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ABSTRACT
During disasters, it is critical to deliver emergency information
to appropriate first responders. Name-based information delivery
provides efficient, timely dissemination of relevant content to first
responder teams assigned to different incident response roles. Peo-
ple increasingly depend on social media for communicating vital
information, using free-form text. Thus, a method that delivers
these social media posts to the right first responders can signif-
icantly improve outcomes. In this paper, we propose FLARE, a
framework using ‘Social Media Engines’ (SMEs) to map social me-
dia posts (SMPs), such as tweets, to the right names. SMEs perform
natural language processing-based classification and exploit several
machine learning capabilities, in an online real-time manner. To
reduce the manual labeling effort required for learning during the
disaster, we leverage active learning, complemented by dispatchers
with specific domain-knowledge performing limited labeling. We
also leverage federated learning across various public-safety depart-
ments with specialized knowledge to handle notifications related to
their roles in a cooperative manner. We implement three different
classifiers: for incident relevance, organization, and fine-grained
role prediction. Each class is associated with a specific subset of the
namespace graph. The novelty of our system is the integration of
the namespace with federated active learning and inference proce-
dures to identify and deliver vital SMPs to the right first responders
in a distributed multi-organization environment, in real-time. Our
experiments using real-world data, including tweets generated by
citizens during the wildfires in California in 2018, show our ap-
proach outperforming both a simple keyword-based classification
and several existing NLP-based classification techniques.

CCS CONCEPTS
•Computingmethodologies→Natural language processing;
• Networks → Network protocols.
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1 INTRODUCTION
In managing disasters, we have seen that it is important to have
timely and relevant information delivered to the right people, es-
pecially first responders. Social media platforms are increasingly
being depended on, both by authorities and the general public to
report and exchange disaster-related issues [26]. This has been es-
pecially helpful when traditional means of disaster management,
e.g., emergency calling (911 in the U.S.), get overloaded during the
disaster. However, such social-media interactions are typically ad-
hoc and unorganized [30]. To address this, we seek to develop a
framework that allows for meaningful and accurate communication
with first responders through social media.

An effective and efficient way to provide such structured dissem-
ination of content is in conjunction with naming [33], which guides
information-centric and name-based delivery (either request/re-
sponse or pub/sub [9, 20]) to large groups of people. A namespace,
often a hierarchical structure, provides a robust interface for all par-
ticipants. We use an incident-specific namespace, which captures
the different incident-related roles and their relations, to be used to
indicate interests and publication IDs [8]. Most people, i.e., social
media users, are likely to have little or no knowledge of the inci-
dent namespace required to create a named publication or ‘interest’
(as in Named-data networking [33]). They would likely prefer to
use social media in their common forms, i.e., with free-form text.
Therefore, it would be helpful to have those social media posts
(SMPs) be mapped to the right subset of the incident namespace,
leading to the right first responders receiving those SMPs so they
can deal with the specific task related to the incident. There have
been many works that classify text in Tweets (e.g. on Twitter) from
disasters [14, 16, 19]. Apart from these, Twitter has proprietary
machine learning methods for classification of tweets into various
Topics1. Twitter also has an option of using hashtags (#), provided
by the user based on their own knowledge of what would be ap-
propriate tags. If first responders follow these tagged tweets, they
would receive them. Also, since the users are free to post any in-
formation under these hashtags, there is still the need to filter out
the irrelevant tweets with minimal burden on the first responders.
Our work aims specifically at disaster management and focuses on
filtering out the relevant tweets, classifying them in accordance
with the incident namespace and delivering them to the right first
responders, without requiring the users to have any knowledge of
the incident namespace. We seek to leverage various state-of-the-
art classification techniques so that the tweets/social media posts
can be disseminated in real-time using the name-based pub/sub
framework to deliver them to the right first responders.

1https://help.twitter.com/en/using-twitter/follow-and-unfollow-topics
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In this paper, we propose FLARE (Federated active Learning As-
sisted by naming for Responding to Emergencies), a framework to
coordinate disaster response among the many different participants
using social media, and a name-based information dissemination
architecture. A key notion in FLARE is a Social Media Engine (SME),
which maps free-form social media posts to the right part of the
namespace, using a combination of different Machine Learning
(ML) and natural language processing (NLP) techniques to address
various issues that typically arise during the classification of SMPs
in the event of a disaster. To reduce the manual labeling effort
and to deal with the scarcity of training data in the beginning,
we use stream-based active learning [28], helped by dispatchers
with domain-knowledge for selective manual labeling. To allow for
load-sharing without requiring the sharing of datasets among all
nodes, while exploiting the expertise of individual first-responder
departments, we employ multiple SMEs and allow for their learning
procedure to be performed in federated manner. In our framework,
each SME is associated with a particular department, employing its
specialized dispatchers, and crawls its own set of keyword-based
SMPs. In addition to regular federated learning messaging (i.e.,
worker-to-master and vice versa), we add support for messaging
between SMEs, using name-based forwarding, which allows us
to pass free-form text messages (i.e., SMPs) to be processed and
potentially labeled, by the SME specialized in the category most
relevant to the SMP. To provide the most complete names, with all
the different name levels of the namespace hierarchy, an SMP goes
through a set of 3 classifiers: C1 (incident relevance predictor); C2
(organization predictor); and C3 (fine-grained role predictor). The
labels in these classifiers directly correspond to the levels in the
namespace. Through various experiments, we demonstrate how
our approach achieves good accuracy, while not inducing too much
messaging overhead and labeling effort. During a disaster, the inci-
dent namespace involving the various participating organizations
may evolve as the incident evolves. We demonstrate the ability of
FLARE’s C3 classifier to adapt to the namespace changes without a
significant additional labeling or loss in accuracy.

A key novelty of FLARE is its exploitation of naming both for
dissemination of the publication as well as for its federated classifi-
cation/learning procedures. A namespace (or a set of inter-related
namespaces) works as a common interface across FLARE’s proce-
dures and components, yielding significant benefits. It enables an
SME to hand an SMP, based on its initial classification result (class
label is a “name”), to the right SME, which has the specialization
to process and potentially label it (recipient SME’s department is
a “name”) achieving holistic cooperative active learning among
SMEs. Another aspect of FLARE is the cascade of classifiers, C1,
C2, and C3, each corresponding to levels of the namespace. As an
SMP goes through different classifiers one by one, it gets mapped to
increasingly finer granularity nodes (i.e., towards the leaves) of the
namespace. This structure allows for inaccurately-mapped SMPs
to still have a chance to be delivered to first responders that are
“somewhat relevant” (i.e., within the same department, or names-
pace subset), even if not the precise first responder, thus greatly
benefiting the goal of emergency management: saving lives. In this
paper we show how FLARE, our name-assisted approach assists
and improves the accurate, real-time delivery of SMPs.

The primary job of FLARE is to create and assign the right name
to a piece of content (i.e., text or social media post). The only require-
ment for FLARE is that there should be an underlying network that
recognizes those names, and the users interested in those names
will receive those contents. It can run on various NDN-based in-
formation dissemination mechanisms (without any change to the
underlying forwarding mechanisms), such as group-based dataset
synchronization solutions (e.g., ChronoSync [38] and PSync [34]),
periodic query/response solutions (as in NDN [33]), or pub/sub so-
lutions with long-standing subscription interests ([9] and [8]). We
leverage CNS[8] because it enables dynamic modifications of the
namespace to reflect the dynamic nature and evolution of incident
management (and thereby the roles of individuals) during a disaster.

