
Journal Pre-proof

Cache management for large data transfers and multipath forwarding
strategies in Named Data Networking

Mohammad Alhowaidi, Deepak Nadig, Boyang Hu,
Byrav Ramamurthy, Brian Bockelman

PII: S1389-1286(21)00397-2
DOI: https://doi.org/10.1016/j.comnet.2021.108437
Reference: COMPNW 108437

To appear in: Computer Networks

Received date : 30 September 2020
Revised date : 26 July 2021
Accepted date : 23 August 2021

Please cite this article as: M. Alhowaidi, D. Nadig, B. Hu et al., Cache management for large data
transfers and multipath forwarding strategies in Named Data Networking, Computer Networks
(2021), doi: https://doi.org/10.1016/j.comnet.2021.108437.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.comnet.2021.108437
https://doi.org/10.1016/j.comnet.2021.108437

Journal Pre-proof
Cache Management for Large Data Transfers and
Multipath Forwarding Strategies in Named Data

Networking?

Mohammad Alhowaidia, Deepak Nadigb,∗, Boyang Hua, Byrav Ramamurthya,
Brian Bockelmanc

aDept. of Computer Science and Engineering, University of Nebraska-Lincoln,
256 Avery Hall, Lincoln, NE 68588, USA

bDept. of Computer and Information Technology, Purdue University,
Knoy Hall of Technology, 401 N Grant St, West Lafayette, IN 47907, USA

cMorgridge Institute for Research, University of Wisconsin-Madison,
330 N Orchard Street, Madison, WI 53715, USA

Abstract

Named Data Networking (NDN) is a promising approach to provide fast in-

network access to compact muon solenoid (CMS) datasets. It proposes a content-

centric rather than a host-centric approach to data retrieval. Data packets with

unique and immutable names are retrieved from a content store (CS) using

Interest packets. The current NDN architecture relies on forwarding strate-

gies that are only dependent upon on-path caching. Such a design does not

take advantage of the cached content available on the adjacent off-path routers

in the network, thus reducing data transfer efficiency. In this work, we pro-

pose a software-defined, storage-aware routing mechanism that leverages NDN

router cache-states, software defined networking (SDN) and multipath forward-

ing strategies to improve the efficiency of very large data transfers. First, we

propose a novel distributed multipath (D-MP) forwarding strategy and enhance-

?An earlier version of this work was presented at the 2018 IEEE International Conference
on Advanced Networks and Telecommunications Systems (ANTS) [1] and the 2019 IEEE
International Conference on Advanced Networks and Telecommunications Systems (ANTS) [2]

∗Corresponding author
Email address: nadig@purdue.edu (Deepak Nadig)

1The authors acknowledge the valuable contributions of Dr. David R. Swanson (Deceased),
Holland Computing Center, UNL, to this work.

2This work was conducted when the second author was at the University of Nebraska-
Lincoln.

Preprint submitted to Computer Networks September 7, 2021

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
ments to the NDN Interest forwarding pipeline. In addition, we develop a

centralized SDN-enabled control for the multipath forwarding strategy (S-MP),

which leverages the global knowledge of NDN network states that distributes

Interests efficiently. We perform extensive evaluations of our proposed meth-

ods on an at-scale wide area network (WAN) testbed spanning six geograph-

ically separated sites. Our proposed solutions easily outperform the existing

NDN forwarding strategies. The D-MP strategy results in performance gains

ranging between 10.4x to 12.5x over the default NDN implementation without

in-network caching, and 12.2x to 18.4x with in-network caching enabled. For

S-MP strategy, we demonstrate a performance improvement of 10.6x to 12.6x,

and 12.9x to 18.5x, with in-network caching disabled and enabled, respectively.

Further, we also present a comprehensive analysis of NDN cache management

for large data transfers and propose a novel prefetching mechanism to improve

data transfer performance. Due to the inherent capacity limitations of the NDN

router caches, we use SDN to provide an intelligent and efficient solution for data

distribution and routing across multiple NDN router caches. We demonstrate

how software-defined control can be used to partition and distribute large CMS

files based on NDN router cache-state knowledge. Further, SDN control will

also configure the router forwarding strategy to retrieve CMS data from the

network. Our proposed solution demonstrates that the CMS datasets can be

retrieved 28% – 38% faster from the NDN routers’ caches than existing NDN

approaches. Lastly, we develop a prefetching mechanism to improve the transfer

performance of files that are not available in the router’s cache.

Keywords: NDN, SDN, Compact Muon Solenoid, Forwarding Strategy, Cache

Management

1. Introduction

Data management in high energy physics (HEP) is challenging due to its

complexity and volume. These datasets are immutable once generated by the

experiments; scientists repeatedly read and process these datasets. A critical

2

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
challenge in the CMS workflow is how to deliver large volumes of data to re-5

searchers efficiently. An experiment data file has an average size of 2 Gigabytes,

with file sizes ranging between 100 Megabytes and 20 Gigabytes. A complete

dataset comprises multiple files, with the dataset sizes ranging from 2 − 100

Terabytes. Thus, providing speedy access to such datasets becomes a key en-

abler for data-intensive science research. The CMS experiment on the Large10

Hadron Collider (LHC) manages a large volume of data that currently exceeds

100PB across multiple sites. The experiment manages approximately 35PB of

data (a combination of detector readouts and simulated readouts across vari-

ous physics-related formats); this data is write-once and read-many. All CMS

managed data is immutable once written to permanent storage[3]. Through a15

combination of caching and pre-placement, CMS moves its data across 50 data

centers throughout the Worldwide LHC Computing Grid [4]. Data delivery for

CMS experimental workflows is challenging due to the large size of the datasets.

Further, exchanging the data between different sites – streaming to use laptops

or offsite batch jobs – has historically required a burdensome set of middleware20

and dedicated computing infrastructure. Therefore, a better solution is needed

to provide fail-over services, multiple repositories, and assist in the synchroniza-

tion across multiple data repositories, reducing the overheads on the original

dataset source and, consequently, the data transfer latencies. In this work, we

study how to leverage Information-Centric Networking (ICN) to provide faster25

in-network CMS data access to end-users. Contrary to IP-based, host-centric

Internet architectures, ICN emphasizes content by making it directly address-

able and routable. The users request the data based on its name instead of IP

addresses.

Named Data Networking (NDN) [5] is one such architecture that proposes30

the use of names for fetching data instead of relying on addresses for identifying

data locality. The end-user sends an Interest packet with the data name and

the network is responsible for both forwarding and caching the requested data.

One of the main characteristics of NDN is in-network caching, where the router

keeps a copy of the data to satisfy a future request. This reduces the latency35

3

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
arising from fetching the data from the source for all subsequent requests. The

software defined networking [6] paradigm has generated significant interest in

the information centric networking (ICN) community. SDN has been used to

address the name-based routing and forwarding [7, 8] by decoupling the ICN

data plane from its control plane [9].40

Under the NDN paradigm, a content store (CS) acts as a cache management

data structure. The CS is an in-network cache and performs data lookups for

incoming Interests and serves the consumers without the need for forwarding the

Interests to the NDN producers. In the current NDN implementation, it is only

beneficial to cache the data in the CS when the cached contents are available45

on the path to the content producer. This a serious limitation as it reduces

the data transfer efficiency by ignoring the (requested) cached content available

on adjacent/off-path routers in the network. The adjacent/off-path routers are

generally closer (in terms of the number of hops or routing cost) to the consumer

when compared to the NDN producer. Therefore, fetching the data from the50

producer and caching it only in the on-path router instead of also utilizing the

adjacent/off-path routers is inefficient. Thus, fetching the data from both the

on/off path routers would greatly improve the data retrieval performance.

In this paper, we propose a multipath forwarding strategy to address the

above problem. Our first approach proposes enhancements to the existing NDN55

Forwarding Daemon (NFD) implementation. Specifically, we propose a forward-

ing strategy that retrieves non-overlapping data packets from multiple routers

simultaneously. Further, the strategy provides additional flexibility in the per-

router choice of the Interest pipeline depth configuration. Next, we propose a

centralized approach using a SDN controller for managing/mapping the current60

contents of the CS. This approach allows us to make intelligent Interest pipeline

forwarding decisions by analyzing the global view of the NDN network. The

SDN controller is effectively used to analyze the network state and redirects

the incoming Interests to the off-path routers that have cached the requested

content. In our work, we enhance the data retrieval process for both cases by65

allowing both the NDN consumer and the NDN routers to fetch the content

4

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
from multiple off-path locations based on the network states. Our proposed

approaches, while improving data transfer performance on the one hand, also

ensures congestion avoidance on a specific path by distributing Interests across

multiple available paths.70

To employ NDN for CMS workflows, we must also address the critical chal-

lenge of how to store large files in the network efficiently. In the NDN paradigm,

a content store (CS) is an in-network cache that performs data lookups for in-

coming Interests and serves the consumers without the need to forward the

Interests to the NDN producers. Due to the limitation of the cache capacity on75

each NDN router, novel approaches for efficient cache management are neces-

sary. One approach is to deploy the NDN routers with large memory. However,

this will increase the deployment costs and is therefore inefficient. Another

approach is to use solid-state drives (SSD) for caching the data; the use of

SSDs for caching not only increase the overall cost of the deployment but also80

add additional data retrieval latencies. In the Information-Centric Networking

(ICN) community, software-defined approaches for NDN routing intelligence

and caching management is an active area of research. To address the above

problems, we propose a solution that employs an SDN controller to manage

cache-aware NDN routers. Our proposed approach works in two phases. First,85

during the file retrieval process, if the file is not cached in the network (and

resides on the producer storage), the interest packet will be forwarded to the

centralized controller for the best retrieval strategy. Small files are retrieved

using the default NDN approach. However, for large files that cannot be cached

on a single router, a distributed retrieval approach using multiple router content90

stores will be used. Second, depending on whether the requested file is already

cached on multiple routers or not, the controller will provide a strategy for dis-

tributed file retrieval (See Section 3). Further, our proposed system architecture

also enables the prefetch feature, where parts of the file can be prefetched and

cached on different routers simultaneously.95

Specifically, our solution, in comparison to the original NDN data reposi-

tory and synchronization implementations, exploits multiple paths and off-path

5

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
routers (not possible in the default NDN implementation) to optimize end-to-

end data transfers. Further, our solution provides a better data management

solution by offloading key decision-making tasks to an SDN controller.100

The main contributions of our work are listed below:

1. We propose a distributed multipath (D-MP) forwarding strategy for NDN

Interest pipeline processing and data retrieval. This approach demon-

strates simultaneous data retrieval from a set of n routers with pre-configured

Interest pipeline depths. In comparison to the default NDN implementa-105

tion, our D-MP strategy performs over 10x better than the alternative.

2. We propose a centralized, SDN-enabled control for our multipath forward-

ing strategy (S-MP). We show that the centralized control (S-MP), unlike

the D-MP case, provides additional benefits due to the knowledge of the

global NDN network and cache states.110

3. For both D-MP and S-MP approaches, we present NFD configuration algo-

rithms detailing the consumers’ Interest and routing pipelines, interfaces

and the Interest distribution strategy.

4. We present cache management strategies for large data transfers using

NDN. Using software-defined control, we present strategies for partition-115

ing and distributing large CMS files based on NDN routers’ cache-state

knowledge.

5. We also develop a prefetching mechanism to reduce the data retrieval

latency specifically for large file transfers. Our proposed approach further

improves the data transfer performance by optimizing the file retrieval120

time while reducing the path latency.

6. Lastly, we evaluate the performance of our multipath forwarding and cache

management solutions for large data transfers on an at-scale, geographi-

cally distributed wide area network (WAN) research testbed and provide

valuable WAN performance insights.125

The paper is organized as follows: Section 2 presents background on named

data networking (NDN), software defined networking (SDN) for NDN and the

6

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
related works; In Section 3, we describe our proposed system architecture for

NDN multipath forwarding strategies and SDN control of NDN; Section 4 out-

lines our solution approach for NDN Interest pipeline management for both130

D-MP and S-MP usecases. In Section 5, we describe our proposed approach

for NDN cache management for large file transfers. We describe our evalua-

tion framework, network testbed setup and experimental design for multipath

forwarding strategies in Section 7. In Section 8, we present extensive results

and discussions for our proposed multipath forwarding strategies, SDN control135

for NDN and large data transfer cache management approches. Finally, we

conclude our work in Section 9.

2. Background and Related Work

2.1. Named Data Networking

The traditional IP-networking has problems such as IP mobility, network140

address translation (NAT) traversals, and address space limits. Named Data

Networking (NDN) [5] is an excellent solution to mitigate such problems. NDN

is a Future Internet Architecture (FIA) [10] project that proposes re-designing

the current host-centric Internet architecture. It is developed on a name-based

packet forwarding and routing scheme, using a hierarchical and unbounded145

namespace. These ensure the communication continuity as the data is no longer

bound to the host address, provide data mobility, and eliminate address-space

management in the network. NDN requests data using its name instead of the

IP address. There are two types of packets in NDN: (i) Interest packet, which

contains the data name, and (ii) Data packet, which contains the data to be150

sent back to the consumer. NDN names are hierarchically structured. For in-

stance, the name /ndn/repository/file, is carried by the Interest and is used

to forward the data to the content custodian. NDN routing is similar to its

IP-network counterpart but with longest-prefix matches performed on the data

names instead of the IP addresses. Each NDN router maintains a forwarding155

information base (FIB) populated with name prefixes. A name-based routing

7

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
protocol is used to populate each router with the name prefix and the associated

interface on which the data can be retrieved.

NDN Forwarding Daemon (NFD) is responsible for routing the Interest and

caching the data. NFD manages three data structures: Pending Interest Table160

(PIT), Content Store (CS), and Forwarding Interest Base (FIB). The NDN

consumer generates and sends the Interest packet in the NDN network. When

the router receives the Interest packet, it uses the data name to forward the

packets to the NDN producer (i.e., data custodian). The router will store the

Interest in its PIT along with the incoming interfaces. Suppose the same Interest165

packet, from another consumer, reach the router. In that case, the PIT will

return the Data packet to the consumer upon receiving it. The NDN router

will reply directly to the consumer if the data is already stored in the cache.

Otherwise, the Interest packet will be forwarded to the producer. The caching

mechanism is an efficient way to reduce the latency of retrieving data and reduce170

overheads on the producer. The FIB acts as the routing table for the router.

NDN routers have different forwarding strategies that define how and where

to forward Interest packets. The forwarding strategy chooses the next hop for

forwarding until the Interest reaches the destination. It can also select different

paths to retrieve the data packets. For instance, the forwarding strategy can175

forward the packets based on the shortest (number of hops) path, lowest latency

path, or least congested path.

2.2. Software Defined Networking

Numerous research efforts have focused on ensuring network programmabil-

ity and software defined networking (SDN)[11] is a critical part of this effort.180

The popularity of SDN has increased rapidly over the last few years and it has

become a well investigated area of research. The main idea behind the success

of the SDN is that it provides a separation between the control plane and the

data plane. This separation led to many benefits such as reducing overheads

for the network operators in managing the different parts of the network and185

connecting different types of networks. Further, it provides an automation pro-

8

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
cess to control and forward traffic through the network. SDN relies on network

configuration based on a programmable policy. Further, SDN reacts to different

network conditions by selecting the fastest route to avoid congestion.

There are numerous advantages to implementing NDN over SDN, including190

routing [12], forwarding [8], security monitoring [13] and orchestration [14]. The

authors in [15] used SDN and OpenFlow to optimize the TCP congestion con-

trol performance in NDN. Controller-based routing schemes were developed by

the authors in [16] to support mobility in NDN. SDN, virtualization technolo-

gies and network functions virtualization (NFV), and their benefits to network195

management, service provisioning and quality of service (QoS) have also been

explored in [14, 17, 18]. In this work, we focus on using SDN to manage NDN

routers’ cache and apply multipath forwarding strategies to improve large data

transfer efficiency.

2.3. Related Work200

Several other works focus on SDN-NDN integration, improving content caching

and placement, and routing/forwarding mechanisms. The authors in [19] pro-

posed using a controller to perform content selection and placement on specific

off-path routers. Other approaches to optimizing NDN caches include joint-

path and off-path cooperative caching policies [20], content popularity based205

multi-path forwarding and caching strategies [21], and the use of network cod-

ing and cache content placement to achieve better bandwidth and cache cost

performance [22]. Interest routing and forwarding strategies in [23] rely on the

discovery of temporary copies of the content not available in on-path caches

to forward data requests on each hop. However, the above works only focus on210

caching optimizations to improve existing forwarding strategy performance. The

authors in [24] proposed SDCCN, to program content-centric networking (CCN)

forwarding strategies and caching policies using an SDN approach. However,

this approach focuses on cache replacement algorithms for improving strategy

performance. Unlike the above works, our work focuses on developing novel215

forwarding strategies for Interest pipeline management.

9

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Numerous recent works explore the use of centralized control for manag-

ing information centric networks (ICN). Works such as [19], [20], [21], and [23]

explore cache placement, caching policies, and content selection strategies on

both on- and off-path routers. SDN-based control of ICN is also proposed for220

distributed data transfers in data-intensive science [25, 26, 27]. The authors in

[1] discuss multi-path interest distribution strategies for both distributed and

centralized control of NDN and how it can improve data transfer performance.

However, the interest distribution strategies presented in [1] do not consider net-

work layer properties such as NDN on-path congestion and the route bandwidth225

availability. Unlike the above works, we propose a centralized cache manage-

ment framework that considers the limitation of the NDN router cache for large

data transfer. Previous works deal either with data retrieval performance and

cache placement or develop techniques for off-path data retrieval. However,

the missing piece in those works, which we address in this work, is the cache230

management framework and the collaboration between different routers’ CS to

cache large files and return it to the user efficiently.

3. System Architecture

NFD employs a per-namespace forwarding strategy to forward Interests.

The strategy choice would affect packet forwarding decisions and play an im-235

portant role in fetching the data from a given NDN router. Several Interest

forwarding strategies are available for use by the NFD, including best routes,

multicast, client control, NCC (implemented from CCNx, i.e., CCN backward),

access router, and adaptive SRTT (smoothed round-trip time) -based Forward-

ing (ASF) [28] strategy.240

Although sufficient for many existing network environments, the strate-

gies described above do not cater to the necessary performance requirements

of large-scale distributed datasets. We develop strategies suitable for large-

volume distributed data transfers over high-bandwidth, high-delay wide area

networks (WANs). The targeted use of the developed strategies and forwarding245

10

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
pipelines are complex and distributed file systems such as CernVM File System

(CVMFS) [29]. High-energy physics (HEP) workflows (e.g., Compact Muon

Solenoid (CMS) [30]) are evaluating the use of CVMFS for the distribution

of experimental datasets [25] using NDN. Next, we outline two approaches to

Interest distribution: i) a distributed multipath (D-MP) strategy and enhance-250

ments to the existing NDN Interest pipeline, and ii) A centralized SDN-enabled

control for the multipath strategy (S-MP).

