Then, if B denotes the per-round communication link bandwidth,

then it holds that

T = Ω

(
IC

Bk

)
. (3)

Intuition. We can think of Premise (1) as bounding the initial knowledge of the machines about
the random variable Z , which will usually be some function of the input graph. For instance, when
considering triangle enumeration in Section 2.4,Z will be the list of all edges. However, Premise (2)
shows that at least one machine is able to increase its knowledge about the value of Z eventu-
ally, which we formalize by conditioning on its output in addition to the initial knowledge. In the
context of triangle enumeration, this means that some machine must learn about many edges in
the graph. Then, if there is a large set (called Good) of inputs where these premises hold, then
our theorem says that the worst-case time of the algorithm must be sufficiently large. These in-
sights are formally captured by the self-information or surprisal of an event E, which is defined as
log2 (1/Pr[E]) [61] and measures the “amount of surprise” or information contained in observing
an event E. Premises (1) and (2) imply that, from some machineMi ’s point of view, the occurrence
of {Z =z} is “Ω(IC) more surprising” given its initial knowledge, compared to observing this event
after computing the output. We can show that this surprisal change IC bounds from below the
maximum communication cost over all machines. Consequently, (3) tells us that the running time
of the algorithm is roughly a (1/kB)-fraction of the maximum expected information cost.
We point out that the premise H[Z ] ≤ H[Z | Outi =Ai (p, r )

]
turns out to be a very minor re-

striction: For the choices of Z in our applications of this theorem, it is immediate that conditioning
on the output of one machine does not increase the (expected) uncertainty of Z .

2.2 Proof of the General Lower Bound Theorem

In the proof of Theorem 2.1, wemake use of some standard definitions in information theory, which
we now recall (and which can be found, e.g., in Reference [16]). Consider random variables X , Y ,
andW . The entropy of X is defined as H[X ] = −∑x Pr[X = x] log2 Pr[X = x], and the conditional
entropy is defined as

H[X | Y ] =
∑
y

Pr
[
Y =y

]
H
[
X | Y = y] . (4)

The mutual information between X and Y given some event {W =w } is denoted by I[X ;Y |W =w],
and given by

I[X ;Y |W =w] = H[X |W =w] − H[X | Y ,W =w]. (5)

From this it immediately follows that

H[X |W =w] ≥ I[X ;Y |W =w]. (6)
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For a given input graph partition p and a random string r , we are interested in identifying the
machine that has the maximum expected value of the amount of information that its transcript
reveals about the random variable Z . This motivates us to define the critical index function as

�(p, r ) := argmax
1≤i≤k

I
[
Πi ;Z | pi , r

]
, (7)

and define random variables

Π∗ (p, r ) = Π�(p,r ) (p, r ) and Out∗ (p, r ) = Out�(p,r ) (p, r ). (8)

Intuitively speaking, for each (p, r ) ∈ GP × RS, the random variable Out∗ is the output of the
machine Mi (where i depends on p, r ) that attains the maximum mutual information between its
output and the random variable Z . For a given (p, r ), we use

p∗ = p�(p,r ) (9)

to denote the input partition of machine M�(p,r ) . Note that Z depends only on the input graph,
whereas Π∗, P∗, and Out∗ depend on the input graph and, in addition, also on the chosen partition
p and random string r .

Lemma 2.2. For every (p, r ) ∈ GP×RS where p = (p1, . . . ,p∗, . . . ,pk ), and every i ∈ [k], it holds
that

I
[
Π∗;Z | p∗, r

] ≥ max
1≤i≤k

I
[
Outi ;Z | pi , r

]
.

Proof. Consider a (p, r ) ∈ GP × RS as described in the premise of the lemma. It holds that

I
[
Π∗;Z | p∗, r

] ≥ max
1≤i≤k

I
[
Πi ;Z | pi , r

]
(by (7))

= max
1≤i≤k

(H
[
Z | pi , r

] − H[Z | Πi ,pi , r
]
). (by (5))

The random variable Outi , which represents the output of machine Mi , is fully determined by
the transcript Πi , Mi ’s input graph assignment (i.e., the random variable Pi ), and the random
bits. Therefore, by the data processing inequality (see Reference [16]), we can use the bound
H
[
Z | Πi ,pi , r

] ≤ H[Z | Outi ,pi , r ] in the right-hand side of the above inequality to obtain

I
[
Π∗;Z | p∗, r

] ≥ max
1≤i≤k

(H
[
Z | pi , r

] − H[Z | Outi ,pi , r ] ) = max
1≤i≤k

I
[
Outi ;Z | pi , r

]
and the lemma follows. �

Lemma 2.3. For all (p, r ) ∈ Good where p = (p1, . . . ,pk ), there is an i ∈ [k] (which satisfies (1)

and (2) in the premise of the theorem) such that I
[
Outi ;Z | pi , r

] ≥ IC − o(IC).

Proof. For a given (p, r ) ∈ Good, let Mi be a machine satisfying (2) (in addition to (1)). By
definition,

I
[
Outi ;Z | pi , r

]
= H
[
Z | pi , r

] − H[Z | Outi ,pi , r ] . (10)

We will now bound the terms on the right-hand side. By definition, we obtain

H
[
Z | pi , r

]
= −
∑
z

Pr
[
Z = z | pi , r

]
log2 Pr

[
Z = z | pi , r

]

≥ (H[Z ] − o(IC))
∑
z

Pr
[
Z = z | pi , r

]
(by (1))

= H[Z ] − o(IC), (11)

where the last equality follows from
∑

z Pr
[
Z = z | pi , r

]
= 1.
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In the remainder of the proof, we derive an upper bound on H
[
Z | Outi ,pi , r

]
. Since machine

Mi includes its input pi and the public random string r in its output, we have

H
[
Z | Outi ,pi , r

]
= H[Z | Outi ], (12)

and thus, we will proceed by proving an upper bound on the latter term. To simplify notation, we
use “Ai (p, r )” as a shorthand for the event “Outi = Ai (p, r ).” By definition, we have

H[Z | Outi ] =
∑
(p,r )

Pr
[Ai (p, r )

]
H
[
Z | Ai (p, r )

]

=
∑

(p,r )∈Good
Pr
[Ai (p, r )

]
H
[
Z | Ai (p, r )

]
+
∑

(p,r )�Good

Pr
[Ai (p, r )

]
H
[
Z | Ai (p, r )

]
.

Recalling that the premise of Theorem 2.1 states H
[
Z | Ai (p, r )

] ≤ H[Z ], we can plug this bound
into the second term of the sum on the right-hand side to obtain

H[Z | Outi ] ≤
∑

(p,r )∈Good
Pr
[Ai (p, r )

]
H
[
Z | Ai (p, r )

]
+ H[Z ]���

∑
(p,r )�Good

Pr
[Ai (p, r )

]���. (13)

Intuitively speaking, the first sum in Equation (13) represents the remaining uncertainty ofZ upon
termination, assuming machines start with a hard input assignment (i.e., in Good), whereas the
second term is weighted by the probability that either the input was easy or the algorithm failed
(i.e., � Good). The following claim bounds the entropy term in the first sum of Equation (13), where
(p, r ) is restricted to the set Good.

