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Abstract

Microbial community members exhibit various forms of interactions. Taking advantage of

the increasing availability of microbiome data, many computational approaches have been

developed to infer bacterial interactions from the co-occurrence of microbes across diverse

microbial communities. Additionally, the introduction of genome-scale metabolic models

have also enabled the inference of cooperative and competitive metabolic interactions

between bacterial species. By nature, phylogenetically similar microbial species are more

likely to share common functional profiles or biological pathways due to their genomic simi-

larity. Without properly factoring out the phylogenetic relationship, any estimation of the

competition and cooperation between species based on functional/pathway profiles may

bias downstream applications. To address these challenges, we developed a novel

approach for estimating the competition and complementarity indices for a pair of microbial

species, adjusted by their phylogenetic distance. An automated pipeline, PhyloMint, was

implemented to construct competition and complementarity indices from genome scale met-

abolic models derived from microbial genomes. Application of our pipeline to 2,815 human-

gut associated bacteria showed high correlation between phylogenetic distance and meta-

bolic competition/cooperation indices among bacteria. Using a discretization approach, we

were able to detect pairs of bacterial species with cooperation scores significantly higher

than the average pairs of bacterial species with similar phylogenetic distances. A network

community analysis of high metabolic cooperation but low competition reveals distinct mod-

ules of bacterial interactions. Our results suggest that niche differentiation plays a dominant

role in microbial interactions, while habitat filtering also plays a role among certain clades of

bacterial species.

Author summary

Microbial communities, also known as microbiomes, are formed through the interactions

of various microbial species. Utilizing genomic sequencing, it is possible to infer the com-

positional make-up of communities as well as predict their metabolic interactions. How-

ever, because some species are more similarly related to each other, while others are more
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distantly related, one cannot directly compare metabolic relationships without first

accounting for their phylogenetic relatedness. Here we developed a computational pipe-

line which predicts complimentary and competitive metabolic relationships between bac-

terial species, while normalizing for their phylogenetic relatedness. Our results show that

phylogenetic distances are correlated with metabolic interactions, and factoring out such

relationships can help better understand microbial interactions which drive community

formation.

This is a PLOS Computational Biology Methods paper.

Introduction

Recent advances in microbiome research have accelerated the study of the composition and

function of microbial communities associated with different environments and hosts. Studies

have shown the association of microbial communities with human health and diseases includ-

ing type 2 diabetes [1], and efficacy of treatment including immunotherapy to cancers [2]. To

reveal the mechanisms behind the microbiome-host interactions, it is important to understand

how microbial species form communities and how the microbial communities interact with

the host to mediate various biological processes [3].

Studying the principles underlying the structure and composition of microbial communi-

ties is of long-standing interest to microbial ecologists. The dynamics which govern microbial

community assembly have been extensively debated, and it is disputed upon as to what extent

the role of neutral or deterministic dynamics plays in microbial interactions [4, 5]. Some stud-

ies support the neutral hypothesis, which assumes that community structure is determined by

random processes [6]. Other theories suggest that community assembly dynamics are govern

by deterministic processes such as habitat filtering and niche differentiation [7, 8]. While

many studies focus on species abundances to study community assembly, Bruke et al. [9]

showed that the key level to address the community assembly may not lie at the species level,

but rather the functional level of genes. While the aforementioned theories of community

assembly may not be all-encompassing, they highlight varied dynamics which can contribute

to community structure and affect the assembly of complex microbial communities.

Some studies have also shown that microbial communities tend to be more phylogenetically

clustered than expected by chance, harboring groups of closely related taxa that exhibit micro-

scale differences in genomic diversity [10–12]. In one such study, marine bacterial communi-

ties were observed at various locations and it was reported that local communities were

phylogenetically different from each other and tend to be phylogenetically clustered [12].