The contributions of this paper are: 1) a system integrating the
main actors in disaster response, i.e., first responders and the gen-
eral public, using social media, 2) a distributed set of social media
engines, as intelligent systems, that cooperatively map free-form
social media posts to the right names for publication, 3) an inci-
dent naming framework that integrates dissemination (whether
request/response or pub/sub) with classification/learning proce-
dures, 4) a federated and stream-based active learning approach
for classification that enables our SMEs to be load-shared while
not sharing crawled raw data, and be effective in an online manner
even when we have little or no labeled data to begin with, and 5)
evaluation of the effectiveness of our approach with actual, publicly
available, disaster-related Tweets, such as those collected from the
California Wildfires of 2018.

2 BACKGROUND AND RELATEDWORK
Many studies have pointed out the need for a common means of
communication between first responders and citizens (and for that
matter communication between first responders from different orga-
nizations), for a structured coordination of disaster response [12, 30].
In the recent years, a significant interest has gone into information-
centric (ICN) [33] paradigms which provides important benefits
of location-independence, and using it for disaster management
related communication. It enables timely delivery of content and
seamless mobility [27], [3]. In name-based delivery, each publica-
tion message needs to have the correct name, in order to reach all
the relevant/intended recipients. This can be challenging in disaster
scenarios, where many victims (civilians) may not know or have
access to the namespace. Fuzzy Interest Forwarding (FIF) [7] ad-
dresses the issue of lack of access to the namespace by proposing an
NLP-based mapping of requests to names for Interest forwarding,
for request/response exchanges. In this work, we explore further
by analyzing the whole message content to assign the right name
to a message. As observed in many recent disasters [26], social
media gets widely used to generate and disseminate information
regarding a variety of issues related to incident response. While [15]
addresses this with a centralized NLP/ML-based mapping of social
media posts to the right names, it requires manually labeled fixed
training sets. In FLARE, we allow for a federated, and importantly
an active learning method. We also utilize multi-level classification
and namespace integration for much more accurate and targeted
delivery to the right name.

Several works have studied the classification of disaster-related
social media posts (SMPs) using NLP techniques. [4] provided a
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Figure 1: Architecture of FLARE

comparison of various learning-based methods like Naive Bayes,
SVM, KNN, Logistic Regression, Decision Tree and Random Forest
for identifying disaster related tweets. [32] uses a Random Forest
classifier to extract firsthand and credible information from the
disaster related tweets. [14] provides human-annotated datasets
for 19 different disasters and classifies the SMPs using Naive Bayes,
SVM and Random Forest. Work in [19] improves the performance
of such classifications by developing deep neural network (DNN)
based models. In [16], the authors propose a DNNmodel with atten-
tion layer and auxiliary features to further improve the model. All
the approaches discussed above are primarily focused on classifica-
tion and are agnostic on how to efficiently label data as they come
in, as well as fallback labeling and dissemination mechanisms to
improve the automatic classification. FLARE addresses those issues
by integrating online learning and classification with a supporting
framework of dispatchers as knowledgeable human labelers and
a name-based pub/sub framework. We seek to classify SMPs in a
distributed manner, taking advantage of each organization’s special-
ized knowledge, for real-time delivery. For classification, previous
works have examined the use of word embedding techniques for
encoding incoming tweets into word vectors [16, 19]. However, the
state of the art sentence embedding techniques like InferSent [10],
Universal Sentence Encoder (USE) [6] and SBERT [24] outperform
word embedding techniques like BERT [11] and GloVe [22] due to
the ability of the former to capture semantic relationships among
the sentences more accurately [24]. In FLARE, we utilize USE for
its ease of use and ability to process the tweets directly without
substantial preprocessing.

Active learning methods can reduce manual labeling effort, start-
ing with an initial seed of labeled data, and expanding to a larger
labeled training set until a stopping criteria is reached. They re-
quire only a subset of manually labeled data. Active learning can
be pool-based or stream-based. Pool-based active learning [13, 35]
iteratively picks the most informative sample set from the whole
dataset, and uses a human labeler to assign a class to them, and
then be subject to re-training. The challenge with pool-based active
learning is that it requires the whole corpus to be available. This
can be a difficult in a real-world disaster where initial data may not
be available. Stream-based active learning methods [23, 28] enable
data instances, e.g., tweets, to be processed one at a time (or in a
batch) as they come in. We adopt stream-based active learning for
online training and real-time processing.

Federated learning (FL) [18] allows the learning of a model across
multiple clients or entities. FL is typically used for the purpose

Figure 2: Incident namespace

of preserving the privacy of user data, as sub-data sets stay local
to users who generate it. In our scenario, data, i.e., social media
posts, are likely to be public and privacy is not a primary concern.
However, FLARE employs FL because of its other important feature:
enabling the assimilation and use of the specialized knowledge of
different entities (e.g., departments in the incident management)
and train ing the classifiers collectively. Work in [2] proposes active
learning along with FL to classify images into different types of dis-
asters. FLARE uses a combination of active and federated learning
for SMP classification.

We also mitigate accuracy losses that may result from an initial
simple, but inaccurate partitioning of input SMPs, possibly during
a triage of disaster reports, by automatically detecting and trans-
ferring the mis-routed SMPs to the relevant learner/organization
to leverage their organizational expertise using a message passing
scheme.

3 ARCHITECTURE AND DESIGN
An overview of the architecture of FLARE and its primary actors
and components are shown in Fig. 1. FLARE’s goal is to effectively
disseminate social media posts among first responders. It relies
heavily on integrating name-based dissemination and machine
learning algorithms and classifiers.

3.1 Name-based Pub/Sub in FLARE
The communication between entities in FLARE is name-based
(to enable information centricity [33]), used both for disseminat-
ing instructions and reports between first responders, and also
learning/inference-related information sharing among SMEs. A
unified namespace, such as the one in Fig. 2, guides this information-
centric framework, and is a common interface that various primary
actors and components (i.e., first responders, SMEs, and Incident Co-
ordinator but not all the other social media users) have a local copy
of, and can use to indicate which subset of the incident namespace
they are interested in (i.e., subscribed to), and want to deliver to.

First responders, based on their assigned task (either based on
the incident or as part of their organizational hierarchy), subscribe
to a prefix in the namespace. For example, a firefighter FF1 assigned
with tasks related to “Fire Engine 1” will subscribe to “/Inciden-
tX/LA/Fire/Firefighting/FireEngine1”. The subscription can be at
any desired granularity: e.g., another firefighter, let us call him/her
FF2, who manages all fire engines in LA, will subscribe to “/In-
cidentX/LA/Fire/Firefighting”. Any publication 𝑃1 with a prefix
“/IncidentX/LA/Fire/Firefighting” will be delivered to FF2. Addition-
ally, FLARE expands the delivery according to the name hierarchy
to reach all relevant recipients.

To provide that capability in a flexible and efficient manner, here
we use an NDN architecture that is enhanced with recipient-based
pub/sub logic (as proposed in [8]). This forwarding logic matches an
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incoming packet with all entries that contain the packet’s name as
a prefix. Thus, 𝑃1 will be delivered to the subscribers of names with
the prefix containing “/IncidentX/LA/Fire/Firefighting”, including
FF1 aswell. In addition to the prefix, the publication names in FLARE
can include other attributes as well, such as tags and an arbitrary
number of input parameters. The named-SMP (NSMPs) contain-
ing instructions for first responders will be published (typically by
SMEs)with the following name format: “/[prefix]/tag=instr/[params]”.
The prefix (e.g., “/IncidentX/LA/Fire/Firefighting”) will be used to
forward the publication to the right recipients. The tag is used to
indicate the type of the message payload (e.g., instr). The params
are input parameters used by the recipients to process the received
information, as in “.../𝑝𝑎𝑟𝑎𝑚1 = 𝑣𝑎𝑙𝑢𝑒1/𝑝𝑎𝑟𝑎𝑚2 = 𝑣𝑎𝑙𝑢𝑒2/...”.