Claim 1. H
[
Z | Ai (p, r )

] ≤ H[Z ] − IC.
Proof of Claim 1. From the definition of entropy, we obtain

H
[
Z | Ai (p, r )

]
= −
∑
z

Pr
[
Z = z | Ai (p, r )

]
log2 Pr

[
Z =z | Ai (p, r )

]
. (14)

Since we assume that machineMi also outputs its initial graph assignment (i.e., pi ) and the public
random string r , it holds that

H
[
Z | Ai (p, r )

]
= H
[
Z | Ai (p, r ),pi , r

]
,

which allows us to rewrite Equation (14) as

H
[
Z | Ai (p, r )

]
= −
∑
z

Pr
[
Z = z | Ai (p, r ),pi , r

] · log2 Pr[Z =z | Ai (p, r ),pi , r
]
.

Recalling thatMi satisfies Equation (2), we get

H
[
Z | Ai (p, r )

] ≤ (H[Z ] − IC)
∑
z

Pr
[
Z = z | Ai (p, r ),pi , r

]
= H[Z ] − IC,

since
∑

z Pr
[
Z = z | Ai (p, r ),pi , r

]
= 1. �

We will now derive an upper bound on the second sum in Equation (13).

Claim 2.
∑

(p,r )�Good Pr[Ai (p, r )] ≤ ϵ + n−Ω(1) .

Proof of Claim 2. Consider the set (GP × RS) \ Good. According to our model, the input
graph and its partitioning among the machines correspond to choosing, uniformly at random, an
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element from GP, whereas the random string r is uniformly selected from RS. Since the output
of machineMi is fully determined by (p, r ), we have∑

(p,r )�Good

Pr
[Ai (p, r )

]
=
∑

(p,r )�Good

Pr
[
(p, r )

]
= Pr[(GP × RS) \ Good].

From the lower bound on the size of Good in the theorem premise, we obtain an upper bound such
that ∑

(p,r )�Good

Pr
[Ai (p, r )

]
= Pr[(GP × RS) \ Good] ≤ ϵ + n−Ω(1),

thus proving the claim. �

Plugging the bounds in Claims 1 and 2 into Equation (13), we get

H[Z | Outi ] ≤ (H[Z ] − IC)
∑

(p,r )∈Good
Pr
[Ai (p, r )

]
+ H[Z ]

(
ϵ + n−Ω(1)

)

≤ (H[Z ] − IC) + H[Z ]
(
ϵ + n−Ω(1)

)
.

Assuming a sufficiently large constant in the exponent of n−Ω(1) , we observe that H[Z ] · n−Ω(1) =

o(1), since Z depends only on the input graph. By the premise of Theorem 2.1, we have ϵ =
o(IC/H[Z ]) and IC ≤ H[Z ], hence ϵ · H[Z ] = o(IC). From this and Equation (12), we conclude
that

H
[
Z | Outi ,pi , r

] ≤ H[Z ] − IC + o(IC).
Plugging this upper bound and the lower bound of Equation (11) into the right-hand side of Equa-
tion (10) completes the proof of Lemma 2.3. �

Recall that Lemma 2.2 holds for any (p, r ) ∈ GP × RS; in particular, even if we restrict our
choice to the set Good. Thus, for (p, r ) ∈ Good, where p = (p1, . . . ,pk ), let i ∈ [k] be the index for
which Lemma 2.3 holds (which is the index of the machine satisfying Premises (1) and (2)). This
yields

H
[
Π∗ | p∗, r

] ≥ I[Π∗;Z | p∗, r ] (by (6))

≥ I[Outi ;Z | pi , r ] (by Lemma 2.2)

≥ IC − o(IC), (15)

where the last inequality follows from Lemma 2.3. To complete the proof of Theorem 2.1, we will
argue that the worst-case running time needs to be large, as otherwise the entropy of machine
M�(p,r ) ’s transcript Π∗ would be less than IC−o(IC). The value ofH[Π∗ | p∗, r ] is maximized if the
distribution of (Π∗ | p∗, r ) is uniform over all possible choices. In the next lemma, we show that,

during T rounds of the algorithm, the transcript can take at most 2(B+1)(k−1)T distinct values, and
thus

H
[
Π∗ | p∗, r

] ≤ log2
(
2(B+1)(k−1)T

)
= O (B k T ). (16)

Lemma 2.4. Suppose that some machine Mi can receive a message of at most B bits on each of its

k −1 links in a single round. Let Γ be the bits received byMi over its k −1 links duringT rounds. Then,

Γ can take at most 2(k−1)(B+1)T distinct values.

Proof. Since in a synchronous model one can convey information even by not sending any bits
in a given round, there are at most 2B + 1 < 2B+1 distinct possibilities for the communication re-
ceived over a single link of bandwidth B in any given round. Thus, we can view the communication
received overMi ’sk−1 links as a wordω1 of length k−1, where each character ofω1 is chosen from
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an alphabet of size (at most) 2B+1, resulting in 2(B+1)(k−1) possible choices for ω1. Finally, we view
Γ, i.e., the communication received over the T rounds, as a word of length T , where the alphabet
size of each character is at most 2(B+1)(k−1) , yielding 2(B+1)(k−1)T many choices in total. �

Recall that the running time T is the maximum time required by any machine Mi , over all
random strings and input assignments, i.e., T = max(p,r ) T (p, r ). Combining Equation (15) and
Equation (16), it follows that

T = max
(p,r )

T (p, r ) = Ω
( IC
Bk

)
.

This completes the proof of Theorem 2.1.

2.3 A Lower Bound for PageRank Computation

Theorem 2.5. Let A be an algorithm that computes a δ -approximation of the PageRank vector

of an n-node graph for a small constant δ > 0 (depending on the reset probability), and suppose that

A succeeds with probability at least 1 − o(1/k ). Then, the running time of A is Ω( n
B ·k2 ), assuming

a communication link bandwidth of B bits per round and k = Ω(log2 n) machines. This holds even

when the input graph is assigned to the machines via random vertex partitioning.

We first give a high-level overview of the proof. As input graph G, we construct a weakly con-
nected directed graph where the direction of certain “important” edges is determined by a random
bit vector and assign random IDs to all the vertices. Flipping the direction of an important edge
changes the PageRank of connected vertices by a constant factor and hence any (correct) algorithm
needs to know about these edge directions. It is crucial that the vertex IDs are chosen randomly
to ensure that knowing just the direction of important edges is not sufficient for computing the
PageRank of the adjacent nodes, as these random vertex IDs “obfuscate the position” of a vertex
in the graph. This means that a machine needs to know both, the direction of an important edge
and the IDs of the connected vertices to be able to output a correct result. By using a Chernoff
bound, we can show that the random vertex partitioning of the input graph does not reveal too
many edge-directions together with the matching vertex IDs to a single machine. This sets the
stage for applying our generic lower bound theorem (Theorem 2.1) to obtain a lower bound on the
running time.

