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Abstract: Accurate phenological information is essential for monitoring crop development, 18 
predicting crop yield, and enhancing resilience to cope with climate change. This study employed 19 
a curve-change-based dynamic threshold approach on NDVI (Normalized Differential Vegetation 20 
Index) time series to detect the planting and harvesting dates for corn and soybean in Kentucky, a 21 
typical climatic transition zone, from 2000 to 2018. We compared satellite-based estimates with 22 
ground observationsand further performed trend analysis for crop phenological stages over the 23 
study period to analyze their relationships with climate change and crop yields. Crop planting dates 24 
were delayed for corn and soybean by 0.01 and 0.07 days/year, respectively. Corn harvesting dates 25 
were also delayed at a rate of 0.67 days/year, while advanced soybean harvesting occurred at a rate 26 
of 0.05 days/year. The growing season length has increased considerably at a rate of 0.66 days/year 27 
for corn and was shortened by 0.12 day/year for soybean. Sensitivity analysis showed that planting 28 
dates were more sensitive to the early-season temperature, while harvesting dates were significantly 29 
correlated with temperature over the entire growing season. In terms of the changing climatic 30 
factors, only the increased summer precipitation was statistically related to the delayed corn 31 
harvesting dates in Kentucky. Further analysis showed that the increased corn yield was 32 
significantly correlated with the delayed harvesting dates (1.37 Bu/acre per day) and extended 33 
growing season length (1.67 Bu/acre per day). Our results suggested that crop phenological trends, 34 
particularly corn harvesting, were mostly impacted by changes in seasonality (summer 35 
precipitation) rather than long-term climate change in Kentucky over the study period. We also 36 
highlighted the critical role of changing crop phenology in constraining crop production, which 37 
should be given more emphasis on optimizing crop management practices.  38 
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 40 

1. Introduction   41 
Vegetation phenology is defined as the development, differentiation, and initiation of plant 42 

organs [1]. Accurate retrieval of crop phenology information is a prerequisite for evaluating crop 43 
adaptation to climate change, modeling agricultural ecosystem carbon exchange, and predicting 44 
future agricultural production [2-5]. The Intergovernmental Panel on Climate Change has reported a 45 
change in global mean temperature of 1.5°C above pre-industrial levels, along with changes in 46 
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precipitation and an increased frequency of extreme climate events (IPCC, 2018). This shift in climate 47 
may bring varying degrees of impacts on agricultural ecosystems at different temporal and spatial 48 
scales. Crop phenology is closely related to climate change and is a critical indicator of optimum yield 49 
[6-7]. Therefore, it is essential to consider changes in crop phenology when assessing climate impacts 50 
on agricultural productivity, carbon cycling, and land-atmosphere feedbacks [8-9].  51 

Many studies have shown that the climate impacts on agricultural ecosystems are reflected in 52 
variation in crop phenology, such as the advanced or delayed planting and harvesting dates [10-12]. 53 
For example, He et al. [13] reported that soybean planting dates were delayed by an average of 1.78 54 
days/decade, and the growing season length was shortened by an average of 1.16 days/decade during 55 
1981 - 2010 across the major soybean-producing areas in China. Climate warming is a primary factor 56 
that drives phenological shifts [14], with temperature responses varying with crop types, locations, 57 
and study periods [15-16]. A handful of studies have investigated the responses of crop phenology 58 
to historical climate change at regional to global scales. For example, Estrella et al. [17] reported that 59 
maize sowing dates in Germany advanced in response to March - May temperature increases at a 60 
rate of 0.60 day/°C for maize and 4.15 day/°C for oats. Based on corn phenology observations collected 61 
from agro-meteorological stations in China, Tao et al. [18] reported that the growing season 62 
lengthened during 1981 - 2009 due to combined effects of warming temperature, changing field 63 
practices, and shifting varieties. Model simulation results from Tubiello et al. [19] have shown that 64 
predicted warmer temperatures accelerated plant phenology and further shortened the crop growing 65 
period, which resulted in crop yield reduction and potential food insecurity. In addition, other 66 
climatic factors such as precipitation could also determine the planting date more directly than the 67 
temperature in some regions [20-21]; however, few studies have explored the crop phenological 68 
changes and their relations with precipitation.  69 

Remote sensing imagery can be considered an essential tool that complements field-based data 70 
collection approaches [22]. Numerous studies have reported the use of satellite-based Normalized 71 
Differential Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) for detecting crop 72 
phenology [23-25]. Some studies have shown good performance in identifying phenological stages 73 
of specific crop types using pre-defined VI thresholds [26]. For example, Sakamoto et al. [27] used a 74 
two-step filtering approach to detect the phenological stages of corn and soybean and achieved high 75 
accuracies at the site and region levels. Huang et al. [28] applied dynamic thresholds to VI time-series 76 
to detect the start and end of the season of different crop types and obtained higher accuracies 77 
compared to the results of commonly used 20% or 50% thresholds.  78 

Kentucky is a traditional agricultural state, with corn and soybean being major crops. As a 79 
typical climatic transition zone, agriculture in Kentucky faces mixed climates that blend northern and 80 
southern weather patterns. A recent study showed that no significant seasonal changes in 81 
temperature were found over the last 100 years, especially during the crop growing season in this 82 
region [29]. Although crop phenological changes such as earlier planting dates have been widely 83 
reported under a warming climate [17-18, 30], the associated spatial patterns are highly varied [31-84 
32]. Uncertainties remain about how crop phenology has changed over areas like Kentucky, where 85 
temperature trends were generally flat over the past decades.  86 

