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Abstract: Accurate phenological information is essential for monitoring crop development,
predicting crop yield, and enhancing resilience to cope with climate change. This study employed
a curve-change-based dynamic threshold approach on NDVI (Normalized Differential Vegetation
Index) time series to detect the planting and harvesting dates for corn and soybean in Kentucky, a
typical climatic transition zone, from 2000 to 2018. We compared satellite-based estimates with
ground observationsand further performed trend analysis for crop phenological stages over the
study period to analyze their relationships with climate change and crop yields. Crop planting dates
were delayed for corn and soybean by 0.01 and 0.07 days/year, respectively. Corn harvesting dates
were also delayed at a rate of 0.67 days/year, while advanced soybean harvesting occurred at a rate
of 0.05 days/year. The growing season length has increased considerably at a rate of 0.66 days/year
for corn and was shortened by 0.12 day/year for soybean. Sensitivity analysis showed that planting
dates were more sensitive to the early-season temperature, while harvesting dates were significantly
correlated with temperature over the entire growing season. In terms of the changing climatic
factors, only the increased summer precipitation was statistically related to the delayed corn
harvesting dates in Kentucky. Further analysis showed that the increased corn yield was
significantly correlated with the delayed harvesting dates (1.37 Bu/acre per day) and extended
growing season length (1.67 Bu/acre per day). Our results suggested that crop phenological trends,
particularly corn harvesting, were mostly impacted by changes in seasonality (summer
precipitation) rather than long-term climate change in Kentucky over the study period. We also
highlighted the critical role of changing crop phenology in constraining crop production, which
should be given more emphasis on optimizing crop management practices.

Keywords: Crop phenology; MODIS NDVI; Climate change; Agricultural yield; Food security

1. Introduction

Vegetation phenology is defined as the development, differentiation, and initiation of plant
organs [1]. Accurate retrieval of crop phenology information is a prerequisite for evaluating crop
adaptation to climate change, modeling agricultural ecosystem carbon exchange, and predicting
future agricultural production [2-5]. The Intergovernmental Panel on Climate Change has reported a
change in global mean temperature of 1.5°C above pre-industrial levels, along with changes in
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precipitation and an increased frequency of extreme climate events (IPCC, 2018). This shift in climate
may bring varying degrees of impacts on agricultural ecosystems at different temporal and spatial
scales. Crop phenology is closely related to climate change and is a critical indicator of optimum yield
[6-7]. Therefore, it is essential to consider changes in crop phenology when assessing climate impacts
on agricultural productivity, carbon cycling, and land-atmosphere feedbacks [8-9].

Many studies have shown that the climate impacts on agricultural ecosystems are reflected in
variation in crop phenology, such as the advanced or delayed planting and harvesting dates [10-12].
For example, He et al. [13] reported that soybean planting dates were delayed by an average of 1.78
days/decade, and the growing season length was shortened by an average of 1.16 days/decade during
1981 - 2010 across the major soybean-producing areas in China. Climate warming is a primary factor
that drives phenological shifts [14], with temperature responses varying with crop types, locations,
and study periods [15-16]. A handful of studies have investigated the responses of crop phenology
to historical climate change at regional to global scales. For example, Estrella et al. [17] reported that
maize sowing dates in Germany advanced in response to March - May temperature increases at a
rate of 0.60 day/°C for maize and 4.15 day/°C for oats. Based on corn phenology observations collected
from agro-meteorological stations in China, Tao et al. [18] reported that the growing season
lengthened during 1981 - 2009 due to combined effects of warming temperature, changing field
practices, and shifting varieties. Model simulation results from Tubiello et al. [19] have shown that
predicted warmer temperatures accelerated plant phenology and further shortened the crop growing
period, which resulted in crop yield reduction and potential food insecurity. In addition, other
climatic factors such as precipitation could also determine the planting date more directly than the
temperature in some regions [20-21]; however, few studies have explored the crop phenological
changes and their relations with precipitation.

Remote sensing imagery can be considered an essential tool that complements field-based data
collection approaches [22]. Numerous studies have reported the use of satellite-based Normalized
Differential Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) for detecting crop
phenology [23-25]. Some studies have shown good performance in identifying phenological stages
of specific crop types using pre-defined VI thresholds [26]. For example, Sakamoto et al. [27] used a
two-step filtering approach to detect the phenological stages of corn and soybean and achieved high
accuracies at the site and region levels. Huang et al. [28] applied dynamic thresholds to VI time-series
to detect the start and end of the season of different crop types and obtained higher accuracies
compared to the results of commonly used 20% or 50% thresholds.

Kentucky is a traditional agricultural state, with corn and soybean being major crops. As a
typical climatic transition zone, agriculture in Kentucky faces mixed climates that blend northern and
southern weather patterns. A recent study showed that no significant seasonal changes in
temperature were found over the last 100 years, especially during the crop growing season in this
region [29]. Although crop phenological changes such as earlier planting dates have been widely
reported under a warming climate [17-18, 30], the associated spatial patterns are highly varied [31-
32]. Uncertainties remain about how crop phenology has changed over areas like Kentucky, where
temperature trends were generally flat over the past decades.

