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a b s t r a c t 

Cities are an integral part to meeting the world’s sustainable energy goals. Specifically, retrofits have been im- 

plemented to improve energy efficiency and reduce carbon emissions in the buildings sector. Recent simulation, 

reduced-order, and data-driven approaches have been used to predict the current energy consumption of urban 

buildings. However, these efforts are limited in their ability to evaluate potential impacts of future retrofits as 

they are unable to account for inter-building energy interactions that can influence urban building energy per- 

formance. To overcome these limitations, we extend a previously developed hybrid data-driven urban energy 

simulation (DUE-S) model that leverages building energy simulations and deep learning models by now predict- 

ing the impact of various building energy retrofits on multiple spatiotemporal scales across a city. We evaluate 

this approach on a case study of 29 densely co-located buildings in downtown Sacramento, California, USA. Our 

results indicate that accounting for urban context can compound the impact of retrofits on individual buildings by 

up to 7.4% as they also influence the electricity use of their surroundings. Finally, we show how DUE-S can pro- 

vide insights on how to select buildings for retrofit that captures a potential compounding energy savings effect. 

We develop a greedy optimization algorithm that minimizes the number of required retrofits needed to achieve 

maximal energy savings across an urban study area. As a result, this work underscores how a flexible urban 

energy prediction model such as DUE-S can help inform energy-related decisions for a variety of urban-minded 

stakeholders including architects, engineers, planners, and policymakers. 
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. Introduction 

Cities are epicenters of social, cultural, and economic activity. Over
alf of the world’s population currently resides in cities, and that num-
er is expected to increase to over 68% by 2050 – requiring the creation
nd expansion of hundreds of urban areas globally [1] . As a result of
apid urbanization, cities now account for over 75% of all primary en-
rgy use and 80% of all greenhouse gas emissions [2] . To address the
hallenges of energy security, climate change, and economic growth,
7 countries and over 100 cities have begun instituting aggressive emis-
ions reductions targets in conjunction with the COP 21 Paris Climate
ccord [3] . A prime opportunity to reduce urban greenhouse gas emis-
ions is in the buildings sector, which currently accounts for over 40% of
ll primary energy consumption [4] . Furthermore, a significant amount
f the building stock that will exist in 2050 has already been constructed
5] ; thus, to improve the energy efficiency of the existing building stock,
etrofits are key to achieving ambitious climate targets set by urban sus-
ainability stakeholders. 

Existing approaches to assess the energy impacts of building retrofit
rograms are primarily done on an individual building scale using ei-
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her simulation-based or data-driven models. It is well understood that
uilding energy use is significantly influenced by inter-building effects
e.g., reflection can cause glare and heat gain in surrounding buildings,
rban shade from buildings can cool their surroundings) [6] and micro-
limatic effects (e.g., urban heat island can trap heat within cities and
ause increased cooling demand) [ 7 , 8 ]. While simulation-based models
an reproduce the underlying thermodynamic effects of various retrofits
n individual building energy use, it remains a challenge for these mod-
ls to account for inter-building energy dynamics and urban context.
nd although emerging machine learning-based approaches can un-
over hidden temporal patterns within building energy data, they strug-
le to forecast the effects of proposed retrofits due to the lack of available
bservations needed to train a prediction model [9] . Without accurate
haracterization for how large-scale retrofits may perform in an urban
rea, the decisions made by relevant stakeholders may have unintended
nergy, emissions, and economic consequences [10] that shape the life
ycle of both retrofitted buildings and their surrounding neighbors. 

Ongoing developments in sensing technologies and open data initia-
ives have led to a windfall of data streams describing the urban built
nvironment. Existing approaches to characterize the influence of large-
A, 94305, United States. 
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cale urban building retrofits on energy consumption are typically done
hrough traditional physics-based modeling or emerging algorithms in
achine learning. However, while often treated as two separate fields,

ur work demonstrates how these approaches can in fact be comple-
entary to one another. Physical representations of buildings through

imulation are interpretable and allow for extrapolating what may hap-
en under non-observed conditions, like future building retrofits. Ma-
hine learning approaches can extract hidden temporal patterns and in-
ights from large urban data streams. The synergy of these modeling
pproaches has already been demonstrated in the Earth systems sci-
nce domain [11] , where the outputs of physical models are used as
eatures for deep learning algorithms to detect extreme weather events
12] , predict lake temperatures [13] , and monitor regional vegetation
ystems [14] . However, this modeling approach has yet to take hold in
he buildings domain, where integrating these two methods could allow
s to thermodynamically understand and more accurately predict the
omplex spatiotemporal nature of building energy use. 

The primary objective of this paper is to expand upon a previ-
usly developed scalable data-driven urban energy simulation (DUE-
) model. To do so, we modify the deep learning architecture to bet-
er account for the time-series patterns present in building energy con-
umption data and add the ability for DUE-S to estimate the effects of
arge-scale retrofit programs on multiple spatiotemporal energy scales
cross a city. To meet their aggressive climate goals, cities must have
nterpretable, quantitative tools to evaluate the existing energy perfor-
ance of their buildings and be able to evaluate various strategies to

educe urban energy use and subsequent environmental impacts. Char-
cterizations of urban building energy use at multiple temporal (e.g.,
aily, monthly, annually) and spatial (e.g., single building, urban) scales
hrough a DUE-S model can help inform the assessment of existing and
lanned urban energy scenarios. The rest of this paper is organized as
ollows: Section 2 presents and overview of existing work on urban
uilding energy modeling for retrofit assessment and discusses the pri-
ary literature gaps; Section 3 discusses the integrated DUE-S model-

ng approach and introduces how it can be extended for retrofit anal-
sis; Section 4 provides an overview of our case study of 29 commer-
ial and mixed-use buildings in downtown Sacramento, California, USA;
ection 5 discusses the results of our case study; Section 6 outlines the
imitations and future work, and Section 7 concludes the paper. 

. Background 

To support large-scale urban energy and greenhouse reduction mea-
ures, policymakers and other urban energy stakeholders rely on var-
ous tools to evaluate and select various retrofit measures for either
argeted or widespread adoption. As a result, significant academic and
ndustrial efforts have been made through simulation-based and data-
riven approaches to improve prediction accuracy and functionality
or answering a broad suite of urban energy sustainability problems.
ere, we highlight some of the cross-domain challenges that impede

he widespread adoption of both simulation-based and data-driven ur-
an modeling tools. 

.1. Urban context 

Buildings rely on energy to balance thermal loads (e.g., add or re-
ove sensible or latent heat to achieve desired thermal comfort con-
itions within a building) and electrical loads (e.g., lighting systems,
VAC equipment, plug loads used by occupants) to support the func-

ioning of the activities inside and around them. While these loads are
eavily dependent on occupant dynamics [ 15 , 16 ], they are also signifi-
antly influenced by a building’s urban context: factors that may include
icroclimatic effects [17] , neighboring buildings [6] and the wider ur-

an form [18] , vegetation [19] , or other urban systems [20] . For exam-
le, it is well understood that phenomena such as the urban heat island
ffect, typically caused by the combination of generated anthropogenic
2 
eat and increased sensible heat storage from urban structures, can in-
rease the outdoor temperature of urban areas when compared to nearby
ural areas [7] – resulting in increased demand for energy-intensive ac-
ive cooling [21] . Throughout the day, as the sun moves around a city,
uildings and other tall structures can cast shadows that can affect light-
ng and cooling loads in neighboring buildings [22] . Similar demands
or lighting and cooling solutions can be required of buildings that are
it by so-called “death rays ” of concentrated light that bounce off reflec-
ive windows or building facades [ 23 , 24 ]. Research in fluid dynamics
as explored how air flows around and within cities as typical wind pat-
erns can shift based on where trees and buildings are located relative to
ne another [25] . Finally, as cities shift to district energy systems such
s heating and cooling networks [26] , energy hubs [27] , and the use of
istributed energy resources [28] , individual buildings should instead
e treated as a broader, interconnected energy network. 

