
EdgeSlice: Slicing Wireless Edge Computing Network with

Decentralized Deep Reinforcement Learning

Qiang Liu, Tao Han, Ephraim Moges
Electrical and Computer Engineering Department,

The University of North Carolina at Charlotte, NC, United States

{qliu12, tao.han, emoges}@uncc.edu

Abstract—5G and edge computing will serve various emerging
use cases that have diverse requirements of multiple resources,
e.g., radio, transportation, and computing. Network slicing is
a promising technology for creating virtual networks that can
be customized according to the requirements of different use
cases. Provisioning network slices requires end-to-end resource
orchestration which is challenging. In this paper, we design a
decentralized resource orchestration system named EdgeSlice for
dynamic end-to-end network slicing. EdgeSlice introduces a new
decentralized deep reinforcement learning (D-DRL) method to
efficiently orchestrate end-to-end resources. D-DRL is composed
of a performance coordinator and multiple orchestration agents.
The performance coordinator manages the resource orchestration
policies in all the orchestration agents to ensure the service
level agreement (SLA) of network slices. The orchestration agent
learns the resource demands of network slices and orchestrates
the resource allocation accordingly to optimize the performance
of the slices under the constrained networking and computing
resources. We design radio, transport and computing manager to
enable dynamic configuration of end-to-end resources at runtime.
We implement EdgeSlice on a prototype of the end-to-end
wireless edge computing network with OpenAirInterface LTE
network, OpenDayLight SDN switches, and CUDA GPU plat-
form. The performance of EdgeSlice is evaluated through both
experiments and trace-driven simulations. The evaluation results
show that EdgeSlice achieves much improvement as compared
to baseline in terms of performance, scalability, compatibility.

Index Terms—Resource Orchestration, Deep Reinforcement
Learning, Network Slicing, Wireless Edge Computing

I. INTRODUCTION

The emerging use cases and heterogeneous services, e.g.,

Internet of things (IoT), augmented/virtual reality (AR/VR),

vehicle-to-everything (V2X), and mobile artificial intelligence,

drive the development and research on the 5G mobile net-

works [1]. Unlike the conventional services, these new ser-

vices have highly diverse performance requirements such as

bandwidth, delay, and reliability, which imposes a challenge

for 5G to accommodate these services in terms of scalability,

availability, and cost-efficiency [2].

Leveraging software defined networking (SDN) and network

functions virtualization (NFV), network slicing is a promising

technique to address this challenge [3]. It enables multiple

logical networks, i.e., network slices, run on top of a common

physical network infrastructure [4]. Network slices can be indi-

vidually customized to meet various performance requirements

of different network services and use cases. For example, a

slice can be customized to carry IoT services that require

massive connections but low data rates. At the same time,

Service Queue

Pe
rf

or
m

an
ce

R
A

N

Tr
an

sp
or

t

Ed
ge

/C
lo

ud

LTE
eNB

NR gNB

N
et

w
or

k S
lic

es

Fig. 1: An illustration of end-to-end network slicing in wireless edge
computing network composed of distributed network infrastructures
such as BSs and servers. Network slices require end-to-end resources
from multiple technical domains, e.g., radio access network, transport
network and edge/cloud computing platform, to serve their slice users.

another slice may be instantiated to support delay-sensitive

services, e.g., mobile augmented reality and vehicle-to-vehicle

communication. Thus, network slicing creates new network

management and operation patterns and improves network per-

formance for both the network operator and service providers

in terms of network revenue, quality of service, and service

autonomy.

Network operator is required to provide the performance and

functional isolation to network slices [5]. The performance

isolation ensures that the performance of a network slice is

not affected by the operation of the other network slices.

The functional isolation allows slice tenants to customize

their slice’s functions and resource management [6]. However,

the isolation among network slices reduces the multiplexing

efficiency and thus degrades the system performance [7]. It is

observed that the multiplexing efficiency improves when the

network resources are shared in a small time scale [7]. This

observation advocates the dynamic network slicing which can

dynamically change the resource allocation in network slices

according to their actual needs.

Dynamic network slicing, as illustrated in Fig. 1, faces two

research challenges. First, it is almost impossible to obtain

the exact correlation between the resources and performance

of network slices. A network slice usually requires resources

from multiple technical domains such as radio access network,

transport network, and edge/cloud. There are very complex

tradeoffs among these resources and slice performance. For

example, a short delay in the radio access network can be

compensated by accelerated computation in the edge/cloud

servers. Therefore, there lacks a closed-form mathematical ex-

pression that models the correlation between the resources and

234

2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDCS47774.2020.00028

20
20

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
Sy

st
em

s (
IC

D
C

S)
 |

97
8-

1-
72

81
-7

00
2-

2/
20

/$
31

.0
0

©
20

20
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
C

S4
77

74
.2

02
0.

00
02

8

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 30,2021 at 19:39:30 UTC from IEEE Xplore. Restrictions apply.

performance of network slices. The existing works on multi-

resource allocation usually assume that multiple resources are

allocated following a certain ratio, e.g., 1 unit radio spectrum

: 2 unit computing resources, which is not efficient [8], [9].

The second challenge is that the spatial diversity of mobile

traffic requests the resources of network slices to be properly

distributed among base stations and edge/cloud servers in

different geographic locations. This further complicates the

dynamic network slicing problem.

In this paper, we design EdgeSlice, a decentralized re-

source orchestration system that automates dynamic end-to-

end network slicing in wireless edge computing networks.

EdgeSlice introduces a novel decentralized deep reinforcement

learning (D-DRL) method to efficiently orchestrate end-to-

end networking and computing resources. With the D-DRL

methods, the resource orchestration is carried out by a central

performance coordinator and multiple decentralized orches-

tration agents. The orchestration agents rely on DRL to learn

optimal resource orchestration policy, and the central perfor-

mance coordinator coordinates the resource orchestration in

the agents to ensure the service level agreements (SLAs) of

network slices. To realize EdgeSlice, we also develop new

radio, transport, and computing resource manager that can

manage the resources at runtime according to the resource

orchestration actions and instantiate network slices.

The contributions of this paper are summarized as follows:

• We design and implement EdgeSlice which is a de-

centralized resource orchestration system for dynamic

network slicing in wireless edge computing networks.

EdgeSlice automates dynamic network slicing leveraging

a novel decentralized deep reinforcement learning (D-

DRL) method.

• We design a new D-DRL method to automate the end-to-

end resource orchestration with high efficiency. The D-

DRL method is composed of a performance coordinator

and multiple orchestration agents. The orchestration agent

can learn the optimal resource orchestration policy under

the coordination of the performance coordinator.

• We develop radio, transport and computing manager

which are integrated with existing platforms: OpenAir-

Interface (OAI) in radio access network, OpenDay-

Light (ODL) in transport network, and CUDA GPU in

edge/cloud servers. These managers enable the dynamic

configuration of end-to-end resources at runtime in the

EdgeSlice system.

• We build an experiential prototype and implement the

EdgeSlice system. We evaluate the performance of the

EdgeSlice system through both experiments using the

prototype system and trace-driven network simulations.

