
LiveMap: Real-Time Dynamic Map in Automotive Edge

Computing

Qiang Liu, Tao Han, Jiang (Linda) Xie

The University of North Carolina at Charlotte

{qliu12, tao.han, linda.xie}@uncc.edu

BaekGyu Kim

Toyota Motor North America R&D InfoTech Labs

baekgyu.kim@toyota.com

Abstract—Autonomous driving needs various line-of-sight sen-
sors to perceive surroundings that could be impaired under
diverse environment uncertainties such as visual occlusion and
extreme weather. To improve driving safety, we explore to
wirelessly share perception information among connected vehicles
within automotive edge computing networks. Sharing massive
perception data in real time, however, is challenging under
dynamic networking conditions and varying computation work-
loads. In this paper, we propose LiveMap, a real-time dynamic
map, that detects, matches, and tracks objects on the road with
crowdsourcing data from connected vehicles in sub-second. We
develop the data plane of LiveMap that efficiently processes
individual vehicle data with object detection, projection, feature
extraction, object matching, and effectively integrates objects
from multiple vehicles with object combination. We design the
control plane of LiveMap that allows adaptive offloading of vehicle
computations, and develop an intelligent vehicle scheduling and
offloading algorithm to reduce the offloading latency of vehicles
based on deep reinforcement learning (DRL) techniques. We
implement LiveMap on a small-scale testbed and develop a
large-scale network simulator. We evaluate the performance of
LiveMap with both experiments and simulations, and the results
show LiveMap reduces 34.1% average latency than the baseline
solution.

Index Terms—Dynamic Map, CrowdSourcing, Computation
Offloading, Automotive Edge Computing

I. INTRODUCTION

As the development of contemporary artificial intelligence

and parallel computing hardware, autonomous driving and

advanced driving assistance system (ADAS) are becoming

a reality more than ever [1]. Vehicles rely on sensors such

as stereo camera, LiDAR and radar, to perceive surrounding

environments, and depend on advanced onboard processors

to process the massive volume perception data in real time.

By understanding the environment, e.g., high-accurate local-

ization, lane detection and pedestrian recognition, alongside

the accurate high-definition (HD) map, intelligent control

algorithms can correctly react to most of the environmental

situations by controlling the vehicle, e.g., lane changing and

passing vehicles.

It is, however, very difficult to realize high reliable and safe

driving under extremely diverse environmental uncertainties

such as extreme weather, lighting conditions, visual occlusion,

and sensor failures [2]. For example, vehicle sensors are pri-

marily range-limited and line-of-sight, which means they are

incapable of perceiving information from occluded areas [3].

Consider a single-lane road, a car is following a big truck that

occludes the car’s sensor perception, passing the truck without

sufficient information about the opposite lane is absolutely

unsafe. Besides, the perception range and fidelity of sensors

Edge Server

Base

Station

LiveMap

Fig. 1: An illustration of automotive edge computing.

might be further impaired by extreme weather, e.g., rain, snow,

and dust. Thus, relying on sensors in a single vehicle alone

may not be sufficient to fulfill high-safety driving.

Connected vehicle is the key building block of the Internet

of Vehicles (IoV) [4], which connects vehicles with wireless

technologies, e.g., cellular networks and dedicated short-range

communications (DSRC). It allows the communication of

vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and

vehicle-to-network (V2N), and could substantially improve

driving safety by effectively sharing information among ve-

hicles. For example, if the truck shares its perception data to

the car, e.g., a detected vehicle on the opposite lane, the car can

decide not to pass the truck even if the vehicle is unobserved

by the car’s sensors.

However, sharing perception data among connected vehicles

in automotive edge computing networks is challenging. For

example, in a dense urban scenario, allowing all vehicles

to share could lead to redundant information exchanging

since their sensing coverages are heavily overlapped. Besides,

letting vehicles to share their raw data, e.g., point clouds or

RGB-D images, requires tremendous wireless bandwidth and

might result in network congestion [5]. Furthermore, edge

servers need to support hundreds or thousands of vehicles

simultaneously, thus its workloads vary from time to time.

Optimizing the time to share for vehicles needs intelligence

under the complex networking and computation in automotive

edge computing networks.

In this paper, we propose LiveMap, a real-time dynamic

map in automotive edge computing illustrated in Fig. 1, that

detects, matches and tracks objects on the road in sub-second

based on the crowdsourcing data from connected vehicles.

We design the data plane of LiveMap that consists of object

detection, projection, feature extraction and object matching

for processing individual vehicle data efficiently, and object

combination for combining objects from multiple vehicles

effectively. Specifically, we reduce the detection time with

neural network pruning techniques in the object detection,

Object Detection Feature Extraction
Combination
& Tracking

Object Matching

detections

objects:
{id, loc, features}

Global Data Base

features

RGB-D imageData
Acquisition

Service
Request

Projection

configs

object images

historical objects

Vehicle Server

vehicle state service decision
D

a
ta

 P
la

n
e

C
o

n
tr

o
l

P
la

n
e

DRL Agent

Scheduler

objects

Local Data
Base

Fig. 2: The LiveMap system

decrease the object feature size with variational autoencoder in

the feature extraction, and improve the matching accuracy with

a novel location-aware distance function. To efficiently exploit

available networking and computation resources, we design

the control plane of LiveMap by allowing adaptive offloading

of vehicle computations, and developing an intelligent vehicle

scheduling and offloading algorithm to decrease the offloading

latency of vehicles while maintaining the map coverage based

on deep reinforcement learning approaches.

The contributions of this paper are summarized as follows:

• We design LiveMap that realizes real-time dynamic map

with crowdsourcing vehicles in automotive edge comput-

ing networks.

• We develop the data plane of LiveMap with an efficient

processing pipeline for processing individual vehicle data

and an effective object combination method for combin-

ing objects from multiple vehicles.

• We design an intelligent vehicle scheduling and offload-

ing algorithm that significantly reduces the offloading

latency of vehicles in the control plane of LiveMap.

• We implement LiveMap on a small-scale testbed and

develop a large-scale network simulator.

• We evaluate LiveMap with both experiments and sim-

ulations, and the results validate LiveMap substantially

outperforms existing solutions.