D-MP NFD NFD NFD

NDN Consumer NDN ProducerNDN Router

Figure 1: D-MP: Distributed Multipath Network Architecture.

3.1. D-MP: Distributed Multipath Forwarding Strategy

NFD data transfer decisions use a combination of strategy choice and the

forwarding pipeline depth. Together, they form the NFDs’ intelligence and255

packet processing logic. The strategy choice influences the packet forwarding

decisions. The forwarding pipeline specifies the number of simultaneous Inter-

ests that are forwarded per request. We propose NFD strategy enhancements

to optimize the NFD forwarding pipeline. The architecture is as shown in Fig-

ure 1. Our NFD enhancements enable parallel data (or namespace) retrieval260

from multiple routers using a per-router Interest pipeline depth. Our proposed

distributed multipath (D-MP) strategy benefits from multipath gains and/or

off-path caching to reduce the latency of data-delivery to the consumer. Unlike

the multicast strategy, our optimizations focus on parallel data retrieval from

a set of NDN routers. We also consider the effects of caching at the content265

store (CS) of each router on data retrieval times. Using the D-MP strategy,

the data consumer can simultaneously request non-overlapping data segments

11

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
from multiple routers. Further, our approach enables the consumer to specify a

per-router forwarding pipeline depth. Thus, D-MP can optimize parallel data

transfers from multiple NDN routers based on the exchanged information be-270

tween the NDN consumer and NDN routers. Details of the D-MP approach are

presented in Section 4.1.

3.2. S-MP: Centralized SDN control for the Multipath Forwarding Strategy

The D-MP approach described in the previous section relies on priori in-

formation about the available router forwarding paths for forwarding decisions.275

Although the D-MP approach benefits from multipath data retrieval and larger

optimized Interest pipelines per path, it is vulnerable to dynamic network state

changes due to its dependence on a priori information. To facilitate the use

of real-time NDN network state information in Interest forwarding decisions,

we propose a software-defined control architecture for the multipath forward-280

ing strategy. The architecture is shown in Figure 2. The S-MP architecture

uses representational state transfer (REST) application programming interfaces

(APIs) for information exchange between the NDN and the SDN infrastructures.

The centralized SDN controller manages the NDN network state information,

including router states, available forwarding paths, and cached contents. It also285

asynchronously communicates with the NDN routers and the content producers

to create a data map of the CS on the NDN routers. They are also representa-

tive of the data cached in the memory buffer of each NDN router. The S-MP

strategy involves the following:

3.2.1. Consumer NFD Configuration290

First, we choose the set of routers that already cache the requested content

either partially or fully. Based on the caching information, we formulate a multi-

router Interest distribution strategy and communicate it to the data consumer

NFD. The consumer’s NFD configures the associated faces, routes, and Interest

pipeline depths. It initiates the parallel non-overlapping data retrieval from295

multiple NDN routers. Suppose the requested data caching is unavailable at

12

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
the routers. In that case, the SDN controller sends a list of the best candidate

routers and the corresponding Interest distribution strategy to the consumer

NFD. The consumer uses this information as before to set up the connections.

3.2.2. Data Retrieval300

The consumer NFD establishes parallel connections with the specified list

of routers and configures each connection with an associated Interest pipeline

depth. Parallel connections retrieve the requested data and assemble it at the

consumer. If no data is cached at the routers, the consumer NFD sends the

Interests for non-overlapping data segments to the routers. The routers in-turn305

fetch and cache the requested data from the NDN producers and deliver it to

the consumer.

S-MP NFD NFD NFD

Storage REST API NFD Management REST API

NDN Consumer NDN ProducerNDN Router

SDN Control

Figure 2: S-MP: SDN-enabled control for multipath forwarding.

Two types of messages are exchanged between NDN routers and the SDN

controller. Namely, 1) Forward message, used when the requested data is un-

available at the router, and 2) Update message, used when the new data is re-310

ceived and cached at the router. When the Interest arrives at the NDN router,

the NFD checks the content store (CS) for the requested data. If the data is

available, the router will return a copy to the consumer. Otherwise, the router’s

NFD forwards the Interest along the path to the NDN producer. The SDN con-

troller uses the Update message to update its NDN state information data. An315

Update message is sent to the SDN controller on a per data packet (segment)

13

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
basis. The Update packets are sent to the controller for both data addition

or data removal from the NDN repositories; Thus, these messages are used in

two scenarios, namely (i) Addition: when the segment is received by the NDN

router and cached, (ii) Removal: when an existing segment is removed by the320

cache replacement policy. Table 1 shows the message types exchanged between

the SDN controller and NDN. Details of the S-MP strategy are presented in

Section 4.2. Next, we present our cache management architecture for large data

transfers.

Table 1: SDN-NDN Interaction Message Types.

Message Type Purpose Size

Forward Indicates that the data

is unavailable at the

router

Variable (TLV)

Update Indicates that new

data is available and

cached at the router

Variable (TLV)

3.3. Cache Management Architecture325

NFD forwarding strategy is responsible for choosing the interest forward-

ing interface. Designing and selecting the correct strategy will affect the data

retrieval process and performance. Our cache management architecture can

be combined with our proposed multipath forwarding strategies for improved

performance.330

The default NDN forwarding strategies can be used in different network

environments, however, they are unsuitable for large-scale datasets comprising

of large files (i.e., files larger that the routers’ CS size). Since NDN relies

mainly on cached data to reduce retrieval latency, the above strategies ignore the

environments that deal with large datasets. In this paper, we propose a solution335

for cache management and develop a forwarding strategy that deals with large

14

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
datasets. We develop an architecture and associated strategies to deal with

large-volume distributed data transfers over high-bandwidth, high-delay wide

area networks (WANs). The targeted use of our architecture is the complex

and distributed filesystems such as CernVM File System (CVMFS) [29]. High-340

energy physics (HEP) workflows (e.g., Compact Muon Solenoid (CMS) [30]) are

evaluating the use of CVMFS for the distribution of experimental datasets [25]

using NDN.

3.3.1. Explanatory Example

For large data transfers that exceed the Router CS size, a cache miss will345

always occur, and the data will be fetched from the producer. The following

example illustrates the need for our proposed solution:

Suppose the NDN content store size is 500MB (default size in the current

NDN implementation), and we have a 1GB file with name "large". The file will

be segmented into several chunks and fetch by several interest packets. The350

interest name will be, for instance, /ndn/large/segNum=1 for the file’s first

chunk. For simplicity, let us assume that the chunk size is 1MB. Then, we

will have 1000 interests to fetch the file “large”. Since the CS size is 500MB,

chunks 1-500 will first fill up the CS, then chunks 501-1000 will start replacing

the chunks in the CS if a regular replacement strategy is employed. Example355

strategies include the first in first out (FIFO) strategy or the least recently used

(LRU) strategy. Now, suppose the file is requested again by the same consumer

or another consumer. In that case, the interests will start by fetching chunk

1. Since the CS currently contains chunks (501-1000), then a cache miss will

occur. The interest will be forwarded to the producer. The chunks (1-500) will360

again fill the CS and result in a cache miss. The same scenario will repeat when

fetching the chunks (501-1000).

3.3.2. Architecture

Figure 3 shows an overview of our cache management architecture. All

routers and the producer communicates with a centralized controller for cache365

15

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Producer

SDN
Controller

Consumer

Consumer Router

Figure 3: Cache management architecture.

management and data retrieval. The router/producer to SDN controller commu-

nication employs representational state transfer (REST) application program-

ming interfaces (API) to interact with an SDN application over an out-of-band

link. The centralized controller manages all routers’ CS and the forwarding

strategies that need to be installed on the routers. The system architecture is370

described below:

1. NDN Consumer : The NDN consumer represents the user requesting the

data. The Consumer in our architecture is unaware of the underlying

architecture and requests the data directly by sending Interest to the net-

work.375

2. NDN Router : The NDN routers are responsible for caching the data in

their own CS. Also, the NDN routers will use the forwarding strategy to

forward the interest to the next-hop router. The NDN routers collaborate

with the controller while storing the data. If the file size is small, then one

NDN router is used to store the file. However, for large files, the file will380

be stored on multiple NDN routers’ CS. Splitting the file among multiple

NDN routers will avoid premature CS cache replacement. It will also

ensure faster data retrievals due to the file transferred from in-network

caching.