FLARE also uses name-based delivery for message exchange
among SMEs in its Federated Learning-based procedures, integrat-
ing the namespace with different classifiers. Each SME is orga-
nizationally in charge of processing and manually labeling SMPs
associated with certain prefixes, which they subscribe to. E.g., 𝑆𝑀𝐸1
in Fig. 1 subscribes to “/IncidentX/LA/Fire/SME”. The dispatcher
with 𝑆𝑀𝐸1 has specialized domain knowledge to label SMPs regard-
ing “Fire” and its sub-categories, e.g., “SurvivalSearch”, etc. There
are three types of SME-related messages:

1) SME-to-SME (S2S) messaging: An SME asking any SME or a
particular SME with the prefix 𝑝 to process an SMP (for calculating,
labeling, etc.): “/[𝑝]/tag=proc/[𝑝𝑎𝑟𝑎𝑚𝑠]”, where 𝑝𝑎𝑟𝑎𝑚𝑠 can include
SMP ID, confidence values, etc. The payload of this message type is
SMP content (e.g., a tweet json).

2) SME-to-Incident Coordinator (S2I) messaging: An SME sends
its processing result from training to incident coordinator for aggre-
gation: “/IncidentX/Coord/ tag=result/[𝑝𝑎𝑟𝑎𝑚𝑠]”, where 𝑝𝑎𝑟𝑎𝑚𝑠

can include which classifier it includes the result it is associated
with (whether C1 or C2). The payload of this message type is the
calculation result, e.g., weights.

3) I2S messaging: The incident coordinator distributing fully
trained models to a set of SMEs under prefix 𝑝 for synchroniza-
tion: “/[𝑝]/tag=model/[𝑝𝑎𝑟𝑎𝑚𝑠]”, where 𝑝𝑎𝑟𝑎𝑚𝑠 can include the
classifier, version number, etc. The payload of this message is the
most recent, fully trained model, after the incident coordinator’s
aggregation procedure is completed.

The namespace has a hierarchical structure (as a prefix tree).
The hierarchical levels are divided into three levels, namely root,
static, and dynamic levels to capture both how the namespace nodes
are managed, and their relationship with the SME classification
procedures. The root identifies the name of the namespace. The
static levels follow the organizational/incident command structure,
based on a template, created at the beginning, when the response
to the incident is initiated and organized. They remain static during
the disaster’s management. The dynamic levels represent more
fine-grained roles under the static levels. Name nodes within the
dynamic levels can be created, modified or removed as the disaster
unfolds, based on command decisions.

3.2 Learning and Inference in FLARE
The role of SMEs in FLARE is to map incoming SMPs to the right
names. To this end, each SMP goes through a pipeline of three
levels of increasingly detailed classifiers in order, namely: C1 (In-
cident relevance predictor); C2 (Organization predictor); and C3

(Fine-grained role predictor). The summary of the characteristics
of the three classifiers are provided in Table 1. They are preceded
by a crawler component, and are followed by a NSMP generator.
All three classifiers are text classifiers comprising natural language
pipelines, including word embedding techniques. Each classifier is
associated with respective levels of the namespace, with distinct
learning methods. C1 is a binary classifier, and predicts if an SMP
is relevant to the incident. C2 and C3 predict categories associated
with static and dynamic-level names respectively. C1 and C2 are
shared and the SMEs cooperate in a federated manner and their
classes are assumed to be static during the disaster, in contrast to
C3. All the classifiers, C1–3, use active learning to reduce labeling
effort with the help of dispatchers who are human labelers. Man-
ual labeling for C1 can be done by any dispatcher, while C2 and
C3 must be labeled by the specific dispatchers with SME-specific
organizational expertise. We now go into these in greater detail.

3.2.1 Crawler and C1 Classifier (Relevance Predictor).
Crawler: Each SME is equipped with a crawler component which

collects or crawls SMPs in real-time during the disaster. Each SME
has its own specialization; thus, it may want to collect SMPs that
can potentially match its geographic/topic expertise. For example,
SME1 in Fig. 1 (“LA Fire”) will look for SMPs limited to the LA area,
and contain potentially fire-related keywords, e.g., “fire”, “flame”,
“burn”, etc. Current social media platforms, such as Twitter, provide
APIs to facilitate such crawling. However, with the integration of
social media platforms with SMEs, SMEs can be notified of every
new SMP through a push notification. Note that our crawler is a
generic module, and could be a combination of API-specificmodules
implemented for multiple participating social media platforms. The
combination of all of the crawled SMPs, across all SMEs, constitute
the data set for learning and inference in FLARE. A benefit of
FLARE’s FL-based framework is that the crawled data (which can
be a very large number of tweets/messages) need only stay locally at
the SME it was originally received at for the most part, for learning
purposes. An SMP only needs to be shared when it needs to be
forwarded to another SME which has a better specialization to
handle it (explained in §3.2.2). This decentralized crawling also
allows each SME to change its crawling criteria throughout the
disaster, which is helpful as new terms may grow in usage and also
need more attention from first responders. Crawler uses keywords
to filter out SMPs that are clearly not disaster-related, so as to not
burden first responders with “all” generated SMPs in an area. Each
of these collected SMPs will be then processed through various
classifiers. The use of federated learning in FLARE spreads the
processing workload of SMP-to-name mapping across multiple
organizations and SMEs, which can potentially make the system
more scalable, as the number of generated SMPs grow.

C1 Classifier: The C1 module at the SME determines if the SMP
belongs to any prefix under the incident namespace root (e.g., “/In-
cidentX” in Fig. 2) or not; in other words, whether the SMP is
disaster-relevant or not. The primary aim of the C1 classification
module is to reduce the number of false-negatives, to make sure
that the maximum number of relevant SMPs get classified correctly.
Fig. 3 shows the C1 and C2 classifiers and their interaction with
other components. First, in the FL procedure for C1, each SME trains
its C1 model locally using its local training pool. In FLARE, we use
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Table 1: Summary of FLARE classifiers and their attributes
Classifier Prediction # of classes Class

Dynamicity
Namespace
Part for classes

Cooperative/
Local

Federated
Learning

Active
Learning

Labeler
Dispatchers

C1 Incident relevance Binary Static Root Cooperative Yes Yes Any
C2 Organization Multi-class Static Static Levels Cooperative Yes Yes SME-specialized
C3 Fine-grained role Multi-class Dynamic Dynamic Levels Local No Yes SME-specialized

Low confidence
SMPs

C2 Classifier

Dispatcher

Retrain C2 Training
Pool

C3 Classifier

LA Fire SME 

Incident Coordinator  Data path
 Local model update for C1
 Local model update for C2
 Global model update

Low confidence
SMPs

C2 Classifier

Dispatcher

Retrain C2 Training
Pool

C3 Classifier

LA Health SME 

Health SMPsFire SMPs

TWITTER

Relevant SMPs

Low confidence
SMPs

C1 Classifier

Crawler Crawler

Relevant SMPs

Low confidence
SMPs

C1 Classifier

Crawling based on
fire specific keywords

Crawling based on
health specific keywords

Retrain

C1 Training
Pool

Retrain

C1 Training
Pool

C1 Classifier
merger

Model aggregation and
updates for C1 and C2

C2 Classifier
merger

Figure 3: Federated learning for C1 and C2 classifiers

dispatcher-assisted active learning approach for the local training
of the model. For this purpose, we check the confidence of the ini-
tial classifications: the SMPs with low confidence are passed to the
dispatcher for manual labeling (more details in §4). We assume all
dispatchers, regardless of department, have enough knowledge and
expertise to determine whether an SMP is disaster-relevant or not.
The FL aggregation procedure (as in [18]) occurs periodically, where
each SME shares its training result with the Incident Coordinator
by using the result tag in messages. The role of the Incident Coor-
dinator is to aggregate these local calculations based on iterative
model averaging to create a global model. This is shared back with
all SMEs using the model tag in the messages, for synchronization.
The role of Incident Coordinator can be performed by one of the
organizational SMEs, or can be a separate physical server.