In this study, we adopted a curve-change-based dynamic threshold approach to detect the
planting and harvesting dates for corn and soybean using MODIS NDVI time series and ground
observations in Kentucky from 2000 to 2018. Based on the crop phonological estimations, we also
generated the temporal trends of crop phenology and quantified its responses to climatic factors (i.e.,
temperature and precipitation) and the correlations with crop yields. The objectives of the study are
1) to identify phenological dates of corn and soybean using MODIS NDVI time series in Kentucky
from 2000 to 2018; 2) to evaluate the estimated crop phenological stages using ground data at the
state and county levels; 3) to characterize the temporal trends of crop phenological stages for corn
and soybean in Kentucky during the study period; 4) to examine the correlations between crop
planting/harvesting dates and temperature/precipitation variations; 5) to analyze the effects of crop
phenological change on crop yields.

2. Materials and Methodology
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2.1. Study Area

In this study, we focused on the Commonwealth of Kentucky (36° 30' N to 39° 9' N and 81° 58'
W to 89° 34' W) (Figure 1). In general, Kentucky has a humid subtropical climate that is characterized
by hot summers and cold to mild winters, with an oceanic climate found in the highlands of the
southeast. The mean annual temperatures in Kentucky range from 11.67°C in the northeast to 15°C
in the southwest. The annual precipitation is 1143 mm. The northern region receives 965.2 mm of
precipitation annually, less than that in the south (1270 mm). Crops in Kentucky are predominantly
corn and soybean, which account for more than 90% of total cropland in the state.
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Figure 1. Maps of the study area (Kentucky, overview, and CDL (Cropland Data Layer is derived
from USDA NASS)).

2.2. Datasets

2.2.1. Ground Data

We acquired crop planting and harvesting dates of corn and soybean in Kentucky at both the
state and county levels. Crop reports released by USDA National Agricultural Statistics Service
(NASS) provided the state-level progress of crop phenology information of Kentucky from 2004 to
2018 (https://www.nass.usda.gov/Publications/National Crop Progress). The dates of 80% progress
of planting and harvesting stages of corn and soybean were extracted from the crop progress and
condition crop  reports Web  Plot  Digitizer
(https://automeris.io/WebPlotDigitizer). We also obtained 5-year averaged crop planting and
harvesting dates from the same data source. The state-level crop yields were from the USDA survey
data (https://quickstats.nass.usda.gov/). The county-level crop phenology datasets were from the
Kentucky Hybrid Corn Performance Tests (http://cvt.ca.uky.edu/) and Kentucky Soybean Variety
Performance Tests (https://pss.ca.uky.edu/extension/soybean-variety-trials). These tests offered
annual planting and harvesting dates of corn and soybean from 2000 to 2018.

graphs in  the using  the

Table 1. Description of datasets used in this study.

Heading dates Planting dates Harvesting dates
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Phenology The peak (DOY) of The peak (DOY) of The peak (DOY) of

descriptions NDVI time series the 2nd derivative the 2nd derivative
Corn: 2000-2004 [143, 254] [106, 143] [254, 320]
Corn: 2005-2009 [152, 249] [101, 152] [249,314]
Corn: 2010-2014 [161, 251] [100, 161] [251, 319]
Corn: 2015-2019 [151, 248] [98, 151] [248, 301]
Time ranges [143, 254] [98, 161] [248, 320]
Soybean: 2000-2004 [172, 262] [113,172] [262, 313]
Soybean: 2005-2009 [179, 261] [121,179] [261, 305]
Soybean: 2010-2014 [183, 265] [112,183] [265, 332]
Soybean: 2015-2019 [179, 261] [125,179] [261, 302]
Time ranges [172, 265] [112,183] [261, 332]

2.2.2. MODIS Data

In this study, the MODIS NDVI time-series calculated from the MCD43A4 product (version 6,
ftp://ltdr.nascom.nasa.gov/allData) was used to detect the planting and harvesting dates of corn and
soybean in Kentucky from 2000 to 2018 [33]. MCD43A4 provides 500-m and daily surface reflectance
of seven bands in a Sinusoidal projection system, available from February 2000 to the present.

The crop classification maps from NASS Cropland Data Layers (NASS-CDL)
(https://nassgeodata.gmu.edu/CropScape/) were used to identify specific locations of corn and
soybean fields. The NASS-CDL classifies specific crop types and provides multi-year crop
classification maps at 30 m resolution for the conterminous United States. This classification map is
available from 2008 to 2018 for Kentucky.