However, some microbial communities have also shown the opposite patterns, in which taxa

are less clustered and are less related than expected by chance [13, 14]. Together, these studies

have explored the relationship between functional distances/metabolic overlap with phyloge-

netic relatedness, and they have given rise to competing theories of ‘habitat-filtering’ and

‘niche differentiation’: habitat filtering suggests that dominant species exhibit similar func-

tional traits, whereas niche differentiation says that phylogenetically similar species are unable

to co-exist due to similar traits and resource overlap [3]. Nevertheless, several methods have

been developed for inference of bacterial interaction network based on the assumption that

phylogenetically related species tend to co-exists. For example, Lo et al. [15] developed phylo-

genetic graphical lasso approach for bacterial community detection, based on the assumption

PLOS COMPUTATIONAL BIOLOGY Model-based and phylogenetically adjusted quantification of metabolic interaction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007951 October 30, 2020 2 / 17

1R01AI143254 to Y.Y.] and the National Science

Foundation [2025451 to Y.Y]. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007951


that phylogenetically correlated microbial species are more likely to interact to each other.

Additionally, systematists have long argued that the comparison between species is not an

independent process [16]; this is largely driven by the fact that related organisms share many

genes and traits. The confounding effect of shared phylogeny has since inspired the develop-

ment of methods and techniques, such as phylogenetically independent contrasts and phyloge-

netic generalized lease squares, to account for the dependent effect of phylogeny when

comparing across species [17–19].

The study of microbial interactions and the dynamics which govern such interactions are

important in providing insights to community assembly and ultimately processes which influ-

ence host health and disease. Insights into community complementarity and competition may

also uncover symbiotic and antagonistic relationships and can be used to provide prospective

candidates for probiotics. Leveraging the increasing availability of microbiome datasets, novel

statistical and computational methods have been developed to infer bacterial interaction net-

works from co-occurrence information. Some examples include, SparCC [20], a tool to infer

correlations by correcting for compositional data. Conner et al. demonstrated the importance

of using null model to infer microbial co-occurrence networks [21]. Mandakovic and col-

leagues compared microbial co-occurrence networks representing bacterial soil communities

from different environments to determine the impact of a shift in environmental variables on

the community’s taxonomic composition and their relationships [22]. MDiNE is another

recently developed model for estimating differential co-occurrence networks in microbiome

studies [23]. Notably, Faust et al. [24] applied generalized boosted linear models to infer thou-

sands of significant co-occurrence and co-exclusion relationships between 197 clades occur-

ring throughout the human microbiomes; their study revealed reverse correlation between

functional similarity and phylogenetic distance among bacterial species, which is unsurprising.

Despite of the numerous advances, it has been considered difficult to infer microbial commu-

nity structure based on co-occurrence network approaches [25].

Functional profiles or biological pathways inferred from genomic sequences of the

microbial species can provide mechanistic information about the functional traits of the

microbes and potential cross-feeding. Genome-scale metabolic models (GEMS) can poten-

tially provide mechanistic explanations to the association of bacterial species that are discov-

ered by analyzing their co-occurrence in diverse microbial communities [26]. Many

automated tools [27–30] have been made available for genome scale metabolic reconstruc-

tions (GENREs), however to get quality models these automated methods often require

additional manual refinement including checks for stoichiometric consistency, defined

media, and gap filling [31]. The challenges of manual curation often make it difficult to con-

struct GEMs for a large consortium of microbes. Notably, Machado et al. [32] developed an

automated tool called CarveMe, which uses a top-down approach to build species and com-

munity level metabolic models which the authors claim is able to produce comparable

results to other tools while also reducing manual intervention [32, 33]. The ability to predict

metabolic network of microbial members through GENREs has led some studies to focus on

inferring levels and types of interaction among microbial species via metabolic models. Levy

and Borenstein [34] introduced pairwise indices of metabolic interaction: the metabolic

competition index and complementarity index, which are computed based on the overlap-

ping and complementarity of the compounds that are contained in the metabolic models,

respectively. By analyzing the metabolic interactions among 154 human-associated bacterial

species and comparing the computed indices with observed species co-occurrence in micro-

biomes, the authors concluded that species tend to co-occur across individuals more fre-

quently with species with which they strongly compete, suggesting that microbial assembly

is dominated by habitat filtering [34]. Similar metrics have been introduced to quantify the
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metabolic complementarity and competition between bacterial species, such as MIP (meta-

bolic interaction potential) and MRO (metabolic resource overlap) [26].