Whenever the C1 classifier receives a batch of SMPs, it classifies
them as either Relevant or Irrelevant and forwards all the Relevant
tweets to the C2 unit for further classification. It also picks all the
low confidence SMPs, both Relevant and Irrelevant ones, and passes
them to the dispatcher on the same SME, for manual labeling. From
these low confidence SMPs, those labeled by the dispatcher as being
Relevant SMPs “will get a second chance”: they will be passed to the
C2 classifier. This ensures that SMPs that might have been initially
mis-classified as Irrelevant by C1 will also reach C2, as a result of
the manual labeling by the dispatcher. Additionally, all the SMPs
labeled by the dispatcher are added to the C1 training pool. This
process ensures that SMPs are not erroneously mis-classified as
Irrelevant by C1’s initial classification, i.e., before the dispatcher’s
help. Having said that, a small portion of relevant SMPs may not
be passed on to the next stages if they are initially deemed Irrele-
vant with high confidence. However, as we show in our evaluation

results in §5, those SMPs are a very small percentage, and typically
include ‘borderline’ relevant SMPs, i.e., they express emotions and
opinions, without actionable tasks for first responders. For all the
classifiers, we use a simple variant of a deep neural network model,
which has proven to be effective in the past for text classification
for disaster related data [16, 19].

3.2.2 C2 (Organization predictor).
The C2 classifier receives the SMPs classified as Relevant from

the C1 classifier and the dispatcher. It uses 𝑠𝑚𝑝𝐼𝐷 to avoid redun-
dant classification for the SMPs that have been marked as Relevant
by both C1 and the dispatcher. The C2 classifier then maps disaster-
relevant tweets to the right department or organization name. Thus,
the output of C2 is a prefix in the static parts of the namespace,
which is then passed to the C3 classifier, at the SME that is respon-
sible for (and specializes in) that prefix. Fig. 3 illustrates the C2
classifier along with its learning mechanisms and interaction with
other components. Similar to C1, the C2 classifier uses dispatcher-
assisted active learning for making local updates to the model. The
global aggregation is done by the Incident Coordinator using the
model and result tagged messages. Unlike C1, the dispatcher might
not be as well-informed about all the other departments for C2
and thus not able to correctly label the SMP belonging to other
departments. In FLARE, we have specialized dispatchers and thus
SMEs with expertise in their respective departments. In such a case,
FLARE uses an SME-to-SME (S2S) message passing technique to
forward an SMP to the SME/dispatcher of the correct department
using the proc tag.

In this message passing technique, if a dispatcher of a source
SME cannot classify a low confidence SMP, the model prepares a
priority list-based on the prediction probability for all the other
departments, i.e., names in the static level of the namespace. This list
is used to forward the SMP to an SME that it most likely belongs to.
If the dispatcher of that SME is able to classify the SMP accurately,
the classification result is sent back to the C2 training pool of the
source SME. After successively forwarding the SMP through the
list of SMEs, and all of them are unable to classify the SMP, the last
SME marks the SMP as Irrelevant and forwards it back to the C1
classification pool of the source SME. This scheme is illustrated in
Fig. 4 where the Fire SME dispatcher receives a low-confidence SMP
which he or she is not able to classify. The model prepares the list of
most likely SMEs based on its prediction probabilities. As the list in
the figure suggests, the SMP has the highest likelihood of belonging
to the Health SME, followed by Police SME. The SMP is forwarded
to these SMEs in order. If any of them is able to classify the SMP,
the classification is added to the C2 training pool of the Fire SME.
If the last SME in the list, i.e., Police SME is not able to classify it
as well, then it is added to C1 training pool of the Fire SME as an
Irrelevant SMP. In either case we update the training pools of the
source SME. Since SMPs are fetched based on keywords, the source
SME has the highest likelihood of encountering a similar SMP in
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Figure 4: S2S messaging for C2 classification
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Figure 5: C3 classifier and NSMP generator

the future, and adding the SMP to the training pool of the source
SME is likely to be most beneficial.

3.2.3 C3 (Fine-grained role predictor) and NSMP Generator.
C3 Classifier: The C3 classifier aims at mapping SMPs to fine-

grained, i.e., longest possible, prefixes, thus also covering the dy-
namic levels of the namespace. The architecture of C3 and NSMP
generator and their detailed interaction with other components is
shown in Fig. 5 as well as an example of the finer C3 classes for
the Fire department. Such finer granularity classes are defined for
each department. We propose a distinct, customizable, C3 classifier
based on the detailed classes and requirements for each depart-
ment. Also, since its classification corresponds to ‘dynamic names’
which may change during the course of disaster, we only use Active
Learning-based training for the classifier, and do not use Federated
Learning. The C3 classifier can adapt to the dynamic changes in the
incident namespace. Whenever a new name is added to the names-
pace and the dispatcher receives new SMPs related to that name,
he/she can re-instantiate the classifier with an increased number of
classes. Active Learning ensures the rapid learning of the classifier,
without adding significant labeling load on the dispatcher. The C3
classifier forwards the classification results to the NSMP generator,
which uses this information to generate a NamedSMP which can
be forwarded to the appropriate first responders/volunteers.

NSMP Generator: The Named SMP (NSMP) Generator at each
specialized SME uses the output of its C3 classifier to construct
the right name to associate with the SMP, as an 𝑖𝑛𝑠𝑡𝑟 in the format
described in §3.1. It carries several important parameters, including
𝑠𝑚𝑝𝐼𝐷 and 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 number. An example name would look like “/In-
cidentX/LA/Fire/Firefighting/tag=instr/smpID=0/version=0”. These
NSMP parameters enable it to get transmitted over an ICN (e.g.,
NDN) to the right first responders subscribed to the correspond-
ing role in the namespace. The 𝑠𝑚𝑝𝐼𝐷 can be any value uniquely
identifying an SMP (e.g., tweet ID) for duplicate detection purposes
at the first responder end-device. The 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 is a counter value
(starting from 0), showing the version of this SMP’s publication.
This is important, as we may end up with multiple versions of the
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512
Nodes 256

Nodes #
Classes

ReLU
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Figure 6: DNN model with USE

same SMP being sent to different first responders, after correcting
the errors (hopefully a very small percentage) of past inference
results. A version value of 𝑛 means that this is the 𝑛-th duplicate of
this SMP’s name assignment and publication under this particular
static level, e.g., “/IncidentX/LA/Fire” in the example above. The
NSMP generator maintains the version values of recently published
SMPs in its history. Upon a new name assignment for the same SMP
that is different from the previous assignment in the same SME, it
publishes the SMP with the version value being incremented.