16

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
3. NDN Producer : The NDN producer represents the content custodian or385

the storage where all data resides and caters to the consumer interest-

s/requests. The producer can store the actual files or store them as NDN

packets. Storing the data as NDN packets in advance will avoid the over-

head from converting the regular files into NDN signed packet. In this

work, we convert and segment the files into NDN packets. For segment-390

ing the file, we retain the default NDN chunk size (i.e., 8800 bytes). The

NDN producer will update the centralized controller about the files that

it has in its repository and the size (number of chunks) of each file. The

controller will store this information in its database for cache management

purposes.395

4. Centralized Controller : The controller in this work represents the primary

entity in managing the interest routing and caching. It receives Interest

from routers and sends different forwarding strategies to the correspond-

ing routers for caching the whole file or partially, based on each router’s

CS and the file size. The centralized controller uses REST APIs for com-400

munication with the NDN routers and the NDN producer. The controller

manages the NDN network state information, including routers CS states

(i.e., the available space on CS), forwarding paths, and data information

on the NDN producer. We run a program alongside the NFD on all NDN

routers and the NDN producer. This program is responsible for inter-405

nal communication with the NFD and external communication with the

SDN controller. The controller asynchronously communicates with this

program to create a data map of all routers’ CS.

Figure 4 shows an example of the use of our architecture. When consumer

C wants to retrieve a large file from the NDN producer, it will create an interest410

and send it to router R1. If it is a new interest, then router R1 will send the

interest to the controller. The controller will read the file information and the

Router CS from its database. In our example, the controller finds that routers

R2, R3, and R7 have enough space in their CS to store the large file. The

17

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
controller will send the configuration to router R1 to split the interest for the file415

segments into three paths. If the file is split into n segments (S0...Sk..Sr..Sn−1),

these segments will be retrieved as follows:

• S0 − S(k−1) through path R1→ R2→ R5→ P

• S(k) − S(r−1) through path R1→ R3→ R6→ P

• S(r) − S(n−1) through path R1→ R4→ R7→ P420

C R1

R4

R3

R2

R7

R6

R5

P

Figure 4: Distributed Interest example.

The controller will configure the routers R2, R3, and R7 to cache these

segments. Simultaneously, the controller configures the routers R4, R5, and

R6 not to cache those segments. This cache management strategy will help in

reducing the number of cache misses on other routers. Further, it also benefits

from other routers in caching other files.425

3.3.3. Prefetching File Segments

We developed a prefetch mechanism to reduce the latency in retrieving files.

In our previous example (Figure 4), the controller will ask routers R3 and R7

to start a parallel data segment retrieval. Since R1 starts retrieving segments

(S0−S(k−1))) first. The controller will tells router R3 and router R7 to retrieve430

segments S(k) − S(r−1)) and segments S(r) − S(n−1)), respectively and store

them in their CS. When R1 finishes retrieving the first set of segments from

the producer, it will start retrieving the second and third set of segments from

18

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
routers R3 and R7 instead of the producer. Thus, it will reduce the path latency

and optimize the overall data retrieval time.435

4. Multipath Forwarding Strategies for NDN

The default NDN implementation relies on data caching only on-the-path to

the content producer. This limitation reduces the data transfer efficiency as it

ignores the (requested) cached content that may be available on adjacent/off-

path routers in the network. These off-path routers are generally closer to the440

consumer when compared to the content producer. Therefore, data retrieval

from both on- and off-path routers can greatly improve data retrieval perfor-

mance. In this section, we outline the different implementation approaches for

multipath Interest pipeline distribution. We discuss our forwarding strategies

for both cases, i.e., D-MP and S-MP.445

4.1. Interest Pipeline Distribution Approaches for D-MP

The D-MP-based NFD configuration and data transfers are outlined in Al-

gorithm 1. For each incoming Interest packet, the consumer NFD computes the

optimal forwarding strategy, a list of routers, and their corresponding pipeline

depths. This router set is created based on a discovery phase. During this phase,450

the consumer sends a message to all routers to check if the data is available in

the routers’ caches. The consumer processes the replies from the routers and

builds a forwarding strategy configuration. This configuration contains infor-

mation about the NFD Face to use with each router and a per-router Interest

pipeline depth.455

Different approaches can be used for Interest pipeline distribution for the D-

MP case. We implement a round-robin scheme for Interest distribution among

a set of n routers. In this approach, we distribute i,∀i ∈ {1, .., p} Interests to

the processing pipeline of n routers. This approach ensures that the Interest

processing pipeline of each router is always saturated with the defined pipeline460

depth (i.e., p) for optimal performance. Another approach is to use a ratio-based

19

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Interest distribution scheme. In this approach, Interests are distributed to a set

of n routers based on a defined ratio partitioning scheme. For example, for a set

of n = 3 routers and a pipeline depth, p = 20, an Interest distribution ratio of

40%, 40%, and 20%, results in the Algorithm 1 assigning 8 Interests to routers465

1 and 2, and 4 Interests to router 3 respectively in a non-overlapping fashion.

This ratio can be calculated based on the network state information obtained

during the discovery phase and changed during the data transfer. Thus, the ratio

partitioning approach provides additional flexibility for adjusting the Interest

processing pipeline depths for each router to Thetotal computing delay for the470

entire data transfer (both datasets outlined in Table 2) is on averageabout 900ms

(as opposed to data transfer times that vary between 110 to 625 seconds for

the100MB file transfers. Therefore, we focus evaluating the end-to-end data

transfer performance forlarge files as the SDN controller performance does not

adversely affect data transfer performance.better balance routers’ loads and/or475

processing capacities. In this work, we only present the performance results for

the round-robin scheme.

20

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Algorithm 1 D-MP(i)

Input: NDN Interest (i).

Output: D-MP NFD configuration for data transfer.

Consumer NFD Configuration Update:

1: for all r ∈ R do

2: Consumer sends discovery message to router r

3: Consumer processes reply from router r

4: end for

5: Consumer computes optimal namespace configuration

6: Consumer update C : ifaces, C : ipipeline, C : idistribution

Consumer NFD Data Retrieval :

7: for all Routers r ∈ C : ifaces do

8: Configure router pipeline rp ← C : ipipeline(r)

9: Forward Interests based on C : idistribution

10: end for

4.2. SDN-enabled Centralized Interest Pipeline (S-MP)

The SDN-enabled centralized Interest pipeline distribution approach for-

wards consumer Interests for all requested names to the SDN controller. Algo-480

rithm 2 describes the consumer NFD processes and Algorithm 3 describes the

SDN controller functionality.

21

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Algorithm 2 S-MP(i)

Input: NDN Interest (i).

Output: S-MP NFD configuration for data transfer.

SDN-enabled Consumer NFD Configuration:

1: SD-NFDConfig(i)

2: C : ifaces ← router_list

3: C : ipipeline ← p

4: C : idistribution ← distribution_map

Consumer NFD Data Retrieval :

5: for all Routers r ∈ C : ifaces do

6: Configure router pipeline rp ← C : ipipeline(r)

7: Forward Interests based on C : idistribution

8: end for

The SDN controller is responsible for computing the forwarding strategy,

multi-router configuration, and specifying the per-router pipeline depth for a

given data transfer request. The SDN controller manages a map of the state485

of the content store (CS) compiled from all the NDN routers in the network.

It also maps the off-path routers that host the requested data. Further, it

computes decision statistics based on the routers’ status and their network state

information. It will then communicate the appropriate strategy configuration

to the NDN consumer to help set up the necessary connections. It is to be noted490

that the communication between the SDN controller and the NDN routers/NDN

producers are independent of the consumers’ data requests. For every CS state

change, the router sends a REST POST to the controller to notify the cache

update. Optimum Interest pipeline distribution decisions are made based on

the state of the CS of each router (either on- or off-path) in the network. The495

optimum decision specifies the forwarding strategy, the total number of routers,

and the associated pipeline depths for configuring the consumer NFD for each

router in the configuration.

22

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Algorithm 3 SD-NFDConfig(i)

Input: NDN Interest (i).

Output: SD-NFD Configuration File.

1: Lookup data map for the namespace in Interest i

2: Compute optimal namespace configuration

3: return {router_list, p, distribution_map}

5. Cache Management for Large Data Transfers

In this section, we describe the implementation approach for cache manage-500

ment and data distribution.

5.1. Controller algorithm

When the router receives an Interest, it will forward it to the controller,

asking for the best configuration to forward it. Algorithm 4 shows the process

on the controller to build the configuration file. The controller will take the505

Interest as input, receive the file information, and the routers’ CS status from

its data map (database). It will sort the routers based on the available space in

each router’s CS. The routers with the largest CS available space will be used

first. Based on each router’s file size and the available CS space, the controller

will decide the number of routers needed to cache the file. Sorting the routers510

based on the CS space will avoid splitting the file among too many routers and

avoid additional delays in retrieving the file later. The controller will send the

configuration instructions to the routers to forward Interests for the file retrieval.

Algorithm 4 Controller Config(i)

Input: NDN Interest (i).

Output: SD-NFD Configuration File.

1: Lookup data map for the namespace in Interest i

2: Sort the routers based on the available space of the routers CS

3: Compute the number of routers that is needed to cache the file

4: return NFD-Config(i)

23

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
5.2. Router Forwarding Strategy Algorithm

Algorithm 5 describes the procedure on the router. We develop a procedure515

for communication between the NFD on the router and the SDN controller.

When an interest reaches the router, the router will check if it is requesting a

chunk from the file with an installed configuration, or if this Interest is a new

one. If the Interest is new, then the router will send the Interest information to

the controller. The controller will reply with the instructions on how to forward520

the Interest, carried in the NFD-Config file. The router will use this file to

forward the Interests to retrieve the specific data accordingly. The NFD-Config

file carries the information on how to divide the Interests by requesting the

file from several interfaces. Since the file is segmented into several chunks, each

Interest will retrieve a specific chunk. The NFD-Config file will tell the router to525

forward a set of Interests requesting (segment0, segmenti−1) on one interface,

and another set of Interests requesting (segmenti, segmentj−1) on a different

interface.

