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H I G H L I G H T S

• We interview 10 facility managers and
consultants to understand how they
manage energy.

• Smart meter data is used to bench-
mark energy use at multiple time
scales.

• Key Performance Indicators (KPIs)
summarize multitiered energy perfor-
mance.

• KPIs are compared to perceptions of
facility managers through a survey.

• KPIs are used as an energy manage-
ment system to identify building en-
ergy issues.

G R A P H I C A L A B S T R A C T

A B S T R A C T

Energy management information systems (EMIS) play a critical role in providing actionable insights into building operations, timely feedback, and—ultimate-
ly—large energy savings. Current EMIS technologies often focus on industrial applications or require large upfront investments and trained operators, therefore
greatly limiting its penetration into existing buildings. This paper integrates methods from social, building, and data sciences to understand limitations of current
EMIS systems and inform the design of a new Multitiered Energy Management Performance Indicators (MEMPI) framework for characterizing the energy perfor-
mance of buildings. Specifically, we employed a mixed methods research approach in which we first conduct in-depth qualitative interviews of 10 facility managers
and energy consultants. We utilize the insights from our interviews to inform the design of the MEMPI framework, which harnesses highly granular data from already
installed advanced metering infrastructure (AMI) (i.e., smart meters). The MEMPI framework employs quantile regression to first benchmark the energy performance
of buildings to each other and generate key performance indicators (KPIs). We apply the MEMPI framework to real data from 569 public school buildings in
California and measure their energy performance across multiple time scales (e.g., daily, monthly, yearly). Finally, we conduct case studies to compare insights from
the MEMPI framework to the perceptions of facility managers overseeing 8 schools through a mixed methods qualitative and quantitative post-interview survey.
Results from the case study show that facility managers’ perceptions of the performance of their schools were largely accurate, yet the poor energy performance from
certain pieces of building equipment and operating schedules was overlooked by building managers. Overall, the MEMPI framework aims to bridge the gap between
data-driven energy management models and qualitative domain knowledge held by facility managers to provide more comprehensive insights into the energy
performance of buildings.
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1. Introduction

Growing concerns over energy use—due to rising environmental,
economic, and social pressures—have pushed countries and businesses
alike to re-examine how they consume energy. Residential and com-
mercial buildings alone account for roughly 40% of U.S. energy demand
and GHG emissions, therefore improving efficiency in these two sectors
can have far-reaching effects [1]. In commercial buildings, where
electricity costs alone are roughly $190 billion USD a year, about 30%
of this energy is estimated to be wasted, according to a recent report
from the U.S. Environmental Protection Agency [2]. The potential to
reduce energy consumption in new and existing building is enormous,
with many opportunities for low-cost solutions, but much of these
savings have yet to be realized [3].

Significant efforts across the world are underway to enhance the
energy efficiency of the building sector. Specifically, in the United
States, utility companies are investing $7.5 billion USD annually in
energy efficiency programs, policymakers are improving building
codes, and engineers and architects are creating new building designs to
reduce energy demand [4]. But such efforts have limited reach because
of the relatively few number of buildings that are constructed each
year; most buildings in existence were erected decades ago and thus
face substantial energy lock-in effects [5,6]. Fortunately, over the past
decade, advancements in sensor technology have reduced costs and
have enabled the collection of high-fidelity energy usage data via smart
meters, which are estimated to reach a total of 1.2 billion installed
worldwide by 2024 [7]. Despite the rapid growth in installations—up
from 25 million installed in 2010—smart meter data has mainly been
used for utility purposes. Meanwhile opportunities for monitoring and
identifying sources of energy waste—through the development of a
smart meter-based Energy Management and Information Systems
(EMIS)—have lagged behind.

In general, EMIS comprise a broad range of tools and services to
manage commercial building energy use and include technologies such
as Energy Information Systems (EIS), Fault Detection & Diagnosis (FDD),
Energy Benchmarking, and Utility Tracking Tools. The use of EMIS has
been shown to be highly effective with energy savings as high as 20%
[8]. Moreover, a study that examined over two-dozen organizations
found that participants achieved year-over-year median site and port-
folio savings of 17% and 8%, respectively; importantly, the participants
in these studies reported that these savings would not have been pos-
sible without the EMIS [9]. However, the benefits of EMIS often come
with costs associated with additional installations of proprietary
equipment necessary to gather the data needed to provide actionable
information that leads to these reported savings.

Numerous types of energy management information systems exist
and range significantly in their temporal level of analysis as well as
their spatial level of insight. On one end, Fault Detection & Diagnosis
(FDD) analyzes sub-minute energy data to identify when specific
building equipment is malfunctioning and is designed for use by facility
managers (FMs). On the other end, Energy Benchmarking analyzes an-
nual energy data to rank the performance of buildings, across a
neighborhood or city, and is designed for use by portfolio building
owners or policymakers. While such systems are valuable, there cur-
rently exist a major gap in the EMIS domain for a system that provides
multi-level insights that empower facility managers (FM), the primary
on-the-ground decision-makers in the energy management process. This
notion is corroborated by previous work that calls for more suitable
building assessment tools that focus on the operational performance of
buildings and strengthens the ability of facility managers to save energy
[10,11].