Building energy models, physics-based tools often used to evaluate
uilding energy consumption, are limited in the extent to which their
urroundings are modeled – often only including surrounding shading
tructures from other buildings or wildlife. These models simulate the
hermodynamic energy processes of buildings by abstracting building
eometry to a network of connected nodes. Each node is then used to
reate and solve heat balance equations based on the assumed non-
eometric building parameters inputted into the model. However, be-
ause of the large number of nodes and associated equations to solve,
ccurately simulating the energy consumption of a single building is
ime and resource intensive. Doing this for hundreds, if not thousands,
f buildings across a city – each with extensive required information on
ow they are constructed and operated – is even more intensive. To com-
at this challenge, extensive work in the urban building energy model-
ng domain has focused on how to reduce the amount of required data to
implify data processing and computation time required of the model.
fforts to reduce the required number of inputs to simulation models
ave included addressing the absolute required levels of detail [29] for
 “minimum viable urban building energy model (UBEM) ” based on its
nal application [30] . 

The most common approach to simplify inputs is through modeling
roups of buildings as archetypes – either true representations or vir-
ual abstractions of buildings with similar characteristics in an urban
rea [31] . These archetypes are defined by segmenting buildings based
n properties such as construction age, use type, and size, where the
uildings in each bin of buildings identical to one another. Then non-
eometric characteristics (e.g., materials, operating schedules, HVAC
ystems) are characterized for each archetype. So rather than each build-
ng requiring unique non-geometric inputs, only the archetypes require
hem – significantly reducing the total number of unique data points
equired for a full urban simulation model. Because urban context is in-
erently complex, it cannot be simplified in a similar manner and is not
xtensively modeled in energy simulations [32] . 

The most common approach to account for climate is through Typi-
al Meteorological Files (TMY) that represent either the city or local re-
ion’s meteorological conditions. While this data is freely available for
housands of cities globally, it does not characterize extreme weather
vents or future effects of climate change [33] . Additionally, the data
ources for many of these files are also gathered from airports or other
parse regions and therefore cannot capture local microclimatic condi-
ions or the effects of long-wave radiation between buildings in a city
34] . Several studies have improved upon this simplified approach by
odeling with historical weather data [35] and using tools that can

ccount for mutual shading between buildings [22] . Common model-
ng tools used to improve upon basic weather files include the Urban

eather Generator [36] , which accounts for the effects of urban geom-
try on urban heat island, and the Canopy Interface Model (CIM) that
roduces high-resolution profiles of urban microclimates [37] . Other
omplex tools such as ENVI-met [38] leverage complex Computational
luid Dynamics (CFD) models to quantify the effects radiation exchange
as on building energy consumption. Overall, methods to account for ur-



A. Nutkiewicz, B. Choi and R.K. Jain Advances in Applied Energy 3 (2021) 100038 

b  

d  

c  

t
 

e  

u  

t  

h  

t  

e  

m  

[  

n  

s  

r  

m  

b  

a  

N  

o  

h  

f  

d  

s  

f  

c  

e  

e  

t  

n  

[  

e  

s  

h  

i

2

 

c  

t  

i  

d
 

a  

i  

g  

s  

R  

d  

r  

u  

s  

e  

s  

e  

I  

c  

d  

e  

t  

b  

i  

r  

c  

p
 

i  

s  

l  

q  

r  

s  

r  

t  

m  

c  

t  

s  

f  

a  

s  

e  

p  

s  

c  

a  

a  

t  

t  

p  

m  

i  

y  

b  

B  

a  

e  

r
 

c  

a  

m  

a  

p  

o  

i  

l  

b  

[  

o  

t  

p  

p  

t  

a  

i  

e  

[  

i  

c
 

t  

c  

a  

i  

c  

p  

i  

t  
an context remain ad hoc as, depending on the region and the level of
etail to which urban microclimates are modeled, the effects of urban
ontext can significantly vary their impact on building energy consump-
ion [7] . 

As the deployment of open data initiatives and sensing technology
xpands globally, a wealth of spatial and temporal data describing the
rban built environment has allowed us to uncover the energy use pat-
erns that describe buildings. As a result, many data-driven methods
ave been able to achieve high degrees of accuracy while allowing us
o understand the drivers that most commonly influence building en-
rgy consumption, such as building materials and use type [39] . These
odels to predict energy use include simpler multiple linear regressions

40] and decision trees [41] as well as more complex artificial neural
etworks or multi-layered deep learning models [42] . This work has
ince expanded to larger spatial scales, where neural networks [43] ,
andom forests [44] , and support vector regression [45] are most com-
only used to predict building energy use. Neural networks have also

een used in conjunction with socioeconomic data to predict building
nd transportation energy use intensity on multiple spatial scales [46] .
eighborhoods of urban buildings that have been modeled as a network
f nodes interacting with one another, coupled with neural networks,
ave been shown to influence multi-building energy usage [47] . Aside
rom using local historical weather data, data-driven models typically
o not account for urban context when forecasting building energy con-
umption. There are machine learning-based models that have predicted
uture urban weather conditions [48] , estimated the effects of urban
ontext on the urban heat island [49] , and relied on neural networks to
valuate the degree to which urban context influences urban building
nergy use [50] , but these findings have yet to be translated into inputs
o model and forecast building energy consumption. But by coupling
eural networks and a physics-based simulation model, the authors in
20] were able to quantify the effects of cool pavements on building en-
rgy demand. Purely data-driven approaches to predicting energy con-
umption and estimating the influence of urban context on buildings
ave been largely considered separate tasks and therefore require more
ntegration to better understand urban building energy dynamics. 

.2. Retrofit analysis 

Retrofitting existing buildings can help policymakers achieve their
limate targets. However, finding an effective method to identify an op-
imal strategy for selecting retrofits and, more specifically, which build-
ngs to retrofit, remains a challenge across both simulation and data-
riven domains. 

Energy simulation models are a widely used approach in retrofit
nalysis because they rely on engineering algorithms grounded in build-
ng physics theory to produce interpretable, and occasionally disag-
regated, predictions of how different retrofits influence energy con-
umption for various end uses. The Combined Energy Simulation and
etrofitting (CESAR) tool uses simulation to assess the current energy
emand and emissions reduction potentials of various building stock
etrofit scenarios [51] . The Urban Modeling Interface (umi) has been
sed to simulate the energy demand of existing neighborhoods and sub-
equently propose district-level interventions to improve urban energy
fficiency [ 52 , 53 ]. Similarly, URBANopt has been developed to under-
tand the effect of various energy technology upgrades and balance en-
rgy loads with renewable energy resources at the district level [54] .
n the case of some simulation tools, integrated web-based interfaces
an quickly provide energy, emissions, or cost savings estimates on a
iverse library of possible energy conservation measures (ECMs). For
xample, CityBES relies on a web-based interface to help users identify
he energy savings potential and cost effectiveness of various individual
uilding ECMs and larger-scale ECM packages for commercial build-
ngs [22] . The ability for these tools to graphically display the effects of
etrofit scenarios make them interpretable for energy planning and de-
3 
ision making regardless of the user’s technical knowledge of building
hysics. 