II. LiveMap OVERVIEW

The control plane and data plane of LiveMap are shown in

Fig. 2. The control plane is composed of a service request

module on individual vehicle, a scheduler and a DRL agent

on the edge server. When a vehicle attempts to start the

offloading service, it sends a service request with current

vehicle states such as computation capability and wireless

quality to the scheduler. The scheduler determines if this

vehicle is scheduled based on current map coverage, and the

DRL agent will be engaged to optimize the adaptive offloading

decision under the current vehicle and system state if the

vehicle is scheduled. Once the service decision is received by

the vehicle, it starts the data plane accordingly if scheduled,

otherwise, it waits for a backoff time before next requesting.

The data plane consists of multiple sequential processing

modules for vehicle raw data processing, i.e., data acquisi-

tion, object detection, projection, feature extraction, object

matching and combination. Depending on the adaptive of-

floading decision of the vehicle, these modules are executed

on either vehicle or server, where the data acquisition and

combination module can only be run on the vehicle and server,

respectively. The data acquisition module captures RGB-D

images from onboard sensors and obtains the localization of

the vehicle. The object detection module detects objects in the

RGB image with a state-of-the-art object detection framework,

i.e., YOLOv3 [6]. These detected objects that are with 2D

bounding boxes, are projected to 3D world locations with the

depth image and camera-to-world matrix obtained in the data

acquisition module. The feature extraction module extracts the

features of detected objects from cropped images based on a

novel variational autoencoder. Then, these objects are matched

within either local or global database depending on where

to execute the matching module, based on their features and

locations. The combination module on the server integrates

duplicated objects from multiple vehicles by combining the

detection confidence, geo-location, and features of objects,

and also predicts their mobility. Finally, the global database

is updated, whose new updates, e.g., new objects or updated

locations, are broadcasted to all connected vehicles to update

their local databases.

III. DATA PLANE DESIGN

The design of data plane is to accomplish the data process-

ing of vehicle raw data and to optimize the performance in

terms of accuracy and processing delay.

A. Data Acquisition

The data acquisition module on the vehicle is used for ac-

quiring the raw vehicle data, i.e., RGB-D images, from various

sensors, e.g., front and rear cameras or LiDARs. In addition, it

obtains the current accurate 3D world location of the vehicle

based on either advanced relocalization algorithms, e.g., ORB

SLAM2 [7], or high-accuracy GPS, which could achieve

centimeter-level estimation errors of vehicle locations. Since

we need to combine the detected objects from crowdsourcing

vehicles on the edge server, the accurate estimation of vehicle

locations are desired to improve the system performance.

B. Object Detection

The object detection module detects objects in the RGB

image, e.g., pedestrians, cars and trucks, where detection

results are composed of object names, confidences and 2D

bounding boxes. Existing object detection algorithms, e.g.,

YOLO [6], Fast-RCNN [8], SSD [9], are primarily designed

for detecting generic categories which include hundreds of

Initial Network

Sparsity Training Channel Pruning Fine Tuning

Pruned Network

Fig. 3: The flow-chat of neural network pruning.

object classes, e.g., person, book, boat, table and kite. As a

result, applying these algorithms directly to embedded plat-

forms such as electronic control unit (ECU) in vehicles, leads

to long detection time. In general, a larger neural network

is required to achieve similar detection accuracy, e.g., mean

average precision (mAP), for a larger number of classes.

To address this issue, we propose a slim object detector with

reduced categories specifically for automotive transportation

system, by using neural network pruning techniques. The

neural network pruning is to reduce the neural network size by

removing unnecessary neurons without dramatically scarifying

detection accuracy. As shown in Fig. 3, we adopt a similar

network pruning workflow in [10], which mainly consists of

sparsity training, channel pruning, fine-tuning. Specifically, the

initial network is re-trained by minimizing the loss function

with a weighted L1 regulation on the scaling factors in batch

normalization (BN) layers during the sparsity training phase.

By decreasing these BN scaling factors, insignificant convolu-

tional channels that are with nearly zeros scaling factors can

be pruned during the channel pruning phase. Then, the neural

network is fine tuned during the fine-tuning phase. Such train-

prune-tune sequential processes can be repeated to seek the

optimal trade-off between detection accuracy and network size.

As a result, we show the performance of detection network

pruning in Table I. We apply the network pruning on the

YOLOv3 tiny framework, where we decrease 80 classes to 10

classes that includes person, bicycle, car, motorcycle, airplane,

bus, train, truck, boat, and traffic light. We reduce the network

size by 93.7% with the cost of 0.01 mAP degradation. Mean-

while, the detection time on Nvidia Jetson Nano is decreased

by 19.4% or 18.7% if using TensorRT acceleration.

C. Projection

The projection module calculates the 3D world location of

detected objects in the world coordinate system based on the

detection results, i.e., 2D bounding boxes of objects, depth

image, and camera specifications.

As shown in Fig. 4, the objects in real world are projected

onto the image plane by the camera sensor. The calculation

of the world location of an object is completed by two steps,

i.e., from pixel coordinates to camera coordinates, and from

camera coordinates to world coordinates. Denote (u0, v0) as

the center of an object in pixel coordinates, the focal length of

the camera as f , and the image resolution as (RW , RH). The

3D location of the object (X,Y, Z) in the camera coordinate

system can be written as

X = −(d ∗ (v0 − 0.5 ∗RH))/f,

Y = (d ∗ (u0 − 0.5 ∗RW))/f, (1)

Z = d,

Detection mAP@0.5 Num. of time(Nano)
Networks 640x parameters w/o TensorRT

YOLOv3 tiny 0.534 8.69e+06 191.9/37.4 ms

Pruned Network 0.524 0.54e+06 154.7/30.4 ms

TABLE I: Pruning results of detection network on our dataset

𝑋𝑐

𝑌𝑐

𝑍𝑐

camera

𝑍𝑤 𝑌𝑤
𝑋𝑤world

𝑓 𝑥𝑦

𝑢𝑣pixel

𝑑𝑢0𝑣0

Fig. 4: The illustration of coordinate systems.

where d is the Z-axis depth of the object w.r.t. the camera.