In this paper, we employ methods from social, building, and data
sciences to understand limitations of current EMIS systems and inform
the design of a new Multitiered Energy Management Performance
Indicators (MEMPI) framework for characterizing the energy perfor-
mance of buildings. The MEMPI framework aims to: a) approximate

energy performance (i.e., benchmark) across a portfolio of buildings
(policymaker and building owner focused), b) provide insights on intra-
building dynamics (i.e., occupants, systems, operating states), and c)
distill building and energy data into concise key performance indicators
(KPIs) (facility manager focused). The MEMPI framework is designed to
be flexible to any type of building so long as smart meter data and
several building characteristic features can be collected, though in-
cluding more variables ensures better performance approximations.
Using an exploratory sequential mixed methods approach, we first
collect qualitative information through semi-structured interviews of
10 facility managers and energy consultants actively working in the
field [12]. Based on the information gathered from these interviews, we
then design the MEMPI framework and apply it to assess energy effi-
ciency opportunities in 569 school buildings in California, USA. We
validate the MEMPI framework—which is not typically done for
benchmarking models given the lack of ground truth data—by em-
ploying an explanatory sequential mixed methods approach through
the use of a post-interview survey. This methodology allows us to
compare MEMPI’s provided insights with on-the-ground performance
observations and perceptions of three facility managers operating 8
school buildings.

2. Literature review

Energy management is critical in high energy intensity industries as
it can reduce costs and has substantial business implications [13]. De-
spite industry-wide efforts to meet high building energy efficiency
standards during the design and construction phases, such as LEED and
BREEAM, this emphasis is often put aside during the operational phase
of a building. The practice of energy monitoring alone is seen as in-
strumental for raising energy efficiency awareness among tenants, and
can translate to behavioral changes, energy saving competitions, and
increased accountability [13,14]. Energy management has been shown
to be an effective practice in multiple sectors and can be used to con-
tinuously monitor performance of buildings, improve efficiency, and
reduce operating costs [15]. Despite its demonstrated benefits, the
practice remains largely under-utilized given that most research on
Energy Management and Information Systems (EMIS) focus on either the
industrial or residential sector [16-18]. Fig. 1 summarizes the distinct
areas of EMIS and the required data frequency needed to achieve var-
ious levels of insights—each of the systems shown requires different
input data and has different goals. As such, each system has its own
benefits and limitations. However, previous work, through interviews
grounded in social science methods, has identified the need for a
simple, unbiased, and understandable energy monitoring tool aimed at
facility managers that can provide comparisons to similar buildings
[19,20].

Typically only used by policymakers and building portfolio man-
agers, energy benchmarking is the practice of comparing and ranking the
energy use of similar buildings with the purpose of identifying in-
efficient buildings and top performers. Energy benchmarking is
growing in popularity as cities are mandating that their largest build-
ings be benchmarked with the goal of transforming the real estate
market to encourage energy savings. Though benchmarking has been
shown to achieve savings of about 7% over four years [21], simply
measuring the relative energy performance of buildings provides no
insights into the drivers of energy use or sources of energy waste. In
Australia, one study observed that facility managers of office buildings
found the local energy benchmarking system NABERS (National Aus-
tralian Built Environment Rating System) to be a useful tool to drive
behavioral change and help property owners, managers, and tenants
improve their sustainability performance and associated financial and
reputational benefits [20]. However, interviewees also complained
about the limitations of such systems to only include buildings over a
certain size or buildings of a certain type; poor user experience for
energy management systems is commonly found through interview-
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based social science research [22,23]. Utility bill tracking uses more
granular energy data than benchmarking (monthly instead of annual
energy usage) but provides no baseline or comparative insights to in-
form facility managers into potential energy issues—it simply provides
a method to check current energy usage to historical usage of the same
building [24]. Of all the types of EMIS tools, utility bill tracking is the
simplest, most widely used, and cheapest, but also the least informative.
Annual and monthly feedback—associated with benchmarking and
utility bill tracking—can help track long-term sustainability goals, but it
fails to inform FMs about daily operations, which can help them iden-
tify actionable savings opportunities.

The principle design intent of energy information systems (EIS) is
whole-building or portfolio-level energy tracking, and automated in-
terval data analysis to identify efficiency opportunities [25]. EIS pro-
vides higher levels of insight than benchmarking and utility bill
tracking but typically requires high volumes of highly granular data
from buildings across a given portfolio. An important facet of an EIS is
the application of appropriate KPIs for energy efficiency [26]. A mul-
titude of KPIs have been proposed in the literature but many of these
focus solely on manufacturing or industrial applications [23]. Other
studies have examined the use of KPIs for buildings at the neighbor-
hood-scale, but these KPIs do not address daily operational energy is-
sues happening at the building-scale [27]. Some are built based on
design and construction specifications and neglect using information-
rich smart meter data [28]. Studies that have focused on interviewing
users have found that poorly constructed indicators inhibits effective
performance evaluation and decision-support, thereby casting such
systems as inadequate for effective energy management [13,26]. Fur-
ther, several studies have also reported feedback issues associated with
EISs [14], citing that either little feedback is being reported or that
delayed feedback results in missed opportunities [13]. Widespread lack
of monitoring and feedback mechanisms result in many energy issues
going unidentified, wasteful user behavior being unrecognized or
changed, and missed educational opportunities for facility managers,
engineers, and designers [3,29,30]. Given the complexity of buildings
and the multiple sources of energy demand, more immediate feedback
is critical for facility manager learning. These studies that have inter-
viewed EIS users have highlighted limitations of current systems but
have not proposed alternative potential solutions.

