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A B S T R A C T   

Nickel ferrite nanoparticles were subjected to mechanochemical activation for ball milling times ranging from 0 
to 12 h. The milling was performed with and without the addition of equimolar concentrations of graphene 
nanoparticles. Characterization of resulting nano-powders was undertaken by Mӧssbauer spectroscopy and 
magnetic measurements. The hyperfine magnetic field was studied as function of milling time for octahedral and 
tetrahedral sites. An additional quadrupole split doublet represented the occurrence of superparamagnetic 
particles in the as-obtained and milled specimens. A new phase was obtained in the graphene-milled set of 
samples, which could be assigned to carbon-rich particles. The degree of inversion and canting angle were 
derived from the Mӧssbauer measurements and studied as function of ball milling time. The degree of inversion 
was found to decrease with milling time, especially for the set without graphene and evidenced a transition from 
inverse to normal spinels. The canting angle decreased with time for the graphene milled nanoparticles. The 
recoilless fraction was determined as function of milling time and was consistent with the observation – for the 
first time in literature – of a distribution of recoilless fractions in the studied specimens. The saturation mag-
netization, remanence magnetization and coercive field were derived from the hysteresis loops, recorded at 5 K 
and 5 T. The zero-field-cooling-field-cooling measurements were obtained in a magnetic field of 200 Oe and the 
blocking temperature was determined. Our results show new features of the behavior of nickel ferrite nano-
particles under mechanochemical activation with and without graphene.   

1. Introduction 

Nanoparticles possessing magnetic properties introduced in a non- 
magnetic graphene host combine both the benefits of the unique 
properties of graphene and magnetization. When these magnetic par-
ticles are inserted in a graphitic matrix, the carbon layers isolate the 
particles magnetically from each other, providing protection against 
oxidation. Alternatively, the incorporation of carbon in ferrite nano-
particles lattice may give rise to nanocomposite and new hybrid ma-
terials. These can open up new prospects in bioengineering and energy 
applications, such as controlled drug delivery, magnetic recording 
media, magnetic toners, magnetic resonance imaging, ferrofluids, as 
well as in electrochemical energy storage and supply [1–19]. 

Nickel ferrite (space group Fd-3m) has been the subject of intense 
investigations due to its outstanding magnetic and electric properties. 
The compound Ni ferrite has an inverse spinel cubic structure. The 
crystal includes two intertwining sub-lattices A and B which are 

tetrahedrally and octahedrally coordinated, respectively. The tetra-
hedral site is occupied by Fe3+ ions while the B site consists of an equal 
distribution of Fe3+ and Ni2+ ions. The ferrimagnetic nature arises 
from the anti-parallel alignment of spins of unequal magnitude at the A 
site and the B site [20–30]. 

Nickel ferrite is a major candidate for telecommunications, micro-
wave devices, and sensor applications because of its high resistivity and 
moderate magnetization [31–39]. The dielectric and magnetic proper-
ties of such ferrites depend strongly on preparation methodology and 
distribution of cations at the tetrahedral (A) and octahedral (B) sites in 
the lattice. 

In this paper we report novel investigations of nickel ferrite in the 
nanoparticle form: (i) the behavior of nickel ferrite during mechan-
ochemical activation; (ii) the behavior of graphene during high-energy 
ball milling with nickel ferrite nanoparticles; (iii) the effect of graphene 
and milling on the degree of inversion and canting angle; and (iv) the 
effect of milling on the recoilless fraction of nickel ferrite nanoparticles. 
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2. Materials and methods 

Nickel ferrite nanoparticles (Alfa Aesar, 50 nm particle size) were 
exposed to mechanochemical activation by high-energy ball milling for 
time intervals of 0–12 h, with and without equimolar mixtures of zero- 
dimensional graphene (SkySpring Nanomaterials, 1–5 nm particle size). 

Samples of precursors were introduced in a SPEX 8000 mixer mill 
and ground for time periods ranging from 0 to 12 h. The 8000M Mixer/ 
Mill is a high-energy ball mill that grinds up to 0.2–10 g of dry, brittle 
samples. The vial, which contains a sample and one or more balls, is 
shaken in a complex motion that combines back-and-forth swings with 
short lateral movements. The clamp's motion develops strong G-forces 
in the vial, to pulverize the toughest rocks, slags and ceramics. In our 
experiments the powder: ball mass ratio was 1:5. 