However, estimating the depth of an object is not easy since

the object usually occupies an irregular 2D area in the depth

image while its bounding box only gives the rectangle area.

Given the bounding box of the object and depth image, we

sample multiple small 5x5 squares in close proximity to the

object center and calculate the average depth after removing

the largest and smallest values.

Next, we convert the object location in camera coordinate

to the world location (Wx,Wy,Wz) in world coordinate as

[Wx, Wy, Wz, 1]
T
= Mc2w × [X, Y, Z, 1]

T
, (2)

where Mc2w is the 4x4 camera-to-world conversion matrix

obtained from the data acquisition module, and [·]T is the

operation of matrix transpose.

In addition, the projection module estimates the coverage

of a vehicle by obtaining the default coverage of its cameras

and calculating the visual occlusion incurred by objects. In

LiveMap, we consider the area is occluded by an object if the

object height is higher than that of the camera in the camera

coordinate system, i.e., X >= 0.

D. Feature Extraction

Although we obtain the world location of all detected

objects by the detection and projection modules, we need to

identify and match them within the database to track their mo-

bility. The feature extraction module is used to extract features

from cropped object images based on variational autoencoder

framework. The conventional feature extraction algorithms,

e.g., SIFT, SURF [11], and ORB [12], could generate keypoint

features with similar data size as compared to that of the object

image [13]. Consequently, the computation complexity of

feature matching raises and the transmission delay of features

offloading if applicable is increased accordingly. Besides, the

detected objects are usually small, e.g., pedestrian images

could be 50x50 out of 540p camera images, because they are

tens of meters away from vehicles. In practice, we found that

these algorithms either generate no features or trivial features

from small objects, which results in low matching accuracy.

To solve this issue, we propose to use variational autoen-

coder [14], an unsupervised machine learning framework, to

Object

Image

Encoder

Loss Function

Latents / Features

Rebuild

Image𝜇
𝜎

sampled 𝑧

Fig. 5: The design of autoencoder as feature extraction.

extract lightweight features from object images, as shown in

Fig. 5. The autoencoder primarily consists of an encoder that

encodes the input image into condensed latent vectors and

a decoder that rebuilds the image from the latents. Unlike

conventional autoencoders, which are prone to generate irreg-

ular latent space [14], e.g., similar images may be encoded

to distinct latent vectors, the variational autoencoder uses a

unique neural network architecture and introduces a regular-

ization in the loss function. Denote x, z as the object image

and the sampled latent vector from the distribution N (µ, σ2),
respectively. The training loss of variational autoencoder can

be written as

Loss = −Ez∼q(z|x) [log p(x|z)] +DKL [q(z|x)|p(z)] , (3)

where q(z|x) and p(x|z) denote the encoder and decoder,

respectively. And DKL is the Kullback-Leibler divergence to

evaluate the difference between two probability distributions,

where p(z) ∼ N (0, 1) is selected as a normal distribution.

After the training of the variational autoencoder, the encoder is

used to extract features from object images and the generated

latent vectors are recognized as the features of objects.

E. Object Matching

The object matching module is designed to match the

detected objects within the database based on their features and

locations. Since the database in LiveMap could have hundreds

or thousands of items such as pedestrians and cars, matching

an object with all these items is compute-intensive and time-

consuming. Meanwhile, matching objects merely based on the

distance of features, i.e., latent vectors, could fail in a dynamic

automotive environment [5].

To solve this issue, we propose a novel location-aware

distance function for matching based on our estimated world

locations of vehicles and objects. Specifically, we only match

the database items in close proximity to the detected object,

e.g., 100 meters for vehicles and 10 meters for pedestrians,

which decreases the size of matching set and reduces the

matching time accordingly. In LiveMap, we construct a mobil-

ity model for each object in the database based on its historical

locations. The location of objects in the database are predicted

when matching objects at the current time. Then, we introduce

a novel location-aware distance function by considering not

only the features distance but also the geographic distance

between two objects. Denote g as the geo-location of an object

in the world coordinate system, the distance between the ith
and jth object is defined as

Di,j = min(
[

||zi,m − zj,m||2, ∀m ∈ M
]

)+w||gi−gj ||
2, (4)

object id class geo-location confidence

speed direction update time multi-view latents

TABLE II: Attributes of an object in the database

where w is a weighted factor, z are the latent features of

objects, ||·||2 is the L2-norm operation, and M denotes the set

of latent features associated with an item in the database. Since

an object may be observed by multiple vehicles from different

angles, these multi-view generated features are associated with

the object in the database. Here, we use the minimum feature

distance among these multi-view features to calculate the final

distance between two objects.

F. Object Combination

The object combination module on the server integrates

the detected objects from different vehicles and updates their

information in the global database, e.g., locations and latent

features. The global database is a collection of historical

detected objects, where each object is represented by several

attributes as shown in Table II. In LiveMap, we remove objects

from the global database if their information is outdated, e.g.,

a pedestrian is deleted if not observed for more than 1 hour.

Due to the high diversity of vehicles, e.g., camera specs,

view angles and lighting, an object captured and processed

by different vehicles may generate slightly different results

in terms of confidence, location and latents features. To

effectively integrate these results together, we first consider

the objects with the same object id as a unique object, and

then propose a confidence weighted combination method that

calculates the geo-location of the unique object as

g =
∑

m∈M

Pm ∗ gm
∑

m∈M

Pm

, (5)

where Pm is the confidence generated by the object detection

module, and gm is the geo-location estimated by the projection

module. Here, we assign more weights to the results with

higher confidence. Meanwhile, we consider each latent feature

of a unique object is valid and associate it with the object into

the database for better matching accuracy as shown in Eq. 4.

Finally, these unique objects are updated and stored in the

global database. The new updates at the current time in the

global database, e.g., newly detected objects, new location and

latents of existing objects, are broadcasted to all connected

vehicles in LiveMap.

IV. CONTROL PLANE DESIGN

In this section, we describe the system model, formulate the

vehicle scheduling and offloading problem in LiveMap, and

develop a novel algorithm to solve the problem efficiently.