Providing even more insight and control than EIS, building auto-
mation systems (BAS) are typically used by new and large buildings that
have high energy costs. These systems require new equipment to be
installed, such as submetering, sensors, controls, and other subsystem
components. With more equipment, sensors, and data, BAS help control
indoor temperature, light, and humidity through manual setpoints
based on building schedules, alarming facility managers when

operations are out of a predefined range [25]. Facility managers must
set ranges of operation and setpoints for these systems to function, and
they must manually change these parameters when schedules or
weather changes. In contrast, automated system optimization requires a
more hands-off approach from facility managers since it automatically
modifies control parameters to optimize efficiency, energy use, and
costs. Both solutions are expensive and require substantial equipment
installation to operate properly [9]. Further, the automated system
optimization system requires a deeper level of data analytics and con-
trol systems in place to optimize the operations of the systems present
in the building.

The most data-intensive building energy management tool is Fault
Detection & Diagnosis (FDD), which analyzes high frequency data—in
order to parse out subtle operational irregularities—to identify when
specific building equipment is malfunctioning. By collecting data at the
second or sub-second level, FDD focuses on subsystem equipment—like
valves, dampers, and motors of HVAC systems or air-handing uni-
ts—due to their unit-specific and highly granular data streams; sensors
for building automations systems typically collect data such as electric
power usage, humidity, temperature, flow rate, pressure, and CO2

concentration levels [31]. Machine learning algorithms are then used to
tease out potential faults in equipment from variations present in
normal operating conditions [32]. FDD is an area of active research
where new algorithms are being examined, from support vector ma-
chines to neural networks, to identify which algorithms operate best
based upon the type of data they are receiving, the equipment being
monitored, and other confounding effects [33,34]. However, there has
been a lack of research focusing on FDD for whole-building energy
consumption using smart meter infrastructure due to the difficulty of
identifying faults with lower granularity data and a lack of ground truth
information at the whole building level [35].

The precipitous growth of smart meter infrastructure across the
globe—with 70 million installed in the U.S. and close to 96 million in
China—has spurred researchers to determine ways to create new and
scalable analytical tools that help answer questions posed by utilities
and policymakers. Specifically, studies have primarily focused on using
smart meter data to improve forecasting [36] and customer segmen-
tation through clustering [37,38]. Although helpful for utilities and
policymakers, these tools largely overlook use-cases that may be helpful
for facility managers to efficiently operate their building. Research on
fault detection and diagnosis typically rely on meters with much more
granular data streams than can be offered by smart meters; these studies
also often look at meters at the sub-system level, requiring extra
equipment [33,35]. One useful area of research using smart meter data
directed at facility managers is measurement and verification (M&V),
which focuses on verifying the amount of energy savings after a retrofit

Fig. 1. Visualization of the various Energy
Management and Information Systems (EMIS)
employed in practice by frequency of data re-
quired and the level of insight produced. Our
proposed MEMPI framework combines benefits
of several current systems by using existing smart
meter infrastructure, aligning incentives of the
various stakeholders that use these systems, and
filling in gaps that exist between Building
Automation Systems and Benchmarking.
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[39,40]. M&V using smart meter infrastructure is particularly useful
because it eliminates the need for energy consultants to visit the site
multiple times to install sensors, collect data, and remove the sensors
both before and after a retrofit project.

Despite the body of work that focuses on smart meter analytics,
there has been a dearth of studies that have focused on using this smart
meter infrastructure in commercial settings to monitor energy use in
real-time and provide targeted feedback useful for facility managers.
Several studies have used smart meters for energy benchmarking, but
they have focused solely on measuring total building energy perfor-
mance and have not looked at benchmarking other key metrics that can
be derived from smart meter data streams [18,41,42]. As a result, there
exists a significant opportunity to leverage high fidelity data from smart
meter infrastructure to bridge the spatial and temporal insights gap
between benchmarking systems and Building Automation Systems
(BAS). This need is further underscored by interest from industry in
which companies like Lucid, Gridium, and Aquicore are tapping into
smart meter data to provide dashboards and actionable insights to
transform building operations into performance improvements that
save money, enhance sustainability, and streamline maintenance.

3. Interviews

Given the complexity of building systems and the dynamic nature of
energy consumption, we adopted an exploratory sequential mixed
methods approach [43] to understand the needs and limitations of
current energy management systems. The user insights gained from
these qualitative semi-structured interviews of facility managers and
energy consultants was used to inform the design of our MEMPI
(Multitiered Energy Management Performance Indicators) framework.
This section explains the first qualitative portion of the mixed methods
approach before the user informed MEMPI framework is introduced in
the following section. The semi-structured interviews aimed to better
understand the roles of facility managers, the hurdles they face, and
how they perceive the energy performance of their buildings [12]. We
conducted a total of ten semi-structured interviews with FMs for a
subset of buildings in which we have access to high-fidelity smart meter
data. Nine of the interviewees were facility managers at public
schools—who manage over a combined 150 schools—and one was an
energy consultant who, over the course of his career, has worked with
over 40 school districts throughout the state. The interviews were either
conducted in person or over the phone and lasted between 45 and
75 min. The ten participants were recruited through a snowball sam-
pling process where each consented to being recorded for the interview.
The interview protocol document is attached as Appendix C and in-
cludes the list of questions we used to guide every interview. We coded
the transcripts for all interviews using NVivo [44].