To be considered reliable tools for retrofit decision making, build-
ng simulation models rely on calibration – the process of iteratively or
tatistically updating building energy model parameters to match simu-
ation outputs to measured energy data [55] . Because this process is re-
uired when any changes are made to a model (i.e., a retrofit scenario),
etraining and recalibrating an urban-scale model for each proposed de-
ign change can make simulation-based methods prohibitively time and
esource intensive [56] . For example, when spreadsheet (simplified sta-
istical approaches to calculating building EUIs) and simulation-based
ethods for building-level retrofit analysis were applied to a university

ampus in Boston, the simulation approach was shown to have taken
hree times as long (260 h for spreadsheet approach vs. 600 for urban
imulation approach) – primarily due to the calibration time required
or the simulation model [57] . Additionally, because simulation models
re typically only calibrated on a single spatiotemporal scale [ 58 , 59 ],
imulation-based approaches have limited ability to estimate the influ-
nce retrofitting one building may have on another. Computational com-
lexity can be diminished by relying on reduced-order models – where
uch methods to calculate urban energy use are analogous to resistor-
apacitor (RC) electrical circuit networks. City Energy Analyst, for ex-
mple, relies on RC networks to quickly assess the energy, emissions,
nd financial implications of various urban retrofit scenarios and de-
ermine optimal schemes for distributed energy generation [60] . While
hey are capable of simulating large-scale models with reduced com-
utational requirements, these simplified methods often require strong
odeling assumptions or over-simplifications (e.g., modeling a build-

ng as a single thermal zone, maintaining a constant heating setpoint
ear-round) [ 26 , 61 ]. These tools demonstrate the ability for simulation-
ased models to help in the planning of large-scale retrofit programs.
ecause of the tradeoff between modeling with a higher level of detail
nd increased computational complexity, additional work remains to
fficiently produce reliable insights on the effects of widespread urban
etrofits. 

Unlike physics-driven energy simulation models, data-driven appli-
ations for retrofit analysis rely on leveraging massive amounts of data,
nd the majority of work done in this space primarily consists of bench-
arking and load shape analysis [62] . Benchmarking, typically done

t a city scale, is used to quantify and understand building energy use
atterns, identify the most inefficient buildings, and target the worst
f them for retrofits through policymaking or other competition-based
ncentives [41] . Large building portfolio managers (e.g., universities,
arge tech campuses) also employ benchmarking techniques on whole-
uilding energy use data to target specific buildings for energy retrofits
63] , especially due to the often-limited capital available for this type
f investment. Similar to some simulation-based approaches, web-based
ools have also been developed to better visualize energy benchmarking
erformance [64] . Although benchmarking methods are able to com-
are the relative energy efficiency of buildings across an urban area,
hey still require decisionmakers to select which buildings to retrofit
nd do not specify the specific ECM, or combination of ECMs, that would
mprove their efficiency. While load shape analysis, which identifies op-
rational efficiencies at different times during the day, month, or year
65] , often provides a more temporally granular understanding of build-
ng energy efficiency, they also do not propose specific retrofits that
ould improve upon existing energy performance. 

Data-driven methods are able to accurately model the statistical pat-
erns of building energy use and quantify the impacts of various energy
ovariates but rely exclusively on the mathematical patterns in the data
nd not the underlying physics of the thermal and energy systems that
nfluence it. While it is difficult to provide a data-driven model with ac-
ess to all relevant observations in its training set to make an informed
rediction of a building’s future energy use, research in this domain has
nstead dealt with this challenge by relying on available data to iden-
ify important building features that could dictate future retrofit deci-
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o  
ion making. For example, recurrent neural networks have been used to
valuate smart thermostat data of residential buildings to identify their
hermal characteristics and target the worst performing ones for retrofit
66] . Feature selection has also been used to identify building character-
stics that are most influential in retrofit decision making [ 67 , 68 ]. While
hese models can provide retrofit recommendations for large building
tocks, these approaches would still require some physics-based model
o determine the influence of retrofit packages on energy consumption.
hus, without a comprehensive library of observed retrofit implications
r the use of a physical modeling tool, data-driven methods for retrofit
ecision making are limited in their use for widespread urban energy
lanning. 

Overall, while both physical and data-driven models have been used
o assess the impacts of retrofits in urban areas, the limitations of each
pproach could be alleviated by leveraging the benefits of the other.
imulation-based retrofit analysis tools largely suffer from overparame-
erization, making the process of calibration computationally expensive
nd uncertain due to there being so many possible model inputs to up-
ate. Finding a computationally efficient method to quickly calibrate
nd produce results regarding a suite of possible retrofit design options
ould make them much more useful to policymakers. Data-driven tools,
hile able to interpret large quantities of data, lack the underlying phys-

cal understanding of how retrofits influence building energy use, influ-
nce energy use, and without a training set that encompasses all possible
etrofit design combinations, they cannot be exclusively used to make
ecisions about urban retrofits. However, by integrating the physical
ontext of simulation with the forecasting ability of machine learning,
e should be able to improve the predictive ability of a complex spa-

iotemporal problem such as urban building energy use. As a result, this
aper aims to demonstrate how physics and data-driven models can be
ntegrated to explore the energy implications of various ECMs while
apturing the non-linear and complex interactions of the urban context.

. Methods 

In this section, we describe the procedure that builds upon previ-
us iterations of the DUE-S model [29] , as shown in Fig. 1 . DUE-S is
 two-part process that integrates baseline energy simulation models
Step 1) with a deep learning model (Step 2) to capture the spatiotem-
oral dynamics of urban building energy use. The first step in the DUE-S
ramework is to build baseline energy simulation models that produce
eriodic time series data to capture the underlying energy use dynamics
f each building in the urban study area. Then, the output data from the
imulation models is fed into a deep learning model, where the objec-
ive of this model is to learn the relationship between the simulated en-
rgy consumption and the actual, metered energy use for each building
o help predict future energy consumption at multiple spatiotemporal
cales. 

The initial iteration of DUE-S relied on a deep convolutional neural
etwork (i.e., residual network) with the intent of capturing the spatial
elationships between buildings in an urban area. However, this paper
ooked better capture the temporal patterns of electricity use through
 long, short-term memory network (LSTM) to improve prediction ac-
uracy. Furthermore, while the initial project focused on the accurate,
ulti-scale prediction of urban building energy consumption, we ex-

ended this work by introducing the capability of conducting a retrofit
nalysis that takes advantage of the learned relationships between the
imulated and metered energy consumption of each building in the ur-
an study area. Specifically, after training the LSTM to understand the
elationship between simulated and metered energy consumption, the
odel can be repurposed for urban retrofit assessment by holding the

earned parameters constant and feeding in new data from modified sim-
lation models. These modified energy simulation models are changed
ased on proposed retrofit policies and can subsequently capture the
hysical dynamics of how retrofits influence building energy use. With
his new input dataset from the modified simulation models, the same
4 
STM can then predict what future energy consumption would look like
nder that retrofit scenario at varying spatiotemporal scales. 