A. System Model

We consider an automotive edge computing network with

multiple vehicles denoted as I, a cellular base stations (BS)

and an edge computing server, where vehicles are wirelessly

connected to the BS. Connected vehicles offload vehicle com-

putations to the edge server asynchronously to build LiveMap.

We consider vehicle computations, e.g., the data plane in

LiveMap, can be separated between computation modules1,

denoted yi ∈ {0, 1, ..., N}, ∀i ∈ I, where N is the maximum

separation scheme. For example, if the separation scheme is 1
in LiveMap, it means the object detection module is executed

on the vehicle and the remaining modules, i.e., projection,

feature extraction and object matching, are processed on the

server. Meanwhile, the intermediate data generated by the

object detection module, i.e., detection results and cropped

object RGB-D images, are offloaded to the edge server for

remaining processing.

Before the computation offloading, a connected vehicle

sends an offloading request to the scheduler in the edge

server with some vehicle information, e.g., wireless quality and

computation capacity. Denote xi ∈ {0, 1}, ∀i ∈ I as the binary

schedule indicator of the ith vehicle, where xi = 1 means

the current request of the vehicle is scheduled, otherwise,

the request is not scheduled. Denote C
(t)
i as the geographic

coverage area of the ith vehicle at the t time slot. Denote X ,Y
as the set of vehicle scheduling and offloading decision for all

vehicles, respectively. Define the latency L
(t)
i of the ith vehicle

at the t time slot as the time between the vehicle gets the raw

data by the data acquisition module and the vehicle receives

the broadcasted database updates from the edge server.

B. Problem Formulation

On maintaining LiveMap, our objective is to provide infor-

mation about the environment to all connected vehicles as fast

as possible. Due to the high mobility of vehicles, the outdated

information is less meaningful, e.g., a recorded location of

a truck 10 seconds ago does not help on making controlling

decisions in a highway scenario. Meanwhile, LiveMap should

maintain sufficient coverage areas by scheduling more crowd-

sourcing vehicles where each vehicle covers a certain area on

its current location. Here, we define the overall map coverage

at the current time as
⋃

i∈I

C
(t)
i .

Therefore, we formulate the vehicle scheduling and offload-

ing problem as

min
{X ,Y}

∑

t∈T

∑

i∈I

L
(t)
i (6)

s.t.
⋃

i∈I,xi 6=0

C
(t)
i ≥ β

⋃

i∈I

C
(t)
i , ∀t ∈ T , (7)

x
(t)
i ∈ {0, 1}, ∀i ∈ I, t ∈ T , (8)

y
(t)
i ∈ {0, 1, ..., N}, ∀i ∈ I, t ∈ T , (9)

where T is a given time period such as 1 hour, constraints

in Eq. 7 guarantee the minimum requirement of overall map

coverage, and β ∈ [0, 1] is a factor.

The key difficulties in solving the above problem are high-

lighted. First, due to the heterogeneity of vehicles in terms of

computation capability and varying wireless quality, alongside

the complicated of networking and computation in LiveMap,

the accurate modeling of vehicle latencies are impractical to

be obtained in real systems. Second, with the asynchronous

1The discrete separation model can be easily extended for different systems,
such as partial neural network offloading in AR/VR system [15].

offloading of crowdsourcing vehicles, their wireless trans-

missions and server computations are probably overlapped

in time. As a result, the vehicle scheduling and offloading

in LiveMap exhibits Markovian property on serving these

connected vehicles, which further complicates the problem.

C. Algorithm Design

To effectively solve the problem, we develop a novel

algorithm based on deep reinforcement learning. The DRL

techniques have shown promising improvement in network

management and control [16], [17] in terms of system perfor-

mance, however, it is challenging to apply DRL in solving the

aforementioned problem directly. On one hand, the number of

connected vehicles in LiveMap is varying from time to time

because the high-speed vehicles might come and leave the

coverage of the BS. Most DRL solutions are designed to solve

problems with fixed action space, and thus they are unable to

handle the dynamic vehicle scheduling in LiveMap. On the

other hand, existing DRL solutions are inefficient to optimize

problems with multiple constraints2, i.e., the requirement of

map coverage in Eq. 7.

We address the problem by optimizing the vehicle schedul-

ing and offloading decision in different time scales. This

is based on the observation that the offloading of vehicles

run in sub-second time scale, such as vehicle latencies are

hundreds of milliseconds, whereas the scheduling of vehicles

can operate at second time scale. Therefore, we design a two-

layer veHicle schEduling and offloAding Decision (HEAD)

algorithm (see Alg. 1) in LiveMap. In the upper layer, we

schedule the minimum number of vehicles while maintain-

ing the requirement of map coverage. Here, minimizing the

number of scheduled vehicles corresponds to decreasing the

number of offloading vehicles that share the common network-

ing and computation resources in LiveMap. In the lower layer,

we optimize the offloading decision for every single incoming

vehicle with DRL techniques, where the action space becomes

fixed.

1) Vehicle Scheduling: We build a complete graph (V,E)
where V is the set of vertices that correspond to all vehicles,

and E is the set of edges between vertices. Then, we define the

overlapping ratio between the coverage of ith and jth vehicle

as

oi,j =
Ci

⋂

Cj

Ci

⋃

Cj

, (10)

and assign oi,j to the edge value between the ith and jth

vehicle, where oi,j = oj,i. Denote the average overlapping

ratio of the ith vehicle as

Oi =
1

|I|

∑

j∈I,j 6=i

oi,j . (11)

Then, we greedily prune the graph (V,E) by removing the

ith vehicle if it has the largest average overlapping ratio, i.e.,

i = argmax
k∈I

Ok. The basic idea behind this pruning is that we

2Although there are some works [18], [19] target to solve constrained re-
inforcement learning problems, they are unable to guarantee these constraints
are met at any time slots.

continuously remove a vehicle with the minimum decrease in

the overall map coverage. The pruning processes stop until we

reach the required map coverage by evaluating Eq. 7.