3.1. Insights from interviews

In each interview, the participants were asked several questions
about their responsibilities to contextualize efforts spent on energy re-
lated issues. Consistent with previous literature, we found FMs must
balance a variety of responsibilities such as directing personnel,
managing funds, responding to work-orders, maintaining facility con-
ditions, among others [20]. Although most FMs expressed interest in
improving the energy performance of their facilities, they also admitted
that these efforts are often deprioritized since other unexpected issues
often arise. Furthermore, several interviewees stated they lack an in-
centive to prioritize energy efficiency as it does not factor into their job
performance assessments. Therefore, while administrative staff might
express interest in energy efficiency, they often fail to provide the
means or incentives to assist FMs achieve this goal. School districts that
are very serious about energy performance sometimes opt to hire a
third-party energy consultant instead of handling these issues in-house.
Interviewees found these consultants to be helpful, though they did

express difficulty in finding a consultant that they could trust—many
FMs experienced receiving phone calls from energy consultants
claiming opportunities to save energy and money, but the interviewees
thought that many of these callers were scammers. Beyond the barrier
to initially hiring a consultant, every FM that worked with an energy
consultant ended up having a positive experience.

A common barrier to increasing energy efficiency of buildings is the
difficulty FMs have in detecting faults in building equipment, which
was often attributed to the lack of a preventative maintenance crew,
largely due to their often-prohibitive cost. These staff members help
identify and fix faulty equipment in buildings, which often go un-
noticed, by periodically checking equipment for issues. Without this
staff, small problems can grow into costly projects, leading FMs to work
in a reactionary manner rather than in the preferred preventative
manner. In addition, a flurry of service requests from teachers, ad-
ministrators, and other staff to resolve minor, surface-level issues in-
stead of major, root cause issues—and a lack of budgetary appetite for
capital improvements above most other priorities—results in large lists
of deferred maintenance issues. Tight budgets limit many FMs from
having a preventative maintenance staff, which forces them to address
their backlog by going after age-driven issues (i.e., older equipment is
prioritized for replacement). Although this system is the most practical
given the financial and manpower constraints, it also fails to prioritize
issues based on severity, which remains unknown without a pre-
ventative maintenance crew. Further, many FMs stated that they do not
look at the utility bills and only hear about cost spikes if they receive a
phone call from the accounting office that handles these bills. Many
FMs admitted that many energy inefficiencies are likely occurring in
their buildings but are not being addressed due to unobservable effects.
When looking to improve energy performance of buildings, several FMs
stated that they look at the utility bill price per square foot for each
building in their portfolio to assess which buildings are high energy
consumers as it was the easiest and most practical given resource and
information constraints.

Energy waste in buildings can be typically attributed to a few
sources. The major source, though, for energy waste expressed by every
interviewee is the behavior of occupants in their buildings. Mitigating
the effects of this source proves to be difficult due to two main factors.
First, detecting the wasteful behavior is non-trivial given the com-
plexity of buildings—from heating ventilation and cooling (HVAC)
equipment to separate lighting control systems—and the dynamic
nature of occupant flow and magnitude. Second, finding proper solu-
tions to discourage the identified behavior is also challenging due to the
differing requests of occupants—from temperature set-points to venti-
lation rates—and their often-incognizant decisions to alter control set-
tings that can have large energy implications. Discovering that occu-
pants are leaving lights on, opening windows and doors when the HVAC
is running, or adjusting the thermostat is the first, and larger issue of
the two. Many of the FMs interviewed have managed to come up with a
number of solutions, both technical and non-technical, in response to
these types of behaviors. For example, several FMs are working to in-
stall motion detecting lighting systems, sensors on doors that auto-
matically shut off HVAC units, and thermostats that do not link to the
control systems (i.e., they provide occupants with a false sense of
control over temperature as the dial does not actually control any-
thing). However, understanding occupant behavior and how it is af-
fecting energy demand is the most pressing issue that FMs feel is often
being overlooked.

For those that have energy management systems in place, facility
managers feel that current systems are very expensive and can be
cumbersome to use—several even questioned if their value outweighed
the cost of the system. These insights are corroborated in a study from
Curtis et al. [20], who found that FMs from mid-tier commercial office
buildings desired cheap, timely, and regular feedback regarding the
energy efficiency performance of their buildings. One FM noted trouble
detecting whether newly commissioned HVAC units were properly
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installed until the EMS system was also properly commissioned. Ad-
ditionally, these FMs expressed a desire for a system that uses com-
parisons, or some type of ranking system, to compare performance
against similar buildings. Such a system could also be used to provide
incentives and recognition to FMs who achieved improved energy ef-
ficiency. Further, they expressed the desire for a platform with quick,
easy-to-understand, feedback and visualizations. One FM received En-
ergy Star scores from an energy consultant and decided to focus energy
efficiency retrofits on the building with the worst score. Despite the
benefit provided by measuring building performance with Energy Star,
this FM also indicated that initially the staff did not know where to
focus their efforts and needed assistance in finding sources of in-
efficiency within the identified building. Typically, energy management
systems are the technology of choice to satisfy this need. But those FMs
interviewed highlighted that many systems are difficult to use, ex-
pensive, and lack desired features.

Overall, most FMs stated that they have very limited access to en-
ergy management tools to help them save energy in their buildings, and
the several FMs that did, complained about high costs, poor user ex-
perience, and difficulty translating information into action. These sen-
timents point to the need for a system that leverages new high-fidelity
data streams to provide deep levels of actionable insights into building
operations.