.1. Step 1: capturing energy use dynamics through energy simulation 

odels 

Physics-based energy modeling is often overparameterized [69] ,
nd, when expanded to the urban scale, often requires an extensive
mount of time and resources to produce accurate results. Sourcing and
leaning the required data needed for an urban energy model is often
he most difficult aspect of the modeling process as the available data
eeded to create inputs for each individual building will vary between
hem. While there is a tradeoff between increasing levels of detail, the
ime and resources needed to collect it, and improved model accuracy
29] , the objective of the DUE-S simulation models is to establish the
nderlying first-order physical dynamics of building energy use. Rather
han relying on the simulation model to predict building energy use, the
imulation outputs are instead used as inputs to a deep learning model
hat is used to predict energy consumption. Therefore, we use simplified
eometries and inputs based on virtual archetypes to quickly develop
ur building energy simulations. 

Energy simulation models require three primary types of inputs:
eather, geometric characteristics, and non-geometric characteristics.
nergy simulation models often rely on Typical Meteorological Year
TMY) datasets, which contain the typical weather characteristics (e.g.,
ry bulb temperature, relative humidity, solar insolation, wind speed)
t the hourly time scale for a region. However, these measurements are
ore representative of rural landscapes rather than dense city centers

33] . Due to the limitation of TMY files neglecting weather differences
aused by the urban context, we use historical weather data taken at
ourly temporal granularity, as this type of data is available across more
iverse geographies and better represents of observed urban weather
atterns. 

To construct the geometric representations of buildings in an en-
rgy simulation model, we draw from GIS shapefiles available from local
unicipal websites. These shapefiles contain geometric information on

ach building’s footprint that are tied to additional characteristics (e.g.,
uilding height, age of construction, use type, elevation) through an
dentifying parcel number. The building footprints can be merged with
ccompanying geometric information in a modeling tool (e.g., Rhino,
ketchUp) by “extruding ” them with their building heights to create
massing models ” – simplified geometric representations of a building
often referred to as “2.5-D ” models. If additional information is avail-
ble, these models can be further divided into floors either from the
hapefile or using an assumed floor-to-floor height with the goal of un-
erstanding their shape and orientation relative to one another. 

Finally, to describe the non-geometric characteristics (e.g., HVAC
ystems, operating schedules, materials and constructions), we draw
eneralized inputs from the U.S. Department of Energy’s (DOE) Com-
ercial Reference Buildings database [70] . Based on the 2003 Com-
ercial Building Energy Consumption Survey (CBECS), the Commercial
eference Buildings define non-geometric inputs of virtual archetypical
odels for 16 commercial building types under 3 ages of construction

n the United States. Overall, these models represent about 70% of the
.S. national building stock. While these models only apply to build-

ngs located in the United States, other countries and international en-
ities have developed their own methods to standardize non-geometric
nputs [71] . While this is a highly generalized approach to define com-
ercial building characteristics, specific inputs are often not available

hrough open data initiatives. At a minimum, having information on
ach building’s use type and age of construction can help identify which
rchetypical model from a national database like the Commercial Refer-
nce Buildings is necessary to develop these generalized building energy
odels. However, in the event that more detailed information on spe-

ific building characteristics is available, it can be substituted in place
f the Commercial Reference Building inputs. Any input parameters not
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Fig. 1. DUE-S modeling framework. Step 1 consists of building a baseline urban building energy model to produce hourly predictions of first-order energy consumption 

of each building in the study area. This data, along with actual metered energy consumption data, is used as an input to Step 2 – a deep learning model that aims 

to map the relationship between simulated and metered energy use data and produce the final predictions of urban building energy use on multiple spatiotemporal 

scales. Finally, Step 3 shows the process of how DUE-S combines the underlying physics of simulation and prediction accuracy of deep learning to generate predictions 

of how large-scale retrofits would impact building energy use across an urban area. 
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pecified by these sources are given default values from the engineering
imulation tool (e.g., EnergyPlus, DOE-2, IES-VE) used in making the
rst part of the DUE-S model. 

After preparing all primary inputs for weather, building geometry,
nd non-geometric characteristics, these models are prepared using an
nergy simulation engine (e.g., EnergyPlus). The 2.5-D massing models
re first constructed and further divided into floors. Each building in the
odel is then assigned an archetype (one type of the Commercial Ref-
5 
rence Buildings) that matches its age of construction and use type. For
xample, a recently constructed, large office building would be mod-
led using the non-geometric characteristics of a “New Construction,
arge Office ” Commercial Reference Building archetype. Finally, each
uilding is simulated to produce an output time series dataset of hourly,
hole-building energy consumption. We emphasize that the objective of

his step in the DUE-S modeling process is to capture the underlying en-
rgy use dynamics of these buildings. At this point, a typical urban-scale
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Fig. 2. A diagram of a chain of three long short-term memory (LSTM) cells that make up a larger LSTM neural network. The outputs from an energy simulation model 

at time 𝑡 are fed into a cell to predict the metered energy consumption of building 𝐵 𝑘 at time 𝑡 . The primary benefit of using an LSTM for a time series prediction task 

is the cell state, represented by the horizontal line at the top of each cell. The cell state can carry long-term information about previous predictions and determine if 

it is useful to predict the following ones. 
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nergy model would undergo a detailed, time-intensive calibration step
o improve its energy use prediction accuracy [55] . However, instead
f relying on calibration, we use the outputs of our simulation model as
n input for the second stage of the DUE-S modeling workflow: a long,
hort-term memory network (LSTM) – whose objective is to produce the
nal predictions of energy consumption for each building in the urban
tudy area. 

.2. Step 2: predicting metered energy consumption through a deep learning

odel 

Much of the uncertainty and error in energy simulation predictions
rise from the assumptions made in the modeling process as well as
he hidden urban context effects that are often not captured by indi-
idual building energy simulations [34] . Even when calibration is done
o improve upon the initial prediction results, this process is often very
ime-intensive and still requires additional assumptions on the model’s
ost uncertain or error-prone simulation inputs. To mitigate these issues

n simulation-based methods, we use a deep learning algorithm to map
imulated energy consumption to actual metered energy consumption.
s the deep learning algorithm trains, it learns the differences between
ach building’s simulated and actual energy consumption (i.e., uncer-
ainties associated with input parameters and urban context). When the
eep learning algorithm is used to make future energy use predictions,
t can rely on these previously learned relationships to improve its ac-
uracy. Finally, because inter-building effects and urban context are dy-
amic, these phenomena are often non-linear and thus can benefit from
 neural network and its characteristic hidden layers to better capture
his non-linearity. To implement this method, the model, at minimum,
equires metered energy data for each building in the study area. While
ess granular data (e.g., monthly) could be used to implement a deep
earning model, increasing the amount of data for each building (e.g.,
aily, hourly, interval) is likely to improve the final prediction accuracy
f the final model’s results. 