The room-temperature transmission Mössbauer spectra were 

recorded using a SeeCo constant accelerator spectrometer equipped 
with a 25 mCi 57Co gamma ray source. Hysteresis loop measurements 
were recorded with a Quantum Design SQUID magnetometer at a 
temperature of 5 K and an applied magnetic field of 5 T, while the zero- 
field-cooling-field-cooling was performed at 200 Oe (1 Oe = 10−4 T) 
and a temperature interval of 5–300 K. 

3. Results and discussion 

Fig. 1(a)–(e) shows the room temperature Mӧssbauer spectra re-
corded in the transmission geometry using gamma radiation emitted by 
a 57Co source diffused in a Rh matrix. The spectrometer was operated in 
the constant acceleration mode and the spectra for nickel ferrite were 
taken after 0 to 12 h of ball milling time. All spectra, both as-obtained 
and processed, were fitted with 2 sextets, corresponding to the 
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Fig. 1. (a)–(e) displays the Mӧssbauer spectra collected after ball milling for 0–12 h.  
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tetrahedral and octahedral magnetic sublattices, as well as a quadru-
pole split doublet, which is indicative of the occurrence of super-
paramagnetism in the nanoparticles system (~30% abundance). 

Fig. 2(a)–(e) displays the Mӧssbauer spectra collected after ball 
milling for 0–12 h, with graphene nanoparticles added to the milling 
powders of nickel ferrite. 

The hyperfine parameters are plotted in Fig. 3. It can be observed 
that a new sextet, with a lower value of the hyperfine magnetic field, 
appears in the spectrum of ferrite milled with graphene. This can be 
assigned to Fe atoms having an increased number of carbon atoms as 
nearest neighbors. 

The NiFe2O4 structure can be written as (Ni1-λFeλ)[NiλFe2-λ]O4, 
where λ is the fraction of the A sites occupied by Fe3+ cations, known 
as the degree of inversion. This parameter is given by the formula: IA/ 
IB = fA/fB x λ/(2-λ), where I are the areal intensities of the two sextets, 
fB/fA = 0.94 at room temperature are the recoilless fractions [38], 
while the degree of inversion takes values λ = 0 for a normal spinel, 
λ = 1 for an inverse spinel and λ = 2/3 for a random distribution. 

It can be seen in Fig. 4 that the degree of inversion λ decreases from 
the value of one to 0.15 after 12 h of milling, such that the material can 
be designed to take all forms from inverse to normal spinel structures. If 
graphene is added to the milling powders, the degree of inversion 

Nickel ferrite and graphene
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Fig. 2. (a)–(e) displays the Mӧssbauer spectra collected after ball milling for 0–12 h with graphene. Spectrum in Panel (e) emphasizes the contribution of the doublet. 
Additional resonances appear in the spectrum. 
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decreases again, but to a lesser extent, such that mixed spinels are ty-
pically obtained. 

Another parameter that can be derived from the Mӧssbauer spectra 
of the nickel ferrite is the canting angle, which is the average angle 
between the direction of the hyperfine magnetic field and the direction 
of propagation of the gamma radiation. The canting angle is given by 
the formula: θ = arcsin[3/2(I2/I1)]/[1 + 3/4(I2/I1)]. It can be seen in  
Fig. 4 that the canting angle of milled nickel ferrite stays constant at 
about 41.46o, while the presence of graphene lowers its value to 25.2o. 
This means that milling with graphene tends to align the hyperfine field 
of the ferrite nanoparticles along the direction of gamma ray propa-
gation. 