4. Framework and methodology

Beyond the insights gathered from the qualitative portion of the
mixed methods approach, this paper proposes the development of new
key performance indicators (KPIs) for holistic, multi-level energy
management that can be used by various stakeholders with different
priorities. The MEMPI (Multitiered Energy Management Performance
Indicators) framework is broken down into two key sections. Section
4.1 provides an overview on the mechanics of quantile regression-based
benchmarking and its extension to measuring daily energy performance
by leveraging smart meter data. In Section 4.2, using insights gathered
from the FM interview process, we extend the smart meter-based
benchmarking explained in Section 4.1—and discussed in detail in our
previous work [41]—by proposing new KPIs to succinctly summarize
building energy performance at different time scales. The MEMPI fra-
mework leverages high-fidelity data emerging from existing smart
meter infrastructure and is designed to be applicable to any type of
building in any climate. Further, the framework benchmarks energy
performance across a portfolio of buildings, provides insights on intra-
building dynamics (i.e., occupants, systems, operating states), and
clearly translates these ideas into potential actions for policymakers,
building owners, and, most notably, facility managers.

4.1. Quantile regression benchmarking and the DMT model

The interviews, and their insights detailed previously, shaped the
design and development of our MEMPI framework. Due to the ex-
pressed desire of FMs for an energy management system that uses
comparisons and performance rankings, we chose to build our novel
framework off the basis of the established concept of energy bench-
marking. In this section, we describe the mechanics of the data-driven,
multi-metric, and time-varying (DMT) model that uses smart meter data
to benchmark buildings at a more granular timescale than yearly, as
shown in Fig. 2. The DMT model extracts energy features from smart
meter data—and uses them as the dependent (target) varia-
bles—utilizing quantile regression (QR) as a basis for benchmarking as
it boasts a number of benefits over other models, as outlined below.

Mechanically, quantile regression is a parametric model that takes
the same functional form as ordinary least squares (OLS) regression as
displayed in equation (1); however, the parameters are fit using a dif-
ferent cost function which is seen in equation (2), where xi

' is the vector
of covariates with size j, is the produced vector of coefficients, and yi

is the response variable for building i. By altering the hyperparameter
(tau) between 0 and 1, quantile regression is able to model different
components of the conditional distribution of the response variable in
relation to the covariates; a value of = 0.50 corresponds to modeling
the median, analogous to OLS regression that models the conditional
mean of the response variable.
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Models are then constructed at each = {0.01, 0.02, 0.03, .,0.99} to
create a total of 99 models that represent the response variable values
for each quantile of the conditional distribution. The final bench-
marking score is then found using equation (3), where closest represents
the tau value of the model with the smallest difference between the
predicted value and the observed value. The score ranges from 1 to 99,
where 1 indicates the lowest performance attainable (i.e., the bottom
1st percentile) and 99 indicates he highest performance attainable (i.e.,
the top 99th percentile). Because we are modeling building energy
performance, our covariates include available data about buildings that
normalize their energy use, such as weather, floor area, building type,
etc. The major benefits of using quantile regression for benchmarking
energy performance are: (a) reduced sensitivity to outlier data points;
(b) ability to determine the varying effects of inputs by modeling the
entire conditional distribution of the dependent variable; (c) capacity to
normalize for numerous explanatory variables; (d) handles hetero-
skedastic data—a common feature of building energy data; (e) identi-
fication of non-linear relationships between explanatory variables and
energy use—this is best elucidated through quantile regression influ-
ence plots; (f) results that are highly interpretable despite assuming
non-constant relationships between explanatory variables and energy
consumption. For a more detailed explanation of the benchmarking
model mechanics, benefits, and use cases, please refer to our previous
work [46].

=score (1 ) 100closest (3)

Traditional energy benchmarking focuses on measuring and ranking
the performance of buildings at the annual time scale. Applied here,
that would translate to yi representing the annual energy consumption
for building i. In our previous work [41], the DMT model was proposed
to extend benchmarking to multiple metrics (besides annual energy
use) and at the daily time-scale by leveraging advanced metering in-
frastructure (AMI) and other open-data sources, such as daily weather
profiles and public databases [41]. This enables yi to represent more
than just annual energy consumption, like daily or weekly energy
consumption. In this paper, we propose six metrics for benchmarking,
as shown in Fig. 2: total (daily) energy, operational energy, non-opera-
tional energy, peak (max) energy demand, max ramping, and energy vo-
latility. By measuring the operational and non-operational states of a
building, the model can compare the energy use performance of the
whole building during times of low and high occupancy levels. Pro-
ducing daily scores also allows for examination into seasonal and daily
trends, allowing users to visually identify abnormal energy consump-
tion patterns. Using the DMT framework has several key benefits over
other benchmarking models: (a) measures performance at smaller time
scales enabling faster delivery of feedback which can lead to increased
energy savings [47]; (b) ranks energy performance of different building
operating states, thereby providing insights into whole-building op-
erations at varying scales; (c) leverages the growing network of smart
meter infrastructure, eliminating cumbersome energy data gathering
and providing high quality, granular, and timely energy data streams
for deeper analytics; (d) utilizes other new data sources—such as
granular weather data streams and open-data portals—that allow for
improved weather adjustments and reduced data collection efforts; (e)
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maintains interpretability thereby enabling stakeholders with various
backgrounds to use the system and gather insights on daily, weekly, and
seasonal performance. For a more detailed explanation of the DMT
framework and its merits, please refer to [41].