4 IMPLEMENTATION
We present the implementation details on the major components
of the FLARE framework.

Text Embedding.We use the Universal Sentence Encoder (USE)
with Transformer architecture [6] for generating the sentence em-
bedding. One of the advantages of USE is its ability to accept the
SMPs or the tweets directly without pre-processing. FLARE, how-
ever, still does the basic pre-processing involving special character,
URL and emoji removal, before feeding the SMPs to the sentence
encoder. The motivation behind incorporating such pre-processing
in FLARE is that we aim to generate the sentence embedding before
feeding it into the DNN model, so that it reduces the model size,
and the cost of performing model exchange and aggregation during
federated learning.

Classification Model. For classification, we use a NN-based
model as these have been shown to perform better for both binary
and multi-class classification [19]. We create a DNN model using
Tensorflow[1] which is depicted in Fig. 6. We chose this model
for its simplicity, while being efficient in classifying SMPs. We
avoid models mentioned in [16, 19] due to their complexity and
because they have the embedding layer inside the model which
makes it compute intensive. Additionally, it increases the cost of
model exchange in a FL environment where there is frequent model
exchange between the SMEs.

Active Learning. In our model, we use a threshold-based active
learning approach for all the classifiers. A batch of SMPs is passed
to the classifier. For each SMP, the classifier provides prediction
probabilities for each of the classes. The class with highest prediction
probability is taken as the predicted class for that SMP. In our
approach, we use this highest value of prediction probability as a
measure of confidence and compare it against a Threshold. If the
prediction probability value is below the threshold, we say that
the classifier has a low-confidence in classifying that SMP. These
low-confidence SMPs are selected from the batch and forwarded to
the dispatcher for manual labeling. After the labeling is complete,
these SMPs are added to the training pool. Once the training pool is
updated, it trains the classifier on the new SMPs in an incremental
fashion and flushes the data after training is complete.

Federated Learning. For FL, we use the vanilla Federated Av-
eraging algorithm proposed in [18]. We set our system on top of
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Figure 7: Woolsey dataset C1–3 classes & distributions

Table 2: Hyperparameter values for the DNN model
Hyperparameter Value/Description
Epochs and batch Epochs=20-25; batch size = 32

loss model binary_crossentropy for C1 classification;
categorical_crossentropy for C2 classification

Adam optimizer learning rate = 0.0001; metrics = accuracy

Early Stopping monitor = Validation accuracy; patience = 3-7;
min_delta=0.0001

Flower [5], a framework for FL.We further add S2S message passing
in FL environment in FLARE.

5 EVALUATION
5.1 Datasets and Metrics
We use two different sets of data in our experiments:

CrisisNLP/CrisisLex. This dataset is a combination of the Cri-
sisNLP [14] and CrisisLex [21] datasets. It includes tweets col-
lected from the Nepal Earthquake, California Earthquake, Typhoon
Hagupit, and Cyclone PAM [19]. We primarily use this data set for
the evaluation of our C1 and C2 classifiers and to validate our DNN
model by comparing it with the existing state-of-art models. We
use the dataset’s original labels as provided in [14, 21], for our C1
and C2 classes.

CaliforniaWildfires. The second dataset consists of tweets we
collected during the relatively recent major California Wildfires,
especially the Woolsey Fire (in Southern California) [29] in Novem-
ber 2018. In our experiments, we mainly focus on the peak day of
the fire, i.e., Nov 10th. For evaluation purposes, all the tweets in the
data set were annotated by students and faculty. The C1–3 classes
and the per-class distributions are displayed in Fig. 7.

Evaluation Metrics
The major metrics we focus on are the following:
AUC. The Area under the ROC curve (AUROC or AUC) is a

good measure to represent the degree of separability of different
classes. We use AUC to compare our DNN model against existing
models, primarily for validation purposes.

Accuracy, Recall and F1-score. Throughout our evaluations,
we explore accuracy for our various classifiers. In addition to ac-
curacy, we measure recall and F1-score as well. For the binary
classifier of C1, we pay special attention to recall, since we aim to
minimize the false negatives, or type-2 error, to make sure that a
vast majority of disaster-relevant SMPs get predicted as disaster
relevant. For the multi-class classifiers C2 and C3, we focus on
F1-score to assess how well we are able to minimize false positives
and false negatives.

Number of SMPs labeled. To show the effectiveness and effi-
ciency of active learning, we measure the number of SMPs that are
picked for manual labeling by the dispatchers. A good active learn-
ing technique must enable the classifier to classify the SMPs with

reasonable accuracy, while reducing the manual labeling efforts
imposed on the dispatchers.

Number of S2S messages. While there are various message
types in federated learning, we specifically measure the number
of SME-to-SME (S2S) messages needed for handing SMPs to the
correct dispatchers/organizations. Considering Fig. 4, let us assume
the SMP belonged to ‘LA Police’. In that case, overall 3 S2S messages
will be required (‘LA Fire’ to ‘LA Health’, then to ‘LA Police’, and
eventually back to ‘LA Fire’). We aim to reduce this messaging, with
reasonable accuracy.

5.2 Analyzing FLARE’s Learning Elements
We investigate the performance of the major elements of FLARE
using an 80-20 split of the dataset (80% training (with 1/8 of that as
our validation set), and 20% testing). We first use the CrisisNLP/Cri-
sisLex data sets to demonstrate the efficacy of our overall approach,
and then examine FLARE’s performance with theWoolsey Fire data.

5.2.1 Classifier Model: DNN-based with USE.
As described in §4, we have a DNN model at the core for our

classifiers. Table 2 provides the hyperparameters determined to
be reasonable experimentally. We use a batch size of 32 and 20-
25 epochs in our experiments. To avoid overfitting, we use early
stopping based on the accuracy of the validation set with ‘patience’
of 3 to 7, and a minimum delta of 0.0001. We also use the Adam
optimizer [17]. We get approximately the same performance with
other optimizers as well. For the loss model, we use binary cross-
entropy for C1 classifier, and categorical cross-entropy for the C2
classifier. For the C3 classifier, we can use either of them, based on
the number of classes. We use the categorical cross-entropy if there
are more than two classes because it assumes that all the classes
are mutually exclusive, and an SMP must belong to only one of the
classes at a time. Thus, it provides prediction probabilities for all
the classes that sum up to 1. To avoid over-fitting, we use ‘early
stopping’ based on the accuracy of validation set with patience of
3 and a minimum delta of 0.0001.

We compare our USE-based classifier model with the existing
state-of-the-art models discussed in §2. Using the CrisisNLP/Cri-
sisLex data set, previously explored in [14, 21], we evaluate our
model by comparing it against models investigated in [16, 19]. For a
fair and thorough comparison, we use the same train/test data split,
and use the same metrics for evaluating the performance. Table 3
shows the AUC score for the binary classifier, i.e., C1 in FLARE,
which predicts if a tweet is relevant or not. As the table shows, using
a dense layermodel with USE (whichwe use in FLARE) is able to out-
perform the non-neural network models, i.e., linear regression (LR)
and SVM, and performs on par with the CNN-based model of [19].

We next evaluate the performance of the multi-class classifier,
C2, in FLARE, using the metrics of accuracy and F1-score, on the
same labeled data. As the Table 3 shows, just as in the case of C1,
our DNN-based model with USE outperforms SVM, and is on par
with CNN𝐼 for C2 as well. These results show that our DNN-based
model performs reasonably well.