Fig. 5(a)–(e) displays the composite Mössbauer spectra of the nickel 
ferrite system for the 0–12 h ball milling time. These spectra were re-
corded simultaneously with a stainless steel etalon, whose signature in 
the composed spectrum is a singlet with a negative isomer shift of 

−0.27 mm/s (Fig. 6). Following our procedure outlined in [35], the 
values of the recoilless fraction f1 can be obtained from the relative 
areas of the subspectra and some simple chemical arguments: =f f (N /N )(µ /µ )(m /m )(A /A ),1 e e 1 1 e e 1 1 e (1) 
where fe is the recoilless fraction of the stainless steel etalon (0.7), Ne 
and N1 are the numbers of iron nuclei per formula unit for etalon and 
ferrite, μ1 and μe are the molar masses for the sample and etalon, me 
and m1 are the masses corresponding to the etalon and sample, and A1 
and Ae are the resonant areas for the sample and etalon, respectively. 

Applying this methodology, the recoilless fraction values averaged 
at about 0.6, value which is consistent with a reduced contribution of 
particles at the nanoscale. The Mӧssbauer spectra were fitted with a 
singlet for the stainless steel etalon and a hyperfine magnetic field 
distribution for the ferrite. The probability distribution is given in  
Fig. 7(a)–(d) for 2–12 milling hours. It can be inferred that the hy-
perfine magnetic field distribution corresponds to a distribution of 
particle sizes produced by milling, which in turn gives rise to a 
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Fig. 3. Hyperfine magnetic fields as function of ball milling times for nickel 
ferrite, with and without graphene additions during mechanochemical activa-
tion. 

Fig. 4. Degree of inversion and canting angle for nickel ferrite.  
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distribution of recoilless fraction values, where the f factor tends to be 
lower for smaller nanoparticles and long milling times. To our best 
knowledge, it is for the first time in literature that a distribution of re-
coilless fraction values is evidenced. 

In what follows we would like to correlate the local-probe in-
formation obtained from Mӧssbauer spectroscopy with the global in-
formation inferred from magnetic measurements. Fig. 8 plots the hys-
teresis loops recorded at 5 K and 5 T for the samples milled at 0 h and 
12 h. The saturation magnetization stays the same, but the remanence 
magnetization increases from 4.28 to 13.8 emu/g. Moreover, the 
coercive field increases boldly, from 1428 to 3000 Oe. 

The zero-field-cooling-field cooling (ZFC-FC) experiments were 
performed in an applied magnetic field of 200 Oe in the temperature 
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Fig. 5. Mӧssbauer spectra recorded simultaneously with the stainless steel 
etalon after various milling times (a)–(e). 
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Fig. 6. Expanded Mӧssbauer spectra for the nickel ferrite nanoparticles system 
and stainless steel etalon. 
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interval 5–300 K and shown in Fig. 9 for 0 h and 12 h of milling. The 
maximum value on the ZFC curve yielded the blocking temperature, 
which was found to increase from 225 K for the as-obtained specimen to 
250 K for the sample milled at 12 h with graphene. Indeed, we showed 
recently that the addition of graphene in the milling powder was able to 
change the blocking temperature of a zinc ferrite system of nano-
particles [37]. 

4. Conclusions 

In this work we successfully synthesized nickel ferrite nanoparticles, 
with and without graphene, by high energy ball milling. The main re-
sults obtained from the Mӧssbauer spectroscopy and magnetism study 
are as follows:  

(i) The hyperfine magnetic field of the tetrahedral and octahedral 
sites was studied as function of ball milling time. A quadrupole 
doublet was resolved due to the presence of superparamagnetic 
particles in the system. A third sextet was obtained for the sample 
rich in graphene and was assigned to Fe atoms having an increased 
number of carbon atoms as nearest neighbors.  

(ii) The study of the degree of inversion as function of ball milling time 
demonstrated that spinels with inversions between 1 and 0 can be 
engineered, while the degree of inversion for the sample with 

graphene showed a less abrupt decline.  
(iii) The canting angle decreased when the content of graphene was 

increased.  
(iv) The distribution of the hyperfine magnetic field was correlated to a 

distribution of particle sizes, which in turn was related to a dis-
tribution of recoilless fractions.  

(v) The coercivity was determined from the hysteresis loops and found 
to triple as function of ball milling time.  

(vi) The blocking temperature was derived from ZFC and found to 
depend on the presence of graphene in the system. 
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