In this study, we adopted a curve-change-based dynamic threshold approach to detect the 87 
planting and harvesting dates for corn and soybean using MODIS NDVI time series and ground 88 
observations in Kentucky from 2000 to 2018. Based on the crop phonological estimations, we also 89 
generated the temporal trends of crop phenology and quantified its responses to climatic factors (i.e., 90 
temperature and precipitation) and the correlations with crop yields. The objectives of the study are 91 
1) to identify phenological dates of corn and soybean using MODIS NDVI time series in Kentucky 92 
from 2000 to 2018; 2) to evaluate the estimated crop phenological stages using ground data at the 93 
state and county levels; 3) to characterize the temporal trends of crop phenological stages for corn 94 
and soybean in Kentucky during the study period; 4) to examine the correlations between crop 95 
planting/harvesting dates and temperature/precipitation variations; 5) to analyze the effects of crop 96 
phenological change on crop yields. 97 

2. Materials and Methodology 98 
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2.1. Study Area 99 
In this study, we focused on the Commonwealth of Kentucky (36° 30' N to 39° 9' N and 81° 58' 100 

W to 89° 34' W) (Figure 1). In general, Kentucky has a humid subtropical climate that is characterized 101 
by hot summers and cold to mild winters, with an oceanic climate found in the highlands of the 102 
southeast. The mean annual temperatures in Kentucky range from 11.67°C in the northeast to 15°C 103 
in the southwest. The annual precipitation is 1143 mm. The northern region receives 965.2 mm of 104 
precipitation annually, less than that in the south (1270 mm). Crops in Kentucky are predominantly 105 
corn and soybean, which account for more than 90% of total cropland in the state. 106 

 
Figure 1. Maps of the study area (Kentucky, overview, and CDL (Cropland Data Layer is derived 107 
from USDA NASS)). 108 

2.2. Datasets  109 

2.2.1. Ground Data 110 
We acquired crop planting and harvesting dates of corn and soybean in Kentucky at both the 111 

state and county levels. Crop reports released by USDA National Agricultural Statistics Service 112 
(NASS) provided the state-level progress of crop phenology information of Kentucky from 2004 to 113 
2018 (https://www.nass.usda.gov/Publications/National_Crop_Progress). The dates of 80% progress 114 
of planting and harvesting stages of corn and soybean were extracted from the crop progress and 115 
condition graphs in the crop reports using the Web Plot Digitizer 116 
(https://automeris.io/WebPlotDigitizer). We also obtained 5-year averaged crop planting and 117 
harvesting dates from the same data source. The state-level crop yields were from the USDA survey 118 
data (https://quickstats.nass.usda.gov/). The county-level crop phenology datasets were from the 119 
Kentucky Hybrid Corn Performance Tests (http://cvt.ca.uky.edu/) and Kentucky Soybean Variety 120 
Performance Tests (https://pss.ca.uky.edu/extension/soybean-variety-trials). These tests offered 121 
annual planting and harvesting dates of corn and soybean from 2000 to 2018. 122 

Table 1. Description of datasets used in this study. 123 
Heading dates Planting dates Harvesting dates 

https://www.nass.usda.gov/Publications/National_Crop_Progress
https://automeris.io/WebPlotDigitizer
https://quickstats.nass.usda.gov/
http://cvt.ca.uky.edu/
https://pss.ca.uky.edu/extension/soybean-variety-trials
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Phenology 
descriptions 

The peak (DOY) of 
NDVI time series 

The peak (DOY) of 
the 2nd derivative 

The peak (DOY) of 
the 2nd derivative 

Corn: 2000-2004 [143, 254] [106, 143] [254, 320] 
Corn: 2005-2009 [152, 249] [101, 152] [249,314] 
Corn: 2010-2014 [161, 251] [100, 161] [251, 319] 
Corn: 2015-2019 [151, 248] [98, 151] [248, 301] 

Time ranges [143, 254] [98, 161] [248, 320] 
Soybean: 2000-2004 [172, 262] [113, 172] [262, 313] 
Soybean: 2005-2009 [179, 261] [121, 179] [261, 305] 
Soybean: 2010-2014 [183, 265] [112, 183] [265, 332] 
Soybean: 2015-2019 [179, 261] [125, 179] [261, 302] 

Time ranges [172, 265] [112, 183] [261, 332] 

2.2.2. MODIS Data 124 
In this study, the MODIS NDVI time-series calculated from the MCD43A4 product (version 6, 125 

ftp://ltdr.nascom.nasa.gov/allData) was used to detect the planting and harvesting dates of corn and 126 
soybean in Kentucky from 2000 to 2018 [33]. MCD43A4 provides 500-m and daily surface reflectance 127 
of seven bands in a Sinusoidal projection system, available from February 2000 to the present. 128 

The crop classification maps from NASS Cropland Data Layers (NASS-CDL) 129 
(https://nassgeodata.gmu.edu/CropScape/) were used to identify specific locations of corn and 130 
soybean fields. The NASS-CDL classifies specific crop types and provides multi-year crop 131 
classification maps at 30 m resolution for the conterminous United States. This classification map is 132 
available from 2008 to 2018 for Kentucky.  133 

We used gridded monthly air temperature and precipitation from Daymet to examine the 134 
relationships between climate change and crop phenological development [34], which include 135 
minimum/maximum temperature and precipitation at a 1km spatial resolution 136 
(https://daymet.ornl.gov/). We calculated the monthly average air temperature based on the 137 
maximum and minimum temperatures. 138 