By nature, two phylogenetically-close microbial species share similar functional profiles or

biological pathways due to their genomic similarity. Additionally, co-evolutionary studies have

also shown that comparative analyses between species cannot be assumed to be statistically

independent, as comparative data of similarly related species correlate with each other due to

shared ancestry [16, 35–37]. Thus, without factoring out the phylogenetic relationship (the

confounding factor), any estimation of the competition and complementarity based on func-

tion/pathway profiles may be biased and cause problems in downstream applications. In this

study, we focused on the large collection of human gut-associated genomes (including refer-

ence genomes and genomes assembled from metagenomic sequences, MAGs). We imple-

mented an automated pipeline, PhyloMInt, for genome scale pathway reconstruction and for

computing competition and complementarity scores based on the reconstructed pathways.

Our results showed correlation between phylogenetic distance and metabolic competition/

complementarity indices, indicating the importance of normalizing these indices by the phylo-

genetic distance between underlying microbial species. Using a discretization approach, we

were able to detect pairs of bacterial species with complementarity scores significantly higher

than the average pairs of bacterial species with similar phylogenetic distances. We further built

a network of human-gut microbes based on complementarity and competition indices, and we

discuss some of the results we derived by analyzing the network.

Results

Evaluation of the performance of GENREs on incomplete genomes

To assess the stability of CarveMe genome-scale metabolic reconstructions (GENREs) on

incomplete MAGs, we simulated incomplete genomes by randomly removing clusters of

neighboring genes from complete genomes and evaluated their resulting GENREs (See Meth-

ods). By comparing GENREs constructed from incomplete genomes to that of complete

genomes, we observed that the distribution of the number of source and sink nodes remain

relatively stable in respect to the number of removed genes (Fig 1, top two rows of panels). We

further compared the similarity of the networks as measured by the overlap of the nodes and

edges (Jaccard similarity) (Fig 1, bottom two rows of panels). We found that for most cases,

the reconstructed metabolic networks of simulated genomes remain largely similar to those of

the complete genomes, with actual differences smaller than the expected values of the differ-

ences that are proportional to the loss of CDSs (the red dotted lines in Fig 1). For example, the

metabolic networks of simulated incomplete genomes of E. coli str K-12 MG1655 with only

80% of the total CDSs shared similar nodes and edges with the complete genome with Jaccard

similarity greater than 0.9. Considering both the stability of metabolic networks generated

from GENREs from incomplete genomes (as measured by the number of source and sink

nodes, and the similarity of metabolic networks), and the fact that we only utilized near com-

plete MAGs in our analysis, we believe that use of near-complete MAGS (>80% completeness)

should have minimal impact on the calculation of the metabolic complementarity/competition

indices. Results of simulations can be found in S1 Table.

Impact of phylogenetic relationship on microbial complementarity and

competition indices

We applied our pipeline to analyze 2,815 human gut related MAGs and computed their pair-

wise competition and complementarity scores (about 8M directed pairs). As shown in Fig 2A,
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we see a positive relationship between the metabolic complementarity of bacterial species and

their phylogenetic distances. In contrast, we see in Fig 2B there is a negative relationship

between metabolic competition of bacterial species and phylogenetic distance. Our results are

consistent with other previous studies of functional and metabolic relationships with phyloge-

netic distances [24, 26, 38]. And they support the theory of niche differentiation, which states

that phylogenetically close species are more likely to compete with each other due to their

shared traits and resource overlap, leading to less probability of their co-existence.

Due to the non-zero correlation between metabolic interactions and phylogenetic distances,

comparing complementarity and competition between species pairs without accounting for

their phylogenetic relationships confounds such comparisons. As an example, in Fig 2A, if a

pair of closely related genomes (with phylogenetic distance close to 0) had complementarity

index of 0.18 and therefore would be a significant outlier comparing to other pairs of genomes

of similar phylogenetic distance. However, if this complementarity index was to be compared

to those of genome pairs with greater phylogenetic distance (e.g., complementarity index of 2),

it would no longer be considered a statistical outlier. To compare complementarity/competi-

tion indices across species, the confounding effects of phylogeny must be first decoupled.