4.2. Construction of key performance Indicators (KPIs)

In this section, we propose KPIs for energy management based on
the insights derived from the facility manager interviews as discussed in
Section 3. The proposed KPIs are constructed from, and using, the
scores produced from the DMT model, as shown in Fig. 3. By coalescing
domain knowledge and insights gathered from the interviews, each KPI
was built to identify building inefficiencies and/or measure levels of
energy performance. Specifically, we constructed each KPI to help an-
swer a precise question that can help point to a potential inefficiency or
source of waste in the building. Our proposed KPIs are broken down to
address four different scales of energy performance—daily, weekly,
monthly, and yearly. Each timescale provides various levels of in-
formation that can be used by different stakeholders. Daily metrics can
help FMs identify issues quickly while weekly and monthly metrics may
highlight longer term or systematic issues that would otherwise be
disregarded as noise when exclusively examining daily KPIs. Yearly
KPIs provide a broader overview of building energy performance and
can be used by building owners and policymakers to reward top per-
formers, target inefficient buildings, and better allocate resources.

Each KPI is constructed using three different methodologies: (a)
directly benchmarked energy data using quantile regression-based
benchmarking and the DMT framework as outlined in Section 4.1 which
normalize building energy performance based on available data such as
weather (temperature), floor area, building type, etc. This will be re-
ferred to as DMT-KPIs; (b) combinations (i.e., summations) of DMT-
KPIs, typically over time, to show more persistent and systematic issues
of energy waste. Because these KPIs are built using DMT-KPIs, they also
normalize performance by the same data. These combinations of
benchmarks will be referred to as COB-KPIs; (c) models constructed to
highlight relationships between DMT- or COB-KPIs with other raw data.
These benchmarking relationships will be referred to as BR-KPIs.
Table 1 summarizes all of the proposed KPIs, how they are constructed,
and what questions they aim to help answer.

The proposed KPIs were selected to provide desired feedback—or
address specific concerns—for FMs, building owners, and policymakers.
Fig. 4 is an example output of the energy performance labels produced

by the MEMPI framework using the proposed KPIs. The motivation for
the construction of each KPI is as follows (see Table 1 for more details):

1. Trends in energy performance: Most generally, building energy per-
formance can be examined at different time-scales, from daily to yearly
(DMTEnergy

Daily , COBEnergy
YMW ), and between weekdays and weekends

(DMTWeekend
Daily ) to identify changes in performance over time. Facility

managers are often also interested in examining the difference in op-
erational performance to disentangle energy performance at different
times of day (DMTOp

MWD,DMT COB COB, ,NonOp
MWD

Op NonOp
Daily

Op NonOp
YMW

, _ _ ).
2. Comparative feedback: The DMT-KPIs (DMTEnergy

Daily ,
DMTOp

MWD,DMTNonOp
MWD ,DMTPeak

MWD, DMTRamping
Daily , DMTVolatility

Daily ) provide nor-
mative feedback that directly ranks the energy performance of the spe-
cified dependent variable among multiple buildings. Normative KPIs
provide FMs with reference points that helps them understand the po-
tential energy savings achievable since it is comparing their building to
peer buildings. Normative feedback was identified as a desire of FMs
through the interviews and has been shown to be an effective form of
feedback to encourage energy savings by contextualizing current and
historical consumption in relation to a user’s peer [48].

3. Occupant effects: Several metrics were designed to help facility man-
agers pinpoint potential occupancy behavior issues, like overriding ther-
mostat settings, using high energy consuming equipment, and abnormal
use of equipment (DMTVolatility

Daily ,DMT COB,Peak
Daily

Op vol
YMW

_ ). These behaviors
can result in volatile energy use at the building-level as equipment is
ramped up or down without notice. DMTRamping

Daily measures the increase in
energy consumption between two sequential periods of time, indicating if
there is any large jump in energy use. Further, this aids policymakers that
must grapple with ramping constraints of power generation that has re-
cently been further exacerbated with growing concerns around inter-
mittent renewable energy sources [49-51].

4. Control systems: Apart from operational (i.e., daytime) use of energy,
non-operational energy consumption can help FMs identify control is-
sues, like when systems are unintentionally left running at night
(COBOp vol

YMW
_ , COB DMT, )NonOp vol

YMW
Weekend
Daily

_ . By measuring the energy perfor-
mance of both operating and non-operating states of a building, FMs can
watch for spikes in energy use during times when they know the building
is unoccupied and systems should be off.

5. Demand response (DR) potential: Volatility, often also referred to as
variability, in energy use (DMTVolatility

Daily , COBE vol
YMW

_ , COBOp vol
YMW

_ ,
COBNonOp vol

YMW
_ ) is a key index in evaluating the potential of demand re-

sponse, where consumers with lower entropy have relatively similar

Fig. 2. Process diagram for the DMT model, which uses quantile regression benchmarking on smart meter data. Building and thermometer icons from [45].
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patterns of energy consumption—and viewed as suitable for incentive-
based demand response due to their predictability to follow control
commands—while consumers with high entropy are suitable for price-
based demand response due to their flexibility to adjust their load based
on change in price [38]. Peak load monitoring (DMTPeak

MWD) is also im-
portant for FMs that are looking to reduce demand charges of their
building; the associated KPI can help them pinpoint which days are
problematic and isolate scheduling issues that can be causing the spike in
energy use.