Algorithm 5 Router configuration(i)

Input: NDN Interest (i).

Output: Router NFD configuration for data transfer.

Configuration request :

1: if Interest not configured then

2: Send Interest information to the controller

3: else

4: Forward Interest based on the existing configuration

5: end if

Configuration arrival :

6: Read NFD-Config(i)

7: for all faces in NFD-Config do

8: Forward Interests of (segmenti, segmentk)

9: end for

On the other hand, the controller will send instructions to the corresponding

24

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
routers that will store the file segments in their CS to enable the caching process530

for these file segments. If the router does not receive this message, it will just

pass the data without caching it.

Algorithm 6 Prefetch procedure

Input: prefetch_MSG.

Output: Request and cache file segments.

1: READ prefetch_MSG

2: for Seg = startSeg; Seg < endSeg; Seg++ do

3: Interest = /ndn/fileName/Seg

4: Send Interest

5: end for

Further, in the prefetch scenario, the controller will inform the NDN routers

that will cache the file to start fetching parts of the file. The first router will re-

trieve the file segments in the usual way (Interests coming from the consumer).535

In contrast, all other routers that cache the other parts of the file will start

issuing Interests to store the corresponding segments in their CS. Algorithm 6

shows our prefetch process. Once the router receives prefetch_MSG from the

controller, the router will read the file name, prefix, and the range of the seg-

ments that are needed to be fetched. Then, the router will issue these interests540

and cache the segments in its CS even before the actual Interests sent from the

NDN consumer.

6. NDN Multipath Strategy Analysis

In order to understand the benefits of the multipath strategies detailed in

this work, we present the analysis and comparison of our proposed multipath545

forwarding strategy with the default NDN strategy. The default NDN strat-

egy relies on sending a single Interest packet from the NDN consumer to the

NDN producer through a single pre-configured path. In contrast, our proposed

multipath forwarding strategies employ multiple paths to retrieve data simulta-

25

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
neously from nearby or adjacent off-path routers. The parameters used in our550

analysis are presented in Table 2.

Table 2: Parameters for NDN-Multipath Analysis.

Parameter Description

NPS The NDN packet size (in bytes) which carries the data

from the producer to the consumer in along a given path.

DP The pipeline depth representing the total number of simul-

taneous Interests sent simultaneously from a given con-

sumer.

MP Multipath parameter which represent the total number of

paths used to forward the Interest packets.

Bi The achievable throughput B for link i.

snum The total number of NDN segments representing the en-

tire NDN data file that is stored on the NDN producer or

cached at the routers.

δi The latency of the link i in milliseconds.

δtotal The latency to retrieve the complete file in milliseconds.

Using the parameters defined in Table 2, we compare the latency perfor-

mance for the following scenarios: (i) the default NDN implementation where

one interest packet is sent and one data packet is retrieved at a time; (ii) A

multi-interest design where multiple interests are sent on one path simultane-555

ously to retrieve multiple (unique) data packets on a given link, and (iii) A

multi-interest, multipath design which is our proposed solution relies on to send

multiple (unique) interests on different paths to the producer.

For the default NDN implementation, the latency to transfer one segment

will depend on the link throughput and the time required to send the packet on560

the specified path. Therefore, if the file/data consist of a total of snum segments,

the latency to successfully transmit the entire file is given by

δtotal = snum × δi

26

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
The latency can be reduced using methods such as the multi-interest tech-

niques and multipath data retrieval. Unlike the default NDN implementation565

where instead of transferring one segment at a time, we can transfer multiple

segments based on the throughput, Bi of the link i. As a result, the latency

reduces to:

δtotal =
snum×δi
DP

where the DP value is selected based on the total number of available paths,570

each with Bi for the link i.

Additionally, significant improvements can be achieved through our proposed

solution by considering a multipath strategy for data retrieval. In this case,

the latency will be distributed across multiple paths by sending simultaneous

(non-overlapping) interest packets on several paths instead of a single path.575

Therefore, the total latency is given by:

δtotal = (
s1..j×δ1
DP1 +

sj+1..k×δ2
DP2 + ..+ sn..num×δn

DPn)/MP

where s1..j is the first set of segments simultaneously transfer on path1, and

sn..num is the last set of segments transfer on the last path pathn.

Assuming that all paths have the same achievable throughput and propaga-580

tion delay, the total latency will be the reduced by a factor of MP as follows:

δtotal =
snum×δi
DP×MP

The worst case scenario, in this case, is that we constrain the pipeline depth,

DP = 1, and the total number of paths, MP = 1, which corresponds to the

default NDN implementation of sending a single interest packet over a single585

path. Therefore, our proposed solution provides improved performance over the

default NDN implementation. The only additional overhead of our design in

comparison to the default NDN design is the communication between the NDN

routers and the SDN controller. The NDN-to-SDN communication overheads

are negligible as the SDN controller is usually closer to the NDN consumers and590

employs a single control packer per file transfer.

27

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
As an example, we will consider the network topology shown in Figure 4 in

Section 3.3.2. From Figure 4, we have three paths between the consumer and

the producer, namely: (i) Path1 (P1): R1 → R2 → R5 → P , (ii) Path2 (P2):

R1 → R3 → R6 → P , and (iii) Path3 (P3): R1 → R4 → R7 → P). For595

simplicity, we assume that the transmission time and propagation delay is same

for all paths. Now, consider a file which needs to be split into 100 segments.

Assuming that the latency to retrieve one segment is 10ms, the overall latency

to finish retrieving the whole file will be:

• Default NDN implementation: The implementation will need to retrieve600

100 segments, where the second segment will be retrieved after getting

the first segment sequentially, until the whole file is fetched. Also, the

packets will traverse one path only. This will give us an overall latency as

100× 10ms.

• Multi-interest design: The latency value will be reduced by the value of605

chosen DP . The DP value is set based on the Bi of that link. Then, if

we choose P1 to transmit the packet, then multiple segments DP would

be retrieved at same time.

• Multi-interest, Multipath design: In this scenario, all paths (P1, P2, and

P3) could be selected to retrieve the segments. Based on the Bi of each610

path, then a separate DP will be set for each path. Therefore, the total

number of simultaneous segments can be DP ×MP .

7. Evaluation

In this section, we describe our network testbed setup, datasets used in the

performance evaluation, associated parameters, and the experimental design.615

7.1. Network Testbed

Our test network topology is shown in Figure 5. The test network is com-

posed of two NDN consumers, three NDN routers, an NDN producer, and an

28

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
SDN controller node. Consumer C1 is connected to all three routers (R1, R2,

and R3). C1 is the main data consumer for all our tests. It implements620

our NFD forwarding strategies and Interest pipeline distribution approaches.

Consumer C2 is only connected to R1, and its path to the NDN producer is

C1 → R1 → R2 → R3 → P . The consumer C2 is only used for populating all

routers with the same dataset for the tests with in-network caching enabled.

Figure 5: Test network for SDN-enabled multipath forwarding.

All nodes in the test network are set up on the GENI (Global Environment625

for Network Innovations) [31] platform. GENI provides a platform for at-scale

networking research, connecting compute resources over the Internet2 AL2S

infrastructure. We use six GENI sites (with one NDN node per site) spread

across InstaGENI infrastructures at Georgia Tech, Kansas, Rutgers, Stanford,

UCLA, and UChicago. Therefore, this setup is representative of a real-world630

WAN NDN network.

Figure 6 shows our network topology for cache management experiments.

This testbed consists of one NDN consumer, four NDN routers, an NDN pro-

ducer, and a controller node. The NDN Consumer, all NDN Routers, and the

NDN Producer are running NDN-cxx and NFD.635

We used the GENI [31] platform as our network testbed. GENI provides

a platform for at-scale networking research, connecting compute resources over

the Internet2 AL2S infrastructure. We use seven GENI sites (with one node

per site) spread across InstaGENI infrastructures at Kentucky MCV, Kentucky

29

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
R2

R3

R4 Producer

SDN
Controller

Consumer R1

Figure 6: Network topology for cache management experiments.

PKS2, Clemson, Texas, Wisconsin, Vermont, and Hawaii. Therefore, this setup640

is also representative of a real-world WAN NDN network.

7.2. Experiments

In this section, we outline the various experiments to evaluate the perfor-

mance of our multipath forwarding strategies. We evaluate NDN data transfer

performance for different scenarios over a WAN test network as outlined in Ta-645

ble 3. The two datasets used were: i) 100MB file transfers, and ii) 1000 files of

8KB each. We design the following experiments (E1 to E5) for our evaluations:

7.2.1. E1–Single Router, Single Interest Pipeline

This is the default NDN strategy where the consumer retrieves all the re-

quested data from a single router and/or a single producer.650

7.2.2. E2–Single Router, Aggregate Interest Pipeline

This is a variation of the previous strategy E1 with an increased Interest

pipeline depth (p = 10 was used).

7.2.3. E3–Distributed Multipath (D-MP), Single-Interest Pipeline

In this case, we use three routers and with only one Interest per router.655

The list of routers is obtained using the communication between the consumer

and the routers. The Interest distributed evenly between routers and based on

Round-Robin (RR) technique.