II. EDGESLICE OVERVIEW

EdgeSlice automates dynamic network slicing in wireless

edge computing networks through decentralized deep rein-

forcement learning. Fig. 2 outlines the design of the EdgeSlice

system. To automate the network slicing process, EdgeSlice

leverages machine learning, i.e., deep reinforcement learning,

entity symbol entity symbol

network slice i resource autonomy (RA) j
network resource k time interval t
slice queue length l time period T

slice performance U resource orchestration x

min. performance U
min total resource Rtot

auxiliary variable z dual variable y

TABLE I: Notations throughout Sec.III

to learn end-to-end resource demands of network slices and

then orchestrates the resource allocations to network slices

accordingly. Owing to the temporal and spatial dynamics

of the slice traffic and the complex tradeoffs between the

performance of network slices and the resource orchestration,

it is inefficient to use a centralized learning agent to orchestrate

resource allocations to network slices. Besides, a centralized

learning agent needs to obtain network performance data from

all the network nodes, which introduces excessive communica-

tion overhead and delay. Toward this end, EdgeSlice introduces

a new decentralized deep reinforcement learning method for

network slicing in wireless edge computing networks.

We define a resource autonomy (RA) as a set of network

infrastructures such as BSs and edge servers in a geographic

area, and thus the network can be partitioned into multiple

RAs. An orchestration agent is designed based on deep rein-

forcement learning to manage multi-domain resources in each

RA and operates on a short timescale, e.g., seconds, to enable

dynamic network slicing. The orchestration agent (detailed in

Sec. IV-B) can track the network state (queue length, traffic),

learn the resource orchestration policy from experience and

orchestrate resources to slices autonomously.

A centralized performance coordinator is designed to coor-

dinate the resource orchestration in all the RAs and optimizes

the performance of the network on a much larger timescale.

Meanwhile, the performance coordinator ensures that all the

constraints related to the resource orchestration, e.g., SLAs

and system capacity, are satisfied (detailed in Sec. IV-A). The

performance coordinator only exchanges slight coordinating

information with orchestration agents, which substantially

decreases the communication overheads.

To realize EdgeSlice, resource managers, i.e., middleware,

are developed to manage resources in radio access network,

transport network, and edge computing servers at runtime

according to the resource orchestration decision made by

orchestration agents (detailed in Sec. V).

III. SYSTEM MODEL AND PROBLEM STATEMENT

To design the EdgeSlice system, we first mathematically

model the wireless edge computing network and formalize the

statement of end-to-end resource orchestration problem.

A. System Model

We consider an end-to-end wireless edge computing net-

work which is composed of a radio access network (RAN)

with multiple base stations (BSs), edge/cloud computing

servers, and a transport network connecting the RAN and

computing servers. As shown in Fig. 1, there are multiple

network slices that request end-to-end resources in every RA,

235

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 30,2021 at 19:39:30 UTC from IEEE Xplore. Restrictions apply.

Performance Coordinator

Orchestration AgentSystem Monitor

Radio Manager Transport Manager Computing Manager

OpenAirInterface OpenDayLight CUDA GPU

VR-CVR-TVR-R

VR VR

RC-M RC-L

RC

SR

RA 1
RA 2 state

Network State

Coordinating Information

action

Resource Orchestration

Neural Network

Fig. 2: The EdgeSlice System.

in order to enable seamless service coverage and support their

users mobility. In each RA, network slices have service queues

that buffer the arrival traffic of their slice users. We consider

the network is time-slotted, and network operator can observe

the performance1 of network slices and dynamically change

its resource orchestration with a minimum t time interval.

Let I, J and K be the sets of network slices, RAs and

network resources, respectively. Denote x
(t)
i,j = [x

(t)
i,j,k|∀k ∈ K]

where x
(t)
i,j,k is the kth resource allocated to the ith slice on

the jth RA and U
(t)
i,j is the performance of network slice.

B. Problem Statement

The objective of network slicing is to maximize the

performance of network slices in the system, and the

objective of the network slicing can be expressed as

max
{x

(t)
i,j
}

lim
τ→∞

1
τ

τ∑
t=0

∑
i∈I

∑
j∈J

U
(t)
i,j . As τ → ∞, the problem is

an infinite time horizon stochastic programming problem. A

general method to solve the problem is to transform it into a

problem within a finite time period T , e.g., a day [10], [11].

Hence, the resource orchestration problem is formulated as

P0 : max
{xi,j≥0}

∑
t∈T

∑
i∈I

∑
j∈J

U
(t)
i,j

s.t. (2), (3).
(1)

In the context of network slicing, the resource orchestra-

tion problem subjects to two practical constraints. The first

constraint is that the network-wide performance of a network

slice should meet the SLA made between the slice tenant and

network operator. Denote U
min
i as the minimum performance

requirement of the ith slice according to the SLA. Thus, the

performance constraint can be written as∑
t∈T

∑
j∈J

U
(t)
i,j ≥ U

min
i , ∀i ∈ I. (2)

The second constraint is that the resources in each RA are

limited. Denote Rtot
j = [rtotj,k |∀k ∈ K] as the total amount of

each resource in the jth RA. Then, the resource allocated to

network slices in the jth RA should be less than Rtot
j , and the

constraint can be expressed as

1Network slices could have various metrics on evaluating their perfor-
mances, e.g., latency, throughput, queue status.

∑
i∈I

x
(t)
i,j ≤ Rtot

j , ∀j ∈ J , t ∈ T . (3)

The difficulties in solving problem P0 are two-fold. First,

the problem involves the end-to-end resource orchestration to

network slices within each RA and the performance coordina-

tion across all RAs to maintain network-wide performance of

network slices. The coupling between the intra-RA and inter-

RAs resource management highly complicates the problem.

Second, due to the varying network dynamics and the diversity

of resource demands of network slices, the slice performance

becomes a complex stochastic function. In real systems, it is

almost impossible to derive an accurate mathematical model

for such correlation [12]. Moreover, the resource orchestration

in the network slicing system exhibits Markovian on serving

slice users where a resource orchestration policy affects not

only the current but also further network state, e.g., service

queues.

IV. EDGESLICE DESIGN: COORDINATOR AND AGENTS

In this section, we present the design of performance

coordinator and orchestration agents in the EdgeSlice system.

A. Performance Coordinator

Since the performance of a network slice depends on the

resource orchestration in multiple RAs, the central perfor-

mance coordinator is designed to coordinate the resource

orchestration among RAs and thus optimizes the performance

of the network slices. To design the performance coordinator,

we transform problem P0 by introducing auxiliary variables

Z = {zi,j , ∀i ∈ I, j ∈ J } where

zi,j =
∑

t∈T
U

(t)
i,j , ∀i ∈ I, j ∈ J . (4)

Then, the constraint (2) are equivalent to∑
j∈J

zi,j ≥ U
min
i , ∀i ∈ I. (5)

Hence, problem P0 is equivalently transformed to

P1 : max
{xi,j≥0,zi,j}

∑
t∈T

∑
i∈I

∑
j∈J

U
(t)
i,j

s.t. (3), (4), (5).
(6)

Problem P1 has two sets of variables, X and Z which

are coupled by constraint (4). Next, we derive augmented

Lagrangian of problem P1 as

236

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 30,2021 at 19:39:30 UTC from IEEE Xplore. Restrictions apply.