When selecting a deep learning architecture for this task, we wanted
o use a model suitable for a many-to-many prediction task – essentially
here the past energy consumption of many buildings is used to predict

he future energy consumption of many buildings. While a previous iter-
tion of the DUE-S modeling framework relied on convolutional neural
etworks (CNN) in the form of ResNets to account for the spatial nature
f the urban built environment [29] , we aim to improve upon previous
rediction results by instead focusing on the time series aspect of en-
rgy consumption data. Recurrent neural networks (RNNs) are a class
6 
f neural networks that use previous outputs as inputs for future predic-
ions, and because they are often used in the application of predicting
ime series data [ 72 , 73 ], we utilize this architecture for the extension of
UE-S. 

One of the challenges in using simple RNNs is that they often rely
n the most recent inputs to predict the next output. When dealing with
uilding energy data, where weekly, monthly, or even annual patterns
f consumption are important in forecasting, the inability for simple
NNs to consider these long-term dependencies can result in higher er-
or rates. To circumvent this issue, we use a variant of the RNN called the
ong short-term memory (LSTM) network [74] , diagrammed in Fig. 2 .
s shown in Fig. 2 , the cell state, represented by the horizontal line

n the top of the illustration, runs through the entire chain of LSTM
ells. The cell state carries previously learned information from one
ell to the next, and through a series of gates (represented by the sig-
oid operator and multiplication signs), the LSTM cell has the ability

o add or remove information to the cell state in order to make predic-
ions. While we also evaluated both simpler (k-nearest neighbors, sup-
ort vector regression) and more complex models using convolutional
eural networks (CNN-LSTM) and LSTM autoencoders [75] , we in prac-
ice found that a simple LSTM has better prediction accuracy than the
impler models yet achieved comparable performance to more complex
eep learning architectures with less memory. For our prediction task,
e use 2 sequential LSTM 64-unit layers and 2 time-distributed fully

onnected layers configured for a many-to-many prediction task that can
utput energy consumption predictions on multiple spatial and temporal
cales. 

To evaluate the impacts of urban context on energy consumption,
e compare two scenarios: With Context and No Context . To model ur-

an context using the With Context scenario, all simulation outputs 
⇀
𝑠 𝑡 

re inputted to the deep learning model regardless of the target build-
ng 𝐵 𝑘 ( Fig. 3 ). The model is then free to learn the time series charac-
eristics of different retrofits as well as complex interdependencies be-
ween physics-based simulations of multiple buildings. Conversely, the
o Context scenario instead uses the LSTM where no other buildings in

he study area are used to predict a target building’s electricity usage.

nstead, only simulation output 
⇀

𝑠 𝐵 
𝑡 

, representing the simulation output
f only target building 𝐵 𝑘 is fed into the LSTM to produce a prediction
f energy consumption. After the With Context and No Context models
re trained, their outputs, 𝑤 

𝐵 
𝑡 

and 𝑛 𝐵 
𝑡 

, corresponding to LSTM prediction
utputs of the With Context and No Context scenarios, respectively, are
ompared to characterize the effects of urban context. 
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Fig. 3. Training the DUE-S model for With Context and No Context scenarios. With Context scenarios predict building energy consumption using all buildings’ energy 

simulation outputs as inputs to the LSTM (i.e., all buildings are used to predict a single target building 𝐵 𝑘 energy consumption). No Context scenarios predict building 

energy consumption only using the target building’s energy simulation output (i.e., only a single target building 𝐵 𝑘 is used to predict its own energy consumption). 
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Fig. 4. Schematic representation of greedy optimization algorithm for selecting 

urban building retrofits. To determine the optimal buildings to retrofit in a given 

urban area, each building is first assessed to determine which of them decreases 

urban energy use the most; the building with the greatest impact is then added 

to the Retrofit Pool. This process is repeated with all remaining buildings in 

the Building Pool until there are no additional improvements in urban energy 

savings. 

4

4

 

o  
.3. Step 3: assessing retrofit scenarios through an integrated urban energy 

odel 

We expand on the original DUE-S framework by introducing the ca-
ability for the model to conduct large-scale retrofit analyses. One of
he primary challenges in using a purely simulation-based approach to
etrofit analysis is that because these models are calibrated to their orig-
nal scenario, if any changes or retrofits are made to the building, its
ystems, or its surroundings, the model will need to be re-trained with
dditional ground truth data. Urban building energy models are often
lso calibrated to a single spatial and/or temporal scale and may be un-
ble to model energy use at other scales. And while purely data-driven
pproaches model the statistical patterns of energy consumption, they
re unable to consider the underlying building physics of thermal and
nergy systems. Because urban buildings may have hundreds of possi-
le retrofit options to consider, it is impossible to have a robust train-
ng set that can consider the influence of all potential urban retrofit
ptions. 

To run the retrofit analysis (diagrammed in Fig. 1 ), the initial base-
ine energy simulations are modified with the proposed retrofits and
e-simulated. The new outputs of these retrofitted simulations become
he new inputs to the previously trained deep learning model discussed
s part of Step 2 of the DUE-S modeling workflow ( Section 3.2 ). Because
he deep learning model has already learned the relationship between
imulated and actual energy consumption, we hold all of its learned
arameters constant and pass through the new simulation outputs to
redict the new metered energy consumption on multiple spatiotempo-
al scales. As a result of this model architecture, DUE-S does not require
dditional re-training or re-calibration to be operationalized and there-
ore significantly reduces the amount of time needed to evaluate a single
rban retrofit scenario. 

Finally, in a true retrofit scenario, it is not often the case that all
uildings will be retrofitted. Thus, we developed a greedy optimization
lgorithm in order to determine how many and which specific build-
ngs could be targeted to maximize cumulative energy savings across
uildings in an urban area. As shown in Fig. 4 , for each building candi-
ate, our model predicts the marginal change in energy savings achieved
rom its addition to the retrofitted subset. The candidate with the great-
st marginal savings is permanently added to the subset (Retrofit Pool).
he algorithm continues until all there are no building candidates left
hat result in marginal energy savings. 
7 
. Case study 

.1. Study area and data inputs 

We evaluated the performance of the expanded DUE-S framework
n a dense cluster of 29 commercial and mixed-use buildings in down-



A. Nutkiewicz, B. Choi and R.K. Jain Advances in Applied Energy 3 (2021) 100038 

Fig. 5. Diagram of urban study area in Sacramento, California, USA. 

Table 1 

Data acquired for baseline energy simulation models and deep learning model. 

Use Data Source Data Field 

Weather data Solcast [76] Hourly historical weather info (inputs typical of an 

Energy Plus Weather (EPW) file 

Building geometry Sacramento GIS and tax assessor database 

[77] 

Building area 

Building height 

Number of floors 

Non-geometric inputs US Department of Energy Commercial 

Reference Buildings [70] 

Sacramento tax assessor database [77] 

Building use type 

Occupancy schedules 

Building constructions and materials 

HVAC type 

Heating and cooling loads 

Metered electricity data Sacramento Municipal Utility District 

(SMUD)/Local utility 

Whole-building hourly electricity consumption 
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own Sacramento, California, USA ( Fig. 5 ). Because one of the under-
ying goals of this work is to understand the inter-building dynamics
hat influence energy consumption, this site was selected based on the
vailability of whole-building energy use data describing a closely co-
ocated group of buildings. The study area is located in the central busi-
ess district with other surrounding buildings and a large greenspace on
he southern border. While DUE-S has the capacity to work for multi-
le energy sources, this case study specifically analyzes electricity con-
umption as it is most relevant to the warm and temperate climate of
acramento, California (natural gas is primarily used for heating, which
s not often necessary in Sacramento). Table 1 shows the data used
or both the baseline energy simulations and the deep learning model
here, with the exception of the electricity consumption, all other data

s publicly available. To accompany the 3 years of electricity data, 3
ears of hourly historical weather data was collected from Solcast [76] .
he building geometries (i.e., building areas extruded by its building
eights) were constructed using shapefiles from Sacramento’s GIS and
ax assessor databases. Using that same database, we used its informa-
ion on each building’s primary use type and age of construction to
atch each building to a corresponding Commercial Reference Build-

ng. That corresponding Commercial Reference Building then served as
he template of inputs that would be fed into each baseline energy model
n EnergyPlus. 