Fig 1. Boxplots of the evaluation of CarveMe GENREs from simulated incomplete genomes. Simulated incomplete genomes with 70%-100% of the

total CDSs of the complete reference genome were used. Inferred metabolic networks of incomplete genomes were evaluated by the number of source

nodes, the number of sink nodes, the overlap between the nodes of the networks (Jaccard similarity), and the overlap between the edges of the networks

(Jaccard similarity). Dashed line in source and sink node boxplots represent the baseline number of source and sink nodes in a complete genome.

Dashed line in metabolic network edge and node overlap boxplots represents a regression line with y-intercept of 1.0 and slope of -1; this line represents

the expected value of Jaccard Index which is proportional to the total remaining CDSs. (A) GENRE of iML1515, Escherichia coli str. K-12 substr.
MG1655 (B) GENRE of iEK1008, Mycobacterium tuberculosis H37Rv.

https://doi.org/10.1371/journal.pcbi.1007951.g001
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Here we demonstrate a discretization approach for the identification of statistically signifi-

cant complementary species pairs as a method for accounting/correcting for phylogenetic dis-

tances. To discretize comparisons across continuous phylogenetic distances, pairwise indices

were binned by their phylogenetic distances. Outliers are then identified within each bin,

which are likely pairs of bacteria with statistically significant complementary or competitive

interactions.

Identification of potentially collaborative or competing pairs of gut

bacteria from metabolic outliers

To explore the relationship between complementary and competitive pairs, we compared their

respective Z-scores (Fig 3). Significant outliers were selected using a Z-score threshold of

±2.698 as proposed by Tukey [39]. A total of 60,116 directed pairs were identified as positive

complementary outliers. Additionally, 7,769 and 44,409 competitive positive and negative

directed pairs of outliers were identified, respectively. Unsurprisingly, most pairs were cen-

tered around a Z-score of zero and no pairs were simultaneously significant for both comple-

mentarity and competition, simultaneously.

We analyzed bacteria pairs belonging to the same genus or family that have significantly

high complementarity scores to better understand how taxonomic similarity correlates with

metabolic cooperation. At the genus level, 140,152 directed pairs were identified; and at the

family level, 233,555 directed pairs were identified. Of the pairs belonging to the same genus

or family, 1,230 and 5,190 were identified as significant complementary outliers, respectively.

These taxonomically similar bacteria pairs have the potential to cooperate in gut microbiomes.

The rarity of significant outliers with the same taxonomic classifications suggests that for most

taxonomically similar pairs at the genus and family level, niche differentiation plays an integral

Fig 2. Hexagonal binned plots of metabolic interaction indices versus phylogenetic distance. Pairwise comparison between 2,815 human gut related

MAGs (A) Metabolic Complementarity Index and (B) Metabolic Competition Index, versus their phylogenetic distance with density contours. The

plots were fitted with a generalized additive model (red line).

https://doi.org/10.1371/journal.pcbi.1007951.g002
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role in community assembly. Detailed lists of complementarity and competition outliers are

provided in S2 and S3 Tables, respectively.

To explore community assembly dynamics, we constructed a directed graph of bacterial

species where bacteria are the nodes and a directed edge is added between two bacteria if they

have a high metabolic complementarity (Z-score > 2.698) and low metabolic competition (Z-

score < −1.000); here we relaxed the Z-score of competition indices to -1.000 in order to focus

our analysis towards species pairs with greater complementarity while still constraining the

analysis to a degree of low competition observed between species pairs (see S4 Table for

detailed list). Using Infomap [40] to analyze the network, we were able to identify two main

community modules (Fig 4). The larger community module (shown on the right in Fig 4) was

populated with many multi-layer sub-modules, which featured majority of the significantly

cooperating bacteria. Interestingly the smaller community module (shown on the left in Fig 4)

exclusively contained Bifidobacterium spp. (e.g. B. longum, B. bifidum, B. infantis), suggesting

that various Bifidobacterium species are metabolically complementary to each other, more-so

than other phylogenetically similar taxa.