2.3. Methodology  139 

2.3.1. Time Series Data Processing 140 
Google Earth Engine (GEE) was used to process MODIS daily reflectance data. The NDVI was 141 

calculated from the reflectances of the RED and NIR bands as follows [35]: 142 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁− 𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅

𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁+𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅
                        (1) 143 

where 𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅  and 𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 are band 1 (0.620–0.670 μm) and band 2 (0.841 – 0.876 μm) reflectances from 144 
the MODIS product, respectively. 145 

It was necessary to smooth the time-series data using smoothing functions before extracting 146 
phenological dates. The smoothing methods should take the noise bias caused by snow or clouds into 147 
account and be able to handle missing data. Here, the NDVI time series were smoothed by the 148 
Harmonic analysis method. The algorithm can smooth and reconstruct remotely sensed VI time-149 
series while reducing the influence of clouds at the pixel level [36]. 150 

2.3.2. Detection of Crop Planting Dates, Harvesting Dates, and Crop Growth Period 151 
In this study, the definitions of crop phenological stages were from USDA NASS 152 

(https://www.nass.usda.gov/Publications/National_Crop_Progress/terms_definitions). We 153 
considered the silking stage of corn and the blooming stage of soybean as heading dates, respectively. 154 
We used a curve-change-based dynamic threshold approach on NDVI time-series to identify crop 155 
planting and harvesting dates for corn and soybean in Kentucky from 2000 to 2018.  156 

ftp://ltdr.nascom.nasa.gov/allData
https://nassgeodata.gmu.edu/CropScape/
https://daymet.ornl.gov/
https://www.nass.usda.gov/Publications/National_Crop_Progress/terms_definitions


Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 21 

 

The corn and soybean areas were extracted using the NASS-CDL maps from 2008 to 2018. The 157 
original 30-m CDL maps were aggregated into 500-m maps with the percentages of corn or soybean 158 
areas being calculated in each 500 m pixel, respectively, to match the size of the MODIS pixel. Pixels 159 
with individual crop (corn or soybean) percentage larger than 50% were retained for crop phenology 160 
detection. Previous studies have shown that the NDVI increases with leaf green-up during the spring 161 
season and decreases with leaf senescence in the fall [37-38]. As VI values in croplands generally 162 
exceed 0.4 at peak growth [39], spurious peaks were discarded if the corresponding NDVI values 163 
were less than 0.35. We then set a threshold of 0.35 to limit the cropland, i.e., the pixels with the 164 
maximum NDVI values less than 0.35 were excluded as non-cropland cover types [40]. 165 

For each crop pixel at a given year, the first and the second derivatives of the NDVI curve were 166 
defined by the following equations: 167 

𝑓𝑓(𝑥𝑥𝑖𝑖)′ = 𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑓𝑓(𝑥𝑥𝑖𝑖−1)
1

                            (2) 168 

            𝑓𝑓(𝑥𝑥𝑖𝑖)′′ = 𝑓𝑓(𝑥𝑥𝑖𝑖)′−𝑓𝑓(𝑥𝑥𝑖𝑖−1)′
1

                           (3) 169 

where f' and f'' are the first- and second-order derivatives of the smoothed NDVI time-series (f), i is 170 
the time sequence number of values in the smoothed NDVI time-series (2, 3 …365), 1 is the time step 171 
of NDVI time series, and f is the smoothed NDVI time series. 172 

We then identified crop phenological dates based on the characteristics of the derivatives: 173 
Heading dates: 174 

Previous studies have shown that the maximum NDVI was found to occur around the heading 175 
dates [41]. We used the point at the NDVI peak to capture crop heading dates and constrained the 176 
valid range according to the five-year averaged planting dates from the crop reports dataset (Table 177 
1). 178 

                      

⎩
⎨

⎧
𝑓𝑓(𝑥𝑥𝑖𝑖)′ >  0 

 𝑓𝑓(𝑥𝑥𝑖𝑖+1)′  <  0 
𝑓𝑓(𝑥𝑥𝑖𝑖+1)  ≥  0.35

𝑎𝑎 <  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)  <  𝑏𝑏

                (4) 179 

where f' is the first-order derivative of the NDVI curve; f is smoothed NDVI curve; i means the ith of 180 
NDVI/NDVI’ values in the time-series (1, 2, 3…365), a and b are the upper and lower boundaries of 181 
the valid time range for NDVI peak, respectively. 182 

Table 1. Parameters thresholds derived from the crop reports dataset used for crop phenology detection. 183 

Phenology 
descriptions 

Heading dates Planting dates Harvesting dates 
The peak (DOY) of 
NDVI time series 

The peak (DOY) of 
the 2nd derivative 

The peak (DOY) of 
the 2nd derivative 

Corn: 2000-2004 [143, 254] [106, 143] [254, 320] 
Corn: 2005-2009 [152, 249] [101, 152] [249,314] 
Corn: 2010-2014 [161, 251] [100, 161] [251, 319] 
Corn: 2015-2019 [151, 248] [98, 151] [248, 301] 

Time ranges [143, 254] [98, 161] [248, 320] 
Soybean: 2000-2004 [172, 262] [113, 172] [262, 313] 
Soybean: 2005-2009 [179, 261] [121, 179] [261, 305] 
Soybean: 2010-2014 [183, 265] [112, 183] [265, 332] 
Soybean: 2015-2019 [179, 261] [125, 179] [261, 302] 

Time ranges [172, 265] [112, 183] [261, 332] 

