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Nickel ferrite nanoparticles were subjected to mechanochemical activation for ball milling times ranging from 0
to 12 h. The milling was performed with and without the addition of equimolar concentrations of graphene
nanoparticles. Characterization of resulting nano-powders was undertaken by Mossbauer spectroscopy and
magnetic measurements. The hyperfine magnetic field was studied as function of milling time for octahedral and
tetrahedral sites. An additional quadrupole split doublet represented the occurrence of superparamagnetic
particles in the as-obtained and milled specimens. A new phase was obtained in the graphene-milled set of
samples, which could be assigned to carbon-rich particles. The degree of inversion and canting angle were
derived from the Mossbauer measurements and studied as function of ball milling time. The degree of inversion
was found to decrease with milling time, especially for the set without graphene and evidenced a transition from
inverse to normal spinels. The canting angle decreased with time for the graphene milled nanoparticles. The
recoilless fraction was determined as function of milling time and was consistent with the observation — for the
first time in literature — of a distribution of recoilless fractions in the studied specimens. The saturation mag-
netization, remanence magnetization and coercive field were derived from the hysteresis loops, recorded at 5 K
and 5 T. The zero-field-cooling-field-cooling measurements were obtained in a magnetic field of 200 Oe and the
blocking temperature was determined. Our results show new features of the behavior of nickel ferrite nano-
particles under mechanochemical activation with and without graphene.

1. Introduction tetrahedrally and octahedrally coordinated, respectively. The tetra-

hedral site is occupied by Fe** ions while the B site consists of an equal

Nanoparticles possessing magnetic properties introduced in a non-
magnetic graphene host combine both the benefits of the unique
properties of graphene and magnetization. When these magnetic par-
ticles are inserted in a graphitic matrix, the carbon layers isolate the
particles magnetically from each other, providing protection against
oxidation. Alternatively, the incorporation of carbon in ferrite nano-
particles lattice may give rise to nanocomposite and new hybrid ma-
terials. These can open up new prospects in bioengineering and energy
applications, such as controlled drug delivery, magnetic recording
media, magnetic toners, magnetic resonance imaging, ferrofluids, as
well as in electrochemical energy storage and supply [1-19].

Nickel ferrite (space group Fd-3m) has been the subject of intense
investigations due to its outstanding magnetic and electric properties.
The compound Ni ferrite has an inverse spinel cubic structure. The
crystal includes two intertwining sub-lattices A and B which are

distribution of Fe** and Ni*" ions. The ferrimagnetic nature arises
from the anti-parallel alignment of spins of unequal magnitude at the A
site and the B site [20-30].

Nickel ferrite is a major candidate for telecommunications, micro-
wave devices, and sensor applications because of its high resistivity and
moderate magnetization [31-39]. The dielectric and magnetic proper-
ties of such ferrites depend strongly on preparation methodology and
distribution of cations at the tetrahedral (A) and octahedral (B) sites in
the lattice.

In this paper we report novel investigations of nickel ferrite in the
nanoparticle form: (i) the behavior of nickel ferrite during mechan-
ochemical activation; (ii) the behavior of graphene during high-energy
ball milling with nickel ferrite nanoparticles; (iii) the effect of graphene
and milling on the degree of inversion and canting angle; and (iv) the
effect of milling on the recoilless fraction of nickel ferrite nanoparticles.
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Nickel ferrite
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Fig. 1. (a)-(e) displays the Mossbauer spectra collected after ball milling for 0-12 h.

2. Materials and methods

Nickel ferrite nanoparticles (Alfa Aesar, 50 nm particle size) were
exposed to mechanochemical activation by high-energy ball milling for
time intervals of 0-12 h, with and without equimolar mixtures of zero-
dimensional graphene (SkySpring Nanomaterials, 1-5 nm particle size).