Bifidobacterium species are major colonizers of infant gut microbiota, and play a prominent

role in the degradation and metabolism of Human milk oligosaccharides (HMOs) [41]. One

such example of the complementary interactions between Bifidobacterium species was

Fig 3. Hexagonal binned plot of metabolic complementarity and competition Z-scores with density contours.

https://doi.org/10.1371/journal.pcbi.1007951.g003
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captured by our pipeline, and can be exemplified in predicted presence/absence of sialic acid

metabolism pathways (Fig 5). The GEM for B. infantis subsp. infantis (Fig 5; left) was able to

capture the pathways involved in sialic acid metabolism; whereas the GEM for B. longum (Fig

5; right) failed to capture any metabolic pathways that utilize sialic acid. While both species are

present in high concentrations in the infant microbiota, various studies have shown that B.
longum lacks the associated gene clusters for the sialic acid catabolism [42, 43]. It should be

noted that while the GEM was able to capture sialic acid metabolic pathways in B. infantis,
CarveMe failed to predict exo-α-sialidase mediated degradation of sialylated carbohydrates. A

Fig 4. Community modules of significant complementarity outliers that exhibit low metabolic competition

identified from human-gut related MAGs. Circular nodes represent predicted community modules and sub-modules

of cooperative bacterial communities.

https://doi.org/10.1371/journal.pcbi.1007951.g004

Fig 5. Sialic acid metabolism pathway reconstructed from Bifidobacterium species. (Left) Metabolic pathway of sialic acid metabolism present in the

GENRE constructed from B. infantis MAG (GCF_000020425.1). (Right) Metabolic pathway of sialic acid metabolism present in the GENRE

constructed from B. longum MAG (18391_1_6), missing metabolites and metabolic reactions from the GENRE model are grayed out with dotted lines.

https://doi.org/10.1371/journal.pcbi.1007951.g005
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protein blast of exo-α-sialidase (NanH1 and NanH2) from B. longum subsp. infantis ATCC

15697 [44] against protein coding genes of B. infantis (MAG: GCF_000020425.1) was able to

confirm the presence of both protein coding genes with 100% percent identity (S5 Table); both

exo-α-sialidase genes were absent in B. longum (MAG: 18391_1_6) (S6 Table). Nevertheless,

this example shows a possible metabolic complementary between related species reflected

within the GENREs. In addition to Bifidobacterium spp., other bacterial genera were shown to

also form sub-community modules highly uniform for their own genera (i.e. Helicobacter, Col-
linsella, Lachnospiraceae, and Ruminococcus). We note that if complementarity scores were

analyzed without correcting for phylogenetic distances, these significant complementarity

scores of taxonomically similar bacteria would not be considered significant, thus emphasizing

the importance of correcting for phylogenetic distances. The pattern of taxonomically related

genomes forming community module is suggestive of habitat filtering characteristics within

certain distinctive bacterial taxa. Infomap community module membership available in

S1 File.

To further explore this, we analyzed the proportion of significantly cooperative bacteria

with the same genus annotations. Our results show that more than half (42/76) of the taxa with

50 or more members within the same genus contained a significant number of metabolically

complementary pairs; within genus proportion of taxa with significant pairs ranged from

0.02% to 15.9% (S7 Table). Together, these results show that while niche differentiation domi-

nates a majority of metabolic interactions, we observe habitat filtering characteristics within

certain bacterial taxa.

Discussion

Here we demonstrate a novel approach to identifying significant metabolic cooperators and

competitors between bacterial species pairs. This approach builds upon previously developed

metrics of metabolic complementation and competition [34, 45, 46] by identifying outlier

pairs relative to their phylogenetic distances. As pairwise metabolic interactions are correlated

with phylogenetic distance, it remains imperative to take into consideration their phylogenetic

distances when making comparisons across different phylogenetic distances as such compari-

sons may confound comparisons.

Our analysis shows that metabolic cooperation exhibits a positive relationship with phylo-

genetic distance, whereas metabolic competition exhibits a negative relationship. These find-

ings support the results from previous work that studied the relationship between

phylogenetic relatedness and gene content, functional distance, and metabolic interactions

[24, 26, 38]. Together these observed relationships seem to support the theory of niche differ-

entiation, where functional overlap discourages phylogenetically related species from co-exist-

ing. However, by taking into consideration the phylogenetic distance between pairs to identify

metabolic outliers, we were able to identify significant intra-genus cooperation in several dis-

tinct taxa. The intra-genus modules may suggest that while most bacteria interactions display

niche differentiation characteristics, some taxa exhibit habitat filtering. Notably, Bifidobacter-
ium species were shown to form distinct community modules which suggest significant intra-

genus cooperation compared to other taxa. These results support recent findings that suggest

strains of Bifidobacterium spp. in infants have different nutrient profiles to support coloniza-

tion of other specific Bifidobacterium species [47]. The observation of both habitat filtering

and niche differentiation characteristics suggests that in some cases both contribute to the

dynamics of community assembly.