After simulating each building for 3 years with the corresponding
istorical weather files, the simulation output – hourly whole-building
lectricity consumption – was then fed as an input to the long short-
erm memory network (LSTM). Ground truth data for the LSTM con-
isted of hourly electricity consumption data for 2016–2018 for each of
he 29 buildings in the urban study area. To avoid data leakage that
 a  

8 
ay arise when randomly splitting sequential time series data [78] ,
e split the first two years into consecutive sequences of training (18
onths) and validation (6 months) sets. The last year (2018) was re-

erved for the testing set. We trained and validated our model by using
istorical simulations as inputs to predict historical observed energy us-
ge. Specifically, we inputted the 24 most recent simulation timesteps
 = [ 𝑠 𝑡 −23 ⋯ 𝑠 𝑡 ] (i.e., one full day) to generate predictions 𝑃 . As we de-
cribe in Section 3.2 , the LSTM is modified to evaluate both With Context

nd No Context scenarios: With Context scenarios rely on all simulation
utputs to predict each building’s electricity consumption whereas the
o Context scenarios only rely on the target’s building electricity use to
redict its future consumption. 

Although we used only one model to predict energy consumption
or all 29 buildings, we optimized our model from a single loss curve
o avoid difficulties in model training diagnosis stemming from multi-
le optimization objectives and loss curves. We accomplished this by
ne-hot encoding the target building for prediction as a model input.
ssentially, we created a binary categorical variable for each building,
here only the target building is coded as “1 ″ to tell the model this is the
nly building for which it should predict electricity use. Therefore, for
ach target building 𝑏 𝑘 , the model output at each timestep was a scalar
rediction 𝑝 𝑘 

𝑡 
of electricity use for target building 𝑏 𝑘 instead of the length

output vector 
⇀
𝑝 𝑡 . Model optimization was performed using an Adam

ptimizer with a learning rate of 0.001 – chosen for its adaptive learning
ate and invariance to scaling of the objective function. 

Finally, to conduct the retrofit analysis, we re-simulated the initial
aseline energy models under three commonly utilized [79] retrofits de-
cribed in Table 2 . In addition to selecting common retrofit types, we
lso wanted to explore the differences between retrofits that were in-
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Table 2 

Proposed retrofit scenarios for downtown Sacramento study area. 

Retrofit Type Baseline Scenario 

Retrofit Scenario 

All buildings retrofitted One block of buildings retrofitted 

“Lighting ” DOE Commercial Reference 

Buildings (dependant on 

specific building) 

Switch to LED bulbs (~27% decrease in lighting power 

density) 

“Windows ” Updated to ASHRAE 90.1–2010 materials (dependant on 

building type, but generally lower U-value and solar heat 

gain coefficient) 

“Full" Include both “Lighting ” and “Window ” retrofits 
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Fig. 6. DUE-S electricity prediction error on multiple spatiotemporal scales, 

measured in mean average error (MAE). Prediction accuracy improves as the 

spatial or temporal granularity of estimation decreases. 
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ernally (i.e., indoor lighting systems) or externally (building fenestra-
ion) focused. The new simulation outputs were then fed into the trained
STM to produce new predictions for how each type of retrofit would
mpact the electricity consumption of each building in the urban study
rea. These retrofit scenarios are also evaluated under both With Context

nd No Context scenarios described in Section 3.2 . 

.2. Validation metrics 

Validation is a critical step in the energy modeling process that eval-
ates the accuracy to which a model can predict building or urban-scale
nergy use. The most common metrics used in simulation-based ap-
roaches are mean bias error (MBE), which reflects the level of overesti-
ation versus underestimation of energy consumption and the model’s

ong-term performance, and the coefficient of variation (CV) of root
ean square error (RMSE) – a measure of the variability of accuracy

vercover a period of time. While many governing bodies have set limits
n acceptable error rates for MBE and CV(RMSE) [80–82] , these bench-
arks were established for use on individual building energy models.
urrently there is no universal standard or measurement system to eval-
ate the performance of urban-scale energy models, and while many
revious works have adopted the scale set for individual building per-
ormance [ 29 , 58 ], urban-scale models should be placed under stricter
equirements because of the higher granularity to which these models
re estimating building energy use. 

Data-driven models used in forecasting applications are often eval-
ated using other metrics, such as mean average percentage error
MAPE), mean squared error (MSE), and mean average error (MAE).
or each building, we sought out an absolute error value roughly pro-
ortional to its average energy use, so we strategically used MAE loss in
ur training loop for its intermediary between MAPE and MSE. MAPE
ptimizes for low-energy buildings with proportionally larger noise,
hile MSE penalizes the relatively larger errors in high-energy buildings
isproportionately. Thus, we validated the hybrid data-driven DUE-S
odel using MAE: 

𝐴𝐸 = 

1 
𝑛 

𝑛 ∑
𝑖 =1 

|||𝑌 𝑖 − 𝑌 𝑖 
|||

Where 𝑛 is the number of timesteps (either hourly, daily, or monthly
epending on the model’s output), 𝑌 𝑖 is the actual measurement of elec-
ricity use for the selected timestep and 𝑌 𝑖 is the predicted value from the
STM. These estimations were made for both each individual building
n the study area as well as the full urban-scale result. 

. Results and discussion 

After creating the initial DUE-S model describing the existing build-
ngs in the case study area, we calculated the mean average error (MAE)
er the equation described in Section 4.2 . The baseline prediction er-
or results were calculated for both the individual and urban spatial
cales as well as on the hourly, daily, and monthly timesteps and are
hown in Fig. 6 . Overall, DUE-S improves its prediction accuracy as
he spatiotemporal scales increase (i.e., monthly accuracy is higher than
aily; urban-scale is more accurate than individual-scale). This pattern
9 
s consistent with both previous results in the DUE-S model [29] as well
s other urban-scale energy modeling [52] and data-driven forecasting
83] studies. Models tend to perform better on larger granular scales be-
ause aggregation of errors will often reduce the variability in the over-
ll prediction of electricity consumption. In other words, when looking
t urban-scale accuracy, the errors of buildings that perform the worst
re partially compensated by the better performing buildings. And simi-
arly, when looking at daily or monthly performance, the hours that are
he least accurate are partially compensated by the ones that are more
ccurate. 