Samples of precursors were introduced in a SPEX 8000 mixer mill
and ground for time periods ranging from 0 to 12 h. The 8000M Mixer/
Mill is a high-energy ball mill that grinds up to 0.2-10 g of dry, brittle
samples. The vial, which contains a sample and one or more balls, is
shaken in a complex motion that combines back-and-forth swings with
short lateral movements. The clamp's motion develops strong G-forces
in the vial, to pulverize the toughest rocks, slags and ceramics. In our
experiments the powder: ball mass ratio was 1:5.

The room-temperature transmission Mossbauer spectra were

recorded using a SeeCo constant accelerator spectrometer equipped
with a 25 mCi ”Co gamma ray source. Hysteresis loop measurements
were recorded with a Quantum Design SQUID magnetometer at a
temperature of 5 K and an applied magnetic field of 5 T, while the zero-
field-cooling-field-cooling was performed at 200 Oe (1 Oe = 10~ * T)
and a temperature interval of 5-300 K.

3. Results and discussion

Fig. 1(a)-(e) shows the room temperature Mossbauer spectra re-
corded in the transmission geometry using gamma radiation emitted by
a *”Co source diffused in a Rh matrix. The spectrometer was operated in
the constant acceleration mode and the spectra for nickel ferrite were
taken after O to 12 h of ball milling time. All spectra, both as-obtained
and processed, were fitted with 2 sextets, corresponding to the
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Nickel ferrite and graphene
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Fig. 2. (a)—(e) displays the Mossbauer spectra collected after ball milling for 0-12 h with graphene. Spectrum in Panel (e) emphasizes the contribution of the doublet.

Additional resonances appear in the spectrum.

tetrahedral and octahedral magnetic sublattices, as well as a quadru-
pole split doublet, which is indicative of the occurrence of super-
paramagnetism in the nanoparticles system (~30% abundance).

Fig. 2(a)-(e) displays the Mossbauer spectra collected after ball
milling for 0-12 h, with graphene nanoparticles added to the milling
powders of nickel ferrite.

The hyperfine parameters are plotted in Fig. 3. It can be observed
that a new sextet, with a lower value of the hyperfine magnetic field,
appears in the spectrum of ferrite milled with graphene. This can be
assigned to Fe atoms having an increased number of carbon atoms as
nearest neighbors.

The NiFe,0,4 structure can be written as (Nij.,\Fe))[NiyFe;.,]04,
where A is the fraction of the A sites occupied by Fe** cations, known
as the degree of inversion. This parameter is given by the formula: I,/
Iz = fa/fg x A/(2-\), where I are the areal intensities of the two sextets,
fg/fa = 0.94 at room temperature are the recoilless fractions [38],
while the degree of inversion takes values A = 0 for a normal spinel,
A = 1 for an inverse spinel and A = 2/3 for a random distribution.

It can be seen in Fig. 4 that the degree of inversion A decreases from
the value of one to 0.15 after 12 h of milling, such that the material can
be designed to take all forms from inverse to normal spinel structures. If
graphene is added to the milling powders, the degree of inversion
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Fig. 3. Hyperfine magnetic fields as function of ball milling times for nickel
ferrite, with and without graphene additions during mechanochemical activa-
tion.

decreases again, but to a lesser extent, such that mixed spinels are ty-
pically obtained.

Another parameter that can be derived from the Mossbauer spectra
of the nickel ferrite is the canting angle, which is the average angle
between the direction of the hyperfine magnetic field and the direction
of propagation of the gamma radiation. The canting angle is given by
the formula: 6 = arcsin[3/2(I,/1;)]1/[1 + 3/4(15/1;)]. It can be seen in
Fig. 4 that the canting angle of milled nickel ferrite stays constant at
about 41.46°, while the presence of graphene lowers its value to 25.2°.
This means that milling with graphene tends to align the hyperfine field
of the ferrite nanoparticles along the direction of gamma ray propa-
gation.

Fig. 5(a)-(e) displays the composite Mossbauer spectra of the nickel
ferrite system for the 0-12 h ball milling time. These spectra were re-
corded simultaneously with a stainless steel etalon, whose signature in
the composed spectrum is a singlet with a negative isomer shift of
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Fig. 4. Degree of inversion and canting angle for nickel ferrite.