We note a few limitations of our approach. First, metabolic complementarity and competi-

tion indices are dependent on a given metabolic model. Completeness of GENREs are
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dependent on a variety of variables (e.g. the reconstruction tool and the genome completeness)

that can have a significant impact on predicted metabolic interactions. Second, seed sets used

to calculate the metabolic interaction indices do not represent required metabolites for growth,

but rather represent a baseline of metabolites that in theory enable a given bacterium to pro-

duce any metabolite in their predicted metabolic network. As such, seed sets may influence the

overestimation or underestimation of metabolic interactions between bacterial species. How-

ever, by integrating phylogenetic distances to normalize metabolic interaction indices, we

believe that our approach provides a more accurate prediction of metabolic interactions in

comparison to other similar methods. Additionally, low abundant microbial species within

microbiomes are not always well represented within metagenomic samples but may play key

roles within a metabolic network. While we acknowledge that validation of this method

remains difficult due to the lack of a gold standard comparison, the non-independent nature

of comparative metrics between organisms due to shared ancestry provides a logical explana-

tion as to the necessity to account for such confounding effects.

The ability capture the presence/absence of sialic acid metabolism pathways within Bifido-
bacterium spp. MAGs provides an example of CarveMe’s ability to reconstruct meaningful bio-

logical pathways. However, CarveMe’s reliance on reference models fails to capture species

and/or strain specific metabolic pathways absent from those utilized reference databases. This

ultimately is a current limitation of automated GENREs, and a limitation of reference based

techniques. Gap filling and manual curation of metabolic models can be also be used to supple-

ment reconstruction of highly accurate models. With our method, metabolic model recon-

structions can be easily interchanged and as new metabolic reconstruction tools are developed,

the phylogenetic adjustment of Complementarity and Competition idicies can be easily

applied when comparing metabolic networks.

By decoupling phylogenetic distances between Complementarity and Competition indicies,

we provide a method to explore statistically significant cooperating/competing species pairs

within microbbiomes to better understand community assembly dynamics. Additionally,

competition networks can be used to identify highly competitive species pairs, which may be

useful for suggesting beneficial probiotic candidates. A future research direction is to integrate

phylogenetically-corrected complementarity and competition scores with co-occurrence infor-

mation to better address the challenges of identifying bacterial interactions through mechanis-

tic insight.

Materials and methods

Genome sequences of human-gut bacteria

To assemble the human-gut associated reference genomes, we collected genomes from two

recent studies [48, 49]. Bacterial genomes reported in [49] were compiled from two sources: a

total of 617 genomes obtained from the human microbiome project (HMP) [50], and 737

whole genome-sequenced bacterial isolates, representing the Human Gastrointestinal Bacteria

Culture Collection (HBC). These 737 bacterial genomes were assembled by culturing and puri-

fying bacterial isolates of 20 fecal samples originating from different individuals [49]. The bac-

terial genomes reported in [48] were generated and classified from a total of 92,143

metagenome assembled genomes (MAGs), among which a total of 1,952 binned genomes

were characterized as non-overlapping with bacterial genomes reported. We were able to

retrieve 612 out of 617 RefSeq sequences using the reported RefSeq IDs. We only included

genomes with > 80% completeness and < 5% contamination (via CheckM [51]). Our final

dataset for this study contains a total of 2,815 genomes/MAGs. Taxonomic annotation of these

genomes/MAGs was done using GTDB-toolkit’s least common ancestors approach [52].
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Genome scale metabolic network reconstructions and analysis

Genome-scale metabolic network reconstructions (GENREs) for all genomes were constructed

using CarveMe [32] with default parameters. Coding sequences (CDSs) of all input genomes

were generated using FragGeneScan [53] to be used as input for CarveMe. Briefly, CarveMe is

a genome-scale metabolic model reconstruction tool which utilizes a universal model for a

top-down approach to build GENREs. In contrast to conventional bottom-up methods which

require well defined growth media, manual curation and gap-filling, the top down approach of

CarveMe removes reactions and metabolites inferred to be not present in the manually curated

universal template.