After establishing the baseline DUE-S model that describes the en-
rgy performance of existing buildings, we ran the retrofit analysis on
he 12 scenarios described in Fig. 7 . We simulated the effects of both
hen all buildings underwent the same retrofit and when only a select
lock of buildings underwent the retrofits. We also compared the differ-
nces between how the hybrid DUE-S model predicts building energy
onsumption when accounting for urban context ( With Context scenario)
nd when it does not ( No Context scenario). 

The results of our case study indicate that the greatest reduction
n whole-building electricity use amongst retrofitted buildings occurs
hen they undergo window retrofits ( Fig. 8 ). Overall, as expected,

he majority of the buildings in our study area decrease electricity
se after undergoing retrofits. For those buildings that did slightly in-
rease use, we note that these buildings had lower energy usage ( ≤
00 kWh hourly electricity use) and likely due to errors introduced by
oor parametrization of the simulations (i.e., buildings with increases
end to have similar simulation results to their baseline ones). The
window ” and “full ” retrofit scenarios, both of which receive window
etrofits, see greater changes in electricity consumption than the “light-
ng ” retrofit. We further investigate these trends by analysing the per-
entage change in electricity use resulting from the “full ” retrofit sce-
ario on a monthly ( Fig. 9 A, 9 C) and hour-of-the-day ( Fig. 9 B, 9 D)



A. Nutkiewicz, B. Choi and R.K. Jain Advances in Applied Energy 3 (2021) 100038 

Fig. 7. Retrofit analysis scenarios performed as part of Sacramento case study. Scenarios involve those evaluating urban context, the total number of buildings 

retrofitted, and the type of retrofit performed on each building. 

Fig. 8. Median hourly percentage reduction of buildings under various retrofit options in a With Context scenario. Lower energy buildings show the greatest reduction 

in electricity use, especially under “full ” and “window ” retrofit scenarios. 

Fig. 9. Reduction in building-level electricity consumption from a “full ” retrofit. These specific examples demonstrate percentage reduction for June (A), 05:00 (B), 

January (C), and 12:00 (D). Overall, buildings that reduce their electricity consumption after retrofitting see most improvement in summer months and shoulder 

hours of the day, which is when most stress is likely placed on the grid. Full monthly and hourly results can be found in Appendix Figs. A.1 and A.2 . 

10 
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Fig. 10. Comparing mean hourly change in electricity use under a With Context and No Context scenario. 

Fig. 11. Median hourly change in electricity use under a single block retrofit scenario (buildings in purple indicate they were retrofitted). Window retrofits show a 

greater impact on reduced electricity consumption in surrounding buildings. 
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cale. In general, buildings that reduce their electricity consumption
ost-retrofit see the largest improvements in the summer months (June –
ugust) and in the early morning hours of the day (04:00 – 07:00) when
igh stress is placed on a heavily renewables-dependent grid to “start
p ” commercial buildings or cool them throughout the day [84] . Low-
ring electricity demand through such retrofits can reduce strain on the
rid, creating a more flexible and resilient grid that benefits utility com-
anies while also lowering energy costs for consumers. The results for
ll months and hours of the day can be viewed in Appendix Figs. A.1 and
.2 , respectively. 

As discussed in Section 3.2 , the output of the DUE-S deep learning
odel can be modified to understand the differences in energy per-

ormance when and when not considering urban context. Comparing
he shifts in hourly electricity use under a With Context and No Con-

ext model ( Fig. 10 ), we find buildings generally experience greater de-
reases in electricity consumption when the model accounts for urban
ontext. In a scenario in which only a single block of buildings undergoes
etrofits (red dots in Fig. 11 ), we see that there is some level of influ-
nce of retrofits on decreased electricity use in surrounding buildings
11 
black dots in Fig. 11 ). Here, we also note that “lighting ” – an exclu-
ively indoor retrofit – has a negligible effect on surrounding buildings,
ut the “window ” and “full ” retrofits that affect the building envelope
o play a role in decreasing the electricity use of surrounding build-
ngs. Under this block retrofit scenario, when plotting every building’s
edian hourly change in electricity use by the proximity to the near-

st retrofitted building ( Fig. 12 ), we see a slight tendency for buildings
loser to retrofitted buildings to have greater decreases in electricity
onsumption. Based on this analysis, if urban context were to play a sig-
ificant role in determining changes in electricity use, we would expect
o see the bubbles towards the bottom left of the plot. Overall, the results
rom our retrofit analysis imply that the buildings with “externally fac-
ng ” window retrofits, which primarily decrease each window’s U-factor
nd solar heat gain coefficient, have a greater effect in decreasing the
nergy consumption of their surroundings. 

Finally, we want to show how the DUE-S model can be operational-
zed for urban energy stakeholders to inform their decision making
bout selecting buildings to retrofit. Specifically, we want to compare
ow DUE-S-based and simulation-based approaches determine the num-
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Fig. 12. Median hourly change in electricity use versus proximity to retrofitted 

buildings under a single block retrofit. Here, there is a slight tendency for 

smaller, nearby buildings to decrease electricity use. 
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er of buildings needed to achieve the majority (~80%) of possible
rban electricity savings. Under the circumstances in which all build-
ngs receive “full ” retrofits, the maximum projected electricity savings
cross the entire urban study area is 14.4% in a simulation-based ap-
roach and 13.8% in the DUE-S approach. While comparable in mag-
itude, these savings are achieved through different means. The DUE-
 approach relies on its greedy optimization algorithm, described in
ection 3.3 , where buildings are selected for retrofit one at a time based
n the marginal savings it will contribute. A simulation-only method,
owever, would select for buildings in order of the highest building-
evel electricity savings as it cannot account for the compounding effects
f the inter-building influence that result from urban context. 

The DUE-S approach is able to consider the “snowball ” effect of com-
ounding retrofits, we show that this case study area can achieve ~80%
f maximum projected electricity savings with fewer building retrofits
6 retrofitted buildings) than as predicted by the simulation-based ap-
roach (11 retrofitted buildings) ( Fig. 13 ). Furthermore, we compare the
umber of required buildings needed to achieve 80% electricity savings
nder the DUE-S With Context and No Context models ( Fig. 14 ) and find
hat when accounting for urban context, the model prefers retrofitting
ore buildings, but less overall square footage (120,701 square feet in
UE-S With Context scenario vs. 427,628 square feet in DUE-S No Con-
12 
ext scenario) to be retrofitted to achieve the same amount of savings.
ecause DUE-S is able to target a smaller area of buildings to maxi-
ize energy savings, this can be especially helpful for policymakers or

uilding portfolio owners that have limited capital available to finance
nergy conservation measures. Finally, our optimization algorithm also
eveals certain buildings that are repeatedly selected as most suitable
or retrofitting ( Fig. 15 ). Three buildings in particular (Buildings 35,
7, and 40) are found most often in each run of the optimization al-
orithm, and, like most of the selected buildings, are office buildings
lassified as having a construction date before 2004. While a greedy op-
imization algorithm may not necessarily find the global optimum, our
esults show that this approach can significantly reduce the amount of
quare footage and associated costs of retrofitting a large urban area,
specially when accounting for urban context. In our specific example,
ased on the results of the optimization, we would expect a retrofit pro-
ram targeting older office buildings to yield the greatest reduction in
he city’s overall energy consumption. This finding should not replace
he decision-making process for urban sustainability policymakers but
nstead serve as a helpful starting place to determine which urban build-
ngs are best to retrofit. 