Planting dates: 184 
The NDVI curve shows lower values before crop planting when agricultural lands are plowed 185 

or cultivated (Figure. 2). After the crop planting, photosynthetic activity starts with plant expanded 186 
leaves, and thereby, the NDVI curve begins to increase. It is reasonable to expect the NDVI value of 187 
the planting date is located at the low point at the early stage of the NDVI curve. We, therefore, 188 
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applied the peak of the second-order derivative of the NDVI curve (before the heading date) to detect 189 
the crop planting date. Then the crop planting time was defined at the date when the second 190 
derivative of the NDVI curve reaches the first peak before the heading dates. The crop planting dates 191 
were constrained within the time range of 40 - 120 days before the heading dates based on the Corn 192 
and Soybean Production Calendar in Kentucky 193 
(https://simpson.ca.uky.edu/files/corn_and_soybean_production_calendar.pdf). Besides, we also 194 
used more accurate ranges to filter out all possible outlier estimates according to the 5-year averaged 195 
phenology derived from the crop reports dataset (Table 1). 196 
Harvesting dates: 197 

Plant leaves continue to wither and die during the harvesting season. Crop canopy can be 198 
harvested in this stage. Correspondingly, the NDVI value decreases to the lowest point when the 199 
crop is harvested from fields. The peak (after the heading date) of the second-order derivative of the 200 
NDVI curve can catch the lowest value of NDVI at the last period of the NDVI curve (Figure 2). Here 201 
we used this transition point to detect the crop harvesting date. Similarly, the harvesting dates were 202 
constrained to occur within the time range of 30 - 110 days after the heading date according to the 203 
crop calendar in Kentucky. Similarly, we retained estimates that fall into the valid time range as 204 
determined by the 5-year averaged harvesting dates (Table 1). 205 

Subsequently, crop growing season length was calculated for each pixel using the time 206 
difference between planting and harvesting dates. 207 

 208 
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 209 

Figure 2. NDVI curves and second derivative of smoothed NDVI for (a) corn and (b) soybean with 210 
key points for planting and harvesting dates (● Planting date, Second derivative peak; ▲ Harvesting 211 
date, Second derivative peak. Pure pixels were selected in study area based on CDL map). 212 

2.3. Evaluation and Trend Analysis  213 
At the state level, we calculated the dates when the areas of estimated phenological dates 214 

occupied 80% of the total planting areas across the whole state for corn and soybean. For county-level 215 
evaluation, the mean values of the estimations were calculated for corn (68 counties) and soybean (74 216 
counties) in top producer counties. The coefficient of determination (R2) and root mean square error 217 
(RMSE) were used to evaluate the accuracy of the estimated crop phenology compared with the 218 
ground data at both the state and county levels.   219 

𝑅𝑅2 = ∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥)2(𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1 ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1
                    (5) 220 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∗ ∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2𝑛𝑛

𝑖𝑖=1                  (6) 221 

where n represents the number of samples. y_i and x_i are the ground data and remote sensing 222 
estimates, respectively. 223 

Linear regression analysis was applied for generating the changing trends of the phenological 224 
estimations at the state level over the study period. We also used the Mann–Kendall test [42-43] and 225 
the Sen’s slope estimator [44] to analyze the temporal trends of phenological stages at the pixel scale. 226 
During the process, pixels with more than 12 years being identified as an individual crop (corn or 227 
soybean) were included in the Mann-Kendall test. The analytical method was implemented using the 228 
R computing environment [45].   229 

The temporal patterns of climatic factors and crop yields were investigated using linear 230 
regression analysis, as well as their relationships with the crop phenology. The Pearson correlation 231 
coefficient was adopted to describe the sensitivity of crop phenology to climate change. A paired t-232 
test was used to determine statistical significance. Climatic factors include minimum, maximum, 233 
average temperatures, and accumulated precipitation during three seasons (spring: March-May, 234 
summer: June-August, fall: September-November) and the whole crop growing period. 235 

3. Results  236 

3.1. Evaluation of Simulated Crop Phenology 237 
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3.1.1. State-level Evaluation   238 
The state-level evaluation results showed that crop phenology estimated by remote sensing was 239 

at a high level of agreement with the crop reports from the survey data (Figure 3). The estimated 240 
harvesting dates closely matched those from the crop reports, with R2 of 0.92 and 0.90 for corn and 241 
soybean, respectively (Figure 3b). The R2 of the estimated planting dates of corn and soybean against 242 
survey data was 0.87 and 0.79, respectively. Notably, the accuracy of the estimated harvesting dates 243 
of soybean was the highest, with an RMSE of 3.34 days. The RMSE value of corn harvesting dates 244 
was 3.82 days. The accuracies of the estimated planting and harvesting dates of corn were 3.70 and 245 
6.05 days, respectively (Figure 3a). 246 

 247 

 248 
Figure 3. Evaluation of estimated crop phenology at the state level (N is 15 years, blue for corn and 249 
red for soybean; a. planting dates; b. harvesting dates). 250 

3.1.2. County-level Evaluation   251 
The county-level assessment appeared to show lower accuracies compared to the state-level 252 

assessment (Figure 4). The evaluation results showed that the estimated crop phenological dates 253 
were, in general, later than those observed from field tests. Overestimations were larger in estimated 254 
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planting dates than harvesting dates for both corn and soybean. The RMSE values of corn planting 255 
and harvesting dates were 10.84 and 10.93 days, respectively. For soybean, the RMSE of harvesting 256 
dates was 9.17 days, and the RMSE value of planting dates was 12.26 days. 257 