5.2.2 Active Learning.
We now add the active learning (AL) element to our core DNN-

based model, and investigate its impact. We use the Woolsey Fire
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Table 3: Performance metrics for C1 (Binary) and C2 (Multi-class) classifiers

Disaster Name C1 - AUC C2 - Accuracy C2 - Macro F1
LR
[19]

SVM
[19]

CNN𝐼
[19]

CNNAAf
[16]

DNN+USE
(FLARE)

SVM
[19]

CNN𝐼
[19]

DNN+USE
(FLARE)

SVM
[19]

CNN𝐼
[19]

DNN+USE
(FLARE)

California Earthquake 0.755 0.747 0.783 0.836 0.772 0.7563 0.7752 0.7846 0.7 0.71 0.66
Cyclone PAM 0.906 0.9074 0.926 0.926 0.959 0.6788 0.6901 0.7459 0.63 0.65 0.71

Nepal Earthquake 0.826 0.836 0.848 0.875 0.844 0.6961 0.708 0.7381 0.55 0.55 0.59
Typhoon Hagupit 0.759 0.7764 0.858 0.883 0.894 0.711 0.8151 0.744 0.68 0.79 0.68

Figure 8: Effectiveness of active learning for C1 & C2

data throughout this sub-section, with an 80-20 training-test divi-
sion: in the case of AL, sample tweets get ‘picked’ from the 80%
training set for manual labeling and training, rather than the whole
training set. In both scenarios (with and without AL), the same 20%
testing set is used to measure the classifiers’ performance. We train
the model for a constant 20 epochs and do not use early stopping,
as the training is incremental and we do not have sufficient labeled
data to prepare a validation set. All the other hyperparameter config-
uration is the same as described in Table 2. These hyperparameters
can be re-configured while instantiating the classifier. Fig. 8 shows
the comparison of the active learning-based approach of FLARE vs.
the same DNN-based model, but without active learning (a more
traditional learning approach), for C1 (among all tweets) and C2
(among disaster-relevant tweets). FLARE’s active learning approach
reduces the manual labeling effort (∼85% reduction for C1 and ∼50%
reduction for C2), while achieving roughly the same accuracy and
recall/F1-score.

5.2.3 Federated Active Learning.
We then make our approach of active learning with DNN-based

models federated, resulting in a federated active learning (FAL)
framework. We have 4 distinct SMEs participating in the federated
learning procedure, each SME being responsible for a distinct C2
class/name of Fig. 7, and its subsidiary C3 classes/names. We inves-
tigate our federated approach and its design choices on the same
80-20 division of the tweet dataset for training-testing, with the
data distributed among the 4 SMEs.

An important aspect of FLARE is keyword-based data distribu-
tion, which is achieved with decentralized crawlers at each SME
with customized keywords. An alternate approach, would be a uni-
form distribution, where each SME owns disjoint tweet pools of the
equal size, distributed randomly. While there may be multiple ways
in which the latter uniform distribution may be realized (the help
of a central distributor, a purely budget-based crawling criteria in a
decentralized way, etc.), we study this alternative assuming theo-
retically that this distribution is achieved. As Table 4 shows, for C1,
our keyword-based distribution does not diminish the performance
of federated learning compared to uniform distribution; in fact, it
improves it slightly. The advantage of keyword-based distribution
becomes more evident for the C2 classifier, as shown in Table 5: it
leads to similar (even slightly better) accuracy and F1-score, but
importantly it reduces the manual labeling effort. This shows the

benefit of our decentralized keyword-based distribution of crawling
of tweets in FLARE.

Another important aspect of the federated learning in FLARE is
SME-to-SME (S2S) messaging, aimed at delivering each SMP to the
SME specialized and best suited to process and label it. This type of
messaging is only applicable for the C2 classification (and not C1).
As Table 5 shows, whether with uniform or keyword-based distri-
bution, having the S2S messaging capability improves the accuracy
and F1-score quite significantly. Note that when S2S messaging is
disabled (i.e., a traditional FAL approach), all manual labeling (of
low-confidence tweets) is purely local (i.e., locally labeled tweets):
each SME’s dispatcher canmanually label only those tweets crawled
by its own SME and belonging to its corresponding C2 class/name
(hence, it has no way of passing it to the ‘right’ SME). As the table
also shows, with keyword-based approach, we cause fewer S2S
messages to be passed on (i.e., reduce communication overhead)
compared to a uniform distribution approach. We take advantage
of name-based pub/sub [9] for this S2S messaging, which delivers
content with minimum communication overhead, compared to re-
quest/response, polling, or broadcast. Note that C3 does not use fed-
erated learning, thus we do not report on it here. As Tables 4 and 5
show, our keyword-based distribution and S2S messaging capability
achieves the best performance (in terms of accuracy/F1-score) with
the lowest overhead (in terms of manual labeling effort and S2S mes-
saging, when applicable), which are critical in disaster management.

5.3 Fully Streaming Data with Pipelining
We now evaluate FLARE in a practical application scenario, which
has two significant features. First, we consider fully streaming data;
i.e., our system (at all three classification stages) starts with no ini-
tial training data (which can happen when a disaster hits), and has
to process them one by one in an online manner. For this purpose,
we use all 100% of the Woolsey Fire data as test data (i.e., tweets
we want to map and deliver to first responders). This is in contrast
to our experiments in §5.2, where we had a 80-20 division of data
for training and testing. Second, input tweet data is processed by
FLARE’s three classifiers (C1–C3) in a pipeline (the stages described
in §3.2), taking the inter-dependency between the various classifiers
into account. This is in contrast to experiments in §5.2, where we
analyzed independent classifiers.

Table 6 shows the summary of results in this setting, for C1–C3.
For accuracy and recall/F1-score, we report on both initial and
dispatcher-assisted classification. For example, for accuracy, the
initial accuracy refers to accuracy before any active learning proce-
dure, while dispatcher-assisted accuracy accounts for the manual
labeling performed by dispatchers on selected tweets as well. Low
confidence tweets with potentially incorrect initial classification
are corrected by the dispatchers’ intervention, and then fed to the
next stage in the pipeline. The overall accuracy for each classifier
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Table 4: Alternatives for FAL
in C1: uniform vs. keyword-based

Uniform Keyword-based
(FLARE)

Accuracy 0.8738 0.8766
Recall 0.9425 0.9499
# of tweets
labeled 872 831

Table 5: C2 FAL: uniform vs. keyword-based, with and w/o S2S messaging
Uniform w/o
S2S messaging

Uniform with
S2S messaging

Keyword-based w/o
S2S messaging

Keyword-based with
S2S messaging (FLARE)

Accuracy 0.6786 0.7237 0.1767 0.7368
F1-score 0.5804 0.6999 0.0669 0.7130
# of low confidence tweets 2124 1434 1312 1172
# of tweets labeled 542 1434 376 1172
# of tweets labeled locally 542 357 376 393
# of S2S messages Disabled 2661 Disabled 1866

Table 6: Fully streaming and pipelined data on C1–3
C1 C2 C3 (avg)

Accuracy (initial) 0.8262 0.6847 0.8553
Accuracy (dispatcher-assisted) 0.9091 0.8963 0.9291
Recall/F1 (initial) 0.9462 0.6183 0.8238
Recall/F1 (dispatcher-assisted) 0.9838 0.8589 0.9034

# of input tweets
3521

(of 3521)
2613

(of 2656)
2342

(of 2656)
# of correctly classified tweets 3201 2342 2176
# of tweets labeled 908 1223 441
Overall accuracy 0.9091 0.8818 0.8193

Figure 9: C1 performance across FL iterations
refers to the dispatcher-assisted accuracy when compared to the
ground truth in the complete data set, rather than being based on
the ground truth in the subset of the data that the respective classi-
fier received as input. As Table 6 shows, overall accuracy degrades
going through C1-C3, as each classifier introduces inaccuracies
carried over to the next classifier in the pipeline. Note that C1 and
C2 each have a single shared model (in the FAL setting), while C3
has four separate individual models across all four SMEs running
locally. The C3 results in Table 6 are presented as weighted averages
across those four SMEs. Also note that for C1, we focus on recall
(for the ‘relevant’ class), while for C2 and C3 we focus on F1-score.