2) Offloading Decision: To determine the offloading deci-

sion of a vehicle, we resort to the deep reinforcement learning,

e.g., deep Q network [20], that is capable of handling the com-

plex offloading in LiveMap. Consider a generic reinforcement

learning setting where an agent interacts with an environment

in discrete decision epochs. At each decision epoch t, the

agent observes a state st, takes an action at, i.e., offloading

decision, based on its policy πθ that parameterized by neural

networks with parameters θ. Then, the agent receives a reward

r(st,at), and the environment transits to the next state st+1

according to the action taken by the agent. The objective is

to seek a optimal policy π∗
θ that maximizes the discounted

cumulative reward R0 =
∑∞

t=0 γ
tr(st,at). Here, γ ∈ [0, 1) is

a discounting factor and the transition τ = (st,at, rt, st+1).

Then, we define the state space, action space and reward.

State Space: The state space determines what information

can be observed from the system by the DRL agent. The

design of state space is to represent the status of LiveMap

completely and informatively. Thus, we build the state space

st , [svt , s
s
t , s

w
t], where s

v
t is vehicle status, s

s
t is server

status, and s
w
t is system workload. The vehicle status provides

useful information about the vehicle, including wireless quality

(measured by received signal strength) and computation capa-

bility (represented by the number of CPUs, CPU frequency,

memory size, GPU cores and GPU frequency). The server

status includes the computation capability of the edge server

and the wireless bandwidth. The system workload includes

the number of total connected vehicles in LiveMap and the

number of queuing vehicles on the edge server.

Action Space: Based on the observed state space, the DRL

agent decides which offloading decision is applied to the

current vehicle, which is at , [y].

Reward: When applying the offloading decision at to the

vehicle under the current state space st, the DRL agent will

receive a reward from LiveMap, which is defined as the

negative latency of this vehicle, i.e., r(st,at) , −L(t). In the

real system, the reward is delayed because the latency can only

be obtained after the vehicle offloading is completed. During

this time interval, requests from other vehicles may arrive

for offloading decisions. We resolve the issue by allowing

LiveMap to temporally store state-action pairs and report the

state-action-reward pairs once available to the DRL agent.

Policy Training: We use Deep Q network (DQN) [21] with

prioritized experience replay (PER) [20] to train the policy of

DRL agent in LiveMap. Denote the value function Qπ(st,at)
as the expected discounted cumulative reward if the agent

starts with the state-action pair (st,at) at decision epoch t
and then acts according to the policy π. Thus, the value

function can be expressed as Qπ(st,at) = Eτ∼π [Rt|st,at],
where Rt =

∑T

k=t γ
(k−t)r(sk,ak). Based on the Bellman

equation [22], the optimal value function Q∗(st,at) is

Q∗(st,at) = r(st,at) + γmax
at+1

Q∗(st+1,at+1). (12)

Algorithm 1: The HEAD Algorithm

Input: β, θ∗, sst , swt
Output: x, y

1 s
v
t , i ← vehicle, / ∗ accept vehicle ∗ /;

2 st ← [svt , s
s
t , s

w
t], / ∗ build state ∗ /;

3 if time to schedule then

4 xk ← 1, ∀k ∈ I;

5 while True do

6 k ← arg max
k∈I,xk 6=0

Ok;

7 xk ← 0;

8 if
⋃

i∈I,xi 6=0

C
(t)
i ≤ β

⋃

i∈I

C
(t)
i then

9 xk ← 1;

10 break;

11 if xi == 1 (scheduled) then

12 y ← argmax
at

Q∗(st,at|θ
∗), / ∗ get action ∗ /;

13 else

14 y ← −1, / ∗ not scheduled ∗ /;

15 return x, y;

To obtain the optimal policy, DQN is trained by minimizing

the mean-squared Bellman error (MSBE) as follow

Loss(θQ) = E
τ∈D

[

(

ht −Q(st,at|θ
Q)

)2
]

, (13)

where θQ are weights of the Q-network and D is a replay

buffer. ht is the target value estimated by a target network

ht = r(st,at) + γmaxat+1
Q(st+1, π(st+1|θ

π′

)|θQ
′

), (14)

where θQ
′

are weights of the target network. The target

network has the same architecture with the Q-network and

its weights θQ
′

are slowly updated to track that of Q-network.

In the DQN, experience transitions in replay buffer are

uniformly sampled, regardless of the significance of expe-

riences. Prioritized experience replay (PER) [20] improves

the efficiency of DQN sampling by prioritizing experience

transitions in the replay buffer. The importance of experience

transitions are measured by the absolute TD error, that is

p ∝ |ht −Q(st,at|θ
Q)|α, (15)

where α is a hyper-parameter.

V. SYSTEM IMPLEMENTATION

In this section, we implement LiveMap on a small-scale

testbed and develop a large-scale network simulator for auto-

motive edge computing networks.

A. System Prototype

We prototype LiveMap system on a small-scale automotive

edge computing testbed as shown in Fig 6, which is com-

posed of four JetRacers, an 802.11ac 5GHz WiFi router with

20MHz wireless bandwidth and an Intel i7 edge server with

Nvidia GTX 1070 GPU and CUDA 10.1 [23]. The JetRacer

is a racecar equipped with an onboard Nvidia Jetson Nano

embedded GPU. The dynamic wireless channel of vehicles

are emulated by randomly configuring the transmit power of

both the JetRacers and the WiFi router with Linux ”iw” CLI

Vehicle #2

Vehicle #4Vehicle #3

Vehicle #1

Edge Server & WiFi Router

lo
c
.

 i

m
g

.
lo

c
.

 i

m
g

. lo
c. im

g
.

lo
c. im

g
.

Fig. 6: The implementation of LiveMap.

configuration utility, i.e., from 1dBm to 22dBm. On the edge

server, we develop a single queue to process all incoming

offloading of vehicles. To reduce the transmission delay, we

use LZ4 compression algorithm before socket communication.

We implement the DRL agent by using Python 3.7 and

PyTorch 1.40. Specifically, we use a 2-layer fully-connected

neural network, i.e., [256, 256], with Leaky Recifier activiation

function [24]. The learning rate of DQN is 5e-4 with 512 batch

size, and the discounted factor γ = 0.9. We add a decaying

ǫ-greedy starts from probability 0.5 to 0.1 during the training

phase for balancing the exploitation and exploration.