 258 
Figure 4. Comparison between the estimated and observed crop phenology at the county level (Red 259 
line represents the mean values of each group; Black points represent the values of 5th and 95th of 260 
each group; Corn_Ob and Soy_ob represent phenological observations from field tests; Corn_RS and 261 
Soy_RS represent phenological estimations from remote sensing). 262 

3.2. Changing Trends of Crop Phenology  263 
Significant phenological trends were found for corn and soybean at the state level in Kentucky 264 

over the study period (Figure 5). The crop planting dates were slightly delayed by 0.01 days/year for 265 
corn and 0.07 days/year for soybean. Corn harvesting dates were delayed by an average rate of 0.67 266 
days/year, while a slightly advanced pattern (0.05 days/year) in the soybean harvesting dates was 267 
detected. The inter-annual variation in the crop growing season length was related to the changing 268 
planting and harvesting dates. For soybean, a slightly shortening trend was found at a rate of 0.12 269 
days/year, i.e., 2.28 days over the entire study period. However, the corn growing season experienced 270 
an increasing tendency by an average rate of 0.66 days/year, i.e., 12.54 days over the study period. 271 
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 273 
Figure 5. Linear regression analysis for trends of phenological stages in Kentucky, 2000-2018 ((a) corn, 274 
(b) soybean). 275 

In addition, widespread negative tendencies were detected for the phenological estimations of 276 
corn and soybean from pixel to pixel in Kentucky from 2000 to 2018 (Figures 6 and 7). For corn, the 277 
p-values in Figures 6 (b, d, and f) showed that more than one-fifth of corn production areas 278 
experienced significant phenological changes. All significant pixels were scattered across the corn 279 
production areas. From the statistics (histograms in Figures 6a, c, and e), pixels with unchanged 280 
slopes (slope = 0) accounted for the largest proportion (77.10%) of all significant pixels (red color). 281 
Figure 6a indicated the corn planting dates had evident negative trends over the study area (18.43% 282 
of the significant pixels). However, for corn harvesting dates, comparable proportions of significant 283 
trends were displayed with negative (8.28%) and positive slope values (6.05%). In Figure 6e, the 284 
growing season length was shortened at most corn production areas (18.43%).  285 

Larger proportions of significant trends were found in soybean planting and harvesting dates 286 
compared with those of corn (Figures 7b and d). A quarter of pixels with statistically significant 287 
trends (P < 0.05) were observed in soybean growing season length. Similarly, pixels with significant 288 
unchanged trends (slope = 0) made up to 50% of total significant values (red color) in soybean 289 
planting dates, harvesting dates, and growing season length (histograms in Figures 7a, c, and e). An 290 
advanced pattern was detected in soybean harvesting dates with a high proportion of negative values 291 
(33.79%) (Figure 7c). However, pixels with extended growing season length accounted for 14.18% of 292 
the areas with significant trends. 293 
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 294 
Figure 6. Slope and P values of planting dates ((a), (b)), harvesting dates ((c), (d)), and growing season 295 
length ((e), (f)) of corn in Kentucky, 2000 – 2018 (Slope: change rate of crop phenological dates; P 296 
values: the confidence of trend analysis; pixels with less than 12 years being identified as corn, which 297 
were not included in the Mann-Kendall statistical test). 298 
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 299 
Figure 7. Slope and P values of planting dates ((a), (b)), harvesting dates ((c), (d)), and growing season 300 
length ((e), (f)) of soybean in Kentucky, 2000 – 2018 (Slope: change rate of crop phenological dates; P 301 
values: the confidence of trend analysis; pixels with less than 12 years being identified as soybean, 302 
which were not included in the Mann-Kendall statistical test). 303 

3.3. Trends of Climatic Factors and Its Correlation with Crop Phenology  304 
Maximum temperatures decreased in three seasons and ranged from -0.001 to -0.01 °C/year in 305 

Kentucky from 2000 to 2018 (Table 2). Warming trends in minimum and average temperatures were 306 
observed, ranging from 0.03 to 0.05 °C/year and from 0.01 to 0.03 °C/year, respectively. Specifically, 307 
the minimum temperature during the growing season showed a significant increasing trend with a 308 
rate of 0.05 °C/year. Accumulated precipitation increased overtime in all seasons in Kentucky. 309 
Notably, significant increasing precipitation in summer occurred at a rate of 5.40 mm/year. Historical 310 
climate records showed that summers from 2014 to 2018 are among the ten wettest summers over the 311 
last 30 years in Kentucky (http://kyclimate.org/climtrends.html). Thus, over the years tested, the 312 
summer climate trended wetter in Kentucky. 313 

Table 2. Trends of seasonal climatic factors in Kentucky, 2000 - 2018. 314 

Note: Trends are significant with *P < 0.10, **P < 0.05. Tmax, Tmin, Tavg, and Prec represent the maximum 315 
temperature, minimum temperature, average temperature, and precipitation, respectively. 316 
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Seasons 
Tmax Tmin Tavg Prec  

Trends 
(°C/year) 

r 
Trends 

(°C/year) 
r 

Trends 
(°C/year) 

r 
Trends 

(mm/year) 
r 

Spring  -0.01 -0.05 0.03 0.16 0.01 0.05 3.58 0.21 
Summer  -0.001 -0.003 0.04 0.28 0.02 0.13 5.40* 0.41 