30

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
7.2.4. E4–Distributed Multipath (D-MP) Pipeline

This is Similar to the previous case, but we use multiple Interests per router660

(p = 10). We evaluate two configurations for this pipeline: i) E4a: Round-robin

with p = 10 per router, and ii) E4b: Ratio-partitioning based Interest pipeline

distribution (a ratio of 50%, 30%, 20% was used).

7.2.5. E5 & E6 –SDN-enabled Multipath (S-MP) Pipeline

This is Similar to E3 & E4, except the consumer will retrieve the list of665

routers which cache the data from the SDN controller. The optimum number

(and list) of routers, and their associated pipeline depths are obtained from the

SDN controller using Round-robin (RR) technique. We evaluate two case: i)

E5a: S-MP Round-robin and ii) E5b: S-MP Ratio-partitioning similar to E4.

We evaluate the performance with/without in-network caching. For the670

in-network caching-enabled case, the CS at the routers will have cached the

requested data. Therefore the Interest is not forwarded to the NDN producer. In

the default NFD implementation, the Interest will be forwarded to the producer

and only benefits from on-path caching. In our proposed architecture, the SDN

will reconfigure the consumer to send Interest to off-path routers, which also675

host the requested data. Thus, we do not restrict data forwarding only to

the on-path routers. This architecture reduces the latency for data retrieval,

producer overheads, and avoids single-path congestion.

Table 3: Evaluation Parameters.

Test Datasets
Experiment Design

#Routers Pipeline Size Caching

100MB Files, and

8KB×1000 Files

1 1 w/ & w/o

1 10 w/ & w/o

3 1 per Router w/ & w/o

3 10 per Router w/ & w/o

3 5:3:2 w/ & w/o

31

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
7.2.6. Cache Management Experiments

We evaluate the cache management for large data transfers using large files,680

with file sizes chose to exceed the default NDN content store capacity of 512

MB. We use three different file sizes namely, 600 MB, 800 MB and 1 GB to

evaluate our proposed cache management architecture. We evaluate large file

transfers for two use cases namely, with and without caching. Further, we also

evaluate the data transfer performance when the prefetching feature is enabled685

for the above use cases.

8. Results and Discussion

In this section, we present the performance results of our proposed multipath

forwarding strategies, cache management for large data transfer and demon-

strate the benefits of our proposed prefetching feature.690

8.1. Multipath Forwarding Strategies

The WAN data transfer performance of the proposed D-MP and the S-MP

methods were evaluated on the GENI network testbed. The SDN controller and

all NDN entities (i.e. consumers, routers, and producers) were placed on differ-

ent InstaGENI sites and aggregated using layer-2 stitching over Internet2 AL2S.695

Two sets of WAN transfer performance results for two datasets are presented in

Figure 7. For both datasets, we evaluate the transfer performance with i) in-

network caching disabled, i.e. the requested data is not available in the routers’

content store (CS), and the requested data is always fetched from the producer

and then cached at the router(s); and ii) in-network caching enabled, i.e. the700

requested data is available on both on-path and off-path routers. All the results

in this paper are computed with 95% confidence interval over five runs.

Figures 7a and 7b show the transfer performance results for the experiments

listed in the Section 7.2 for the 100MB dataset with in-network caching disabled

and enabled, respectively. Our D-MP approach performs 12.5x and 18.4x better705

than the default NDN implementation with in-network caching disabled and

32

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
enabled respectively. In addition, the S-MP strategy shows performance gains

of 12.6x and 18.5x with in-network caching disabled and enabled respectively.

Figure 7c shows the transfer performance for the second dataset (i.e. 1000×8KB

files) with in-network caching disabled. We see that D-MP and S-MP approach710

perform 10.4x and 10.6x better than the default NDN implementation, respec-

tively. In Figure 7d, with in-network caching enabled, we see further perfor-

mance improvements, with D-MP and S-MP performing 12.5x and 12.6x better

respectively.

Comparing the two proposed approaches, we see that S-MP performs 0.8%715

and 0.54% better than the D-MP case for transferring the 100MB dataset. It

performs 1.92% and 0.8% for transferring 1000×8KB files. The reason for that

is that the S-MP only adds a small latency overhead to the transfer time. This

is because the Interest packet is forwarded to the SDN controller, and the Con-

sumer waits to receive the configuration update before initiating the connections720

with the appropriate routers. Furthermore, we note that this is a one-time cost

and can be minimized by placing the SDN controller closer to the edge of the

NDN networks. Thus, the S-MP approach scales predictably with an increasing

number of Interests. While in the D-MP case, the Consumer needs to contact

all routers in the network to build the configuration file, which will decrease the725

performance. The degradation in performance will increase for the D-MP case

as the number of routers in the network increases, as shown in Figure 8.

To compare the D-MP strategy with the S-MP strategy, we increase the

number of routers by adding another layer of routers to our testbed. The extra

three routers are located on three different sites on the GENI testbed and are730

two hops away from the consumer. Figure 8 shows the communication overhead

to build the configuration file for D-MP and S-MP strategies. We observe from

the figure that the communication delay increases for the D-MP strategy as

the number of routers increases. On the other hand, the S-MP overhead is

consistent because it does not depend on the number of the routers but the735

SDN controller’s location.

TheWAN performance comparison with ratio partitioning strategies is shown

33

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
E1 E2 E3 E4 E5 E6
0

300

600

900

1200

1500

Tr
an

sf
er

 T
im

e
(S

ec
on

ds
)

Strategy

 E1, 1 Router, 1 Interest
 E2, 1 Router, 10 Interest
 E3, D-MP, RR, 1 Interest/Router
 E4, D-MP, RR, n Interest/Router
 E5, S-MP, RR, 1 Interest/Router
 E6, S-MP, RR, n Interest/Router

(a) 100MB files, No caching.

E1 E2 E3 E4 E5 E6
0

300

600

900

1200

1500

Tr
an

sf
er

 T
im

e
(S

ec
on

ds
)

Strategy

 E1, 1 Router, 1 Interest
 E2, 1 Router, 10 Interest
 E3, D-MP, RR, 1 Interest/Router
 E4, D-MP, RR, n Interest/Router
 E5, S-MP, RR, 1 Interest/Router
 E6, S-MP, RR, n Interest/Router

(b) 100MB files, Caching enabled.

E1 E2 E3 E4 E5 E6
0

20

40

60

80

100

120

Tr
an

sf
er

 T
im

e
(S

ec
on

ds
)

Strategy

 E1, 1 Router, 1 Interest
 E2, 1 Router, 10 Interest
 E3, D-MP, RR, 1 Interest/Router
 E4, D-MP, RR, n Interest/Router
 E5, S-MP, RR, 1 Interest/Router
 E6, S-MP, RR, n Interest/Router

(c) 8KB files, No caching.

E1 E2 E3 E4 E5 E6
0

20

40

60

80

100

120

Tr
an

sf
er

 T
im

e
(S

ec
on

ds
)

Strategy

 E1, 1 Router, 1 Interest
 E2, 1 Router, 10 Interest
 E3, D-MP, RR, 1 Interest/Router
 E4, D-MP, RR, n Interest/Router
 E5, S-MP, RR, 1 Interest/Router
 E6, S-MP, RR, n Interest/Router

(d) 8KB files, Caching enabled.

Figure 7: WAN Performance Evaluation of the D-MP and S-MP strategies for different

datasets.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6

De
la

y (
m

s)

Number of routers

D-MP

S-MP

Figure 8: Comparison of D-MP and S-MP communication overheads.

in Figure 10. We evaluate the data transfer performance by comparing D-MP

and S-MP strategies with the ratio partitioning technique described in Sec-

34

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
tion 7.2. For our evaluation, we use the ratios of 50%, 30%, 20% for routers740

R1, R2, and R3, respectively. Figures 10a and 10b compares the data transfer

performance for the multi-interest experiments for the 100MB dataset with in-

network caching disabled and enabled, respectively. Further, the Figures 9c and

9d compares the data transfer performance for the multi-interest experiments

for the 8k dataset with in-network caching disabled and enabled, respectively.745

From the figures, we observe that ratio partitioning exhibits performance that

is similar to the single router n Interest pipelines. However, we note that with

caching enabled, the ratio partitioning technique performs better than the sin-

gle router, n Interest pipeline. Setting the ratios to 33% per router defaults to

the round-robin case (E4a in the figure). Thus, with caching enabled, tuning750

the Interest pipeline ratios for each router is essential for optimal data transfer

performance.

E2 E4a E4b E6
0

80

160

240

320

400

Tr
an

sf
er

 T
im

e
(S

ec
on

ds
)

Strategy

 E2, 1 Router, n Interest
 E4a, D-MP, RR, n Interest/Router
 E4b, D-MP, RR, Ratio
 E6, S-MP, RR, n Interest/Router

(a) 100MB files, No caching.

E2 E4a E4b E6
0

50

100

150

200

Tr
an

sf
er

 T
im

e
(S

ec
on

ds
)

Strategy

 E2, 1 Router, n Interest
 E4a, D-MP, RR, n Interest/Router
 E4b, D-MP, RR, Ratio
 E6, S-MP, RR, n Interest/Router

(b) 100MB files, Caching enabled.