The Lower Bound Graph. We consider the following directed graphH (see Figure 1) of n vertices
and m = n − 1 edges; for simplicity, assume that m/4 is an integer. Let X = {x1,x2, . . . ,xm/4},
U = {u1,u2, . . . ,um/4}, T = {t1, t2, . . . , tm/4}, V = {v1,v2, . . . ,vm/4}, and let V (G ) = {X ∪ U ∪
T ∪ V ∪ {w }}. The edges between these vertices are given as follows: For 1 ≤ i ≤ m/4, there is
a directed edge ui → ti , a directed edge ti → vi , and a directed edge vi → w . The edges between
ui and xi (these are the “important” edges mentioned above) are determined by a bit vector b of
length m/4 where each entry bi of b is determined by a fair coin flip: If bi = 0, then there is an
edge ui → xi , otherwise there is an edge xi → ui . Lemma 2.6 shows that, for any 1 ≤ i ≤ m/4
and for any ϵ < 1, there is a constant factor separation between the PageRank of any node vi if
we switch the direction of the edge between xi and ui .

Lemma 2.6. The following holds for the PageRank value of vertices vi of G, for 1 ≤ i ≤ n/4: If

bi = 0, then PageRank(vi ) =
(2.5−2ϵ+ϵ 2/2)ϵ

n
. Otherwise, if bi = 1, then PageRank(vi ) ≥ (3−3ϵ+ϵ 2 )ϵ

n
.

For any ϵ < 1, there is a constant factor separation between the two cases.

Proof. We will determine an estimate of PageRank(vi ) using the distributed random walk ap-
proach described at the beginning of Section 3.1, in which the expected number of random walk
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Fig. 1. The graph H used to derive a lower bound on the round complexity of PageRank computations.

tokens addressed to one node, multiplied by ϵ/cn logn, gives a high-probability estimate of the
PageRank value of the node. Ifψvi denotes the number of random walk tokens addressed to node
vi , then

E
[
ψvi |bi = 0

]
= c logn

(
1 + (1 − ϵ ) + (1 − ϵ )2

2

)

and

E
[
ψvi |bi = 1

]
= c logn

(
1 + (1 − ϵ ) + (1 − ϵ )2 + (1 − ϵ )3

)
.

Therefore,

PageRank(vi ) =
(2.5 − 2ϵ + ϵ2/2)ϵ

n
if bi = 0, and

PageRank(vi ) ≥
(3 − 3ϵ + ϵ2)ϵ

n
if bi = 1. �

The Input Graph Distribution. We now build our input graph G as follows: Letm = n − 1, and
let ID be the random variable representing a set of n unique integers chosen uniformly at random
from {S ⊂ [1, poly(n)] : |S | = n}. Assigning to each vertex of H a unique integer drawn uniformly
and without repetitions from ID yields a graphG. Let G denote the set of graphsG determined by
all possible (different) ID assignments to all possible instances of H considering all possible edge
directions. Let GP be the set of all input graph partitions (i.e., the set of all graphs in G and all
their possible input partitions) among the k machines, and let RS be the set of all random strings
used by a given PageRank algorithmA. Let Bal ⊆ GP be the set of all input partitions where each

machine receives Θ̃(n/k ) vertices of the input graph. Note that (p, r ) ∈ GP ×RS fully determines
the run of A. We assume that each machine Mi outputs a set {(π1, id1), . . . , (π�, id� )}, where πj
refers to the PageRank value of the vertex with ID idj . Note that we make assumptions neither on
which machine outputs the PageRank of a specific vertex v (which therefore could be a machine
that has no initial knowledge about v), nor on the individual sizes of these output sets.
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Discovering Weakly Connected Paths of Vertices. By the random vertex partitioning, each ma-

chineMi initially holds Θ̃(n/k ) vertices in total. More specifically,Mi receives random setsXi ⊆ X ,
Ui ⊆ U , Ti ⊆ T , and Vi ⊆ V , each containing O (n log(n)/k ) vertices. As machine Mi also gets
to know the incident edges of these vertices, Mi can locally check if a path induced by some
(x j1 ,uj2 , tj3 ,vj4 ) ∈ Xi × Ui × Ti × Vi is weakly connected, i.e., j1 = · · · = j4. Since Mi learns the
output pair (PageRank(v ), idv ) at zero cost, we upper bound the number of such paths that the
machines learn initially by using a Chernoff bound.

Lemma 2.7. With probability at least 1 − n−4, the initial graph partition reveals at mostO (
n logn

k2 )
weakly connected paths between vertices in X and V to every machine.

Proof. Fix one machine Mi . If a vertex is assigned to Mi , then machine Mi knows its incident
edges and the IDs of their endpoints. Therefore,Mi can discover a weakly connected path (between
X and V ) in one of the following ways: (1) Mi obtains x j ∈ X and tj ∈ T ; (2) Mi obtains uj ∈ U
and vj ∈ V . The argument is similar in both cases, and hence, we focus on (1) for the rest of this
proof. By the random vertex partition process, the probability that x j and tj both are assigned to

machine Mi is
1
k2 . Since all vertices are assigned independently at random, a standard Chernoff

bound shows that with high probability O (n logn/k2) matching vertex pairs (x j , tj ) are assigned
to machineMi . Applying the union bound over the k machines completes the proof. �

Good Inputs. We define Good ⊆ Bal × RS to be the set of all (balanced) inputs and random
strings where (1) A correctly outputs the PageRank of each vertex, (2) partition p is “balanced”,
i.e., each machine is assignedO (n logn/k ) vertices (and henceO (n logn/k ) edges, sincem = O (n)),
and (3) the partitioning is such that eachmachine knows at mostO ((n logn)/k2) weakly connected
paths initially; we define Bad = GP × RS \ Good.

Lemma 2.8. (A) For any (p, r ) ∈ Good, algorithm A is correct and there must be at least one

machineMi whose output list contains Ω(n/k ) vertices of V . (B) |Good| ≥ (1−o(1/k )−n−Ω(1) ) |GP×
RS|.

Proof. Part (A) follows directly from the definition of set Good. For (B), note that A succeeds
with probability at least 1 − o(1/k ). Moreover, the random vertex partitioning ensures that each

machine receives Θ̃(n log(n)/k ) vertices with probability at least 1 − n−4. Hence, the above is true
for at least a (1 − o(1/k ) −n−4)-fraction of the possible graph partition and random string pairs in
GP × RS. �

To instantiate Theorem 2.1, we show in Lemma 2.9 and Lemma 2.10 that we can satisfy the
Premises (1) and (2) by setting IC = m/4k = Θ(n/k ). Plugging the above value of IC in (3) then
gives the claimed lower bound.

Lemma 2.9. Let Z be the random variable representing the set {(b1,v1), . . . , (bm/4,vm/4)}, where
bj refers to the direction of the edge (x j ,uj ) in the weakly connected path (x j ,uj , tj ,vj ) of the input
graph of Figure 1. Then, for each (p, r ) ∈ Good, where p = (p1, . . . ,pk ), and for every possible choice

of z,

Pr
[
Z = z | pi , r

] ≤ 2−(m/4−O (n log(n)/k2 )) .

Proof. Consider a (p, r ) ∈ Good where p = (p1, . . . ,pi , . . . ,pk ). By Lemma 2.8, part (A), al-
gorithm A correctly computes the PageRank, and some machine (without loss of generality) Mi

outputs at least Ω(n/k ) PageRank values.
By Lemma 2.6, we know that algorithm A can only correctly output PageRank(vj ) at machine

Mi if Mi knows the direction of the edge between uj and x j (from Lemma 2.6, since the direction
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of the corresponding edge can be derived from the PageRank value). This means that if machine
Mi outputs the PageRank for vj as a pair (πj ,vj ), then it can reconstruct the pair (bj ,vj ), for any
1 ≤ j ≤ m/4.