We used gridded monthly air temperature and precipitation from Daymet to examine the

relationships between climate change and crop phenological development [34], which include
minimum/maximum  temperature and precipitation at a 1lkm spatial resolution
(https://daymet.ornl.gov/). We calculated the monthly average air temperature based on the
maximum and minimum temperatures.

2.3. Methodology

2.3.1. Time Series Data Processing

Google Earth Engine (GEE) was used to process MODIS daily reflectance data. The NDVI was
calculated from the reflectances of the RED and NIR bands as follows [35]:
NDV] = PNIR” PRED (1)

PNIRTPRED

where ppgp and pyp are band 1 (0.620-0.670 um) and band 2 (0.841 — 0.876 pum) reflectances from
the MODIS product, respectively.

It was necessary to smooth the time-series data using smoothing functions before extracting
phenological dates. The smoothing methods should take the noise bias caused by snow or clouds into
account and be able to handle missing data. Here, the NDVI time series were smoothed by the
Harmonic analysis method. The algorithm can smooth and reconstruct remotely sensed VI time-
series while reducing the influence of clouds at the pixel level [36].

2.3.2. Detection of Crop Planting Dates, Harvesting Dates, and Crop Growth Period

In this study, the definitions of crop phenological stages were from USDA NASS
(https://www.nass.usda.gov/Publications/National Crop Progress/terms definitions). We

considered the silking stage of corn and the blooming stage of soybean as heading dates, respectively.
We used a curve-change-based dynamic threshold approach on NDVI time-series to identify crop
planting and harvesting dates for corn and soybean in Kentucky from 2000 to 2018.
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The corn and soybean areas were extracted using the NASS-CDL maps from 2008 to 2018. The
original 30-m CDL maps were aggregated into 500-m maps with the percentages of corn or soybean
areas being calculated in each 500 m pixel, respectively, to match the size of the MODIS pixel. Pixels
with individual crop (corn or soybean) percentage larger than 50% were retained for crop phenology
detection. Previous studies have shown that the NDVI increases with leaf green-up during the spring
season and decreases with leaf senescence in the fall [37-38]. As VI values in croplands generally
exceed 0.4 at peak growth [39], spurious peaks were discarded if the corresponding NDVI values
were less than 0.35. We then set a threshold of 0.35 to limit the cropland, i.e., the pixels with the
maximum NDVI values less than 0.35 were excluded as non-cropland cover types [40].

For each crop pixel at a given year, the first and the second derivatives of the NDVI curve were
defined by the following equations:

f(x) = f(xi)—f(xi—l) @)

" foe)—f (xi-1)'
R 3)

where f' and {" are the first- and second-order derivatives of the smoothed NDVI time-series (f), i is
the time sequence number of values in the smoothed NDVI time-series (2, 3 ...365), 1 is the time step
of NDVI time series, and f is the smoothed NDVI time series.

We then identified crop phenological dates based on the characteristics of the derivatives:
Heading dates:

Previous studies have shown that the maximum NDVI was found to occur around the heading
dates [41]. We used the point at the NDVI peak to capture crop heading dates and constrained the
valid range according to the five-year averaged planting dates from the crop reports dataset (Table
1).

fx)" > 0
fGia) < 0
flxnn) > 035 @

a < Peak(heading dates) < b

where f' is the first-order derivative of the NDVI curve; f is smoothed NDVI curve; i means the ith of
NDVI/NDVI values in the time-series (1, 2, 3...365), a and b are the upper and lower boundaries of
the valid time range for NDVI peak, respectively.

Table 1. Parameters thresholds derived from the crop reports dataset used for crop phenology detection.

Phenology Heading dates Planting dates Harvesting dates

descriptions The peak (DOY) of The peak (DQOY) of The peak (DQOY) of

NDVI time series the 2nd derivative the 2nd derivative
Corn: 2000-2004 [143, 254] [106, 143] [254, 320]
Corn: 2005-2009 [152, 249] [101, 152] [249,314]
Corn: 2010-2014 [161, 251] [100, 161] [251, 319]
Corn: 2015-2019 [151, 248] [98, 151] [248, 301]
Time ranges [143, 254] [98, 161] [248, 320]
Soybean: 2000-2004 [172, 262] [113,172] [262, 313]
Soybean: 2005-2009 [179, 261] [121,179] [261, 305]
Soybean: 2010-2014 [183, 265] [112, 183] [265, 332]
Soybean: 2015-2019 [179, 261] [125, 179] [261, 302]
Time ranges [172, 265] [112,183] [261, 332]

Planting dates:

The NDVI curve shows lower values before crop planting when agricultural lands are plowed
or cultivated (Figure. 2). After the crop planting, photosynthetic activity starts with plant expanded
leaves, and thereby, the NDVI curve begins to increase. It is reasonable to expect the NDVI value of
the planting date is located at the low point at the early stage of the NDVI curve. We, therefore,
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applied the peak of the second-order derivative of the NDVI curve (before the heading date) to detect
the crop planting date. Then the crop planting time was defined at the date when the second
derivative of the NDVI curve reaches the first peak before the heading dates. The crop planting dates
were constrained within the time range of 40 - 120 days before the heading dates based on the Corn
and Soybean Kentucky
(https://simpson.ca.uky.edu/files/corn _and sovbean production calendar.pdf). Besides, we also
used more accurate ranges to filter out all possible outlier estimates according to the 5-year averaged
phenology derived from the crop reports dataset (Table 1).