Fall -0.01 -0.03 0.04 0.22 0.02 0.09 0.64 0.04 
Apr-Oct 0.01 0.08 0.05** 0.54 0.03 0.31 8.41 0.32 

http://kyclimate.org/climtrends.html
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The crop planting/harvesting dates were negatively correlated to three temperature variables 317 
and positive to the precipitation for both crops (Tables 3 and 4). Crop planting dates showed 318 
significant correlations with the accumulated precipitation in spring. Compared with soybean, corn 319 
planting dates were more sensitive to spring temperature. For harvesting dates, higher correlation 320 
coefficients with temperature and precipitation were observed for corn and soybean. Significant 321 
relationships were found between harvesting and the accumulated precipitation in summer/April - 322 
October for corn, and in fall/April - October for soybean, respectively. Corn growing season length 323 
exhibited negative sensitivities to temperature variables. Apart from a negative correlation in spring, 324 
positive relationships were detected between corn growing season length and the accumulated 325 
precipitation. Soybean growing season length was negatively correlated with all climatic factors 326 
expect with the accumulated precipitation in fall and April - October. Significant correlations between 327 
growing season length and precipitation were mainly concentrated in summer/April - October for 328 
corn and in summer/fall for soybean, respectively (Tables 3 and 4). 329 

 330 
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Table 3. Correlations between corn phenology and climatic variables in Kentucky, 2000 - 2018. 331 

Climate variables in 
individual seasons 

Planting dates 
Climate variables in 
individual seasons 

Harvesting dates 
Climate variables in 
individual seasons 

Growing season length 

r  
Response 
(days/°C; 
days/mm) 

r  
Response 
(days/°C; 
days/mm) 

r 
Response 
(days/°C; 
days/mm) 

Tmax in Spring -0.56** -3.95 Tmax in Spring -0.53** -4.77 Tmax in Spring -0.11 -0.82 
Tmin in Spring -0.33 -2.64 Tmin in Spring -0.27 -2.83 Tmin in Spring -0.02 -0.19 

Tmean in Spring -0.48** -3.70 Tmean in Spring -0.43* -4.30 Tmean in Spring -0.07 -0.60 
Prec in Spring 0.56** 0.05 Prec in Spring 0.20 0.02 Prec in Spring -0.28 -0.02 

   Tmax in Summer -0.72*** -7.20 Tmax in Summer -0.46** -3.86 
   Tmin in Summer -0.47** -6.18 Tmin in Summer -0.38 -4.24 
   Tmean in Summer -0.67*** -8.26 Tmean in Summer -0.47** -4.84 
   Prec in Summer 0.45* 0.06 Prec in Summer 0.33 0.04 
   Tmax in Fall -0.47** -3.73 Tmax in Fall -0.27 -1.81 
   Tmin in Fall -0.20 -2.05 Tmin in Fall -0.09 -0.77 
   Tmean in Fall -0.41* -4.32 Tmean in Fall -0.22 -1.98 
   Prec in Fall 0.10 0.01 Prec in Fall 0.07 0.01 
   Tmax in Apr-Oct -0.77*** -9.94 Tmax in Apr-Oct -0.39* -4.30 
   Tmin in Apr-Oct -0.36 -6.84 Tmin in Apr-Oct -0.16 -2.47 
   Tmean in Apr-Oct -0.69*** -12.19 Tmean in Apr-Oct -0.34 -5.06 
   Prec in Apr-Oct 0.47** 0.03 Prec in Apr-Oct 0.17 0.01 

Significant level:  ***P < 0.01; **P < 0.05; *P < 0.1. Tmin, Tmax, Tavg, and Prec denotes monthly values of maximum, minimum, average temperatures, and cumulative precipitation. 332 
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Table 4. Correlations between soybean phenology and climatic variables in Kentucky, 2000 - 2018. 333 

Climate variables in 
individual seasons 

Planting dates  
Climate variables in 
individual seasons 

Harvesting dates 
Climate variables 

in individual 
seasons 

Growing season length 

r  
Response 
(days/°C; 
days/mm) 

r  
Response 
(days/°C; 
days/mm) 

r 
Response 
(days/°C; 
days/mm) 

Tmax in Spring  -0.34 -1.71 Tmax in Spring  -0.35 -2.84 Tmax in Spring  -0.15 -1.13 
Tmin in Spring  -0.11 -0.64 Tmin in Spring  -0.23 -2.10 Tmin in Spring  -0.17 -1.46 

Tmean in Spring  -0.25 -1.37 Tmean in Spring  -0.30 -2.76 Tmean in Spring  -0.16 -1.39 
Prec in Spring  0.49** 0.03 Prec in Spring  0.11 0.01 Prec in Spring  -0.20 -0.02 

   Tmax in Summer  -0.67*** -5.93 Tmax in Summer  -0.35 -2.93 
   Tmin in Summer  -0.48** -5.59 Tmin in Summer  -0.37 -4.05 
   Tmean in Summer  -0.64*** -7.03 Tmean in Summer  -0.39* -4.04 
   Prec in Summer  0.24 0.03 Prec in Summer  -0.03 -0.003 
   Tmax in Fall -0.65*** -4.65 Tmax in Fall -0.55** -3.68 
   Tmin in Fall -0.09 -0.82 Tmin in Fall -0.08 -0.73 
   Tmean in Fall -0.47** -4.50 Tmean in Fall -0.41* -3.60 
   Prec in Fall 0.52** 0.05 Prec in Fall 0.54** 0.05 
   Tmax in Apr-Oct -0.69*** -8.00 Tmax in Apr-Oct -0.38 -4.09 
   Tmin in Apr-Oct -0.23 -3.92 Tmin in Apr-Oct -0.14 -2.24 
   Tmean in Apr-Oct -0.58*** -9.11 Tmean in Apr-Oct -0.32 -4.77 
   Prec in Apr-Oct 0.49** 0.03 Prec in Apr-Oct 0.21 0.01 