E2 E4a E4b E6
0

5

10

15

20

25

30

35

Tr
an

sf
er

 T
im

e
(S

ec
on

ds
)

Strategy

 E2, 1 Router, n Interest
 E4a, D-MP, RR, n Interest/Router
 E4b, D-MP, RR, Ratio
 E6, S-MP, RR, n Interest/Router

(c) 8KB files, No caching.

E2 E4a E4b E6
0

5

10

15

20

25

Tr
an

sf
er

 T
im

e
(S

ec
on

ds
)

Strategy

 E2, 1 Router, n Interest
 E4a, D-MP, RR, n Interest/Router
 E4b, D-MP, RR, Ratio
 E6, S-MP, RR, n Interest/Router

(d) 8KB files, Caching enabled.

Figure 9: WAN Performance Comparison with Ratio Partitioning (Ratio: 50/30/20).

35

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
8.2. Cache Management for Large Data Transfers

The WAN data transfer performance of the proposed architecture was tested

on the GENI network platform. All nodes (i.e., controller, consumer, routers,755

and producer) were placed on different InstaGENI sites and aggregated using

layer-2 stitching over Internet2 AL2S. Three different files (600MB, 800MB,

1GB) were used to compare the performance between the default NDN and our

proposed architecture. For all files, we evaluate the transfer performance when

i) The requested data is not available in the routers’ CS, and the requested data760

is always fetched from the producer and then cached at the router(s); and ii) The

file request occurred after the previous step, i.e., the data might be available in

the Router CS since a similar request has been executed earlier. We computed

the results with 95% confidence interval.

In all experiments, we used the default NDN router CS (500MB). The re-765

placement policy for the routers CS is least recently used (LRU). The files are

segmented and converted into NDN packets. Each segment uses the default

NDN segment size (8800 Byte). We set the interest pipeline depth to 50; the

consumer will send 50 Interest simultaneously before receiving the correspond-

ing data. We set a static value for the pipeline depth to increase the transfer770

performance. This value will be changed into a dynamic value based on the

network/path conditions in the future work.

Table 4: Experiment type.

Experiment type File location

NDN-R Default NDN architecture

NDN-D Proposed system architecture

NDN-D-PF Proposed system architecture with Prefetch

Table 4 shows the different types of experiments that we used for the perfor-

mance comparison. NDN-R represents the default NDN architecture with the

default settings. NDN-D represents our proposed system architecture for cache775

management. NDN-D-PF represents the cache management with the prefetch

36

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
0

5

10

15

20

25

30

35

40

600 800 1000

Ti
m

e
(m

in
ut

es
)

File Size (MB)

NDN-R
NDN-D
NDN-D-PF

(a) File Not cached.

0

5

10

15

20

25

30

35

40

600 800 1000

Ti
m

e
(m

in
ut

es
)

File size (MB)

NDN-R
NDN-D
NDN-D-PF

(b) File cached.

Figure 10: WAN Performance Evaluation of the distributed cache with/without prefetch. (a)

when the file is not cached, and (b) when the file is cached.

feature enabled as explained in Section 3.3.3.

Figure 10a shows the transfer performance when the file is requested for the

first time; in this scenario, the file is not cached in any router CS. Since in this

work we are interested in caching the large file transfers, we run the experiments780

listed in Table 4 with three different file sizes; 600MB, 800MB, and 1GB. These

file sizes are larger than the default router CS size of 500MB used in NDN.

Figure 10a shows that the performance of NDN-R and NDN-D are similar since

the file is not present in any routers’ CS and the files are always requested from

the NDN producer.785

On the other hand, the NDN-D-PF shows a 13.5% – 23.6% performance

improvement over other approaches. This performance gain is due to the file re-

trieval process in NDN-D-PF where the first part is requested normally through

the path (Consumer -> R1 -> R2 -> producer) and simultaneously, the con-

troller will direct routers R3 and R4 to prefetch the other parts of the file.790

Therefore, routers R3 and R4 satisfy the interests request for other file seg-

ments.

Figure 7b shows the transfer performance when the file is requested for the

second time; in this case the file is already cached in the network (i.e., some

router’s CS). The NDN-R shows no benefit from the NDN router caching mech-795

anism. This is due to the fact that file sizes are larger than the CS. Therefore,

37

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
the cached file segments will be replaced with new file segments (similar to the

example in Section 3. In the NDN-R case, all file segments will be requested

from the NDN producer. On the other hand, NDN-D and NDN-PF show 28.1%

– 38% performance gains. This is due to the NDN-D and NDN-PF approaches800

where the files are cached on multiple routers’ CS and all file segments are served

by the routers rather than the NDN producer.

Although our architecture focused on large dataset transfers, small file trans-

fers will still follow the default NDN route (single path only). Small files are

not split among several routers unless they are larger than the routers’ CS.805

Our approach adds a small additional delay due to the communication with

the controller. However, the delay is negligible as the controllers are typically

one-hop away from the routers. In our testbed, the SDN controllers are one

hop away from the NDN nodes. The total delay overhead for the end-to-end

data transfer (for both datasets outlined in Table 3) is less than 1% of the total810

transfer time. For example, considering the 100MB dataset, the overhead is 1.9

seconds (comparing E4 and E6 in Figure 7a) which contributes an overhead of

about 0.3% to the total data transfer time. Therefore, we focus evaluating the

end-to-end performance for large files as the SDN controller performance does

not adversely affect data transfer performance.815

9. Conclusions

In this paper, we presented an architecture that uses centralized control

with NDN to provide faster in-network access to large datasets. We use SDN

to provide an intelligent and efficient solution for data distribution and retrieval

across multiple NDN routers’ caches. The SDN controller splits and distributes820

large data files into multiple NDN routers’ content stores. Our proposed system

architecture results in a performance gain of 28.1% - 38% compared to the

current NDN architecture. Moreover, we developed a prefetch mechanism for

the files that are already cached in the network, which further reduces the file

transfer time.825

38

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
We also proposed two novel approaches for Interest pipeline distribution to

improve the performance of NDN data transfers. Our D-MP strategy provides

up to 18.4x improvement in performance over the current NDN strategies. The

S-MP forwarding strategy provides better flexibility in Interest distribution by

creating a map of the current state of the NDN routers’ content stores. It also830

provides an 18.5x performance improvement over existing NDN approaches.

We evaluated our solutions on an at-scale research testbed to provide valuable

insights into the WAN transfer performance of an NDN network. Extensive

evaluations with both in-network caching enabled and disabled, show that the

proposed solutions remarkably outperform the current alternatives. Finally, the835

S-MP solution provides a generalized framework for software-defined control of

an NDN network. This solution can be easily extended to incorporate adaptive

and intelligent decision-making strategies for Interest pipeline management.

In future work, we will focus on the cache placement problem. In the present

scenario, we need to split and cache large files among multiple routers. Thus,840

choosing the best locality of the routers will surely improve file transfer per-

formance. We will also study the effect of link bandwidths and how to avoid

congested links in the NDN network.

Acknowledgements

This material is based upon work supported by the National Science Foun-845

dation under Grant Numbers OAC-1541442 and CNS-1817105. This work was

completed using the Holland Computing Center of the University of Nebraska,

which receives support from the Nebraska Research Initiative. The authors

would like to thank Garhan Attebury, Holland Computing Center at UNL for

his valuable support.850

References

[1] M. Alhowaidi, D. Nadig, B. Ramamurthy, B. Bockelman, D. Swanson,

Multipath Forwarding Strategies and SDN Control for Named Data Net-

39

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
working, in: 2018 IEEE International Conference on Advanced Networks

and Telecommunications Systems (ANTS), 2018, pp. 1–6.855

[2] M. Alhowaidi, D. Nadig, B. Ramamurthy, Cache Management for Large

Data Transfers in Named Data Networking using SDN, in: 2019 IEEE Inter-

national Conference on Advanced Networks and Telecommunications Sys-

tems (ANTS), 2019, pp. 1–6, iSSN: 2153-1684. doi:10.1109/ANTS47819.

2019.9118137.860

[3] C. Grandi, B. Bockelman, D. Bonacorsi, et al., CMS Distributed Comput-

ing Integration in the LHC sustained operations era, in: Journal of Physics:

Conference Series, Vol. 331, IOP Publishing, 2011, p. 062032.

[4] I. Bird, Computing for the Large Hadron Collider, Annual Review of Nu-

clear and Particle Science 61 (2011) 99–118.865

[5] L. Zhang, A. Afanasyev, et al., Named data networking, ACM SIGCOMM

CCR 44 (3) (2014) 66–73.

[6] B. A. A. Nunes, M. Mendonca, et al., A Survey of Software-Defined Net-

working: Past, Present, and Future of Programmable Networks, IEEE

Comm. Surveys Tutorials 16 (3) (2014) 1617–1634. doi:10.1109/SURV.870

2014.012214.00180.

[7] S. Gao, Y. Zeng, et al., Scalable area-based hierarchical control plane

for software defined information centric networking, in: Intl. Conf. on

Computer Communication and Networks (ICCCN), 2014, pp. 1–7. doi:

10.1109/ICCCN.2014.6911839.875

[8] E. Aubry, T. Silverston, I. Chrismen, Implementation and Evaluation of

a Controller-Based Forwarding Scheme for NDN, in: Advanced Informa-

tion Networking and Applications, 2017, pp. 144–151. doi:10.1109/AINA.

2017.83.