—0.27 mm/s (Fig. 6). Following our procedure outlined in [35], the
values of the recoilless fraction f; can be obtained from the relative
areas of the subspectra and some simple chemical arguments:

fl = fe(Ne/Nl)(Ml/Me)(me/ml)(Al/Ae)a (1)

where f, is the recoilless fraction of the stainless steel etalon (0.7), N
and N; are the numbers of iron nuclei per formula unit for etalon and
ferrite, y; and p. are the molar masses for the sample and etalon, m,
and m; are the masses corresponding to the etalon and sample, and A;
and A, are the resonant areas for the sample and etalon, respectively.

Applying this methodology, the recoilless fraction values averaged
at about 0.6, value which is consistent with a reduced contribution of
particles at the nanoscale. The Mossbauer spectra were fitted with a
singlet for the stainless steel etalon and a hyperfine magnetic field
distribution for the ferrite. The probability distribution is given in
Fig. 7(a)-(d) for 2-12 milling hours. It can be inferred that the hy-
perfine magnetic field distribution corresponds to a distribution of
particle sizes produced by milling, which in turn gives rise to a
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Fig. 5. Mossbauer spectra recorded simultaneously with the stainless steel
etalon after various milling times (a)—(e).
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Fig. 7. Hyperfine magnetic field distribution for the nickel ferrite (a)—(d).

distribution of recoilless fraction values, where the f factor tends to be
lower for smaller nanoparticles and long milling times. To our best
knowledge, it is for the first time in literature that a distribution of re-
coilless fraction values is evidenced.

In what follows we would like to correlate the local-probe in-
formation obtained from Mdssbauer spectroscopy with the global in-
formation inferred from magnetic measurements. Fig. 8 plots the hys-
teresis loops recorded at 5 K and 5 T for the samples milled at 0 h and
12 h. The saturation magnetization stays the same, but the remanence
magnetization increases from 4.28 to 13.8 emu/g. Moreover, the
coercive field increases boldly, from 1428 to 3000 Oe.

The zero-field-cooling-field cooling (ZFC-FC) experiments were
performed in an applied magnetic field of 200 Oe in the temperature
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Fig. 8. Hysteresis loops of the nickel ferrite after milling for 0 and 12 h.

interval 5-300 K and shown in Fig. 9 for O h and 12 h of milling. The
maximum value on the ZFC curve yielded the blocking temperature,
which was found to increase from 225 K for the as-obtained specimen to
250 K for the sample milled at 12 h with graphene. Indeed, we showed
recently that the addition of graphene in the milling powder was able to
change the blocking temperature of a zinc ferrite system of nano-
particles [37].

4. Conclusions

In this work we successfully synthesized nickel ferrite nanoparticles,
with and without graphene, by high energy ball milling. The main re-
sults obtained from the Mdssbauer spectroscopy and magnetism study
are as follows:

(i) The hyperfine magnetic field of the tetrahedral and octahedral
sites was studied as function of ball milling time. A quadrupole
doublet was resolved due to the presence of superparamagnetic
particles in the system. A third sextet was obtained for the sample
rich in graphene and was assigned to Fe atoms having an increased
number of carbon atoms as nearest neighbors.

(ii) The study of the degree of inversion as function of ball milling time
demonstrated that spinels with inversions between 1 and 0 can be
engineered, while the degree of inversion for the sample with
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Fig. 9. ZFC-FC curves for the nickel ferrite at 0 h and ferrite with graphene at
12 h.

graphene showed a less abrupt decline.

(iii) The canting angle decreased when the content of graphene was
increased.

(iv) The distribution of the hyperfine magnetic field was correlated to a
distribution of particle sizes, which in turn was related to a dis-
tribution of recoilless fractions.

(v) The coercivity was determined from the hysteresis loops and found
to triple as function of ball milling time.

(vi) The blocking temperature was derived from ZFC and found to
depend on the presence of graphene in the system.
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