Significant level:  ***P < 0.01; **P < 0.05; *P < 0.1. Tmin, Tmax, Tavg, and Prec denotes monthly values of maximum, minimum, average temperatures, and cumulative precipitation.  334 
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3.4. Trends of Crop Yield and Its Correlation with Crop Phenology  335 
Crop yields showed significant increases in corn (2.19 Bu/acres per year, p < 0.05) and soybean 336 

(0.75 Bu/acres per year, p < 0.05), respectively, in Kentucky over the study period. A more significant 337 
increment was found in corn yield. However, we observed that corn yield consistently increased over 338 
time except for the sharp decrease in 2012 (68 Bu/acre), dramatically lower than the average corn 339 
yield (143 Bu/acre) of the study period. The reduced crop production was relevant to extreme 340 
heatwaves and drought during the summer [46].   341 

We further investigated the relationships between the crop phenological dates and crop yields 342 
of corn and soybean using the linear regression analysis. Over the 2000 - 2018 period, a significant 343 
positive correlation was found between corn growing season length and corn yield, suggesting that 344 
a one-day extension of the growing period increased 1.67 Bu/acres (p < 0.01) in corn yield. 345 
Furthermore, significant responses of harvesting dates to crop yields were detected for corn (trend = 346 
1.37 Bu/acre per day, p < 0.01) and soybean (trend = 0.39 Bu/acre per day, p < 0.05), respectively. 347 

4. Discussion 348 

4.1. Comparisons of Remote Sensing-Based Crop Phenology with Other Studies   349 
In this study, we detected the crop planting dates, harvesting dates, and growing season length 350 

for corn and soybean using an NDVI curve-change-based dynamic threshold approach. The accuracy 351 
of crop phenological estimation was comparable with the results in previous studies. For example, 352 
using a remote sensing approach, Sakamoto et al. [27] reported the RMSEs of estimated phenological 353 
dates ranged from 0.7 to 8.6 days for corn and 1.9 to 14.5 days for soybean. In our study, RMSEs of 354 
estimated crop phenological dates were between 3.34 and 6.05 days at the state level and between 355 
9.17 and 12.26 days at the county level. The county-level evaluation showed lower accuracies 356 
compared with those of the state-level, which might be related to the evaluation data being from site-357 
level field observations. However, the good performance at the state-level illustrates the potential of 358 
the NDVI curve-change-based dynamic threshold approach using MODIS 500-m data to provide a 359 
relatively accurate estimate of phenology for corn and soybean. 360 

4.2. Spatial-Temporal Trends of Crop Phenology   361 
We analyzed the state-level linear trends of three estimated crop phenological variables and built 362 

their spatial-temporal patterns by the Mann-Kendall test. Many studies have reported that earlier 363 
crop planting and extended growing seasons occurred during the past several decades, but the 364 
changing trends vary depending on the study period [47-48]. Menzel et al. [49] showed that 365 
phenological trends were weaker for the most recent 30-year period (1989 - 2018) compared to the 366 
1976 - 2005 period for both agricultural and wild plants. Kucharik [30] found that the planting date 367 
in approximately 75% planted areas of the 12 Corn Belt states was advanced by 0.37 days/year from 368 
1979 to 2005. Notably, Kentucky was among the states with significant changes and was observed 369 
with advanced corn planting dates at a rate of 0.8 days/year [30]. Sacks and Kucharik [12] reported 370 
that soybean planting dates advanced by 0.49 days/year averaged across the U.S. from 1981 to 2005. 371 
However, our study showed a slight delay in crop planting for both corn (0.01 days/year) and 372 
soybean (0.07 days/year) at the state level in Kentucky from 2000 to 2018. The changing patterns over 373 
different study periods implied that the earlier trend of crop planting season slowed down during 374 
the last two decades over the study area. In the U.S. Midwest, soybean is usually planted after 375 
completing corn planting. Therefore, delayed corn planting dates might cause delayed soybean 376 
planting as well [50]. Sacks and Kucharik [12] also showed that the growing season length of corn 377 
and soybean was significantly extended by 0.67 and 0.30 day/year, respectively, in the U.S. during 378 
1981 - 2005. Their findings of the prolonged corn growing season were similar to the results in our 379 
study (0.66 days/year). 380 

Meanwhile, we found that soybean experienced a shorter growing season (0.12 days/year) in 381 
Kentucky during 2000 - 2018. According to Sacks and Kucharik [12], both corn (1 day/year) and 382 
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soybean (0.83 days/year) experienced a trend of earlier harvesting in Kentucky over 1981 - 2015. 383 
However, our study showed largely postponed harvesting for corn (0.67 days/year) and slightly 384 
advanced harvesting for soybean (0.05 days/year) during 2000 - 2018. We also found that the longer 385 
corn growing season length could significantly benefit corn yield. The shortened soybean growth 386 
period may have undesired consequences for yield but will allow more intercropping or earlier 387 
sowing of winter cereals [49]. The advanced harvesting dates and shortened growing season of 388 
soybean were probably related to the increasing double cropping system in Kentucky [51]. 389 