Production Calendar in

Harvesting dates:

Plant leaves continue to wither and die during the harvesting season. Crop canopy can be
harvested in this stage. Correspondingly, the NDVI value decreases to the lowest point when the
crop is harvested from fields. The peak (after the heading date) of the second-order derivative of the
NDVI curve can catch the lowest value of NDVI at the last period of the NDVI curve (Figure 2). Here
we used this transition point to detect the crop harvesting date. Similarly, the harvesting dates were
constrained to occur within the time range of 30 - 110 days after the heading date according to the
crop calendar in Kentucky. Similarly, we retained estimates that fall into the valid time range as
determined by the 5-year averaged harvesting dates (Table 1).

Subsequently, crop growing season length was calculated for each pixel using the time
difference between planting and harvesting dates.
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Figure 2. NDVI curves and second derivative of smoothed NDVI for (a) corn and (b) soybean with
key points for planting and harvesting dates (e Planting date, Second derivative peak; A Harvesting
date, Second derivative peak. Pure pixels were selected in study area based on CDL map).

2.3. Evaluation and Trend Analysis

At the state level, we calculated the dates when the areas of estimated phenological dates
occupied 80% of the total planting areas across the whole state for corn and soybean. For county-level
evaluation, the mean values of the estimations were calculated for corn (68 counties) and soybean (74
counties) in top producer counties. The coefficient of determination (R?) and root mean square error
(RMSE) were used to evaluate the accuracy of the estimated crop phenology compared with the
ground data at both the state and county levels.

T (=2 (ri—)?
RZ — =1\ i 5
Y (=02 B (vi=3)? )

RMSE = |~ X, (1 — x;)? (6)

where n represents the number of samples. y_i and x_i are the ground data and remote sensing
estimates, respectively.

Linear regression analysis was applied for generating the changing trends of the phenological
estimations at the state level over the study period. We also used the Mann-Kendall test [42-43] and
the Sen’s slope estimator [44] to analyze the temporal trends of phenological stages at the pixel scale.
During the process, pixels with more than 12 years being identified as an individual crop (corn or
soybean) were included in the Mann-Kendall test. The analytical method was implemented using the
R computing environment [45].

The temporal patterns of climatic factors and crop yields were investigated using linear
regression analysis, as well as their relationships with the crop phenology. The Pearson correlation
coefficient was adopted to describe the sensitivity of crop phenology to climate change. A paired t-
test was used to determine statistical significance. Climatic factors include minimum, maximum,
average temperatures, and accumulated precipitation during three seasons (spring: March-May,
summer: June-August, fall: September-November) and the whole crop growing period.

3. Results

3.1. Evaluation of Simulated Crop Phenology
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3.1.1. State-level Evaluation

The state-level evaluation results showed that crop phenology estimated by remote sensing was
at a high level of agreement with the crop reports from the survey data (Figure 3). The estimated
harvesting dates closely matched those from the crop reports, with R? of 0.92 and 0.90 for corn and
soybean, respectively (Figure 3b). The R? of the estimated planting dates of corn and soybean against
survey data was 0.87 and 0.79, respectively. Notably, the accuracy of the estimated harvesting dates
of soybean was the highest, with an RMSE of 3.34 days. The RMSE value of corn harvesting dates
was 3.82 days. The accuracies of the estimated planting and harvesting dates of corn were 3.70 and
6.05 days, respectively (Figure 3a).
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Figure 3. Evaluation of estimated crop phenology at the state level (N is 15 years, blue for corn and
red for soybean; a. planting dates; b. harvesting dates).

3.1.2. County-level Evaluation

The county-level assessment appeared to show lower accuracies compared to the state-level
assessment (Figure 4). The evaluation results showed that the estimated crop phenological dates
were, in general, later than those observed from field tests. Overestimations were larger in estimated
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planting dates than harvesting dates for both corn and soybean. The RMSE values of corn planting
and harvesting dates were 10.84 and 10.93 days, respectively. For soybean, the RMSE of harvesting
dates was 9.17 days, and the RMSE value of planting dates was 12.26 days.

el Harvesting dates:

320 r Corn_RMSE = 10.93 days .
300 b Soy_RMSE = 9.17 days . é
¢ * +
280 | %
260 0
240

220
180

160 |- % %

Day of Year (DOY)
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Soy RMSE = 12.26 days
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Observations vs. RS Estimations

Figure 4. Comparison between the estimated and observed crop phenology at the county level (Red
line represents the mean values of each group; Black points represent the values of 5th and 95th of
each group; Corn_Ob and Soy_ob represent phenological observations from field tests; Corn_RS and
Soy_RS represent phenological estimations from remote sensing).