Ly =
∑
i∈I

∑
j∈J

(∑
t∈T

U
(t)
i,j −

ρ

2
‖
∑
t∈T

U
(t)
i,j − zi,j + yi,j‖

2
2

)
,

(7)
where ρ ≥ 0 is a positive constant, and Y = {yi,j , ∀i ∈
I, j ∈ J } is the scaled dual variables. Here, the augmented

Lagrangian incorporates the constraint (4) which couples vari-

ables Z and X .

According to the alternating direction method of multipliers

(ADMM) method [13], problem P1 is solved by iteratively

solving the following problems:

xi,j = arg max
xi,j∈(3)

Ly(xi,j , zi,j , yi,j), (8)

zi,j = arg max
zi,j∈(5)

Ly(xi,j , zi,j , yi,j), (9)

yi,j = yi,j + (
∑

t∈T
U

(t)
i,j − zi,j), (10)

where problem in Eq. 8 focuses on the resource orches-

tration. Problem in Eq. 10 and Eq. 9 update auxiliary and

dual variables, respectively, which require all the resource

orchestrations in the system.

Therefore, we design the performance coordinator to solve

the problem in Eq. 9 and Eq. 10 based on the resource or-

chestration and slice performance collected from orchestration

agents in the system. Since X and Z are obtained, the problem

in Eq. 9 is equivalent to

P2 : min
{zi,j}

∑
i∈I

∑
j∈J

‖
∑
t∈T

U
(t)
i,j − zi,j + yi,j‖

2
2

s.t. (5).
(11)

This problem is a standard quadratic programming problem

which can be solved by using convex optimization tools,

e.g., CVX [14]. By solving the problem, the performance

coordinator obtains auxiliary variables Z and then updates

dual variables Y according to Eq. 10. We define the auxiliary

variables Z and the dual variables Y as the coordinating infor-

mation between the performance coordinator and orchestration

agents.

B. Orchestration Agent

The orchestration agents are designed to orchestrate the end-

to-end resources for network slices under the supervision of

the performance coordinator, i.e., solving the problem in Eq. 8.

Since the constraint of the problem only restricts the resource

orchestration within a RA, it can be solved individually within

each RA, i.e. decentralized. Hence, we rewrite the problem in

Eq. 8 within the jth RA as

P3 : max
{xi,j≥0}

∑
i∈I

∑
t∈T

U
(t)
i,j

−ρ
2

∑
i∈I

‖
∑
t∈T

U
(t)
i,j − zi,j + yi,j‖

2
2

s.t. (3).

(12)

The major challenge of solving the above problem is that the

slice performance is very complex and without a closed-form

mathematical model because of the varying network dynamic

and the complicated end-to-end resource demands of network

slices. Moreover, the current resource orchestration impacts

both slice users in service queues and further network state.

To address this challenge, we resort to deep reinforcement

learning (DRL) techniques that enable model-free machine

learning [15] when designing orchestration agents.

We consider a general reinforcement learning setting where

an agent interacts with an environment in discrete decision

epochs. At each decision epoch t, the agent observes a state

st, takes an action at, e.g., resource orchestration, based

on its policy μ(s), and receives a reward r(st,at). Then,

the environment transits to the next state st+1, e.g., queue

status changes, based on the action taken by the agent. The

objective is to find the optimal policy μ∗(s) mapping states

to actions, that maximizes the discounted cumulative reward∑∞
t=0 γ

tr(st,at). Here, γ ∈ [0, 1) is a discounting factor.

Although DRL techniques have been extensively studied in

many areas such as robotic control [16], traffic control [17],

and chess games [18], the existing DRL models are not

appropriate to solve problem P3 for two reasons. First, most

of the DRL models are designed to solve constraint-free

problems [17], [19]. However, the problem consists of multiple

linear constraints. Second, the existing DRL models are unable

to adjust their policies based on coordinating information from

an external control [20]. However, to maintain the network-

wide performance of network slices, the agent in EdgeSlice

needs to orchestrate resources according to the coordinating

information derived from the coordinator.

1) Design of Agents: Therefore, we design a new DRL

model with customized state space, action space and reward

function. In the DRL model, the constraint (3) are re-weighted

and incorporated into its reward function so that the reward

is affected by whether the constraints are satisfied or not.

The coordinating information is augmented into state space

to allow external control from the coordinator.

State Space: The state is concatenated by two parts. The

first part is [l
(t)
j , ∀i ∈ I] which represents the current network

state, i.e., queue status of network slices. The second part is

[zi,j−yi,j , ∀i ∈ I] which is the coordinating information from

the coordinator. Thus, the state in the jth RA at time interval

t can be expressed as

st =
[
l
(t)
j , zi,j − yi,j , ∀i ∈ I

]
. (13)

Action Space: The action at time interval t is defined as

the resource allocations to network slices in the RA:

at =
[
x
(t)
i,j , ∀i ∈ I

]
. (14)

Reward: The reward at time interval t is defined as

r(st,at) =
∑
i∈I

(
U

(t)
i,j −

ρ

2
‖U

(t)
i,j −

1

T
(zi,j + yi,j)‖

2
2

)
(15)

−β
∑

j∈J

[∑
i∈I

x
(t)
i,j −Rtot

j

]+
,

where [x]+ = max (0, x), and β is a positive constant. Here,

we approximate the objective function of problem P3 with

identical sub-objective functions in the time domain. More-

over, we incorporate the constraints (3) into the sub-objective

functions with reward shaping technique [21]. Therefore, there

will be a penalty added into the reward if the constraints are

violated.

237

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 30,2021 at 19:39:30 UTC from IEEE Xplore. Restrictions apply.

Target Network

Actor Network

Optimizer

Target Network

Critic Network

soft update

Optimizer

ActorCritic

target value

Experience Replay Memory

Action
soft update target value

Fig. 3: The DDPG architecture.

2) Training of Agents: We follow deep deterministic policy

gradient (DDPG), a state-of-the-art reinforcement learning

technique that is capable of handling continuous and high-

dimensional action spaces [15], to train our orchestration

agents. As shown in Fig. 3, DDPG integrates deep Q-network

(DQN) [16] and actor-critic method [22], and maintains

a parameterized actor μ(st|θ
μ) and a parameterized critic

π(st,at|θ
π). The critic estimates the value function of state-

action pairs, and the actor specifies the current policy by

mapping a state to a specific action.

The critic is implemented using a DQN. We define the value

function Qπ(st,at) as the expected discounted cumulative re-

ward when the agent starts with the state-action pair (st,at) at

decision epoch t and then acts according to the policy π. Then,

the value function can be expressed as Qπ(st,at) = Eπ [Rt],
where Rt =

∑T
k=t γ

(k−t)r(sk,ak). Based on the Bellman

equation [23], the optimal value function is Q∗(st,at) =
r(st,at) + γmax

at+1

Q∗(st+1,at+1).