4.3. Effects of Climate Change and other Factors on Crop Phenology  390 
Temperature is often considered the most critical factor that influences crop phenological 391 

change. Many studies suggested advanced trends of crop phenology across the northern hemisphere 392 
due to the rising temperatures [52-53]. A long-term study showed that nearly all earlier planting 393 
events occurred in warmer years, and more than 80% of them were related to seasonal spring and 394 
summer temperatures [17]. In this study, only two climatic variables showed changing trends 395 
(minimum temperature in April - October and precipitation in summer from June to August) in 396 
Kentucky from 2000 to 2018. From trend analysis, the phenology of corn and soybean was tested with 397 
distinctly changing planting, harvesting, and growing season length. Sensitivity analysis showed that 398 
crop phenology responded negatively to temperature and positively correlated to precipitation, but 399 
no significant response was found with the growing season temperature. The overall analysis 400 
revealed that the changing phenology (crop planting and harvesting) was not related to the 401 
increasing temperature during April - October. 402 

Climate change raises the question of how field management may need to adapt to the changes 403 
in crop phenological development. The trend analysis showed that temperature did not have distinct 404 
warming trends in Kentucky over the study period. However, the crop phenology has been observed 405 
with significant changes for both corn and soybean. As we discussed, the sensitivity analysis found 406 
that only the summer precipitation was significantly related to the delayed corn harvesting dates. 407 
The weak linkage between crop phenology and climatic variables indicated that changing phenology 408 
is not solely caused by climatic factors. Non-climatic factors (e.g., crop varieties, farmer decisions, 409 
cropping systems, and agronomic practices) may also lead to changes in crop phenology [52]. Besides, 410 
crop insurance policy is another limiting factor, which restricts the final planting dates for different 411 
crop types in different regions [54]. Planting dates falling out of the required period are not covered 412 
by insurance, which could influence field activities. 413 

4.4. Effects of Crop Phenological Shift on Crop Yield   414 
Agricultural crop production is closely related to crop phenological change. Previous research 415 

presented that the optimum range of crop phenological stages can lead to high crop production [55]. 416 
Some studies suggested that warming climate advanced phenological phases and consequently 417 
shortened crop growth duration and thereby, might potentially reduce crop yield [2, 19]. However, 418 
this study found no significant effects of earlier planting on crop yield in Kentucky. Our result is 419 
consistent with Sacks and Kucharik [12], which verified that earlier planting did not show significant 420 
effects on crop yields across the U.S. Corn Belt. In addition, we found that planting dates did not 421 
show significant correlations with crop yield for both corn and soybean in Kentucky, whereas corn 422 
growing season length and harvesting dates contributed to the increased yield during the last two 423 
decades. Wu et al. [7] suggested that a longer growth duration might increase agricultural 424 
production, which is in agreement with our study. All these findings can be used as a benchmark by 425 
farmers to access crop phenology and its associated impacts on crop yield in Kentucky. 426 

4.5. Uncertainty and Expectations    427 
This study detected crop phenological stages using the remote sensing-based method. The 428 

robustness of this method is supported by state- and county-level evaluations with ground-based 429 
datasets. However, there are still some uncertainties. Firstly, agriculture in Kentucky is mainly 430 
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concentrated in the north and west regions, while other areas are covered with a high fragmentation 431 
of cropland. A 500-m spatial resolution of MODIS products may not accurately capture the crop 432 
phenological stages in fragmented areas due to the effects of mixed and perimeter pixels. Data fusion 433 
of high-resolution satellite imagery is needed for reducing uncertainties in fragmented areas where 434 
mixed cropland pixels are dominant. Secondly, comparisons between county-level satellite-based 435 
phenological estimations and site-level field observations might have uncertainties. More ground 436 
observations with detailed location information will increase the evaluation accuracy of crop 437 
phenology estimations. Thirdly, crop phenology is affected by many non-climatic factors. Thus, there 438 
is a need to separate the influences of climatic factors on crop phenological change for further 439 
examining the effects of non-climatic factors. Lastly, other crop phenological stages, such as the 440 
flowering and grain filling stages, also play critical roles in affecting crop development. Future work 441 
should also endeavor to cover more phenological stages to analyze the effects of climate change and 442 
improve the capability of crop yield prediction.   443 

5. Conclusions  444 
In this study, using MODIS NDVI time-series and ground datasets, we detected the planting 445 

dates, harvesting dates, and growing season length of corn and soybean in Kentucky from 2000 to 446 
2018. We also investigated their dynamic temporal patterns and correlations with climate change and 447 
yields. Trend analysis showed that corn experienced delayed planting/harvesting dates and extended 448 
growing season length over the study period. However, soybean was found to have delayed planting 449 
dates, an advanced harvesting season, and a shortened growing season length. Sensitivity analysis 450 
showed that increased seasonal climate temperature could significantly advance the planting and 451 
harvesting dates for both corn and soybean. Combining the climate variables and crop phenological 452 
patterns revealed that increasing accumulated precipitation in summer was substantially related to 453 
the delayed harvesting dates of corn in Kentucky over the study period. This study also suggested 454 
that the increasing corn yield had a strong correlation with the delayed harvesting dates and 455 
prolonged growing season. No significant correlation was found between climate change and 456 
soybean changing phenology. Moreover, changing phenological stages did not contribute to soybean 457 
yield. Our findings highlight the future needs to explore the impacts of non-climate-related factors 458 
on soybean phenology. The quantitative responses of local crop phenology to climate change and 459 
crop yields may provide guidelines for farmers to optimize the field operations.    460 
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