FLARE’s C1 achieves very high accuracy and recall for the task of
predicting if the tweet is relevant to disaster or not. This is achieved
with only 25% of the tweets (908 out of 3521) being manually la-
beled, without the need to have any initial trained data. The high
dispatcher-assisted recall value (0.9838) is significant since it means
that of 2656 total relevant tweets in the data set, 2613 get fed to
C2 for further processing. Only 43 relevant tweets (1.62%) are lost
going from C1 to C2. But even this number is undesirable if they
report critical life-threatening situations needing immediate atten-
tion. Having said that, upon examination of these 43 tweets, we
observed that they are ‘borderline’ relevant tweets: they appeared
to express emotions and opinions, including political ones. None
of them explicitly indicated an actionable task for first responders.
Thus, our C1 does not toss out truly relevant SMPs which include
an actionable item. Fig. 9 provides the accuracy and recall for rele-
vant class values before and after dispatcher assistance throughout
the course of classification. Each iteration represents an instance
when the aggregated model was created with FL by the Incident
Coordinator and sent back to all SMEs. As new information with
new terms arrive, we see a drop in accuracy, but we maintain recall,
ensuring no relevant information is lost.

FLARE achieves good initial accuracy and F1-score for C2, and
much higher accuracy when dispatcher-assisted, with reasonable

amount of manual labeling effort. Considering the total ground
truth of 2656 disaster-relevant tweets in the data set (which also
includes those 43 tweets C1 mistakenly discarded as irrelevant), C2
achieves 88.18% overall accuracy; 2342 and 271 tweets get passed
to the correct and incorrect organizational SMEs respectively, for
further processing for C3.

FLARE also achieves high accuracy and F1-score in C3, as shown
in Table 6, averaged across the four SME’s C3’s. This is achieved
with very little manual labeling requiring only 18% of C3’s input to
be labeled (441 out of 2176). Out of all 2656 disaster-relevant tweets,
2176 of them (81.93%) get mapped to the correct prefix (at NSMP
generator), which demonstrates a very good performance.

Summarizing the overall accuracy and interpreting them from
a first responder point of view, the three classifiers and the three
corresponding levels of the namespace achieve:

1) 98.38% of all disaster-relevant tweets get published in the net-
work and will be delivered to “some” first responder(s), whether or
not to the right organization/role. 1.62% of tweets deemed disaster-
irrelevant by C1 are not re-examined. But as noted, these are bor-
derline, non-actionable tweets.

2) 88.18% of all disaster-relevant tweets are published to first
responder(s) in the right organization, whether or not it is the right
fine-grained role. 10.2% of disaster-relevant tweets are delivered
to the incorrect organization, e.g., tweets with topic under ‘Fire’
getting delivered to first responders with roles under ‘Medic’. We
can recover from this inaccuracy in FLARE, as first responders
can provide feedback on them to dispatchers post-delivery, and
potentially forwarding inaccurately classified tweets to the right
department, since they are equipped with the incident namespace.

3) 81.93% of all disaster-relevant tweets get published to the cor-
rect organization’s first responders having the right role, at the
finest granularity possible. 6.45% of disaster-relevant tweets get
delivered to first responder(s) in the right organization, but not with
the correct fine-grained role, e.g., a tweet with topic ‘/Medic/An-
imalRescue’ getting delivered to first responders in the role of
‘/Medic/EMTandMedicalNeed’. This type of inaccuracy (i.e., the
6.45%) is a more tolerable inaccuracy, as first responders within
an organization can easily pass a tweet to a more suitable team or
individual in the same organization. The post-delivery feedback
from first responders can also help recover from this inaccuracy.

5.4 Comparison to Keyword Matching
Classification based on NLP triumphs over naive methods like
keyword matching due to ability to capture semantic information
from the text. For disaster response, capturing semantics is even
more critical. First, it enables in retrieving tweets which are actually
relevant to the disaster and need emergency response. Second, it
helps inmapping the disaster relevant tweets to the correct response
team. To show that our NLP-based classification is superior, we
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Table 7: Keyword matching results
C2 C3

Including
tweets
belonging to
“Other” Class

Total Tweets 2656 2656
Tweets mapped 3441 4189
Tweets mapped correctly 963 483
Accuracy 0.3626 0.1819

Excluding
tweets
belonging to
“Other” Class

Total Tweets 1169 1169
Tweets mapped 1541 1887
Tweets mapped correctly 654 483
Accuracy 0.5595 0.4132

also evaluated the performance of keyword matching for mapping
tweets to their C2 and C3 classes. The keywords used for matching
are the same as those for crawling and partitioning in FLARE.

To achieve an apples-to-apples comparison with FLARE, we ig-
nored ‘irrelevant’ tweets, which comprises 25% of the whole dataset.
Further since the “Other” tweets, although relevant, do not provide
an actionable request to first responders. Our comparison examines
both with and without the Other class. Finally, since a single tweet
may match multiple keywords, even if one mapping is correct, we
say that the tweet can be mapped to the right department/role. We
measure the accuracy of keyword matching, based on the tweets
mapped correctly divided by the number of unique tweets.

Table 7 shows the accuracy with keyword matching for C2 and
C3 classes. Even after excluding the Other class and enabling the
mapping to multiple classes, we achieve only a 56% and 41% accu-
racy for C2 and C3 respectively. This is significantly lower than
what we achieve using the NLP-based classification, as shown in
Table 6.

6 SUPPORTING DYNAMIC NAMESPACES
6.1 Namespace Updates

During the course of a disaster, the incident namespace may
have to be updated as the situation evolves. These updates may be
because of addition or deletion of roles, as well as changes in the
command chain, according to the real-time needs of the emergency
response tasks. These updates can be applied at various levels of
the namespace. Existing name-based pub/sub methods, such as [8]
provide mechanisms for making changes to the namespace, and
updating subscription tables at ICN routers and rendezvous points,
to adapt the downstream paths to the new namespace. In FLARE,
this is more challenging, as the namespace is integrated with the
classifiers: names are also classifier classes. The result of a change
may be that the set of classes of a classifier would also have to be
changed, i.e., re-trained. This is important to explore, as making
changes to working classifiers can be burdensome, especially if
it means a new classifier has to be trained fully from scratch. We
describe how FLARE gracefully handles such updates.

Different types of namespace updates may have different impacts
on the updating of the classifiers. Here, we focus on sub-namespace
at the level of fine-grained roles, i.e., C3 (Fig. 2), where the leaf
name nodes are classes in the classifier. Thus, it is important to
distinguish between two types of changes in the namespace.