3.2. Changing Trends of Crop Phenology

Significant phenological trends were found for corn and soybean at the state level in Kentucky
over the study period (Figure 5). The crop planting dates were slightly delayed by 0.01 days/year for
corn and 0.07 days/year for soybean. Corn harvesting dates were delayed by an average rate of 0.67
days/year, while a slightly advanced pattern (0.05 days/year) in the soybean harvesting dates was
detected. The inter-annual variation in the crop growing season length was related to the changing
planting and harvesting dates. For soybean, a slightly shortening trend was found at a rate of 0.12
days/year, i.e., 2.28 days over the entire study period. However, the corn growing season experienced
an increasing tendency by an average rate of 0.66 days/year, i.e., 12.54 days over the study period.
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Figure 5. Linear regression analysis for trends of phenological stages in Kentucky, 2000-2018 ((a) corn,
(b) soybean).

In addition, widespread negative tendencies were detected for the phenological estimations of
corn and soybean from pixel to pixel in Kentucky from 2000 to 2018 (Figures 6 and 7). For corn, the
p-values in Figures 6 (b, d, and f) showed that more than one-fifth of corn production areas
experienced significant phenological changes. All significant pixels were scattered across the corn
production areas. From the statistics (histograms in Figures 6a, c, and e), pixels with unchanged
slopes (slope = 0) accounted for the largest proportion (77.10%) of all significant pixels (red color).
Figure 6a indicated the corn planting dates had evident negative trends over the study area (18.43%
of the significant pixels). However, for corn harvesting dates, comparable proportions of significant
trends were displayed with negative (8.28%) and positive slope values (6.05%). In Figure 6e, the
growing season length was shortened at most corn production areas (18.43%).

Larger proportions of significant trends were found in soybean planting and harvesting dates
compared with those of corn (Figures 7b and d). A quarter of pixels with statistically significant
trends (P < 0.05) were observed in soybean growing season length. Similarly, pixels with significant
unchanged trends (slope = 0) made up to 50% of total significant values (red color) in soybean
planting dates, harvesting dates, and growing season length (histograms in Figures 7a, ¢, and e). An
advanced pattern was detected in soybean harvesting dates with a high proportion of negative values
(33.79%) (Figure 7c). However, pixels with extended growing season length accounted for 14.18% of
the areas with significant trends.

Harvesting dates(DOY)
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Figure 7. Slope and P values of planting dates ((a), (b)), harvesting dates ((c), (d)), and growing season
length ((e), (f)) of soybean in Kentucky, 2000 — 2018 (Slope: change rate of crop phenological dates; P
values: the confidence of trend analysis; pixels with less than 12 years being identified as soybean,
which were not included in the Mann-Kendall statistical test).

3.3. Trends of Climatic Factors and Its Correlation with Crop Phenology

Maximum temperatures decreased in three seasons and ranged from -0.001 to -0.01 °C/year in
Kentucky from 2000 to 2018 (Table 2). Warming trends in minimum and average temperatures were
observed, ranging from 0.03 to 0.05 °C/year and from 0.01 to 0.03 °C/year, respectively. Specifically,
the minimum temperature during the growing season showed a significant increasing trend with a
rate of 0.05 °C/year. Accumulated precipitation increased overtime in all seasons in Kentucky.

Notably, significant increasing precipitation in summer occurred at a rate of 5.40 mm/year. Historical
climate records showed that summers from 2014 to 2018 are among the ten wettest summers over the
last 30 years in Kentucky (http://kyclimate.org/climtrends.html). Thus, over the years tested, the

summer climate trended wetter in Kentucky.

Table 2. Trends of seasonal climatic factors in Kentucky, 2000 - 2018.
Tmax Tmin Tavg Prec
Seasons Trends Trends Trends Trends
(°Clyear) (°Clyear) (°Clyear) (mm/year)

Spring -0.01 -0.05 0.03 0.16 0.01 0.05 3.58 0.21
Summer -0.001 -0.003 0.04 0.28 0.02 0.13 5.40* 041
Fall -0.01 -0.03 0.04 0.22 0.02 0.09 0.64 0.04
Apr-Oct 0.01 0.08 0.05** 0.54 0.03 0.31 8.41 0.32

Note: Trends are significant with *P < 0.10, **P < 0.05. Tmax, Tmin, Tavg, and Prec represent the maximum
temperature, minimum temperature, average temperature, and precipitation, respectively.
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The crop planting/harvesting dates were negatively correlated to three temperature variables
and positive to the precipitation for both crops (Tables 3 and 4). Crop planting dates showed
significant correlations with the accumulated precipitation in spring. Compared with soybean, corn
planting dates were more sensitive to spring temperature. For harvesting dates, higher correlation
coefficients with temperature and precipitation were observed for corn and soybean. Significant
relationships were found between harvesting and the accumulated precipitation in summer/April -
October for corn, and in fall/April - October for soybean, respectively. Corn growing season length
exhibited negative sensitivities to temperature variables. Apart from a negative correlation in spring,
positive relationships were detected between corn growing season length and the accumulated
precipitation. Soybean growing season length was negatively correlated with all climatic factors
expect with the accumulated precipitation in fall and April - October. Significant correlations between
growing season length and precipitation were mainly concentrated in summer/April - October for
corn and in summer/fall for soybean, respectively (Tables 3 and 4).