To obtain the optimal policy, DQN is trained by minimizing

the mean-squared Bellman error (MSBE)

L(θπ) = E

[
(gt −Q(st,at|θ

π))
2
]
, (16)

where θπ are parameters of the critic network, and D is a

replay memory. gt is the target value estimated by a target

network, and can be expressed as

gt = r(st, at) + γmaxat+1
Q(st+1, μ(st+1|θ

μ′

)|θπ
′

), (17)

where θπ
′

are parameters of the target network. The target

network has the same architecture as the critic network, and

its parameters θπ
′

are slowly updated to track that of the critic

network.

The actor is implemented using another DQN which learns

a deterministic policy μ(st|θ
μ) to maximize the cumulative

reward of the actor, i.e., J = Eμ [Rt]. Since the action space is

continuous, the value function is assumed to be differentiable

with respect to the action. Thus, the actor network can be

trained by applying the chain rule to the expected cumulative

reward with respect to the actor parameters θμ:

∇θμJ ≈ E
[
∇θμQ(s,a|θπ)|

s=st,a=μ(st|θμ)

]
(18)

= E
[
∇aQ(s,a|θπ)|

s=st,a=μ(st) · ∇θμμ(s|θμ)|s=st

]
.

C. The Workflow of EdgeSlice

The workflow of the EdgeSlice system is summarized in

Alg. 1. The resource orchestration starts by initializing the

coordinating information, i.e., Z and Y . The orchestration

Algorithm 1: The EdgeSlice Resource Orchestration

Input: Umin
i , ∀i ∈ I; Rtot

j , ∀i ∈ I; ρ, β.

Output: X ,Z,Y .

1 Initialize Z and Y;

2 while True do

3 / ∗ ∗ optimize X in each agent ∗ ∗/;

4 for j ∈ J (decentralized) do

5 x
(t)
i,j , ∀i ∈ I, t ∈ T ← the ith orchestration agent;

6 U
(t)
i,j , ∀i ∈ I, t ∈ T ← the ith slice performance;

7 / ∗ ∗ update Z in the coordinator ∗ ∗/;

8 zi,j ← arg max
zi,j∈(5)

Ly(xi,j , zi,j , yi,j);

9 / ∗ ∗ update Y in the coordinator ∗ ∗/;

10 yi,j ← yi,j + (
∑

t∈T U
(t)
i,j − zi,j);

11 / ∗ ∗ if algorithm converges ∗ ∗/;

12 if convergence then

13 return X ,Z,Y;

agent in each RA orchestrates resources to network slices

based on its parameterized policy under the coordinating

information for time intervals in T . At the end of a time

period T , the orchestration agent collects the performance of

network slices U. Given X and U, the performance coordinator

generates the coordinating information (Y and Z), which are

fed back to orchestration agents in all RAs. It continues until

the convergence of the resource orchestration.

V. EDGESLICE DESIGN: RESOURCE MANAGER

In this section, we design radio, transport, and computing

manager that allocates the resources orchestrated by agents to

network slices at runtime, as shown in Fig. 2. These managers

are integrated with OpenAirInterface (OAI), OpenDayLight

(ODL), and CUDA GPU computing platform to enable dy-

namic configuration of resources in radio access network,

transport network, and edge/cloud computing, respectively.

A. Radio Manager

The radio manager is designed to work with OpenAirIn-

terface (OAI) to allocate radio resources to slice users in

both uplink (UL) and downlink (DL) radio access network. In

EdgeSlice, the total radio resources (bandwidth) can be used

by a network slice is determined by the orchestration agent.

Once a network slice obtains its radio resources, it allocates

these resources to its users. As a result, the allocated radio

resources of all slice users are known by the radio manager.

Hence, the radio manager should schedule users according to

their allocated resources at runtime, which is not supported by

vanilla OAI.

We fulfill such functionality by developing a new user

scheduling method in the MAC layer to manage physical

resource blocks (PRBs) in PUSCH/PDSCH. We schedule the

slice users consecutively and map their radio resources to

PRBs. The users without any radio resources will not be

238

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 30,2021 at 19:39:30 UTC from IEEE Xplore. Restrictions apply.

scheduled. To support the information exchange between the

orchestration agent and the radio manager at runtime, we

develop the VR-R (virtual resource - radio) and VR (virtual

recourse) interfaces in the radio manager and orchestration

agent, respectively. The association between a mobile user and

a network slice is identified by the user’s international mobile

subscriber identity (IMSI). The IMSI information is extracted

from the S1AP message sent from the base station to mobile

management entity (MME). The information extraction does

not need any modification on the mobile user’s side.

B. Transport Manager

Taking advantaging of the separation of data and control

plane in SDN switches, we allocate the bandwidth of links

between RAN and edge/cloud computing servers with an

OpenDayLight [24] controller through OpenFlow (Southbound

API) and RESTful (Northbound API) [25]. The OpenFlow

protocol currently supports user bandwidth modification with

meters. However, these meters and their attached flows should

be deleted and reinitialize if the user bandwidth needs to

be changed. As a result, when changing the user bandwidth

allocation at runtime, the switch network is broken during the

deletion-creation interval [26].

To enable dynamic modification of bandwidth while keeping

the switches network alive, we create a new configuration that

parallels with the current one when a new user bandwidth

allocation is received from the orchestration agent. Only if

the new configuration is available in switches, we release

the current configuration to transition to the new one ac-

cordingly so that we can hide the deletion-creation interval.

In addition, the information exchange between the transport

manager and orchestration agent is support through the VR-T

(virtual resource - transport) interface and the VR interface.

The association of users and slices in the transport network are

identified by using their source and destination IP addresses.

C. Computing Manager

The computing manager is designed to dynamically allocate

computing resources, e.g., the number of CUDA threads, in

the CUDA-based GPU computing platform. In the CUDA pro-

gramming model, an application can launch multiple kernels,

where every kernel can be concurrently executed by massive

CUDA threads [27]. The number of threads required by a

kernel is specified in its execution configuration syntax. The

execution of these kernels in the kernel space follows the

order of their callings in the user space. With the multiple-

processes service (MPS), multiple applications or processes

can share the GPU simultaneously. However, the resource

scheduling strategies of user applications are nontransparent

and not revealed by NVIDIA. As a result, the resource usage

of user applications can not be effectively controlled.

To address this issue, we develop a kernel-split mechanism

to control the GPU computing resources by managing the

maximum concurrent number of threads occupied by every

user application. The kernel-split mechanism splits a kernel

that requests a large number of threads into multiple small

Fig. 4: The overview of prototype.

and consecutive kernels with a specific number of threads. We

heavily modify the kernels of user applications to dynamic

split the kernels according to the user’s virtual resources at

runtime. Since the execution of kernels are in-order and con-

secutive, the number of threads occupied by a user application

always less than its virtual resources. We develop the VR-

C (virtual resource - computing) interface in the computing

manager for exchanging information with the orchestration

agent. The association between a mobile user and the network

slice is identified by the IP address.

D. System Monitor

The system monitor is designed to collect information of

network state, e.g., traffic load and slice performance, by using

a dataset. The database also records the user-slice association

based on the users’ IMSIs and IP addresses. The system

monitor uses the VR interface to communicate with radio,

transport and computing manager.