Due to the Markovian property of the vehicle scheduling

and offloading problem in LiveMap, i.e., the current vehicle

offloading decision could immediately affect the offloading of

the next vehicle, it is ineffective to collect dataset and train

the DRL agent offline, and apply the trained policy online.

Hence, we online train the DRL agent by directly interacting

with JetRacers in the real LiveMap system with 100k training

steps. To accomplish the functionalities of control and data

plane in LiveMap, e.g., object detector, autoencoder, scheduler,

the DRL agent and network simulator, we finish more than

6000 line codes.

B. Traces DataSet

We build a Unity3d environment to generate traces for

both testbed experiments and network simulations. The traces

are composed of more than 1000 frames, where each frame

includes the world location, RGB-D images, and camera-to-

world matrix of vehicles, and the world location of pedes-

trians for calculating estimation errors. We create multiple

transportation scenarios, e.g., intersection, highway and circle,

based on the modern city package in Unity3d, where each

scenario includes hundreds of pedestrians and vehicles. The

movement of pedestrians and vehicles follow their predefined

paths. Each vehicle is mounted a front RGB-D camera with

focal length 50mm, field of view 54.04
◦

, maximum sensing

range 50m, which generates 741x540 images.

C. Network Simulator

We build a time-driven network simulator, which is com-

posed of multiple onboard computation modules, a wireless

transmission module, and a server computation module as

depicted in Fig. 7. When the offloading decision of a vehicle

is determined, a task is created on this vehicle’s onboard

computation module. The task describes the remaining on-

board computation time, data size of uplink and broadcast

transmission, and server computation time, where these data

Server

Computation

Wireless

Transmission

Onboard

Computation

Server 1
Server 2

uplink

broadcast
network

Network Simulator

1
2

⋯

F
IF

O
 Q

u
eu

e

⋯

Fig. 7: The design of network simulator.

are sampled from experimental measurements (see Fig. 10).

The onboard computation of a task is simulated by decreasing

its remaining computation time for every simulation interval

such as 1 ms. The simulation of server computation is similar,

but based on a single FIFO (First-In-First-Out) queue and

multiple parallel servers architecture.

The wireless transmission module is developed based on

an open-source 5G simulator [25], where we use the urban

micro (UMi - Street Canyon) channel model recommended in

ETSI TR 138.901 [26], and consider all vehicles equally share

the total bandwidth for the sake of simplicity. We use both

1MHz wireless bandwidth for uplink and downlink channels,

and place the base station at the center of the Unity3d

environment. Thus, the transmission of tasks are simulated

by calculating their wireless data rates and decreasing their

remaining uplink/downlink data sizes. A task is sent to the next

simulation module only if it is completed in the last module,

e.g., zero remaining computation time or transmission data

size.

D. Comparison Algorithms

In the experiments, we compare LiveMap with the following

algorithms: 1) Edge offloading (EO): EO offloads RGB-D

images of vehicles and allows all the processing modules to

be executed on the edge server. 2) Local process (LP): LP

executes all the processing modules onboard, and sends the

matched objects to the edge server. 3) Random offloading

(RO): RO randomly selects the offloading decision for every

vehicle. 4) Regression model (RM): We propose RM that

identifies wireless data rate and the number of vehicles as

two important factors when making the offloading decision.

Thus, RM fits a multivariate polynomial regression model

with scikit-learn tool based on an experimental dataset that

includes different combinations of wireless data rate, number

of vehicles, offloading decision and the resulted latency. To

make the offloading decision, RM predicts the latency of

different actions under the current network state, and takes

the action with the minimum predicted latency. 5) LiveMap-

Lite: LiveMap-Lite determines offloading decision as same as

that of LiveMap, but it schedules all vehicle requests. Besides,

these comparison algorithms schedule all vehicle requests.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of LiveMap on

both small-scale testbed and large-scale simulator. We aim to

study: 1) what’s the performance of LiveMap as compared to

existing solutions; 2) how does LiveMap optimize offloading

decision in complex automotive edge computing networks; 3)

0 0.2 0.4 0.6 0.8 1
Latency (s)

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e

P
ro

b
ab

il
it

y

0 0.2 0.4 0.6 0.8 1
Latency (s)

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e

P
ro

b
ab

il
it

y

0 0.2 0.4 0.6 0.8 1
Latency (s)

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e

P
ro

b
ab

il
it

y

LiveMap
LiveMap-Lite
RO
RM
EO
LP

(a) intersection (b) highway (c) circle

LiveMap
LiveMap-Lite
RO
RM
EO
LP

LiveMap
LiveMap-Lite
RO
RM
EO
LP

Fig. 8: The cumulative probability of latency by different algorithms under various scenarios.

1 2 3 4
0

1

2

3

Number of Vehicles

O
ff

lo
ad

in
g
 D

ec
is

io
n

-80 -75 -70 -65 -60 -55
Receive Signal Strength

0

1

2

3
O

ff
lo

ad
in

g
 D

ec
is

io
n

(a) (b)

Fig. 9: The intelligent offloading decision in LiveMap.

how does the data plane of LiveMap perform over a baseline

system; 4) whether LiveMap can effectively scale under the

different number of vehicles. In the experiments, we consider

the minimum requirement of overall map coverage is 80%,

i.e., β = 0.8. The potential offloading decisions in LiveMap

are [0, 1, 2, 3, 4], which correspond to offloading after the data

acquisition, object detection, projection, feature extraction, and

object matching module, respectively.

A. Impact of Various Scenarios

Fig. 8 shows the latency performance of different algorithms

under various scenarios. We observe that LiveMap achieves

the lowest latency as compared to other algorithms. In the

intersection scenario, LiveMap reduces 20.3% average latency

as compared to RM, which validates that LiveMap can effec-

tively schedule vehicles and intelligently determine offloading

decisions, whereas model-based approach (RM) is ineffec-

tive in handling complex network system. Meanwhile, we

see LiveMap outperforms LiveMap-Lite with 16.4% average

latency reduction, which indicates that selectively scheduling

vehicles could decrease the offloading traffic in the system and

thus improve the latency performance. Furthermore, LiveMap

obtains less significant performance improvement over the

other algorithms under the highway scenario, as compared

to that of other scenarios. This can be attributed to the less

coverage overlap among vehicles in the highway scenario.