Evaluation of incomplete metagenome assembled genomes

As we utilized MAGs with greater than equal to 80% CheckM [51] genome completeness, we sim-

ulated the ability of CarveMe to construct GENREs on incomplete genomes between 70-100% of

the total CDSs at 5% intervals. To accomplish this, we utilized complete reference genomes

obtained from NCBI RefSeq database. We then predicted protein coding sequences using Frag-

GeneScan [53]. Using a custom script, we randomly selected (with repeats) sets of 3 neighboring

CDSs until a specified interval of remaining CDSs remained. Neighboring CDSs were removed as

a set, as genes are often missing together from assembled genomes due to uneven binning and

sequencing, rather than a completely random process. We then used the remaining CDSs as

input for CarveMe. This was repeated for 50 times at each 5% interval. The resulting GENRE

were then used to construct a metabolic network with directed edges. The metabolic networks of

simulated incomplete genomes were then compared with the corresponding metabolic networks

constructed from complete genomes. To compare the differences between the constructed meta-

bolic models, we assessed the Jaccard Index between the sets of edges and nodes in each metabolic

model. Additionally, because the number of source and sink nodes are utilized for the computa-

tion of the Complementarity Index and Competition Index, we also assessed the effect of incom-

plete genomes on metabolic reconstruction using the number of source and sink nodes.

Phylogenetic distance

To compute pairwise evolutionary distances between gut bacteria, we first inferred a phylog-

eny covering all participating genomes using FastTree [54]. It was shown that using more phy-

logenetic marker genes (e.g. a set of 16S ribosomal protein sequences from each organism)

gives trees with higher-resolution than the 16S rRNA gene alone [55]. A total of 120 bacterial

marker genes were used to infer these phylogeny. The 120 marker genes used are ubiquitous

among bacterial species and are shown to occur as single copies and less susceptible to hori-

zontal gene transfer [56]. Amino acid sequence of protein coding genes were searched using

HMMER3 [57] against a 120 HMM model database of marker genes received from Pfam [58]

and TIGRfam databases [59]. Similar to the approach in [56], sequences extracted from each

HMM model were individually aligned using hmmalign [57], which were later concatenated

to form the final alignment. Poorly aligned regions were removed from the concatenated align-

ment and a final phylogeny was inferred using FastTree under WAG + GAMMA models.

From the inferred phylogenetic tree, the phylogenetic (evolutionary) distance between two

nodes (i.e., species) can be calculated as the sum of all the branch lengths between them.

Species interaction indexes

To estimate potential metabolic cooperation and competition between bacterial species, we

need to know their nutritional profiles, which however are unavailable for most of the gut
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bacteria. Similar to the approach reported in [34, 60], we use the compound seed set of each

species as a proxy for its nutritional profile: the seed set of a metabolic network is defined as

the minimal subset of the compounds that cannot be synthesized from other compounds in

the network (due to lack of the corresponding enzymes, and hence are exogenously acquired)

but their existence permits the production of all other compounds in the network.

We implemented a pipeline for computing metabolic interaction indices from genome

sequences. Our pipeline uses a) CarveMe for building genome-scale metabolic models from

genome sequences, b) NetworkX [61] to identity seed compounds, and c) our own implemen-

tation (in Python) of the approaches for computing metabolic competition and complimen-

tary indices given two genome-scale metabolic models. We call our pipeline PhyloMInt

(Phylogenetically-adjusted Metabolic Interaction indices).

Seed set identification. Utilizing NetworkX v2.2 [61], strongly connected components

(SCC) within the GENREs are identified. Confidence levels are assigned for all compounds rel-

ative to their SCC size, where the confidence level (C) is denoted as:

C ¼
1

ðComponent SizeÞ
ð1Þ

The confidence level is representative of the confidence that a given compound belongs to

the seed set. A threshold of C � 0.2 was used to select compounds to be regarded as com-

pounds part of a given ‘seed set’ of a given organism as specified by [60].