The RC (resource coordination) interface is developed to

allow the central performance coordinator to communicate

with orchestration agents and system monitors through the

RC-L (resource coordination - learning) and RC-M (radio

coordination - monitoring), respectively. The SR (slice request)

interface is developed to enable the slice tenants to request

and configure their network slices. For example, slice tenants

can make and modify their service-level agreements (SLAs)

with network operator. The SLAs will be enforced during the

resource orchestrations.

VI. SYSTEM IMPLEMENTATION

A. Hardware Details

We develop a prototype of the EdgeSlice system as depicted

in Fig. 4. It is composed of a RAN with 2 eNodeBs, a

transport network with 6 OpenFlow switches, a core network,

and 2 edge servers with CUDA GPUs. The details of hardware

are summarized in Table II. To eliminate the co-channel

interference, eNodeBs are operating at different frequency

bands, i.e., LTE Band 7 and Band 38. We configure the band

239

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 30,2021 at 19:39:30 UTC from IEEE Xplore. Restrictions apply.

Component Hardware Software

UEs 4x Samsung smartphones with band selection capability Android 7.0

eNodeBs 2x Intel i5 Computer with low-latency kernel 3.19 OpenAirInterface (OAI) [28]

RF Front-End 2x Ettus USRP B210 N/A

Transport 6x OpenFlow 1.3 Ruckus switches OpenDayLight-Boron [24]

Core Network Intel i7 desktop computer openair-cn [29]

Edge Servers 2x NVIDIA GEFORCE GTX 1080Ti CUDA 9.0 [27]

TABLE II: Details of the Prototype

selection option on smartphones so that the users in eNodeB

1 and 2 can only search for band 7 and band 38, respectively.

In the prototype, there are 2 RAs, 2 slices and 4 mobile

users (1 user per slice per RA), where a RA is the set of an

eNodeB, an edge server and a transport link. The orchestration

agents and performance coordinator are implemented in the

core network (Alienware R7 desktop) with Python 3.5. The

optimization toolbox used in the performance coordinator is

CVXPY 1.0 [30]. The radio manager is deployed in every

eNodeB. The transport manager is deployed on an individual

desktop computer. The computing manager is implemented on

the edge server for every RA. Both eNodeBs are with 5MHz

(25 PRBs) wireless bandwidth. The total bandwidth between

an eNodeB and its corresponding edge server is 80Mbps. The

total amount of the computing resource for each RA is 51200

CUDA threads.

We implement orchestration agents with Tensorflow

1.10 [31]. We use a 2-layer fully-connected neural network

in both actor and critic networks. Both layers adopt Leaky

Recifier [32] activation functions with 128 neurons. In the

output layer, we use sigmoid [32] as the activation function.

On training orchestration agents, we conduct extensive and

empirical tunings on the hyper-parameters. We randomly gen-

erate zi,j − yi,j between 0 and Rtot
j to train the agents under

different coordinating information. The parameter β = 20
to have sufficient weight on enforcing the total orchestrated

resources constraint (3). The learning rates of both actor and

critic networks are 0.001. The batch size is 512. The total

training step is 1E6. The discounted factor for cumulative

reward is γ = 0.99. We add the decaying Gaussian noise on

actions during the training phase for balancing the exploitation

and exploration. The noise starts fromN (0, 1) and decays with

factor 0.9999 per update step.

B. Simulated Network Environment

The orchestration agents are trained offline by using a

simulated network environment as shown in Fig. 5. In the

environment, we implement a first-in first-out (FIFO) queue

for services in individual network slices, and the performance

function of each slice can be customized. In each time interval,

the traffic, i.e., service tasks, in the network slices is generated

according to real network traffic traces [33]. The service

time of each task is determined by the end-to-end resource

orchestration.

With the simulated network environment, we generate the

training dataset by traversing all possible orchestration ac-

tions using the grid search method for radio, transport and

computing resources, respectively. Due to the large number

Traffic
Trace

Linear Model

PerformanceSlice Queue

Slice #1

R
ew

ar
d

fu
nc

tio
n

Reward

R
es

ou
rc

e
O

rc
he

st
ra

tio
n Data Set

Traffic
Trace

Slice Queue

Data SetLinear Model
Slice #I

Performance

Fig. 5: The simulated network environment.

of orchestration actions, we conduct the experiments with

resource granularity 10% for all the resources, which means

the dataset only contains discrete orchestration actions. During

the training of agents, it may produce orchestration actions that

are not contained in the training dataset. To solve this problem,

we build a linear regression model with scikit-learn [34] tool to

approximate the correlations between orchestration actions and

the slice performance. Given a resource orchestration action

such as [12, 38, 22]%, we use adjacent orchestration actions

in the dataset, e.g., [10, 30, 20]% and [10, 40, 20]%, to fit the

linear model. Once the linear model is fitted, it makes the

prediction for the service time under the orchestration action.

The service time determines the traffic departure in service

queues. At the end of each time interval, the reward is derived

based on the performances of all network slices and the design

of reward function in Eq. 15.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of EdgeSlice

with both prototype experiments and network simulations.

At each time interval, the ith slice on the jth RA reports

its performance to orchestration agent according to U
(t)
i,j =

−(l
(t)
i,j)

α, ∀i ∈ I, j ∈ J , t ∈ T , where α = 2 and l
(t)
i,j is the

queue length. Note that the performance function is defined

to evaluate whether EdgeSlice can learn the optimal resource

orchestration policy. In other words, neither the performance

coordinator or orchestration agent know the closed-form ex-

pression of the performance function. Besides, various perfor-

mance functions are evaluated in simulations. The performance

requirements of slices are defined as Umin
i = −50, ∀i ∈ I and

ρ = 1.0 [35].

A. Mobile Application

To evaluate the system performance, we develop a mobile

application which offloads computation tasks to the edge/cloud

240

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 30,2021 at 19:39:30 UTC from IEEE Xplore. Restrictions apply.

servers. Here, the computation tasks are the video analysis

based on the YOLO object detection framework [36]. The

basic procedures of these applications are: 1) a user sends

a video frame with a specific resolution to server and waits

to receive the processed results; 2) the server receives the

frame from the user and executes the YOLO algorithm with

a specific computation model to analyze the frame; 3) the

server sends the analysis results back to the user. The mobile

application can use different frame resolutions, e.g., 100x100,

300x300 to 500x500, and select computation models, e.g.,

YOLO 320x320, YOLO 416x416 to YOLO 608x608. Here,

the application with a higher frame resolution has heavier

transmission traffic, and the application with a larger compu-

tation model requires a more intensive computation workload.

B. Comparison Algorithms

In the performance evaluation, we compare the EdgeSlice

resource orchestration with the following algorithms:

Traffic-Aware Resource Orchestration (TARO): TARO

is the baseline algorithm in which all the resources are

proportionally shared by slices according to the current queue

length. In other words, x
(t)
i,j = Rtot

j · l
(t)
i,j/

∑
i∈I l

(t)
i,j , ∀j ∈ J .

This sharing scheme applies to all the RAs in the system.