Since (p, r ) ∈ Good, it follows by Lemma 2.7 that each machine Mi learns at most η =
O (n log(n)/k2) output entries of V for free by inspecting its assigned input. In addition to these η
entries,Mi might know partial information about the remaining Ω(n) − η pairs.

It follows that, for each of the other weakly connected paths that are not concerned with its η
already known PageRank values, Mi either has initial knowledge of the index � of the respective
vertex v� ∈ Vi or it knows the edge direction b� between x� and u� , but not both. Notice that
knowledge of the vertex ID of v� reveals no additional information about the index �, since we
choose vertex IDs uniformly at random. We refer to these paths as being partially known toMi .
It follows that, for each index j for which the path is partially known to Mi , there are two

possibilities (0,vj ) and (1,vj ), each of which is equally likely, according to the input distribution.
Therefore, taking into account the initial input assignment, we still have at least

2m/4−O (n log(n)/k2 ) possible choices for z, i.e., the output of Mi concerning vertices in V , each of
which is equally likely without conditioning on further knowledge. Thus,

Pr
[
Z = z | pi , r

] ≤ 2−(m/4−O (n log(n)/k2 )),

completing the proof of the lemma. �

Lemma 2.10. For each (p, r ) ∈ Good, where p = (p1, . . . ,pk ), there exists a machineMi with output

Ai (p, r ) such that, for every choice of z for Z (defined in Lemma 2.9) that has nonzero probability

conditioned on Ai (p, r ),pi , r , it holds that Pr
[
Z = z | Ai (p, r ),pi , r

] ≥ 1/2
m
4 −

m
4k .

Proof. By Lemma 2.8, we know that there is a machineMi that outputs at leastm/4k PageRank

values of vertices in V . Let λ be the total number of pairs (bj ,vj ), where bj is the direction of the
edge (x j ,uj ) in the weakly connected path (x j ,uj , tj ,vj ) (cf. Lemma 2.9) that remain unknown to
machineMi conditioned on its input pi , random string r , and its output oi .
Observing that the size of its output oi is at leastm/4k , and from the fact that we can recover the

pair (bj ,vj ) if Mi outputs the PageRank of vj (see proof of Lemma 2.9), it follows that λ ≤ m/4 −
m/4k , and thus there are 2

m
4 −

m
4k distinct choices for z. The probability bound is minimized if each of

the remaining possible choices of z are equally likely. This implies that Pr
[
Z | oi ,pi , r

] ≥ 1/2
m
4 −

m
4k ,

as desired. �

2.4 A Lower Bound for Triangle Enumeration

We first give a high-level overview of the proof. The input graphs that we use for our lower bounds
are sampled according to theGn,1/2 Erdös-Renyi random graph model. We will argue that enumer-
ating triangles implies a large reduction of the entropy of the characteristic vector of edges Z , i.e.,
Z is a bit vector whose entries reflect the presence/absence of an edge in the input graph.We prove
that initially the machines do not have significant knowledge of Z , which is equivalent to having
a small probability for the event {Z = z}, for any z. Then, we show that any machine that out-
puts t/k triangles, for a parameter t , must have reduced its uncertainty about Z by approximately
(t/k )2/3 bits. In other words, the information obtained by such a machine throughout the course
of the algorithm is high. We apply Theorem 2.1 to obtain a lower bound on the running time of
any algorithm. This yields the following result:

Theorem 2.11. There exists a class of graphs G of n nodes for which every distributed algorithm

that solves triangle enumeration in thek-machinemodel has a time complexity ofΩ( n2

B ·k5/3 ), assuming
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a link bandwidth of B bits per round, k = Ω(logn) machines, and an error probability of ϵ = o(k−2/3).
This holds even when the input graph is assigned to the machines via random vertex partitioning.

The Input Graph Distribution. We choose our input graphs according to the Erdös-Renyi ran-
dom graph model Gn,1/2, which samples an n-node graph where each possible edge is included
independently with probability 1/2. We use GP to denote the set of all possible partitions of all
possible sampled n-node graphs and, similarly to before, denote the set of all random strings used
by the algorithm by RS.
Let Z be the characteristic vector of the edges7 of the input graphG. Note that the execution of
A is fully determined by the given graph input partition p = (p1, . . . ,pk ) ∈ GP and the shared
(among all machines) random bit string r ∈ RS, where RS is the set of all possible strings that are
used as random bit string by the algorithm. Hence, we have |GP × RS| possible outcomes when
running A on a graph sampled from G.

Good Inputs. We define Good ⊆ GP × RS to be the set of input pairs (p, r ) such that (1) A
performs correctly for the graph partition p of graphG and the random string r , (2) partition p is
“balanced,” i.e., each machine is assigned O (n log(n)/k ) vertices (and hence O (n2 log(n)/k ) edges),

and (3) G has at least t triangles, for some fixed t = Θ(( n3 )).

Lemma 2.12 (Good Inputs). (A) For every (p, r ) ∈ Good, at least one machine outputs at least

t/k triangles when executing algorithm A with (p, r ), and (B) |Good| ≥ (1 − ϵ ′) |GP × RS|, where
ϵ ′ = ϵ + n−Ω(1) .

Proof. Part (A) is immediate from the definition of Good. For (B), note that A succeeds with
probability at least 1 − ϵ and the random vertex partitioning guarantees a balanced partition with
probability at least 1 − n−4. From Reference [31, Equation 4.10], we know that the number of

triangles in a input graphG sampled fromGn,1/2 is Θ((
n
3 )) with probability at least 1− e−Ω(1) , and

hence the setGood contains all except at most a (1−ϵ−n−3)-fraction of the graphs in GP×RS. �

Lemma 2.13. Let random variable Z denote the characteristic vector of the edges of the sampled

input graphG. For every (p, r ) ∈ Good where p = (p1, . . . ,pk ) and every characteristic edge vector z,

it holds that Pr
[
Z =z | pi , r

] ≤ 1/2
(
n
2
)−O (n2 log(n)/k )

, for every i ∈ [1,k].

Proof. For any (p, r ) ∈ Good, each machine has initial knowledge of O (n2 logn/k ) edges. Con-
sider any machine Mi . Since the random vertex partitioning and the sampling of the input graph

are independent, there are at least 2
(
n
2
)−O (n2 log(n)/k )

choices for the remaining edges, all of which
are equally likely according to the random graph model, giving the claim. �

Lemma 2.14. Let (p, r ) ∈ Good, where p = (p1, . . . ,pk ). There exists a machine Mi with output

Ai (p, r ) such that, for every edge vector z that has non-zero probability conditioned on Ai (p, r ), pi ,
r ,

Pr
[
Z = z | Ai (p, r ),pi , r

] ≥ 1/2(
n
2 )−O (n2 log(n)/k )−Ω((t/k )2/3 ) .

Proof. By assumption (p, r ) ∈ Good, which means that the machines output all t = Θ(( n3 ))

triangles. Thus, there is some machine Mi that outputs at least t/k triangles. We will bound from
below the number of edges known by machine Mi conditioned on its output and its input assign-
ment.