331 Table 3. Correlations between corn phenology and climatic variables in Kentucky, 2000 - 2018.

Planting dates Harvesting dates Growing season length
Climate variables in Climate variables in Climate variables in
o Response . Response o Response
individual seasons . (days/°C; individual seasons . (days/°C; individual seasons . (days/°C;
days/mm) days/mm) days/mm)
Tmax in Spring -0.56** -3.95 Tmax in Spring -0.53** -4.77 Tmax in Spring -0.11 -0.82
Tmin in Spring -0.33 -2.64 Tmin in Spring -0.27 -2.83 Tmin in Spring -0.02 -0.19
Tmean in Spring -0.48** -3.70 Tmean in Spring -0.43* -4.30 Tmean in Spring -0.07 -0.60
Prec in Spring 0.56** 0.05 Prec in Spring 0.20 0.02 Prec in Spring -0.28 -0.02
Tmax in Summer -0.72%** -7.20 Tmax in Summer -0.46** -3.86
Tmin in Summer -0.47%* -6.18 Tmin in Summer -0.38 -4.24
Tmean in Summer -0.67%** -8.26 Tmean in Summer -0.47%* -4.84
Prec in Summer 0.45% 0.06 Prec in Summer 0.33 0.04
Tmax in Fall -0.47** -3.73 Tmax in Fall -0.27 -1.81
Tmin in Fall -0.20 -2.05 Tmin in Fall -0.09 -0.77
Tmean in Fall -0.41* -4.32 Tmean in Fall -0.22 -1.98
Prec in Fall 0.10 0.01 Prec in Fall 0.07 0.01
Tmax in Apr-Oct -0.77%%* -9.94 Tmax in Apr-Oct -0.39% -4.30
Tmin in Apr-Oct -0.36 -6.84 Tmin in Apr-Oct -0.16 -2.47
Tmean in Apr-Oct -0.69%** -12.19 Tmean in Apr-Oct -0.34 -5.06
Prec in Apr-Oct 0.47** 0.03 Prec in Apr-Oct 0.17 0.01
332 Significant level: ***P <0.01; **P < 0.05; *P < 0.1. Tmin, Tmax, Tavg, and Prec denotes monthly values of maximum, minimum, average temperatures, and cumulative precipitation.
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333 Table 4. Correlations between soybean phenology and climatic variables in Kentucky, 2000 - 2018.

Planting dates Harvesting dates . . Growing season length
. . . . . . Climate variables
Climate variables in Response Climate variables in Response e .. Response
. ge s . ge s in individual
individual seasons r (days/°C; individual seasons r (days/°C; seasons r (days/°C;
days/mm) days/mm) days/mm)
Tmax in Spring -0.34 -1.71 Tmax in Spring -0.35 -2.84 Tmax in Spring -0.15 -1.13
Tmin in Spring -0.11 -0.64 Tmin in Spring -0.23 -2.10 Tmin in Spring -0.17 -1.46
Tmean in Spring -0.25 -1.37 Tmean in Spring -0.30 -2.76 Tmean in Spring -0.16 -1.39
Prec in Spring 0.49** 0.03 Prec in Spring 0.11 0.01 Prec in Spring -0.20 -0.02
Tmax in Summer -0.67%** -5.93 Tmax in Summer -0.35 -2.93
Tmin in Summer -0.48** -5.59 Tmin in Summer -0.37 -4.05
Tmean in Summer -0.64%** -7.03 Tmean in Summer -0.39* -4.04
Prec in Summer 0.24 0.03 Prec in Summer -0.03 -0.003
Tmax in Fall -0.65%** -4.65 Tmax in Fall -0.55** -3.68
Tmin in Fall -0.09 -0.82 Tmin in Fall -0.08 -0.73
Tmean in Fall -0.47%* -4.50 Tmean in Fall -0.41% -3.60
Prec in Fall 0.52** 0.05 Prec in Fall 0.54** 0.05
Tmax in Apr-Oct -0.69*** -8.00 Tmax in Apr-Oct -0.38 -4.09
Tmin in Apr-Oct -0.23 -3.92 Tmin in Apr-Oct -0.14 -2.24
Tmean in Apr-Oct -0.58*** -9.11 Tmean in Apr-Oct -0.32 -4.77
Prec in Apr-Oct 0.49** 0.03 Prec in Apr-Oct 0.21 0.01
334 Significant level: ***P < 0.01; **P < 0.05; *P < 0.1. Tmin, Tmax, Tavg, and Prec denotes monthly values of maximum, minimum, average temperatures, and cumulative precipitation.
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3.4. Trends of Crop Yield and Its Correlation with Crop Phenology