6. HVAC / Building envelope: Measuring the relationship between daily
energy performance scores and temperature (BRTemp

Yearly, BRCool
Yearly) can help

FMs further isolate issues associated with HVAC units or building en-
velope since hot days correspond with increased use of air conditioning
which is known to be a high energy consumer.”

The proposed MEMPI framework fills a gap in the scattered, and
often ill-defined, space that comprises building management systems
(BMS), energy management systems (EMS), and energy benchmarking,

as discussed in Section 2 and shown in Fig. 1. Measuring how these
metrics change over time, or combinations of them, can provide addi-
tional insights that may be overlooked if only looking at a single KPI
independently. The main benefit of the proposed framework is that it
encompasses three distinct and central types of energy management
practices—energy information systems, utility bill tracking, and energy
benchmarking. Each of these practices is targeted at different stake-
holders. Energy information systems are primarily used by facility
managers to track building performance and identify potential issues;
utility bill tracking is primarily used by building owners who want to
manage energy costs and understand energy use patterns between
buildings in their portfolio over extended periods of time; bench-
marking is primarily used by policymakers who want to track the en-
ergy performance of city, or state, building stocks and encourage
competition between buildings to drive energy savings. As shown in
Fig. 4, the KPIs from the MEMPI framework provide insights at multiple
timescales and for multiple stakeholders. By satisfying the main needs
of each stakeholder, and aligning their incentives under one system, the

Fig. 3. Breakdown of the KPIs—and their dependencies—based on their timescale and which energy management practices they replace. Scores from the DMT model
are directly used as KPIs and indirectly used to construct other KPIs. See Table 1 for details, information, and KPI equations.
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proposed MEMPI framework can provide a low-cost solution to energy
management that has the potential to result in large energy savings.

Using KPIs can streamline decision-making, enable better pre-
ventative maintenance practices, and provide timely and targeted
feedback, all of which are currently significant issues highlighted by the
FMs we interviewed. Rather than focus on alternative display layouts
and new charts to show FMs, which has been the focus of several studies
at the residential level [52], we aim to explore the benefits of KPIs
derived from smart meter data streams from commercial and SMB
(small and medium business) buildings. Though KPI construction is a
high area of interest in the academic community for energy manage-
ment in the industrial sector, there have been few studies that have
extended it to the commercial building sector [15]. KPI development
for energy management has gained popularity because it synthesizes
copious data into one number that is quickly absorbed, easily under-
stood, and highlights a critical area of performance that is indicative of
potential issues. These KPIs provide more insightful information than
utility bills and utilize in-place and low-cost smart meter infrastructure.

5. Case studies

Validating building energy performance (i.e., benchmarking) is a
critical challenge in the field and a major reason so few studies have
attempted it rigorously [53]. Unlike vehicles—which have a straight-
forward definition for efficiency as defined by the distance traveled per
unit of energy—buildings vary dramatically in size, type, climate con-
ditions, and offer a wide array of services. Buildings rarely exist to serve
one singular purpose, thereby making the exercise in defining efficiency
subjective. There is no objective definition when people value natural
light and indoor air quality—among many other services—quite dif-
ferently. Therefore, no “ground truth” data exists, but there are several
reasonable alternatives that can be explored. Conducting energy audits
for all buildings in a dataset would provide rich information to compare
to benchmarking results; however, collecting this data for a large da-
taset would be cost- and time-prohibitive. As a result, we adopted a case
study approach to study the efficacy of the MEMPI framework and
contextualize the data-driven results among perception and insights of
real facility managers.

Although not a statistically driven method, case studies have long
been an effective method to study, assess, and validate energy effi-
ciency technologies and analytical methods for buildings [16,54-57].
We applied the MEMPI framework to real smart meter data from 569
school buildings in California, USA and then employed an explanatory
sequential mixed methods approach [43]— through the use of a post-
interview survey—to compare the insights produced from the MEMPI
framework to those seen by the facility managers who operate the
buildings. This mixed qualitative and quantitative approach allows us
to compare MEMPI’s provided insights with on-the-ground performance
observations and perceptions of three facility managers operating eight
case-study buildings. The goal of the case studies is to compare and
contrast the insights gathered from the proposed MEMPI framework,
and associated KPIs, to those obtained from the FMs through the post-
interview survey.

5.1. Data and modeling

We applied our MEMPI framework to 15-min interval electricity
usage data from 569 public schools across the state of California, USA
(see Fig. 5 for a map of the geographic distribution). Electricity con-
sumption data for these schools was collected using data released from
Proposition 39 program administered by the California Energy Com-
mission (CEC) for the 2014–2015 academic year (July 2014 to July
2015). Data on building characteristics was collected from the Cali-
fornia Department of Education (CDE) and Federal Census Bureau, all
publicly available online. Daily weather data was gathered from the
National Oceanic and Atmospheric Administration (NOAA) and mergedTa
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Fig. 4. Example output of the performance labels created by the KPIs from the MEMPI framework. Note, the scores in the above labels are merely exemplary to
showcase a realistic output label.

Fig. 5. Map showing the location of every school included in the study.
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at the zip code level. We focused our validation and testing of MEMPI
on California public schools due to the fact that all schools are engaged
in relatively similar activities, have similar operating schedules, and are
subject to similar funding trends throughout the state. The MEMPI
framework can, in fact, be used for buildings of any type or location,
but using one building type (e.g., schools) in one US state allows for a
more rigorous validation process. Information and descriptions about
each of the 34 independent variables used in the study can be found in
Appendix A, and include data on building characteristics, occupant
demographics, and daily weather patterns. Predictive mean matching
was used to impute any missing values [58]. Due to the high number of
variables in the dataset, a forward stepwise variable selection process
was used to select the top 10 most influential variables for each month.
More details about the DMT modeling approach can be found in our
previous work [41].