7The characteristic vector specifies the graph G . Order the (
n
2 ) possible edges in some fixed ordering; if the jth edge in

this ordering appears in G , then Z j = 1, otherwise it is 0.
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Initially, Mi discovers t3 = t3 (Pi ) “local” triangles (for which it knows all threes edges) by in-
specting its assigned portion of the input graph given by Pi . Since we are restricting the inputs
to be in Goodi , we know that the edges known toMi are bounded by O (n2 logn/k ) and hence the
number of triangles formed using these edges is

t3 = O ((n2 logn/k )3/2) = O (n3 log3/2 (n)/k3/2).

We call a triangle λ undetermined w.r.t. Mi if Mi is unaware of at least one edge of λ initially.
Formally, λ is undetermined if there are two input graphsG andG ′ where λ exists inG but not in
G ′ and both graphs are compatible with the input pi assigned to machineMi .

By the above, we have at least (t/k )−t3 undetermined triangles that are output byMi . FromEqua-
tion (10) in Reference [62], we know that the number of distinct edges necessary for representing

� triangles is Ω(�2/3). This means that at least ((t/k ) − t3)2/3 edges are required for representing
the undetermined triangles of Mi . We can divide the undetermined triangles into two sets: One
setT1 contains triangles that have a vertex allocated toMi , and the other set T2 contains triangles
that have no vertex allocated to Mi . Set T1 contributes |T1 |/(n logn/k ) unknown edges, since the
number of vertices allocated to this machine isO (n logn/k ), whereasT2 contributes 1/3 · ( |T2 |)2/3
unknown edges. These two sets of unknown edges might overlap, hence, we need to consider the
maximum over them, which can be shown to be Ω(((t/k ) − t3)2/3). Hence, it is possible to recover
Ω(((t/k ) − t3)

2/3) edges from Mi ’s output that were unknown to Mi initially. Let η denote the
number of unknown edges of Z when Mi outputs its solution. Taking into account the initially
known edges, we have

η ≤
(
n

2

)
− Ω
( t
k
− t3
)2/3
−O
(
n2 logn

k

)
=

(
n

2

)
−O
(
n2 logn

k

)
− Ω
( t
k

)2/3
(17)

possible edges that are unknown toMi , since t3 = o(t/k ). Since we have sampled the edges of the
input graph following the Gn,1/2 random graph model, it follows that, for any z that has nonzero
probability givenMi ’s output and initial assignment, Pr

[
Z = z | oi ,pi , r

]
= 2−η . The lemma follows

by applying Equation (17). �

Proof of Theorem 2.11. We are now ready to instantiate Theorem 2.1 whereZ is the characteristic
vector of edges as defined above. Note that Lemma 2.13 and Lemma 2.14 satisfy Premises (1) and (2).
Note that Ω(t/k )2/3 = Ω(n2/k2/3). Setting IC = Θ(n2/k2/3) completes the proof of Theorem 2.11.

A tight lower bound in the congested clique. Our analysis extends in a straightforward way to the
congested clique model where, in a synchronous complete network of n machines, every machine
u receives exactly one input vertex of the input graph and gets to know all its incident edges.
Together with the deterministic upper bound ofO (n1/3) shown in Reference [20], this implies the
following:

Corollary 2.15. The round complexity of enumerating all triangles in the congested clique of n

nodes with high probability of success is Ω( n
1/3

B
), assuming a link bandwidth of B bits. This bound is

tight up to logarithmic factors.

Message lower bounds. We point out that it is possible to extend Theorem 2.1 to yield new
message lower bounds for algorithms that attain an efficient time complexity. We outline the
high-level argument for triangle enumeration. Consider an algorithm matching the time bound

of Theorem 2.11, i.e., T = Õ (n2/k5/3) assuming a bandwidth of B = O (logn) bits. In the k-
machine model, in T rounds each machine can receive at most μ = Õ (n2/k2/3) bits in total.
Lemma 2.13 tells us that every machine has very little initial knowledge about the t triangles in
the graph given its initial graph assignment when considering inputs chosen from Good. However,
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inspecting the proof of Lemma 2.14, we can observe that a machine Mj who outputs tj triangles

needs to receive Ω̃(t2/3j ) bits of information. If we restrict the algorithm to terminate within T

rounds, then this means that each machine can output at most O (n3/k ) triangles, as this requires
μ = O ((n3/k )2/3) bits of information. This implies that the output per machine must be roughly
balanced and every machine needs to receive Ω(μ ) bits of information, yielding a message com-

plexity of Ω̃(k · n2/k2/3) = Ω̃(n2k1/3). In particular, this rules out algorithms that aggregate all
input information at a single machine (which would only require O (m) messages in total). From
the above, we have the following:

Corollary 2.16. LetA by any algorithm that enumerates all triangles with high probability and

terminates in Õ ( n2

k5/3 ) rounds. Then, the total message complexity in the k-machine model of A is

Ω̃(n2k1/3). For Õ (n1/3)-rounds algorithms in the congested clique, the message complexity is Ω̃(n7/3).

3 UPPER BOUNDS

3.1 An Almost Optimal Algorithm for PageRank Approximation

In this section, we present a simple distributed algorithm to approximate the PageRank vector of

an input graph in the k-machine model. This algorithm has a round complexity of Õ (n/k2), which
significantly improves over the previous Õ (n/k )-round solution [34].
We first recall the distributed random-walk-based Monte Carlo algorithm for computing

PageRank, for a given reset probability ϵ , as described in Reference [19]. This algorithm is de-
signed and analyzed in the standard Congest model, where each vertex of the graph executes the
algorithm. The algorithm is as follows: Initially, each vertex creates c logn random walk tokens,
where c = c (ϵ ) is a parameter defined in Reference [19], which are then forwarded according to
the following process: When a node u receives some random walk token ρ, with probability ϵ it
terminates the token, and with probability 1 − ϵ it forwards the token to a neighbor node chosen
uniformly at random. Each machine keeps a variable ψv , for each of its nodes v , which counts
the number of random walk tokens that were addressed to v (i.e., the total number of all random

walks that visitv). Each nodev then estimates its PageRank by computing
ϵψv

cn logn . It can be shown

that this estimate gives a δ -approximation, for any constant δ > 0, to the PageRank value of each
node v with high probability, and that this algorithm terminates in O (logn/ϵ ) rounds with high
probability [19]. The key idea to obtain such a fast runtime is to send only the counts of the ran-
dom walks, instead of keeping track of the random walks from different sources. Clearly, only the
number (i.e., count) of the random walks visiting a node at any step is required to estimate the
PageRank.
Note that a straightforward implementation of the above random walk-based algorithm might

yield a suboptimal running time in the k-machine model. (In fact, applying the Conversion Theo-

rem of Reference [34] to implement the above algorithm gives only Õ (n/k ) time.) The main issue
is that some machine might receive too many random walks destined for the nodes in that ma-
chine. For example, during some step of the random walk it might happen that n different walks
are destined to different nodes in the same machine, causing Ω(n) congestion at some machine
leading to a Ω(n/k ) bound. For example, in a star-like topology, the center vertex c that resides
at some machine M1 might need to receive n random walks from its neighbors, hence causing a

round complexity of Ω̃(n/k ). In the above example, since there is only one high-degree vertex, we
can get around this problem by sending only the counts. However, the situation is less clear if Ω(n)
tokens are destined for different nodes in the same machine.
To avoid the above pitfalls, we describe an approach tailored to the k-machine model. On the

one hand, our goal is to reduce the total amount of communication while, on the other hand, we
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need to ensure that the incurred message complexity is balanced for the available machines. This
motivates us to treat vertices differently, depending on how many tokens they hold. We say that a
vertexu is light in iteration r if, conceptually, the machine that hostsu considers less than k tokens
to be held at u. Otherwise, we say that u is heavy in iteration r .