6.1.1 Namespace updates that do not require classifier update: Gen-
erally, it may be desirable to not to have to change the classifier,
as much as possible. This helps avoid the overhead of training the
classifier. To this end, we identify cases of namespace changes that
can be solely handled through the name-based pub/sub delivery
mechanism. As notable cases, changes such as name deletion and

name merging do not require changes to the classifier. In name
merging, two or more names in the incident namespace are merged.
As illustrated in the (sub-)namespace updates in Fig. 10, this merg-
ing can happen between the names situated at the same level or
at different levels. In Fig. 10(a), let us assume names ‘b’ and ‘c’
(and not ‘a’) are existing classes in C3. At some point, the depart-
ment in charge of ‘a’ decides to merge ‘b’ and ‘c’, instead creating
a new name ‘bc’. The goal is for all SMPs formerly classified as
either ‘b’ (published to “/a/b”) or ‘c’ (published to “/a/c”), to now
be classified as “bc” (published to “/a/bc”). It is easy to see that this
namespace change does not need a change in classifier: the classi-
fier can still continue working un-interrupted, using ‘b’ and ‘c’ as
distinct classes. The NSMP Generator at the SME handles the task
of merging post-classifications, generating the NSMP with name
“/a/bc”. Another example for name merging is shown in Fig. 10(b),
where name ‘c’ is initially the only name corresponding to a class
(’b’ is an intermediate name). While this merging makes changes
in the hierarchical structure, it still does not require changes in the
classifier, using logic similar to the case in Fig. 10(a).

(a) Name merging at same level (b) Name merging across different levels

Figure 10: Namespace updates that do not require classifier
update

6.1.2 Namespace updates that do require classifier update: In con-
trast to the changes described above, changes such as addition of
a new leaf name node, or splitting an existing leaf name into two
new names, require updating the classifier. In the case of name
splitting, a single name in the incident namespace is split into two
or more names as shown in the examples in Fig. 11. In Fig. 11(a), we
assume name ‘b’ (and not ‘a’) is a class in C3 . At some point, the
department in charge of ‘a’ decides to split ‘b’ and instead creates
two new names ‘b1’ and ‘b2’. The goal is for some SMPs formerly
classified as ‘b’ (published to “/a/b”), to now be classified as either
‘b1’ (published to “/a/b1”) or ‘b2’ (published to “/a/b2”). This names-
pace change will require the classifier to change and be re-trained.
This is because the classifier initially does not recognize the dif-
ference between ‘b1’ and ‘b2’, but it now needs to. FLARE allows
for such a change in the classifier, which can happen online and
incrementally, thanks to FLARE’s active learning with the help of
dispatcher labellers. The NSMP generator also will be updated (as in
the previous case) to now include ‘b1’ and ‘b2’. Another example for
name splitting is shown in Fig. 11(b), where name ‘c’ is split to leaf
names ‘c1’ and ‘c2’, where the two get placed at two different levels
of the hierarchy. Same as in Fig. 11(a), the classifier has to adapt
itself to classify some of ‘c’-class SMPs into ‘c1’ and some into ‘c2’.

It is important to note that the above namespace updates are con-
fined to C3 classifiers. C3 is fully local and the overhead of updating
it is reasonable. This justifies our design choice on the guideline
for static and dynamic levels (Fig. 2). Updates to C2 is more compli-
cated as C2 is federated across multiple SMEs belonging to different
departments. C2 name changes are organization-level changes, and
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needs to be coordinated across the departments. Dynamics at the
C2-level is part of work we will explore in the near future.

(a) Name splitting at same level (b) Name splitting across different levels

Figure 11: Namespace updates that require classifier update

6.2 Evaluation of Namespace Updates
We evaluate the instantiation of a new classifier with increased

number of classes due to a change in the namespace that requires a
change in the classifier. We compare it against the case of a static
classifier which has a fixed number of classes throughout. From the
Woolsey fire dataset, we pick 1K tweets belonging to the C3 classes
under ‘Infrastructure’ in Fig. 7. Let us assume that in the beginning,
during the first 400 tweets, we have a name ‘Structure and Shelter’,
that combines tweets belonging to the ‘Structure, Building & Road
Damages’ and ‘Shelter, Shortage & Outage’ classes. For the last 500
tweets, we split the class ‘Structure and Shelter’ into their actual
categories,i.e., ‘Structure, Building & Road Damages’ and ‘Shel-
ter, Shortage & Outage’. The tweets are passed to the classifier in
batches with size of 10 tweets per batch. Fig. 12 and Fig. 13 show the
accuracy and manual labeling effort for this dynamic classifier case,
alongside the fixed classifier case, i.e., one that keeps going without
any splitting. As Fig. 12 shows, after 400 tweets, the accuracy of
the static classifier (in red) drops and remains low throughout, as
the classifier is unable to distinguish between ‘Structure, Building
& Road Damages’ and ‘Shelter, Shortage & Outage’. The dynamic
classifier, on the other hand is able to rectify the drop in accuracy.
There is a reasonable increase in the load on the dispatcher, but
that is alleviated over time as the new classifier gets trained. This
ability of FLARE to instantiate a new classifier based on namespace
changes makes it adaptive to namespace changes at C3 level. In
the future, we will utilize the knowledge of the previous classifier
having fewer classes by using a continual learning system [25] to
further reduce the manual labeling effort.

Figure 12: C3 accuracy while performing class split (split at
400 tweets)

7 CONCLUSION
We presented FLARE, a framework for disaster response that syn-
ergistically combines Federated Active Learning with name-based
information dissemination using ICN. FLARE assigns the right
name to content, such as a social media post (SMP), so that all rele-
vant content is delivered to the right recipients in a timely manner.
We focused on the important application of SMPs being used for

Figure 13: C3 tweets labelled while performing class split
(split at 400 tweets)

updates and reports during disasters which have to be delivered to
the right first responders.

FLARE performs the mapping of SMPs to the right names in an
online, real-time manner using NLP/ML-based Social Media En-
gines (SMEs). FLARE uses active learning to reduce what would
otherwise be a very challenging human manual labeling effort.
FLARE further uses federated learning so that various organiza-
tions and their SMEs and dispatchers can cooperate to disseminate
critical information towards the appropriate first responders. By
coupling the classifiers in FLARE with the incident management
namespace, FLARE allows SMPs to be delivered to the correct SMEs
and thereby to the right first responders, leveraging the expertise
of organization-specific dispatchers for labeling, based on an initial
classification. We showed that by using keyword-based decentral-
ized crawling and messaging among SMEs, FLARE both reduces
the labeling overhead (because of keyword-based crawling) and
improves the classification accuracy (because of message passing).
Processing streaming real-world Twitter trace data from the Califor-
nia Wildfires, we showed that FLARE maps and delivers 81.93% of
all disaster-relevant tweets to the right first responders, at the finest
level of granularity of the namespace. This can significantly help
in disaster response and improve outcomes. FLARE’s namespace-
driven multi-classifier pipeline allows even a subset of inaccurately
labeled tweets to reach first responders who are “somewhat rel-
evant”, e.g., the right department, and leverage their knowledge
and expertise to then get them to the right first responder. The
framework allows dynamic namespace changes by modifying the
fine-grained classifier with minimal labeling and loss in accuracy.

Whilewe did not explore security concerns in this paper, FLARE’s
name-based pub/sub framework can be integrated with traditional
content-based security for integrity and authentication [31], and
NDN’s encryption methods for confidentiality [37]. The use of a
dynamic namespace may additionally raise security issues, such
as the need to update a first responders’ access privileges as their
roles change due to namespace change, which can be addressed
using content-based security methods such as NDN’s attribute-
based access control method [36] with proper attribute/key update
mechanisms. Handling the full spectrum of other security issues
will be explored in future work.
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