Overall, the results of this case study highlight the merit of a hy-
rid approach to urban energy retrofit analysis, but it also demonstrates
hy consideration for inter-building effects and urban context is so crit-

cal in developing urban building energy models. Through our analysis,
e learn that accounting for urban context can compound the impact of

etrofits on individual buildings as they also influence the electricity use
f their surroundings. Finally, the results of our optimization approach
how how policymakers can greatly benefit from using hybrid physi-
al models to inform retrofit strategies that maximize electricity sav-
ngs while reducing the costs and logistical challenges associated with
etrofitting a large number of buildings. This work represents a key step
n progressing modeling efforts at the intersection of building simulation
nd machine learning and furthers our understanding of the influence
f urban context on building energy use. 

. Limitations and future work 

Our model shows how accounting for urban context can cause
reater whole-building energy savings effects across an urban area when
ompared to examining individual buildings in isolation. Because our
odel is focused on predicting building energy use at larger spatial

cales, we are currently unable to disaggregate our results by end uses
e.g., chillers, fans, lighting). While this is likely possible using the out-
uts from EnergyPlus, this capability is currently out of scope for this
ork. Furthermore, additional work needs to be done to fully validate

he findings of this study. While this study required limited detail on
Fig. 13. Comparing the number of build- 

ings needed to achieve the majority of ur- 

ban energy savings. DUE-S requires fewer 

buildings to achieve ~80% of urban energy 

savings compared to a simulation-only ap- 

proach. 
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Fig. 14. Comparing the With Context and 

No Context results for retrofit optimiza- 

tion. While the With Context model requires 

more buildings to be retrofitted to achieve 

~80% of urban electricity savings, it re- 

quires a lower amount of overall square 

footage to undergo those retrofits. 

Fig. 15. Buildings selected through DUE-S optimization model to retrofit, listed in order of selection by greedy optimization algorithm. Building 40, Building 35, 

and Building 37 emerge most frequently as buildings that should be selected for retrofitting. 
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ach building’s specific geometric and non-geometric input, a future
tudy aims to look at how increasing their levels of detail may improve
he prediction accuracy of DUE-S. This additional analysis can help us
etter understand how DUE-S performs on larger urban study areas with
ifferent electricity and natural gas usage patterns (i.e., how does DUE-S
erform on a city with greater natural gas-based heating demand) and
xplore the impacts of urban context on other building types (e.g., resi-
ential, industrial). While we simulated the effects of “virtual ” retrofits
13 
n real buildings, future case studies using the DUE-S modeling frame-
ork aim to use observed energy use data from a neighborhood that
as previously gone through a large-scale retrofit program. By having
ccess to data on electricity consumption both pre- and post-retrofit, we
an better validate our model’s retrofit analysis approach and conduct
 sensitivity analysis to better quantify the role that urban context plays
n how retrofits influence the energy use of surrounding buildings. And
hile the ownership structure of a building (e.g., owner/operator vs.
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easing tenant) is an important criterion when selecting energy conser-
ation measures for specific buildings, our scope of work instead focused
n how our model could generally predict future energy performance
nder various retrofits. 

Finally, this project, as is the case with any urban energy modeling
tudy, was limited in the number of buildings and length of analysis
ased on the availability of energy data for a dense cluster of urban
uildings. Especially for deep learning models, where an extremely large
umber of observations are required to effectively train, validate, and
est models, the accuracy of DUE-S is heavily reliant on the availabil-
ty of a large dataset. While our model was able to produce significant
esults predicting existing electricity consumption and possible changes
nder virtual retrofits, a larger dataset – both in the number of obser-
ations and the number of buildings – may help broaden confidence in
he usefulness of a hybrid modeling approach to a wide variety of urban
nvironments worldwide. 

. Conclusion 

This paper aimed to expand upon a previously introduced hybrid
ata-driven urban energy simulation (DUE-S) model that leverages
uilding energy simulations and deep learning models. We modified
he deep learning architecture to better capture the temporal nature of
ime-series building energy data and expanded the framework to predict
he impact of various building energy retrofits on multiple spatiotem-
oral scales across a city. While simulation and deep learning have in-
ividually made significant progress in characterizing and highlighting
uildings suitable for energy efficiency retrofits, we demonstrated the
otential of a hybrid approach in a case study of 29 densely co-located
ommercial and mixed-use buildings in downtown Sacramento, Cali-
ornia, USA. The primary objective of this paper was to demonstrate
ow an integrated data-driven and physics-based model could charac-
erize the performance of various retrofit scenarios. The bulk of existing
esearch in the building retrofit domain is segmented between simula-
ion and data-driven approaches; however, the results of our case study
how that by integrating these two types of modeling methods, we can
nlock hidden insights how urban context can influence urban building
etrofits. Our results showed that in accounting for inter-building ef-
ects, our energy prediction model can uncover the hidden relationships
f how buildings influence each other’s energy consumption. Addition-
lly, DUE-S can provide insights on how to select buildings for retrofit
hat captures the potential “snowball ” effect of urban context. 

The DUE-S model can scale to any size building portfolio or urban
rea to yield insights on building energy consumption on multiple spa-
ial and temporal scales. With the exception of whole-building energy
14 
se data, all of the data required to implement DUE-S is widely avail-
ble and open-source, meaning that a variety of building and urban-
evel stakeholders could use this sort of model to make energy or
ustainability-related decisions. For example, building designers and fa-
ility managers could use this integrated model to understand the com-
ounding influence design and retrofit decisions have on not only their
uilding, but the surrounding ones as well (e.g., window retrofits mod-
fying the energy consumption of surrounding buildings). This is espe-
ially important for owners/operators of large building portfolios, such
s universities or large technology campuses, where these effects can
ultiply their own financial, energy, or emissions consequences. This

ool can also be used by policymakers to predict and visualize the ef-
ects of various retrofit scenarios to provide better awareness for how
idespread retrofit measures may influence both building-level and
roader urban energy efficiency. For example, our retrofit optimization
lgorithm showed how cities can maximize their overall energy savings
hile minimizing the number of required buildings needed to do so. But

nstead, if the algorithm were to maximize savings in carbon emissions,
UE-S could be used to help select retrofits for buildings that would re-
uce energy consumption during times of the day when the grid relied
n more carbon-emitting fuel types (e.g., late afternoon/early evening
hen natural gas peaker plants are needed to meet energy demand). Fi-
ally, as the world’s cities continue to expand, data is being increasingly
sed to plan their growth to meet the demand of an urbanizing popula-
ion. DUE-S can leverage data from existing cities to help inform key de-
isions related to the energy efficiency of an expanding urban area (e.g.,
eveloping planning policies related to urban morphology and land use,
redict future demand to size and plan city energy systems). In the end,
ools capable of accurately predicting and characterizing urban building
nergy usage under various retrofit scenarios will be key in transitioning
ur cities to a more sustainable energy future. 
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ppendix 

Fig. A1. Monthly building-level electricity consumption change for a Wi
15 
ntext , full retrofit scenario in which all buildings receive the full retrofit. 
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Fig. A2. Average hour-of-the-day building-level electricity consumption changes for a With Context , full retrofit scenario in which all buildings receive the full 

retrofit. 

Fig. A3. Updated Office window specifications as part 

of “Window ” retrofit. 
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