In our algorithm (Algorithm 1), each machineM stores an array tokens[u], which has an entry
for each vertex u hosted atM . Initially, we generate Θ(logn) tokens for each vertex that we use as
the initialization value of tokens. Then, we mimic the (parallel) random walk steps of Reference
[19] by performingΘ(log(n)/ϵ ) iterations where, in each iteration, each machineM first considers
the tokens stored for its light vertices. For each such token held at one of its verticesu,M uniformly
at random selects a neighboring vertex v and keeps track of how many tokens have chosen v
in a separate array α[v]. In particular, M also increments the same entry α[v] if v is chosen as
the destination for some token of a distinct light vertex w � u at M . Then, M sends a message
〈α[v], dest:v〉 for eachv where α[v] is nonzero, which is subsequently delivered to the destination
machine using random routing (cf. Lemma 3.3). This ensures that all the messages are delivered in

Õ (n/k2) rounds.
We now describe how high-load vertices are processed, each of which can hold up toO (n logn)

tokens. To avoid potentially sending a large number of messages for a single high-load vertex
u, machine M considers the index set I of machines that host at least one neighbor of u. Then,
for each token of u, machine M samples an index from I according to the degree distribution
of u (see Line 23 in Algorithm 1) and keeps track of these counts in an array β , which has an
entry for each machine in I . Finally, M generates one message of type 〈β[j], src:u〉, for each en-
try j where β[j] > 0 and sends this count message directly to the respective destination ma-

chine. We show that these messages can be delivered in Õ (n/k2) rounds by proving that, with

high probability, each machine holds Õ (n/k2) high-load vertices in any given iteration of the
algorithm.

Proposition 3.1. Algorithm 1 correctly computes the PageRank with high probability.

Proof. In Reference [19] it is shown that the random walk process, where each token is either
terminated with probability ϵ or forwarded with probability 1− ϵ to a neighbor chosen uniformly
at random, approximates the PageRank of the graph. Thus, it is sufficient to show that Algorithm 1
adheres to this random walk process.
Consider a node u and suppose that u holds � tokens. If � < k , then according to Lines 8–16, we

increment the corresponding entry of array α[v] for some uniformly at random chosen neighbor
v of u and send a message 〈cv ,dest : v〉 to the machineM ′ hosting v . Upon receiving the message,
M ′ increases its token count of v , as required.

Now, suppose that � ≥ k and consider an arbitrary neighbor v of u, hosted on machine M ′ and
assume that M ′ hosts nu ≥ 1 neighbors of u in total. For any token of u, it follows from Line 23
that we choose machineM ′ with probability nu/du , where du is the degree of u in the graph.

The algorithm then sends a message of type 〈cu , src : u〉 to machineM ′, where cu is the number
of tokens ofu for whichM ′was sampled as the destinationmachine. Upon processing this message
in Lines 31–36, M ′ delivers each token to its locally hosted neighbors of u uniformly at random,
and hence a specific neighbor v receives a token with probability 1/nu .

Combining these observations, we conclude that v receives a token with probability nu/du ·
1/nu = 1/du , conditioned on the token not having been terminated in Line 6 with probability ϵ ,
which corresponds to the random walk process of Reference [19]. �

Lemma 3.2. Every machineMi sends at mostO (n log(n)/k ) messages in any iteration r with high

probability.
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ALGORITHM 1: Approximating the PageRank with reset probability ϵ > 0. Code for machine
Mi .

1: Let Vi denote the vertices hosted by machineMi

2: Initialize array tokens[u]← �c logn�, for u ∈ Vi , where c > 0 is a suitable constant �
tokens[u] represents the current number of tokens at vertex u

3: for Θ(log(n)/ϵ ) iterations do
4: for u ∈ Vi do
5: sample t from distribution Binomial (tokens[u], ϵ )
6: tokens[u]← tokens[u] − t � Terminate each token with probability ϵ

7:

8: Initialize array α[v]← 0, for each v ∈ V � Process the light vertices
9: for each vertex u ∈ Vi where tokens[u] < k do

10: let Nu ⊆ V be the set of neighbors of vertex u
11: while tokens[u] > 0 do
12: sample v uniformly at random from Nu

13: α[v]← α[v] + 1
14: tokens[u]← tokens[u] − 1
15: for each v ∈ Vi where α[v] > 0 do
16: send message 〈α[v], dest: v〉 to the machine hosting vertex v using random routing

17:

18: for each vertex u ∈ Vi where tokens[u] ≥ k do � Process the heavy vertices
19: let I ⊆ [k] be the index set of the machines that host a neighbor of u
20: initialize array β[j]← 0, for each j ∈ I
21: while tokens[u] > 0 do
22: let nj,u be number of neighbors of u hosted at machineMj and let du be u’s degree

23: sample index j from distribution
(
n1,u

du
, . . . ,

nk,u
du

)
24: β[j]← β[j] + 1
25: tokens[u]← tokens[u] − 1
26: for each j ∈ I where β[j] > 0 do
27: send message 〈β[j], src: u〉 to machineMj

28:

29: for each received message of type 〈cw , dest:w〉 do
30: tokens[w]← tokens[w] + cw
31: for each received message of type 〈cv , src: v〉 do
32: while cv > 0 do
33: let Nv ⊆ V be the set of neighbors of v hosted atMi

34: samplew uniformly at random from Nv

35: tokens[w]← tokens[w] + 1
36: cv ← cv − 1

Proof. First, we consider messages that Mi needs to send on behalf of its hosted light vertices.
We classify the light vertices into send bins S0, S1, . . . , S �logk �−1, according to the number of distinct
messages that they require to be sent and, for each j, 0 ≤ j ≤ �log2 k� − 1, we define the bin

S j =

{
v ∈ V (G )

����� k

2j+1
≤ tokens[v] <

k

2j

}
. (18)
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By definition, the total number of messages generated for any light vertex in iteration r is at most
k − 1, and hence every light v is in some bin S j .

Since Θ(logn) tokens are generated initially for each vertex, we have Θ(n logn) tokens in total,

which implies that |Sj | ≤ 2j+1n logn
k

, for all j. By the random vertex partitioning, we know that

a machine Mi receives at most O ( |S j | log(n)/k ) vertices from S j with probability ≥ 1 − n−4; we
denote this vertex set by Si, j . Taking a union bound over the iterations of the algorithms (assuming
a constant reset probability ϵ), theO (log2 k ) distinct bins, and over the k machines, it follows that

∀Mi ∀j ∈ {0, . . . , �log2 k� − 1} : |Si, j | = O
(
2j+1n logn

k2

)
, (19)

with probability ≥ 1 − n−2. According to Equation (18), each vertex in bin S j holds less than k/2j

tokens, and thus by Equation (19) the total number of messages produced by vertices in S j that are
located on machineMi is

O

(
|Si, j | ·

k

2j

)
= O

(
2j+1n logn

k2
k

2j

)
= O

(
n logn

k

)
.