[9] M. Vahlenkamp, F. Schneider, D. Kutscher, J. Seedorf, Enabling Informa-880

tion Centric Networking in IP Networks Using SDN, in: SDN for Future

40

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Networks and Services (SDN4FNS), 2013, pp. 1–6. doi:10.1109/SDN4FNS.

2013.6702539.

[10] J. Rexford, C. Dovrolis, Future Internet architecture: clean-slate versus

evolutionary research, Communications of the ACM 53 (9) (2010) 36–40.885

[11] N. Feamster, J. Rexford, E. Zegura, The road to SDN: an intellectual his-

tory of programmable networks, ACM SIGCOMM Computer Communica-

tion Review 44 (2) (2014) 87–98.

[12] J. Li, R.-c. Xie, T. Huang, L. Sun, A novel forwarding and routing mech-

anism design in SDN-based NDN architecture, Frontiers of Information890

Technology & Electronic Engineering 19 (9) (2018) 1135–1150.

[13] T. Combe, W. Mallouli, T. Cholez, G. Doyen, B. Mathieu, E. Montes de

Oca, An SDN and NFV Use Case: NDN Implementation and Security

Monitoring, Springer International Publishing, Cham, 2017, pp. 299–321.

doi:10.1007/978-3-319-64653-4_12.895

URL https://doi.org/10.1007/978-3-319-64653-4_12

[14] H. L. Mai, M. Aouadj, G. Doyen, W. Mallouli, E. M. de Oca, O. Festor,

Toward Content-Oriented Orchestration: SDN and NFV as Enabling Tech-

nologies for NDN, in: 2019 IFIP/IEEE Symposium on Integrated Network

and Service Management (IM), 2019, pp. 594–598.900

[15] S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, L. Veltri, Information

centric networking over SDN and OpenFlow: Architectural aspects and

experiments on the OFELIA testbed, Computer Networks 57 (16) (2013)

3207–3221.

[16] J. Torres, L. Ferraz, O. Duarte, Controller-based routing scheme for Named905

Data Network, Electrical Engineering Program, COPPE/UFRJ, Tech: Rep

(2012).

[17] M. Amadeo, C. Campolo, G. Ruggeri, A. Molinaro, A. Iera, SDN-Managed

Provisioning of Named Computing Services in Edge Infrastructures, IEEE

41

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Transactions on Network and Service Management 16 (4) (2019) 1464–1478.910

doi:10.1109/TNSM.2019.2945497.

[18] N. El Houda BenYoussef, Y. Barouni, S. Khalfallah, J. B. H. Slama, K. Ben

Driss, Mixing SDN and CCN for content-centric Qos aware smart grid ar-

chitecture, in: 2017 IEEE/ACM 25th International Symposium on Quality

of Service (IWQoS), 2017, pp. 1–5. doi:10.1109/IWQoS.2017.7969139.915

[19] H. Salah, T. Strufe, Comon: An architecture for coordinated caching and

cache-aware routing in CCN, in: Consumer Communications and Network-

ing Conference (CCNC), IEEE, 2015, pp. 663–670.

[20] H. K. Rath, B. Panigrahi, A. Simha, On Cooperative On-Path and Off-Path

Caching Policy for Information Centric Networks (ICN), in: Advanced In-920

formation Networking and Applications (AINA), 2016 IEEE 30th Interna-

tional Conference on, IEEE, 2016, pp. 842–849.

[21] Y. Xin, Y. Li, et al., Content aware multi-path forwarding strategy in Infor-

mation Centric Networking, in: Computers and Communication (ISCC),

2016 IEEE Symposium on, IEEE, 2016, pp. 816–823.925

[22] J. Wang, J. Ren, et al., A minimum cost cache management framework

for information-centric networks with network coding, Computer Networks

110 (2016) 1–17.

[23] R. Chiocchetti, D. Perino, et al., Inform: a dynamic interest forwarding

mechanism for information centric networking, in: Proc. 3rd ACM SIG-930

COMM workshop on ICN, ACM, 2013, pp. 9–14.

[24] S. Charpinel, C. A. S. Santos, A. B. Vieira, et al., SDCCN: A novel soft-

ware defined content-centric networking approach, in: Advanced Informa-

tion Networking and Applications (AINA), 2016 IEEE 30th International

Conference on, IEEE, 2016, pp. 87–94.935

42

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
[25] M. Alhowaidi, B. Ramamurthy, et al., The Case for Using Content-Centric

Networking for Distributing High-Energy Physics Software, in: ICDCS,

2017, pp. 2571–2572. doi:10.1109/ICDCS.2017.295.

[26] H. Lim, A. Ni, D. Kim, et al., NDN Construction for Big Science: Lessons

Learned from Establishing a Testbed, IEEE Network 32 (6) (2018) 124–136.940

doi:10.1109/MNET.2018.1800088.

[27] H. Newman, A. Mughal, D. Kcira, et al., High Speed Scientific Data Trans-

fers Using Software Defined Networking, in: Proceedings of the Second

Workshop on Innovating the Network for Data-Intensive Science, INDIS

’15, ACM, New York, NY, USA, 2015, pp. 2:1–2:9, event-place: Austin,945

Texas. doi:10.1145/2830318.2830320.

[28] V. Lehman, A. Gawande, et al., An experimental investigation of hyperbolic

routing with a smart forwarding plane in NDN, in: Intl. Sym. on Quality

of Service (IWQoS), 2016, pp. 1–10. doi:10.1109/IWQoS.2016.7590394.

[29] J. Blomer, P. Buncic, R. Meusel, The CernVM file system, Tech. rep.,950

Technical Report (2013).

[30] S. Chatrchyan, et al., The CMS experiment at the CERN LHC, JINST 3

(2008) S08004. doi:10.1088/1748-0221/3/08/S08004.

[31] M. Berman, J. S. Chase, L. Landweber, et al., GENI: A federated testbed

for innovative network experiments, Computer Networks 61 (2014) 5 – 23,955

sI on Future Internet Testbeds - Part I. doi:http://dx.doi.org/10.

1016/j.bjp.2013.12.037.

43

Jo
ur

na
l P

re
-p

ro
of

ce

d

nce

.E.

 and

 the

a-

e

)

curre

resea ng,

netw ce

Foun

Agile

Journal Pre-proof
Mohammad Alhowaidi received his Ph.D. degree in Computer Engineering from

the University of Nebraska-Lincoln. He has a master’s degree in Computer Scien

and Engineering from Linkoping University, Sweden. He received his bachelor's

degree in Computer Engineering from Jordan University of Science and

Technology, Jordan. His research interests are in future internet architectures,

software defined networking, optical networks, and resource allocation in clou

networks.

Deepak Nadig is currently a Ph.D. Student in the Department of Computer Scie

and Engineering at the University of Nebraska-Lincoln (UNL). He received the B

and M.Tech degrees from Visvesvaraya Technological University, India, in 2004

2007, respectively. He is also an IEEE certified Wireless Communications

Professional (IEEE WCP). His research interests are in the areas of Software

Defined Networks (SDN), Network Functions Virtualization (NFV) and

Cybersecurity.

Boyang Hu is currently a Ph.D. student in Computer Science and Engineering at

University of Nebraska-Lincoln (UNL). He received the B.S. degrees from Beijing

Jiaotong University, China, in 2011 and M.S. from the University of Maryland,

College Park, US, in 2013. His research interests include Network Security,

Software Defined Networks (SDN), and Network Functions Virtualization (NFV).

Byrav Ramamurthy is currently a Professor and former Graduate Chair in the

Department of Computer Science and Engineering at the University of Nebrask

Lincoln (UNL). He is the author of the book "Design of Optical WDM Networks -

LAN, MAN and WAN Architectures" and a co-author of the book "Secure Group

Communications over Data Networks" published by Kluwer Academic

Publishers/Springer in 2000 and 2004 respectively. He served as the Chair of th

IEEE Communication Society’s Optical Networking Technical Committee (ONTC

during 2009-2011. He served as the IEEE INFOCOM 2011 TPC Co-Chair. He is

ntly the Editor-in-Chief for the Springer Photonic Network Communications (PNET) journal. His

rch areas include optical and wireless networks, peer-to-peer networks for multimedia streami

ork security and telecommunications. His research work is supported by the U.S. National Scien

dation, U.S. Department of Energy, U.S. Department of Agriculture, NASA, AT&T Corporation,

nt Tech., Ciena, HP and OPNET Inc. Jo
ur

na
l P

re
-p

ro
of

 for

arch

h-

r.

08

nt

comp

Journal Pre-proof
Brian Bockelman is currently an Associate Scientist at the Morgridge Institute

Research, University of Wisconsin-Madison. His research interests are in Rese

Computing and Distributed High-Throughput Computing (DHTC). For over a

decade, he has worked with the Open Science Grid on issues in distributed hig

throughput computing and now serves as the Technology Area Coordinator,

leading the evolution of the technologies used by the OSG. Within Nebraska, D

Bockelman served as a key staff member of the Holland Computing Center (20

– 2019) and as an Associate Research Professor in the Computer Science and

Engineering department and worked on the CMS project, which hosts significa

uting resources at the Holland Computing Center.

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Brian Bockelman

Deepak Nad

Mohammad

Byrav Ram

Boyang Hu

Journal Pre-proof
ig

Alhowaidi

amurthy

1

Jo
ur

na
l P

re
-p

ro
of

We d

Journal Pre-proof
o not have any conflicts of interest to disclose.

Jo
ur

na
l P

re
-p

ro
of