B. Intelligent Offloading Decision

We illustrate how LiveMap makes the offloading decision

intelligently under varying system workloads and dynamic

wireless qualities. In Fig. 9 (a), we show the statistics of of-

floading decisions when there are different number of vehicles

in the system. We can see that LiveMap is prone to make larger

offloading decisions, i.e., executing more modules onboard

before offloading, when more vehicles are observed by the

DRL agent. In Fig. 9 (b), we show the correlations between

offloading decisions and received signal strength of vehicles.

LiveMap is likely to lower the offloading decision of a vehicle

when better wireless quality, e.g., -60dBm, is observed. Under

the worst wireless quality, e.g., -80dBm, LiveMap does not

keep increasing the offloading decision, because the offloading

data size after the feature extraction is similar to that of object

matching. As a result, increasing the offloading decision at

such conditions will only cost more onboard execution time

without reducing significant transmission delay. These results

indicate that the DRL agent can intelligently optimize the

offloading decision of vehicles in LiveMap.

C. Design of Data Plane

We show the performance of LiveMap data plane as com-

pared to a baseline system in terms of processing latency,

offloading data size, and the number of successfully detected

objects in Fig. 10. The baseline system is implemented with

tiny YOLOv3 model [6], ORB feature extraction [12], and

brutal-force feature matching algorithm, and the other modules

are implemented as same as LiveMap. In Fig. 10 (a), We

see that LiveMap has lower onboard execution latency than

the baseline system on different processing modules. This is

achieved by optimizing various modules in LiveMap, e.g.,

lower detection time with neural network pruning in object

detection, lower extraction time with autoencoder for feature

extraction, and lower matching time since total object fea-

tures are smaller. Here, the object detection, including image

preparation, detection network inference, and post-processing,

consumes an average 72.4ms in LiveMap and 80.2ms in the

baseline system. This is because the preparation, e.g., image

reading and formatting, and the post-processing, e.g., non-

maximal suppression (nms) in YOLOv3 and memory copying

from GPU to CPU, account for considerable latency in the

Jetson Nano embedded GPU platform. Besides, we observe

the offloading data size of LiveMap is substantially smaller

than that of the baseline system after feature extraction in

Fig. 10 (b). This is attributed to the high compression ratio

of autoencoder during the feature extraction, where the output

latent features of an object image have only 25 values. Here,

the large variations in projection and feature extraction, i.e.,

offloading decision 1 and 2, come from the varying number

of objects detected from RGB images.

In Fig. 10 (c), we show the cumulative probability of latency

obtained by LiveMap, the HEAD algorithm and LP algorithm

(b)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e

P
ro

b
ab

il
it

y

Number of Detected Objects
(d)(c)

0 1 2 3 4
0

20

40

60

80

100

1200

1400

Offloading Decision

O
ff

lo
ad

in
g
 D

at
a

S
iz

e
(K

B
)

LiveMap

Baseline

0.23 0.19

0

0.1

0.2

0.3

0 1 2 3 4
Offloading Decision

O
n
-b

o
ar

d
 L

at
en

cy
 (

s)

LiveMap

Baseline

(a)

detection

extraction

projection

matching

Latency(s)

C
u

m
u

la
ti

v
e

P
ro

b
ab

il
it

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

LiveMap

Baseline
HEAD + Baseline

LP + Baseline

LiveMap

Fig. 10: The system comparison between LiveMap and baseline.

(a) (b)

20% 40% 60% 80% 100%
0

0.05

0.1

0.15

0.2

0.25

0.3

0

0.2

0.4

0.6

0.8

1

A
v

g
.
L

at
en

cy
 (

s)

S
ch

ed
u

le
d
 V

eh
ic

le
 R

at
io

Coverage Requirement

Latency

Ratio

10 50 100
0.1

0.15

0.2

0.25

Number of Vehicles

A
v

g
.
L

at
en

cy
 (

s)

0.43
1.76 8.68

1.65 2.98
17.3

LiveMap

LiveMap-Lite

RM

EO
RO LP

Fig. 11: The simulated results under different number of vehicles
and coverage requirements.

in the baseline system, where LiveMap obtains 20.1% and

34.1% the average latency reduction than the HEAD and

LP algorithm in the baseline system, respectively. This result

validates the performance of data plane in LiveMap is consid-

erably better than that of the baseline system. Furthermore,

we evaluate the system performance of LiveMap and the

baseline system in Fig. 10 (d), in terms of the number of

successfully detected objects. In the experiments, we consider

the object is successfully detected only if its object ID is

matched correctly and the estimated geo-location error is less

than 1 meter. We can see LiveMap substantially outperforms

the baseline system with 74.9% improvement on the average

number of detected objects. This is because the ORB feature

extraction is ineffective in extracting meaningful features from

small images. As a result, the baseline system produces more

matching errors, either matching to incorrect objects in the

database or identifying existing objects as newly detected. In

addition, the location-aware distance function in the object

matching module also contributes to the better performance

of LiveMap. Therefore, we can conclude that the optimization

of data plane in LiveMap significantly improves the system

performances.

D. Scalability in Trace-driven Simulation

We further evaluate the performance of LiveMap in the

large scale network simulator. In Fig. 11 (a), we show the

average latency under various algorithms with the different

number of vehicles. We observe that LiveMap outperforms

other algorithms, e.g., it reduces 10.4% and 12.7% latency than

LiveMap-Lite and RM respectively, when there are 50 vehicles

in the system. Besides, we show the average latency and ratio

of scheduled vehicles obtained by LiveMap under different

coverage requirements in Fig. 11 (b). We can see that LiveMap

schedules fewer vehicles with the decreasing of coverage

requirement. By sacrificing more coverage performance, e.g.,

from 100% to 60%, the scheduled vehicle ratio is decreased

from 100% to 15.6%, and thus the average latency is reduced

from 231.7ms to 159.1ms. These results validate that LiveMap

is scalable under the different number of vehicles.