Crop yields showed significant increases in corn (2.19 Bu/acres per year, p < 0.05) and soybean
(0.75 Bu/acres per year, p < 0.05), respectively, in Kentucky over the study period. A more significant
increment was found in corn yield. However, we observed that corn yield consistently increased over
time except for the sharp decrease in 2012 (68 Bu/acre), dramatically lower than the average corn
yield (143 Bu/acre) of the study period. The reduced crop production was relevant to extreme
heatwaves and drought during the summer [46].

We further investigated the relationships between the crop phenological dates and crop yields
of corn and soybean using the linear regression analysis. Over the 2000 - 2018 period, a significant
positive correlation was found between corn growing season length and corn yield, suggesting that
a one-day extension of the growing period increased 1.67 Bu/acres (p < 0.01) in corn yield.
Furthermore, significant responses of harvesting dates to crop yields were detected for corn (trend =
1.37 Bu/acre per day, p < 0.01) and soybean (trend = 0.39 Bu/acre per day, p < 0.05), respectively.

4. Discussion

4.1. Comparisons of Remote Sensing-Based Crop Phenology with Other Studies

In this study, we detected the crop planting dates, harvesting dates, and growing season length
for corn and soybean using an NDVI curve-change-based dynamic threshold approach. The accuracy
of crop phenological estimation was comparable with the results in previous studies. For example,
using a remote sensing approach, Sakamoto et al. [27] reported the RMSEs of estimated phenological
dates ranged from 0.7 to 8.6 days for corn and 1.9 to 14.5 days for soybean. In our study, RMSEs of
estimated crop phenological dates were between 3.34 and 6.05 days at the state level and between
9.17 and 12.26 days at the county level. The county-level evaluation showed lower accuracies
compared with those of the state-level, which might be related to the evaluation data being from site-
level field observations. However, the good performance at the state-level illustrates the potential of
the NDVI curve-change-based dynamic threshold approach using MODIS 500-m data to provide a
relatively accurate estimate of phenology for corn and soybean.

4.2. Spatial-Temporal Trends of Crop Phenology

We analyzed the state-level linear trends of three estimated crop phenological variables and built
their spatial-temporal patterns by the Mann-Kendall test. Many studies have reported that earlier
crop planting and extended growing seasons occurred during the past several decades, but the
changing trends vary depending on the study period [47-48]. Menzel et al. [49] showed that
phenological trends were weaker for the most recent 30-year period (1989 - 2018) compared to the
1976 - 2005 period for both agricultural and wild plants. Kucharik [30] found that the planting date
in approximately 75% planted areas of the 12 Corn Belt states was advanced by 0.37 days/year from
1979 to 2005. Notably, Kentucky was among the states with significant changes and was observed
with advanced corn planting dates at a rate of 0.8 days/year [30]. Sacks and Kucharik [12] reported
that soybean planting dates advanced by 0.49 days/year averaged across the U.S. from 1981 to 2005.
However, our study showed a slight delay in crop planting for both corn (0.01 days/year) and
soybean (0.07 days/year) at the state level in Kentucky from 2000 to 2018. The changing patterns over
different study periods implied that the earlier trend of crop planting season slowed down during
the last two decades over the study area. In the U.S. Midwest, soybean is usually planted after
completing corn planting. Therefore, delayed corn planting dates might cause delayed soybean
planting as well [50]. Sacks and Kucharik [12] also showed that the growing season length of corn
and soybean was significantly extended by 0.67 and 0.30 day/year, respectively, in the U.S. during
1981 - 2005. Their findings of the prolonged corn growing season were similar to the results in our
study (0.66 days/year).

Meanwhile, we found that soybean experienced a shorter growing season (0.12 days/year) in
Kentucky during 2000 - 2018. According to Sacks and Kucharik [12], both corn (1 day/year) and
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soybean (0.83 days/year) experienced a trend of earlier harvesting in Kentucky over 1981 - 2015.
However, our study showed largely postponed harvesting for corn (0.67 days/year) and slightly
advanced harvesting for soybean (0.05 days/year) during 2000 - 2018. We also found that the longer
corn growing season length could significantly benefit corn yield. The shortened soybean growth
period may have undesired consequences for yield but will allow more intercropping or earlier
sowing of winter cereals [49]. The advanced harvesting dates and shortened growing season of
soybean were probably related to the increasing double cropping system in Kentucky [51].