Since we have Θ(logk ) bins, the total number of messages generated by machine Mi for its light

vertices is O (n log(n)/k ) · Θ(logk ) = Õ (n/k ) with high probability.
Now, consider the heavy vertices at Mi . By definition, each heavy vertex has at least k tokens,

and hence there are at mostO (n log(n)/k ) heavy vertices at any point of the algorithm. Therefore,
the random vertex partitioning implies that each machine will hold most O (n log(n)/k2) many
heavy vertices w.h.p. For processing the tokens of a heavy vertex u, we recall from Algorithm 1
that we need to send at most one message to each machine that holds a neighbor of u. This means
that all messages generated for u can be sent and delivered in one round, and hence by taking a
union bound over all the machines, it follows that each machine can send all tokens for its heavy
vertices in O (n log(n)/k2) rounds.

Finally, the lemma follows by taking a union bound over the O (log(n)/ϵ ) iterations of the algo-
rithm. �

Akey ingredient in the analysis of the algorithm is the following simple lemma, which quantifies
how fast some specific routing can be done in the k-machine model:

Lemma 3.3. Consider a complete network of k machines, where each link can carry one message of

O (polylogn) bits at each round. If each machine is source of O (x ) messages whose destinations are

distributed independently and uniformly at random, or each machine is destination ofO (x ) messages

whose sources are distributed independently and uniformly at random, then all the messages can be

routed in O ((x logx )/k ) rounds w.h.p.

Proof. We shall prove the statement for the case in which each machine is the source of O (x )
messages. The other case and its analysis are symmetric.
Since destinations of messages are chosen randomly, we choose to route each message to its

(random) destination machine through the link that directly connects the source to the destination
machine (which always exists because the network is complete). By a classic balls-into-bins result,
each of the k − 1 links of each machine is responsible for carryingO ((x logx )/k ) messages w.h.p.,
and the result follows. �

Lemma 3.4. Consider any iteration r of Algorithm 1. Then, with high probability, all messages

generated at iteration r can be delivered in Õ (n/k2) rounds.
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Proof. We first consider the messages generated due to a heavy vertex u. Recall from Algo-
rithm 1 that each machine directly sends the messages that it generated for u to the destination
machines, which requires just one round. As we have argued in Lemma 3.2, there are at most
O (n log(n)/k2) many heavy vertices per machine w.h.p., and hence all of their messages can be
delivered within O (n log(n)/k2) rounds.

In the remainder of the proof, we focus on messages generated while processing light vertices.

To this end, we argue that each machine needs to receive at most Õ (n/k ) messages that were
generated due to light vertices in Line 16, which according to the random routing result, can be

delivered in Õ (n/k2) rounds. We proceed similarly to the analysis in Lemma 3.2. That is, we define
receive bins R0,R1, . . . ,R �logk �−1, where

R j =

{
v ∈ V (G ) | k

2j+1
≤ λv ≤

k

2j

}

and λv is the random variable that counts the number of tokens generated for light vertices that are
received by v in iteration r . Consider any v ∈ V (G ) located at some machineM . The crucial point
is that each v must be in exactly one of these bins, since Line 16 ensures that machineM receives
at most one message of type 〈α[v], dest:v〉 that is addressed to v from each distinct machineM ′.
Similarly as in Lemma 3.2, it follows by the properties of the random vertex partitioning that

eachmachine holds Õ ( |R j |/k ) vertices fromR j with high probability, and hence the total number of

messages that each machine needs to receive (over all receive bins) is Õ (n/k ). Thus, by Lemma 3.3,

all of these messages can be delivered in Õ (n/k2) rounds. Finally, it is shown in Reference [19] that
all tokens are terminated in O (log(n)/ϵ ) steps and thus, assuming that ϵ > 0 is a small constant,
the claim follows by a union bound over the iterations of the algorithm. �

From Lemma 3.4, we conclude that all messages generated in a single iteration of Algorithm 1

can be delivered in Õ (n/k2) rounds with high probability. A union bound implies the following
result:

Theorem 3.5. Algorithm 1 computes a δ -approximation of the PageRank vector of ann-node graph
in the k-machine model with high probability in Õ (n/k2) rounds, for any constant δ > 0.

3.2 An Almost Optimal Algorithm for Triangle Enumeration

In this section, we present a randomized algorithm that enumerates all the triangles of an input

graph G = (V ,E) and that terminates in Õ (m/k5/3 + n/k4/3) rounds w.h.p. This bound does not

match the (existential) Ω̃(m/k5/3) lower bound provided in Section 2.4 only for very sparse graphs.
Our algorithm is a generalization of the algorithm TriPartition of Dolev et al. for the congested

clique model [20], with some crucial differences explained next. The key idea, which in its gen-
erality can be traced back to Reference [2], is to partition the set V of nodes of G in k1/3 subsets
of n/k1/3 nodes each, and to have each of the k machines to examine the edges between pairs of
subsets in one of the (k1/3)3 = k possible triplets of subsets (repetitions are allowed).

The algorithm is as follows: Each node picks independently and uniformly at random one color
from a set C of k1/3 distinct colors through a hash function h : V → C initially known by all
the machines. This gives rise to a color-based partition of the vertex set V into k1/3 subsets of

Õ (n/k1/3) nodes each, w.h.p. A deterministic assignment of triplets of colors, hard-coded into the
algorithm, logically assigns each of the k possible triplets of such subsets to one distinct machine.
Eachmachine then collects all the edges between pairs of subsets in its triplet. This is accomplished
in two steps: (1) For each of the edges it holds, each machine designates one random machine
(among the k machines) as the edge proxy for that edge and sends all its edges to the respective
edge proxies. The designation of an edge itself is done by the following proxy assignment rule (this
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is necessary to avoid congestion at any one machine): A machine that has a node v whose degree
is at least 2k logn requests all other machines to designate the respective edge proxies for each
of the incident edges of node v . If two machines request each other to designate the same edge
(since their endpoints are hosted by the respective machines), then such a tie is broken randomly.
(2) In the second step, all the machines collect their required edges from the respective proxies:
Since each edge proxy machine knows the hash function h as well as the deterministic assignment
of triplets, it can send each edge to the machines where it is needed. Then, each machine simply
enumerates all the triangles in its local subgraph.
Our algorithm differs from the one in Reference [20] in the way the k1/3 subsets of vertices

are constructed, in the use of proxy computation and in the routing of messages, which in our
algorithm is randomized and hence requires a more involved analysis, allowing for a better time
complexity for graphs where the number of edgesm is o(n2).
We now argue that the above algorithm correctly enumerates all the triangles of a graphG and

analyze its round complexity. A key step in the analysis of the complexity is to bound from above
the number of edges assigned to each machine. Observe that the number of edges between pairs
of subsets of one triplet is no larger than the number of edges in the subgraph of G induced by
the nodes of one triplet; in turn, because of the random color-based partition of the vertices made
by the algorithm, the latter quantity is asymptotically equivalent to the number of edges in the

subgraph ofG induced by a set of (in this case, Õ (n/k1/3)) randomly chosen nodes of a graph. Thus,
we shall concentrate on the latter quantity (which is of interest in its own right). To this end, we
will use the following concentration result due to Rödl and Ruciński [63].8

Proposition 3.6 ([63, Proposition 1]). Let, for a graph G = (V ,E), m < ηn2, and let R be a

random subset of V of size |R | = t such that t ≥ 1/3η. Let e (G[R]) denote the number of edges in the

subgraph induced by R. Then,

Pr
[
e (G[R]) > 3ηt2

]
< t · e−ct

for some c > 0.9

We are now ready to analyze the algorithm.