VII. RELATED WORK

This work relates to ML-based resource management and

vehicle sensing in automotive edge computing networks.

ML in Networking: Harmony [27] exploits deep learning

based scheduler to optimize the average completion time of

concurrent ML tasks in cloud computing clusters. EdgeS-

lice [16] uses a decentralized DRL based approach to manage

multiple network resources while meeting the service level

agreement (SLA) of network slices. DeepCast [17] utilizes

DRL techniques to learn the personalized quality of experience

(QoE) of viewers and optimize edge servers assignment in

crowdsourcing livecast. However, these works focus on un-

constrained RL problems with fixed action space, e.g., fixed

number of users, while LiveMap handles the varying number

of vehicles under the requirement of map coverage.

Vehicle Sensing: Augmented vehicular reality (AVR) [3]

extends vehicular vision with V2V visual sensor data shar-

ing to improve driving safety, where only point clouds of

dynamic objects are exchanged for efficient transmission. F-

Cooper [28] fuses visual features from multiple vehicles to

cooperatively perceive objects on the road, which allows the

tradeoff between detection accuracy and wireless bandwidth

requirements. CarMap [5] realizes near real-time updates on

the feature-represented map by excluding transient informa-

tion, e.g., parked cars and pedestrians, from map processing.

However, these works focus on static information sharing,

e.g., point clouds or features, where LiveMap allows dynamic

adaptive offloading, e.g., images, features or labels, for crowd-

sourcing vehicles in automotive edge computing networks.

VIII. CONCLUSION

In this paper, we have presented LiveMap, a real-time

dynamic map that allows efficient information sharing among

connected vehicles in automotive edge computing networks.

We have developed the data plane of LiveMap to detect, match,

and track objects on the road based on the crowdsourcing data

from connected vehicles in sub-second. We have designed the

control plane of LiveMap to intelligently schedule vehicles and

determine offloading decision according to the availability of

networking and computation resources. We have demonstrated

LiveMap has better performance than existing solutions with

both experimental and simulation results.

REFERENCES

[1] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proceedings of

the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.

[2] I. Yaqoob, L. U. Khan, S. A. Kazmi, M. Imran, N. Guizani, and
C. S. Hong, “Autonomous driving cars in smart cities: Recent advances,
requirements, and challenges,” IEEE Network, vol. 34, no. 1, pp. 174–
181, 2019.

[3] H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan, “AVR:
Augmented vehicular reality,” in Proceedings of the 16th Annual In-

ternational Conference on Mobile Systems, Applications, and Services,
2018, pp. 81–95.

[4] J. Contreras-Castillo, S. Zeadally, and J. A. Guerrero-Ibañez, “Internet
of vehicles: architecture, protocols, and security,” IEEE internet of things

Journal, vol. 5, no. 5, pp. 3701–3709, 2017.

[5] F. Ahmad, H. Qiu, R. Eells, F. Bai, and R. Govindan, “CarMap: Fast 3d
feature map updates for automobiles,” in 17th {USENIX} Symposium

on Networked Systems Design and Implementation ({NSDI} 20), 2020,
pp. 1063–1081.

[6] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[7] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transactions

on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[8] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE international

conference on computer vision, 2015, pp. 1440–1448.

[9] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “SSD: Single shot multibox detector,” in European conference on

computer vision. Springer, 2016, pp. 21–37.

[10] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in The

IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[11] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Computer vision and image understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[12] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in 2011 International conference on

computer vision. Ieee, 2011, pp. 2564–2571.

[13] W. Zhang, B. Han, and P. Hui, “Jaguar: Low latency mobile augmented
reality with flexible tracking,” in Proceedings of the 26th ACM interna-

tional conference on Multimedia, 2018, pp. 355–363.

[14] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv

preprint arXiv:1312.6114, 2013.

[15] X. Ran, H. Chen, Z. Liu, and J. Chen, “Delivering deep learning to
mobile devices via offloading,” in Proceedings of the Workshop on

Virtual Reality and Augmented Reality Network, 2017, pp. 42–47.

[16] Q. Liu, T. Han, and E. Moges, “EdgeSlice: Slicing Wireless Edge
Computing Network with Decentralized Deep Reinforcement Learning,”
arXiv preprint arXiv:2003.12911, 2020.

[17] F. Wang, C. Zhang, J. Liu, Y. Zhu, H. Pang, L. Sun et al., “Intelligent
edge-assisted crowdcast with deep reinforcement learning for person-
alized qoe,” in IEEE INFOCOM 2019-IEEE Conference on Computer

Communications. IEEE, 2019, pp. 910–918.

[18] J. Achiam, D. Held et al., “Constrained policy optimization,” in Proceed-

ings of the 34th International Conference on Machine Learning-Volume

70. JMLR. org, 2017, pp. 22–31.

[19] C. Tessler, D. J. Mankowitz, and S. Mannor, “Reward constrained policy
optimization,” arXiv preprint arXiv:1805.11074, 2018.

[20] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[21] V. Mnih, K. Kavukcuoglu et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[22] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp.
34–37, 1966.

[23] C. Nvidia, “Nvidia CUDA C programming guide,” Nvidia Corporation,
vol. 120, no. 18, p. 8, 2011.

[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[25] E. J. Oughton, K. Katsaros, F. Entezami, D. Kaleshi, and J. Crowcroft,
“An open-source techno-economic assessment framework for 5G de-
ployment,” IEEE Access, vol. 7, pp. 155 930–155 940, 2019.

[26] G. T. . R. 14, Study on channel model for frequencies from 0.5 to 100

GHz. 3GPP, 2018.

[27] Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job placement in
distributed machine learning clusters,” in IEEE INFOCOM 2019-IEEE

Conference on Computer Communications. IEEE, 2019, pp. 505–513.
[28] Q. Chen, X. Ma, S. Tang, J. Guo, Q. Yang, and S. Fu, “F-Cooper: feature

based cooperative perception for autonomous vehicle edge computing
system using 3D point clouds,” in Proceedings of the 4th ACM/IEEE

Symposium on Edge Computing, 2019, pp. 88–100.