EdgeSlice-Non-Traffic (EdgeSlice-NT): EdgeSlice-NT is

a simplified version of EdgeSlice in which the orchestration

agent manages resources only based on the coordination

information from the performance coordinator. Therefore, the

state space of the orchestration agent of EdgeSlice-NT is

st = [zi,j − yi,j , ∀i ∈ I]. In other words, EdgeSlice-NT does

not use queue length of network slices as the state in the

DRL model. By comparing EdgeSlice and EdgeSlice-NT, we

can evaluate the impact of the state space design, i.e. whether

including traffic load or not, on the performance of network

slices.

C. Experimental Results

Here, we present the experimental results and evaluate the

performance of the EdgeSlice system from different angles.

In the experiment, there are 2 slices, 2 RAs and 3 types

of resources. The mobile application in the first slice uses

500x500 frame resolution and selects YOLO 320x320 as the

computation model. This application represents the type of

applications that have heavy transmission traffic load and

moderate computation workload. The mobile application in

the second slice uses 100x100 frame resolution and selects

YOLO 608x608 as the computation model. This application

represents the type of applications that have light transmission

traffic load and intensive computation workload.

In the experiments, the time interval t is 1 second and the

time period T is composed of 10 time intervals. During the

time intervals, the task arrival of network slices follow the

Poisson process with average arrival rate2 10.

2The slice traffic is normalized based on the hardware capability of
the prototype such as bandwidth and GPU on accommodating the mobile
applications.

20 40 60 80 100
Time Interval

Sy
st

em
 P

er
fo

rm
an

ce EdgeSlice
EdgeSlice-NT

TARO

-500

-400

-300

-200

-100

Sl
ic

e
Pe

rf
or

m
an

ce

Slice 1
Slice 2

-200

-160

-120

-80

-40

min
,i jU

(b)(a)

20 40 60 80 100
Time Interval

Fig. 6: The convergence of algorithms: (a) system performance vs.
time interval; (b) slice performance vs. time interval.

N
or

m
al

iz
ed

 R
es

ou
rc

e
U

sa
ge

(c) Computing Resources

20 40 60 80 100
Time Interval

0

Slice 1
Slice 2

(b) Transport Resources

20 40 60 80 100
Time Interval

0

Slice 1
Slice 2

20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

0.0

Time Interval
0

(a) Radio Resources

Slice 1
Slice 2

Fig. 7: The multiple resource orchestrations of EdgeSlice: (a) radio
resource; (b) transport resource; (c) computing resource.

1) Convergence: In the EdgeSlice system, the performance

coordinator coordinates multiple orchestration agents via the

coordinating information [zi,j−yi,j , ∀i ∈ I]. We first evaluate

how fast the interaction between the coordinator and orches-

tration agents can converge. As depicted in Fig. 6 (a), both

EdgeSlice and EdgeSlice-NT are able to converge after several

time periods. This result also reveals that orchestration agents

can effectively orchestrate resources to slices under different

coordinating information. EdgeSlice obtains 3.69x and 2.74x

improvement on the system performance as compared to

TARO and EdgeSlice-NT, respectively. The performance gain

over TARO proves that EdgeSlice can effectively learn the

optimal resource orchestration policy based on the current net-

work state and the coordinating information. The performance

gain over EdgeSlice-NT indicates that observing the traffic

load of slices by orchestration agents can significantly improve

the system performance. In addition, as shown in Fig. 6 (b),

the EdgeSlice system ensures that both network slices meet

their minimum performance requirements.

Fig. 7 shows the normalized usage of multiple resources,

i.e., radio, transport and computing resources, with the EdgeS-

lice system. In the experiments, slice 1 has a higher demand

of radio and transport resources and a lower demand of

computing resources than slice 2 does. Hence, we observe

that EdgeSlice allocates more radio and transport resources to

slice 1 (blue area). Since slice 2 serves compute-intensive ap-

plications, it requires more computing resources. Therefore, in

the beginning, slice 2 is allocated more computing resources.

Later, EdgeSlice observes that the performance requirement

of slice 1 cannot be met although it is allocated almost all

the radio and transport resources. Thus, EdgeSlice starts to

allocate more computing resources to slice 1 and then the

resource orchestration converges. Moreover, we observe the

resources orchestrations becomes stable after 6 interactions,

which corresponds to the observations in Fig. 6 (a).

241

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 30,2021 at 19:39:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: The performance of orchestration agents: (a) the CDF of performance; (b) η1/η2 vs. slice traffic under EdgeSlice; (c) η1/η2 vs.
slice traffic under EdgeSlice-NT; (d) η1/η2 vs. slice traffic under TARO.

2) Resource Orchestration: We evaluate the orchestration

agent without any central coordination to understand its re-

source orchestration policy. Fig. 8 (a) depicts the cumulative

distribution function (CDF) of the slice performance under

randomly generated slice traffic loads. We can see that EdgeS-

lice substantially outperforms both TARO and EdgeSlice-NT

in terms of the slice performance. For example, 80% of the

slice performance is larger than -30 using EdgeSlice while

it is only 11% and 55% using TARO and EdgeSlice-NT,

respectively. The performance difference between EdgeSlice

and EdgeSlice-NT is smaller than that shows in Fig. 6 (a).

The reason is that the performance deficiency of the orches-

tration agent in EdgeSlice-NT accumulates during the iterative

interactions between the agents and the coordinator.

Fig. 8 (b)-(d) show the average resource usage ratio between

slice 1 and slice 2 obtained by using EdgeSlice under different

traffic loads. The average resource usage of a slice is calculated

as ηi =
∑

k∈K xi,j,k/r
tot
j,k . It can be observed that EdgeSlice

allocates resources to slices based on both traffic load and

the application’s resource needs in different domains. For

example, when traffic loads of slice 1 and slice 2 are 20 and 5,

respectively, the average resource usage ratio is about 5. This

example shows the traffic-awareness of EdgeSlice. Since the

orchestration agent in EdgeSlice-NT does not learn the slice

traffic load in the resource orchestration, the resource usage

ratio is a constant as shown in Fig. 8 (c). TARO allocates

resources purely based on the slice traffic and is not aware

of the actual resource needs from each domain. The resource

usage ratio with TARO is shown in Fig. 8 (d). The comparison

between EdgeSlice and TARO shows that EdgeSlice is aware

of the multi-domain resource needs of an application. These

results validate that orchestration agents of EdgeSlice are

able to autonomously orchestrate end-to-end resources under

varying slice traffic.

D. Simulation Results

We set up network simulations to evaluate EdgeSlice in

terms of scalability and working with different training tech-

niques and performance functions. In the simulation, there are

5 slices, 10 RAs, and 3 types of resources. The applications

served by the network slices randomly select the frame reso-

lutions, e.g., 100x100, 300x300, or 500x500, and computation

models, e.g., 320x320, 416x416, 608x608. We use the network

trace from an Italy mobile network over the Province of

Trento [33] to generate the traffic in network slices. The

network trace contains 154.8M entries with a minimum 10

minutes time interval collected in December 2013. Each entry

includes the counts of phone calls, SMS, Internet traffic, and

the geographic square area id. We obtain the average calling

traffic in 24 hours under different geographic areas, and use

them for the traffic of network slices. In the simulation, the

time interval t is 1 hour and the time period T is composed

of 24 time intervals.
1) Scalability of EdgeSlice: We evaluate the scalability of

EdgeSlice by varying the number of slices and RAs. As shown

in Fig. 9 (a), both EdgeSlice and EdgeSlice-NT maintain

similar performance per RA as the number of RAs increases,

while the performance per RA of TARO decreases substan-

tially. This result indicates the EdgeSlice agents learn much

superior resource orchestration policy than TARO in each RA.