Metabolic competition and complementarity indices. Given two genome-scale meta-

bolic models (GEMs) A and B, their Metabolic Competition Index (MICompetition) is calculated

as the fraction of A’s seed set that is also in B’s seed set, normalized by the weighted sum of the

confidence score [34, 46]. MICompetition estimates the baseline metabolic overlap between two

given metabolic networks.

MICompetition ¼

P
CðSeedSetA \ SeedSetBÞ

P
CðSeedSetAÞ

ð2Þ

Metabolic Complementarity Index (MIComplementarity) is calculated as the fraction of A’s

seed set that is found within B’s metabolic network but not part of B’s seed set, normalized by

the number of A’s seed set in B’s entire metabolic network [34, 45]. MIComplementarity represents

the potential for A’s to utilize the potential metabolic output of B.

MIComplementarity ¼
jSeedSetA \ :SeedSetBj

jSeedSetA \ ðSeedSetB [ :SeedSetBÞj
ð3Þ

A toy example for the calculation of Metabolic Competition and Complementarity indices

has been provided in Fig 6. We note that the competition and complementarity indices are

asymmetric.

Phylogenetic normalization and outlier detection

Pairwise metabolic complementarity and competition indices between species pairs are plotted

against their predicted phylogenetic distance. While methods of outlier detection for continu-

ous data exists, local peaks and troughs of indices relative to phylogenetic distance make it dif-

ficult to identify local outliers. Thus, we utilize a binning approach to limit outlier detection to

localized values. Both metabolic complementarity and competition indexes use a two-step bin-

ning process to bin pairwise observations, first by using a fixed phylogenetic distance interval

of 0.01, followed by merging bins which are smaller than a prespecified size. Here we used the

first bin size as the reference. Bins were merged with the closest preceding bin satisfying our
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minimum bin size threshold. To identify metabolic complementarity and competition outliers

within each phylogenetic distance bin, we calculate the Z-score within each bin respectively.

Tukey’s method for outlier detection (equivalent to a Z-score threshold ±2.698) [39] was uti-

lized to identify significant outliers.

Network construction and community detection

To build a metabolic complementarity/competition network, species pairs are represented as

nodes within the network. Identified significant outliers were used to construct a network of

gut bacteria, in which for any pair of species A and B, a directed edge is added between A and

B (from A to B), if A and B have significantly high complementarity score but low competition

score. Using the adjacency list of the directed graph, a local installation of Infomap [40] (with

the parameters: –directed –zero-based-numbering –num-trials 10) was utilized to identify

community interaction modules within our dataset. Infomap is a random walk based approach

Fig 6. Schematic illustration of seed set identification, and complementarity and competition index calculation

between two toy metabolic networks. In metabolic pathway A, SeedSetA consists of metabolites A, F, G, and H;

metabolites F, G, and H form a strongly connected component (SCC). Confidence level of seed set metabolites within

metabolic network A is 1, 1

3
, 1

3
, and 1

3
for metabolites A, F, G, and H, respectively. In metabolic pathway B, SeedSetB

consist of F, I, J, and K; metabolites I and J form a SCC. Confidence level of seed set metabolites within metabolic

network B is 1, 1

3
, 1

3
, and 1 for metabolites F, I, J, and K, respectively. In a comparison between metabolic network A

versus metabolic network B, metabolic network A shares only one seed metabolite with metabolic network B

(metabolite F) which lies in the SCC in metabolic network A. Thus, the MICompetition between metabolic network A and

B is 1

3
� 2

� �
¼ 1

6
. Among SeedSetA, metabolites A and F are found within the metabolic network B but only metabolite

A is within non-SeedSetB, thus the MIComplementarity index between metabolic network A and metabolic network B is

0.5. We used the same toy networks as those in [45].

https://doi.org/10.1371/journal.pcbi.1007951.g006
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for community detection, and it provides a user friendly interface for visualization and explo-

ration of the network and community structure (https://www.mapequation.org/navigator).
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