Theorem 3.7. There is a distributed algorithm for the k-machine model that enumerates all the

triangles of an n-node,m-edge graph in Õ (m/k5/3 + n/k4/3) rounds with high probability.

Proof. Since there are (k1/3)3 = k possible triplets of non-intersecting subsets of n/k1/3 nodes,
all possible triangles are examined by the algorithm, and this proves its correctness.

We now argue that the algorithm terminates in Õ (m/k5/3 +n/k4/3) rounds w.h.p. As part of the
argument used to prove Lemma 4.1 of Reference [34] it is shown that every machine initially stores

Õ (m/k + Δ) edges, where Δ is the maximum degree of the graph. If we apply Lemma 3.3 directly,

then the communication phase that assigns the edges to their random proxies takes Õ (m/k2+Δ/k )
rounds w.h.p.We now argue that the proxy assignment rule allows us to show an Õ (m/k5/3) bound
for this phase for every non-sparse graph.

Clearly, by the random proxy assignment, each machine receives only Õ (m/k ) messages. We

next argue that each machine is responsible for designating only Õ (m/k ) edges w.h.p. Then, by
Lemma 3.3, the time to send all the designation messages is Õ (m/k2) rounds.

8Observe that one cannot simply apply a Chernoff bound, since edges are not chosen independently; also, mimicking the

argument for the proof of Lemma 4.1 in Reference [34] would give a bound of the form Õ (m/k1/3), which is weaker, since

we would be overcounting edges (as we would be counting also those edges with just one endpoint in the given machine).
9A careful inspection of the argument used by Rödl and Ruciński to establish this result reveals that the additional condition

t ≥ 1/3η, missing from their statement, is necessary for the result to hold. In fact, as stated, their result is implicitly

assuming that both n and t grow to infinity [64].
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For the sake of the analysis, we partition the non-isolated nodes of the input graph into logn
sets, based on their degree: The ith set contains all the nodes whose degree is in [Δ/2i ,Δ/2i+1),
0 ≤ i ≤ logn−1.We now focus on the number of messages sent by somemachineM . By a standard

Chernoff bound, a node vi with degree di in the ith set has Õ (di/k ) neighbors in M w.h.p. If ni
is number of nodes in the ith set, then the total number of neighbors (and hence messages) that

M will send with respect to nodes in this set is Õ (nidi/k ) w.h.p. Summing over all the logn sets,

we have that the total number of messages sent by M is
∑logn−1

i=0 Õ (nidi/k ) = Õ (m/k ) w.h.p. (via
the union bound). Applying the union bound over all the machines, we have that the same bound
holds for every machine.
The above argument does not take into account the messages sent by a machine initially to

request the designation of an edge. A machine needs one round (to broadcast to all the other ma-
chines) to request such a designation. If some machine M sends f ≥ k polylogn requests, thenM
must have f nodes with degree at least 2k logn. By the RVP, this implies that with high probabil-
ity the total number of nodes with degree at least 2k logn is at least Ω( f k ). Hence, the number of

edges in the graph ism = Ω̃( f k2). Therefore, the number of rounds needed for broadcast, Õ ( f ), is
subsumed by Õ (m/k5/3).
Next, we analyze the re-routing of each edge e from its edge proxy to all the machines that are

assigned a copy of both of the endpoints of e . Observe that any two nodes, and therefore any edge,
can be held by at most k1/3 different machines: Consider an edge (a,b), and pick one machine
M that has to receive it, because, among its three subsets of nodes, one (call it A) contains a and
one (call it B) contains b. Edge (a,b) can be assigned only to those machines that contain both

subsets A and B, and there are only k1/3 − 1 such machines in addition to M . Hence, re-routing
the edges entailsmk1/3 messages to be traveling across the network.10 We first bound the number
of edges received by each machine. Fix one machine M . We shall apply Proposition 3.6 with
t = dn logn/k1/3 for some positive constant d . We have two cases. If m ≥ nk1/3/6d logn, then
m ≥ n2/6t , which in turn implies 2m/n2 ≥ 1/3t , and thus, we can apply Proposition 3.6 with
η = 2m/n2 obtaining, for machineM ,

Pr

⎡⎢⎢⎢⎢⎣e (G[R]) > 3
2m

n2

(
dn logn

k1/3

)2⎤⎥⎥⎥⎥⎦ < t · e−cdn logn/k1/3

,

that is, since k ≤ n,

Pr

[
e (G[R]) ≤ 6d2m log2 n

k2/3

]
> 1 − e−Ω(logn) .

Hence, we can apply Lemma 3.3 with x = Õ (m/k2/3), which yields a round complexity of

Õ (m/k5/3) w.h.p. Now observe that each proxy has to send Õ (m/k2/3) edges. We can apply

Lemma 3.3 with x = Õ (m/k2/3), which implies that the number of rounds needed for the proxies

to send their edges is Õ (m/k5/3) w.h.p., completing the analysis for the casem ≥ nk1/3/6d logn.
However, if m < nk1/3/6d logn, then we shall apply Proposition 3.6 with η = 1/3t =

k1/3/3dn logn, obtaining

Pr

⎡⎢⎢⎢⎢⎣e (G[R]) > 3
k1/3

3dn logn

(
dn logn

k1/3

)2⎤⎥⎥⎥⎥⎦ < t · e−cdn logn/k1/3

,

10Notice that each node is replicated k2/3 times in the system, and therefore each edge is replicated k4/3 times; however, we

only need to re-route copies of edges that are internal to the triplets, and therefore copies of edges that have one endpoint

in one triplet and the other endpoint in a different triplet need not be communicated. Hence, the total number of edges to

be communicated ismk1/3 and notmk2/3.
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that is, since k ≤ n,

Pr

[
e (G[R]) ≤ dn logn

k1/3

]
> 1 − e−Ω(logn) .

As in the previous case, we apply Lemma 3.3, now with x = Õ (n/k1/3). The theorem follows. �

4 CONCLUSIONS

We presented a general technique for proving lower bounds on the round complexity of distributed
computations in a general message-passing model for large-scale computation and showed its
application for two prominent graph problems, PageRank and triangle enumeration. We also
presented near-optimal algorithms for these problems, which can be efficiently implemented in
practice.
Our lower bound technique works by relating the size of the output to the number of commu-

nication rounds needed and could be useful in showing lower bounds for other problems where
the output size is large (significantly more than the number of machines), such as sorting, matrix
multiplication, shortest paths, matching, and clustering.
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