Besides, EdgeSlice is capable of scaling to large network

sizes without noticeably sacrificing system performance. Fig. 9

(b) shows the performance per slice versus different number

of network slices. As the number of slices increases, the

system performance decrease because the resource demand

is higher and the average allocated resources of slices are

reduced. Nevertheless, EdgeSlice is still able to obtain a

better performance than the others. These results validate the

scalability of the EdgeSlice system.
2) Training Techniques of Agents: We study the impact

of various techniques on training the orchestration agents in

the EdgeSlice system. As depicted in Fig. 10 (a), the system

performance drops remarkably when the training steps of agent

is insufficient such as 1E5. In general, a learning-based agent

with a large number of training steps has better performance

than that with a small number of training steps. We can see

that the performance of EdgeSlice and EdgeSlice-NT can be

worse than that of TARO if the number of training steps is 1E5

or less. This means that if the agent is not well trained, it could

lead to very poor performance. Moreover, various techniques,

e.g., SAC [37], PPO [38], TRPO [39], and VPG [40], have

been proposed to improve the performance of agents. We

evaluate the system performance of EdgeSlice under different

training techniques as shown in Fig. 10 (b). The training

setting and hyper-parameters are the same as mentioned in

Sec. VI. The orchestration agent trained using DDPG exhibits

better performance than that trained by the other techniques.

These results show the importance of the training techniques

242

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 30,2021 at 19:39:30 UTC from IEEE Xplore. Restrictions apply.

(a) (b)
Number of Slices

Pe
rf

or
m

an
ce

 p
er

 R
A

Number of RAs

0 102

EdgeSlice
EdgeSlice-NT

TARO Pe
rf

or
m

an
ce

 p
er

 S
lic

e

5 10 15 20
-10

-8

-6

-4

-2

3 5 7

102
0

-12

-8

-6

-4

-2

-10
EdgeSlice

EdgeSlice-NT
TARO

Fig. 9: The scalability of EdgeSlice: (a) performance per RA vs. the
number of RAs; (b) performance per slice vs. the number of slices.

Sy
st

em
 P

er
fo

rm
an

ce

-6

-5

-4

-3

-2

-1

10
4

DDPG SAC PPO TRPO VPG
Training Techniques

(b)(a)

1E5

Sy
st

em
 P

er
fo

rm
an

ce

Number of Training Steps
1.5E65E5 1E6

-5

-4

-3

-2

-1

10
3

EdgeSlice
EdgeSlice-NT

TARO

Fig. 10: The impact of training techniques: (a) system performance
vs. the number of training steps of orchestration agents; (b) system
performance vs. various training techniques.

(b)(a)
Normalized System Performance

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

-14 -12 -10 -8 -6 -4 -2 0
0

0.2

0.4

0.6

0.8

1

EdgeSlice
EdgeSlice-NT

TARO

Sy
st

em
 P

er
fo

rm
an

ce

The value of alpha
1.0 1.5 2.0 2.5

-340

-320

-100

-80

-60

-40

-20

0 103

-332.4

-97.4

-67.9

EdgeSlice
EdgeSlice-NT

TARO

-0.3 -1.5

Fig. 11: The compatibility of EdgeSlice: (a) system performance vs.
the value of α, (b) CDF of normalized system performance.

in developing the EdgeSlice system.

3) Handling different performance functions: We evaluate

the performance of EdgeSlice under different performance

functions of network slices. As shown in Fig. 11 (a), we

vary the value of α in the performance function. The large

α indicates slice reports worse performance under the same

queue length. The EdgeSlice outperforms the others for all

conditions, which implies EdgeSlice can automatically learn

superior resource orchestration policy under varying perfor-

mance functions. Furthermore, we define another performance

function as the negative service time of slice users without

considering traffic in slice queue. As shown in Fig. 11 (b),

EdgeSlice and EdgeSlice-NT achieve almost the same system

performance. Because we intentionally eliminate the impact

of slice traffic on the slice performance function. As a result,

the network state, i.e., queue length, observed by EdgeSlice

is not helpful on learning the correlations. In contrast, the

performance of TARO is much worse. These results indicate

that when the performance function is less dependent on

the network state, learning-based EdgeSlice and EdgeSlice-

NT still have much performance gain over TARO. These

results verify the capability of EdgeSlice on handling various

performance functions of slices.

VIII. RELATED WORK

This work relates to resource management in network slic-

ing and deep reinforcement learning for networking problems.

Resource Management in Network Slicing: The resource

management problem in network slicing has been extensively

studied with the goal to maximize the system performance.

Caballero et al. [8] constructed a network slicing game in

which tenants are selfish to maximize its own performance.

The authors proved that this game with such strategic behavior

converges to a Nash equilibrium for elastic traffic. Halabian et

al. [9] showed that non-collaborative slices in the system com-

promise the fairness performance when maximizing the overall

system performance and proposed a distributed solution by

extending the Dominant Resource Fairness (DRF) framework.

To exploit the statistical multiplexing gain of slices, Scian-

calepore et al. [41] designed STORNS that optimizes the

admission control of slices with considering per slice SLA

requirement by leveraging stochastic geometry theory. Salvat

et al. [11] developed an end-to-end resource orchestration

system, formulated an orchestration problem to maximize the

revenue in network slicing, and proposed an optimal Benders

decomposition method and a heuristic method. Foukas et

al. [5] developed an efficient RAN slicing system that enables

the dynamic and real-time virtualization of base stations and

slices customization to meet slices’ service demands. However,

the fundamental assumption of these works is that the resource

demands of slices and their performance functions are known

as closed-form mathematical expressions to network operator.

In contrast, the EdgeSlice system proposed in the paper

enables a model-free resource orchestration solution.

Deep Reinforcement Learning (DRL) in Networking:

Machine learning techniques such as deep learning and re-

inforcement learning gain significant popularity in solving

resource management problems in mobile network for coping

the complicated network dynamics. Mao et al. [20] designed

DeepRM with the DQN technique to optimize the admission

control and resource orchestration of users. They obtained a

considerable reduction on the average slowdown of user tasks

as compared to heuristic solutions. Xu et al. [17] utilized the

state-of-the-art DDPG technique to solve the traffic engineer-

ing (TE) networking problem, i.e., allocating the bandwidth

of network links, and obtained significant end-to-end latency

reduction and performance improvement under the unknown

performance function. Bega et al. [42] proposed DeepCog

with deep learning techniques to forecast the network capacity

within an individual slice and achieve the balance between

resource over-provisioning and service request violations.

Yang et al. [43] proposed an adaptive reinforcement learning

based approach for microservice workflow system that enables

model-free resource allocation and improves the response time

of microservices. However, these existing works advocate the

centralization of resource management by using a central

243

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 30,2021 at 19:39:30 UTC from IEEE Xplore. Restrictions apply.

agent. Although their solutions may be applied to perform the

resource orchestration, the centralized resource orchestration

is highly complex for wireless edge computing networks.