4.3. Effects of Climate Change and other Factors on Crop Phenology

Temperature is often considered the most critical factor that influences crop phenological
change. Many studies suggested advanced trends of crop phenology across the northern hemisphere
due to the rising temperatures [52-53]. A long-term study showed that nearly all earlier planting
events occurred in warmer years, and more than 80% of them were related to seasonal spring and
summer temperatures [17]. In this study, only two climatic variables showed changing trends
(minimum temperature in April - October and precipitation in summer from June to August) in
Kentucky from 2000 to 2018. From trend analysis, the phenology of corn and soybean was tested with
distinctly changing planting, harvesting, and growing season length. Sensitivity analysis showed that
crop phenology responded negatively to temperature and positively correlated to precipitation, but
no significant response was found with the growing season temperature. The overall analysis
revealed that the changing phenology (crop planting and harvesting) was not related to the
increasing temperature during April - October.

Climate change raises the question of how field management may need to adapt to the changes
in crop phenological development. The trend analysis showed that temperature did not have distinct
warming trends in Kentucky over the study period. However, the crop phenology has been observed
with significant changes for both corn and soybean. As we discussed, the sensitivity analysis found
that only the summer precipitation was significantly related to the delayed corn harvesting dates.
The weak linkage between crop phenology and climatic variables indicated that changing phenology
is not solely caused by climatic factors. Non-climatic factors (e.g., crop varieties, farmer decisions,
cropping systems, and agronomic practices) may also lead to changes in crop phenology [52]. Besides,
crop insurance policy is another limiting factor, which restricts the final planting dates for different
crop types in different regions [54]. Planting dates falling out of the required period are not covered
by insurance, which could influence field activities.

4.4. Effects of Crop Phenological Shift on Crop Yield

Agricultural crop production is closely related to crop phenological change. Previous research
presented that the optimum range of crop phenological stages can lead to high crop production [55].
Some studies suggested that warming climate advanced phenological phases and consequently
shortened crop growth duration and thereby, might potentially reduce crop yield [2, 19]. However,
this study found no significant effects of earlier planting on crop yield in Kentucky. Our result is
consistent with Sacks and Kucharik [12], which verified that earlier planting did not show significant
effects on crop yields across the U.S. Corn Belt. In addition, we found that planting dates did not
show significant correlations with crop yield for both corn and soybean in Kentucky, whereas corn
growing season length and harvesting dates contributed to the increased yield during the last two
decades. Wu et al. [7] suggested that a longer growth duration might increase agricultural
production, which is in agreement with our study. All these findings can be used as a benchmark by
farmers to access crop phenology and its associated impacts on crop yield in Kentucky.

4.5. Uncertainty and Expectations

This study detected crop phenological stages using the remote sensing-based method. The
robustness of this method is supported by state- and county-level evaluations with ground-based
datasets. However, there are still some uncertainties. Firstly, agriculture in Kentucky is mainly
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concentrated in the north and west regions, while other areas are covered with a high fragmentation
of cropland. A 500-m spatial resolution of MODIS products may not accurately capture the crop
phenological stages in fragmented areas due to the effects of mixed and perimeter pixels. Data fusion
of high-resolution satellite imagery is needed for reducing uncertainties in fragmented areas where
mixed cropland pixels are dominant. Secondly, comparisons between county-level satellite-based
phenological estimations and site-level field observations might have uncertainties. More ground
observations with detailed location information will increase the evaluation accuracy of crop
phenology estimations. Thirdly, crop phenology is affected by many non-climatic factors. Thus, there
is a need to separate the influences of climatic factors on crop phenological change for further
examining the effects of non-climatic factors. Lastly, other crop phenological stages, such as the
flowering and grain filling stages, also play critical roles in affecting crop development. Future work
should also endeavor to cover more phenological stages to analyze the effects of climate change and
improve the capability of crop yield prediction.

5. Conclusions

In this study, using MODIS NDVI time-series and ground datasets, we detected the planting
dates, harvesting dates, and growing season length of corn and soybean in Kentucky from 2000 to
2018. We also investigated their dynamic temporal patterns and correlations with climate change and
yields. Trend analysis showed that corn experienced delayed planting/harvesting dates and extended
growing season length over the study period. However, soybean was found to have delayed planting
dates, an advanced harvesting season, and a shortened growing season length. Sensitivity analysis
showed that increased seasonal climate temperature could significantly advance the planting and
harvesting dates for both corn and soybean. Combining the climate variables and crop phenological
patterns revealed that increasing accumulated precipitation in summer was substantially related to
the delayed harvesting dates of corn in Kentucky over the study period. This study also suggested
that the increasing corn yield had a strong correlation with the delayed harvesting dates and
prolonged growing season. No significant correlation was found between climate change and
soybean changing phenology. Moreover, changing phenological stages did not contribute to soybean
yield. Our findings highlight the future needs to explore the impacts of non-climate-related factors
on soybean phenology. The quantitative responses of local crop phenology to climate change and
crop yields may provide guidelines for farmers to optimize the field operations.
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