Different from these methods, the EdgeSlice system enables a

decentralized resource orchestration.

IX. CONCLUSION

In this paper, we have designed EdgeSlice, a new decen-

tralized resource orchestration system, to automate dynamic

network slicing in wireless edge computing networks. To

realize EdgeSlice, we have developed a novel decentralized

deep reinforcement learning method which consists of a

central performance coordinator and multiple orchestration

agents. The orchestration agent learns the optimal resource

orchestration policy for network slicing under the coordination

of the central performance coordinator. We have also designed

new radio, transport and computing resource manager that

enable dynamic configuration of end-to-end resources at run-

time. We have developed a prototype of EdgeSlice with Ope-

nAirInterface (OAI) in radio access network, OpenDayLight

(ODL) in transport network, and CUDA GPU computing in

edge/cloud servers. The performance of EdgeSlice has been

validated through both prototype implementation and network

simulations.
ACKNOWLEDGEMENT

This work is partially supported by the US National Science

Foundation under Grant No. 1731675, No. 1810174, and No.

1910844.
REFERENCES

[1] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless
networks: A comprehensive survey,” IEEE Communications Surveys &

Tutorials, vol. 18, no. 3, pp. 1617–1655, 2016.
[2] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network

slicing in 5G: Survey and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 94–100, 2017.

[3] J. Ordonez-Lucena, P. Ameigeiras et al., “Network slicing for 5G with
SDN/NFV: Concepts, architectures, and challenges,” IEEE Communica-

tions Magazine, vol. 55, no. 5, pp. 80–87, 2017.
[4] I. Afolabi, T. Taleb et al., “Network slicing and softwarization: A survey

on principles, enabling technologies, and solutions,” IEEE Communica-

tions Surveys & Tutorials, vol. 20, no. 3, pp. 2429–2453, 2018.
[5] X. Foukas, M. K. Marina, and K. Kontovasilis, “Orion: RAN slicing for

a flexible and cost-effective multi-service mobile network architecture,”
in ACM MobiCom, 2017, pp. 127–140.

[6] P. Rost, C. Mannweiler et al., “Network slicing to enable scalability and
flexibility in 5G mobile networks,” IEEE Communications magazine,
vol. 55, no. 5, pp. 72–79, 2017.

[7] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“How should I slice my network?: A multi-service empirical evaluation
of resource sharing efficiency,” in MobiCom. ACM, 2018, pp. 191–206.

[8] P. Caballero, A. Banchs, G. De Veciana, and X. Costa-Pérez, “Network
slicing games: Enabling customization in multi-tenant mobile networks,”
IEEE/ACM Transactions on Networking, 2019.

[9] H. Halabian, “Distributed resource allocation optimization in 5G virtu-
alized networks,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 3, pp. 627–642, 2019.

[10] P. Kall et al., Stochastic programming. Springer, 1994.
[11] J. X. Salvat et al., “Overbooking network slices through yield-driven

end-to-end orchestration,” in ACM CoNEXT. ACM, 2018, pp. 353–
365.

[12] H. Mao, M. Schwarzkopf et al., “Learning scheduling algorithms for
data processing clusters,” in Proceedings of the ACM Special Interest

Group on Data Communication. ACM, 2019, pp. 270–288.
[13] S. Boyd, N. Parikh et al., “Distributed optimization and statistical

learning via the alternating direction method of multipliers,” Foundations

and Trends in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
university press, 2004.

[15] T. P. Lillicrap, Hunt et al., “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[16] V. Mnih, K. Kavukcuoglu, Silver et al., “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[17] Z. Xu, J. Tang et al., “Experience-driven networking: A deep reinforce-
ment learning based approach,” in IEEE INFOCOM. IEEE, 2018, pp.
1871–1879.

[18] D. Silver, T. Hubert et al., “A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play,” Science, vol. 362,
no. 6419, pp. 1140–1144, 2018.

[19] L. Chen, J. Lingys et al., “AuTO: scaling deep reinforcement learning
for datacenter-scale automatic traffic optimization,” in SIGCOMM 2018.
ACM, 2018, pp. 191–205.

[20] H. Mao, M. Alizadeh et al., “Resource management with deep rein-
forcement learning,” in ACM HotNets. ACM, 2016, pp. 50–56.

[21] S. Griffith et al., “Policy shaping: Integrating human feedback with
reinforcement learning,” in Advances in neural information processing

systems, 2013, pp. 2625–2633.
[22] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances

in neural information processing systems, 2000, pp. 1008–1014.
[23] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp.

34–37, 1966.
[24] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards

a model-driven SDN controller architecture,” in IEEE WoWMoM 2014.
IEEE, 2014, pp. 1–6.

[25] N. McKeown, T. Anderson et al., “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[26] O. S. Specification, “Openflow switch specifica-
tion version 1.5.1, https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf,” 2013.

[27] C. Nvidia, “Nvidia CUDA C programming guide,” Nvidia Corporation,
vol. 120, no. 18, p. 8, 2011.

[28] OpenAirInterface Software Alliance. OpenAirInterface repository.
https:gitlab.eurecom.fr/oai/openairinterface5g, 2017.

[29] OpenAirInterface Software Alliance. Openair-cn repository.
https:gitlab.eurecom.fr/oai/openair-cn, 2017.

[30] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[31] M. Abadi, P. Barham et al., “Tensorflow: A system for large-scale
machine learning,” in 12th USENIX OSDI, 2016, pp. 265–283.

[32] I. Goodfellow et al., Deep learning. MIT press, 2016.
[33] T. Italia, “Telecommunication activity dataset,”

https://dandelion.eu/datagems/SpazioDati/telecom-sms-call-internet-
tn/description/, 2013.

[34] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal

of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
[35] M. Hong and Z.-Q. Luo, “On the linear convergence of the alternating

direction method of multipliers,” Mathematical Programming, vol. 162,
no. 1-2, pp. 165–199, 2017.

[36] J. Redmon et al., “You only look once: Unified, real-time object
detection,” in IEEE CVPR, 2016, pp. 779–788.

[37] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” arXiv preprint arXiv:1801.01290, 2018.

[38] J. Schulman, F. Wolski et al., “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[39] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine

Learning, 2015, pp. 1889–1897.
[40] R. S. Sutton, D. A. McAllester et al., “Policy gradient methods for

reinforcement learning with function approximation,” in Advances in

neural information processing systems, 2000, pp. 1057–1063.
[41] V. Sciancalepore, M. Di Renzo, and X. Costa-Perez, “STORNS: Stochas-

tic radio access network slicing,” arXiv:1901.05336, 2019.
[42] D. Bega, M. Gramaglia et al., “Deepcog: Cognitive network manage-

ment in sliced 5G networks with deep learning,” 2019.
[43] Z. Yang et al., “MIRAS: Model-based reinforcement learning for

microservice resource allocation over scientific workflows,” in IEEE

ICDCS. IEEE, 2019, pp. 122–132.

244

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 30,2021 at 19:39:30 UTC from IEEE Xplore. Restrictions apply.