Daily energy performance (i.e., results depicted in Fig. 4a) was then
found by modeling each month of the year independently to account for
seasonal changes in energy drivers. Energy data from each of the 569
schools for every day of the month was used as the dependent variables
(as depicted in Fig. 2 and further outlined in Table 1) while building
characteristics, school demographics, and weather data were used as
the independent variables. Quantile regression models were built for
each of the 6 DMT-KPIs for each month of the 2014–2015 academic
year, producing 6 DMT-KPI’s for each day of the year in each school.
For these case studies, we defined the operational state to be between
7am–3pm and the non-operational state to be between 10pm and 4am,
given that school schedules are consistent and widely known; other
definitions for operational and non-operational can be used in the
proposed MEMPI framework depending on if the schedule is known or
can be extracted from the smart meter data. Using the 6 DMT-KPIs, the
other KPIs were then constructed using the equations outlined in
Table 1. In total, each school has 6 DMT-KPIs for each day of the year
plus an additional 8 COB- and BR-KPIs that summarize yearly perfor-
mance.

Although performance labels are produced weekly and month-
ly—and host their own set of benefits measuring performance at this
timescale—we decided to focus on yearly performance labels. The
historical nature of our data risks facility managers improperly recalling
the energy use dynamics of their buildings in the past at shorter time-
scales, like weeks or months. Fig. 6 shows the distributions for each of

the eight yearly KPIs for every school in the dataset. The COBOp vol
Yearly

_ has a
median value of 3.84 while COBNonOp vol

YMW
_ has a median of 3.28, in-

dicating that the operational state has higher variability than the non-
operational, and validating the FM perception that occupants have a
large effect on building energy consumption. Fig. 6 also contextualizes
the results later discussed in Section 5.3.

5.2. Post-Interview survey

In order to provide a basis for comparing the results of the MEMPI
framework to perceived on-the-ground conditions at the schools, an
extensive follow-up post-interview survey was administered to the same
ten FMs that we interviewed and who are responsible for eight schools
in our dataset. In this post-interview survey, we collected information
regarding their opinions about the energy performance of the schools
that they managed. Details of the post-interview survey questionnaire
can be found in Appendix B. Our aim was to collect data on the FMs’
judgements about the conditions and (in)efficiencies of systems within
particular schools. For example, beyond their views on overall energy
performance of specific schools, we sought information on HVAC
equipment, lighting systems, control settings, sensitivity to hot days,
age of equipment, building envelope, and more. With this information
provided by the FMs, we aim to compare their perceived issues to those
identified by MEMPI framework and associated KPIs. Given that our
data was for the 2014–2015 academic year, we framed our post-inter-
view survey to capture school conditions during the same time period,
ensuring that we are comparing information from the same period. Of
the ten FMs that received the extensive post-interview survey, three
completed all of the questions, providing us detailed information on
eight schools, cumulatively, that they managed. Please refer to Fig. 6 to
observe the scores for all 569 school buildings to further contextualize
these results.

5.3. Results & discussion

In this section, we look primarily at the responses from 10 post-
interview survey questions, which are highlighted in their abbreviated
format in Table 2 with their relevant KPIs. We asked the FMs about
school-specific information that we could then compare with our KPIs.
The following list first highlights the post-interview survey question

Fig. 6. Histograms for each yearly KPI showing their distributions and median values for all 569 schools.
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and then the corresponding related KPIs. All questions are rated on a
1–5 scale where 5 is very energy efficient and 1 is very inefficient, except
for questions seven, nine, and ten (Q7, Q8, Q10). Q7 (i.e., AC perfor-
mance during hot days?) is ranked on a 1–4 scale where 1 indicates that
the AC unit always breaks down and 4 indicates that the AC unit never
has problems. Q9 is also on a 1–4 scale where 1 indicates that no sys-
tems are automated while a 4 indicates that all systems are automated.
Finally, Q10 asks for the average building equipment age and therefore
is on a scale of 1–50. Detailed analysis of how KPIs aligned with each
facility manager’s perceptions is discussed in detail in the following
section for each case study school.

5.3.1. Facility manager a (FM-A)
Background: FM-A has been employed by the school district for less

than four years and has less than four years of experience as a facility
manager. Managing over ten schools, FM-A views energy efficiency as
one of his/her main job responsibilities and ranks energy efficiency as
very important to the school district’s leadership team. FM-A pointed to
occupant behavior as a large source of energy waste, and receives
feedback from faculty, staff, and students about 2–3 times a week, thus
the volatility KPIs and trends of daily KPIs can help this FM better track
occupancy behavior. The FM provided school specific information for
two of the schools he/she (school buildings A1, A2) manages and as a
result we were able to compare the results of the MEMPI framework to
these two specific schools. Fig. 7 shows the yearly energy performance
label produced from the MEMPI framework and compares them to the
survey answers provided by facility manager A.

School Building A1: The KPIs for school building A1 indicate that this
school may have an inefficient AC unit and/or building envelope due to
the fact that BRTemp

Yearly is over one standard deviation away from the
mean. Additionally, the COBOp NonOp

Yearly
_ KPI also indicates that the building

performs worse during the operating state than the non-operating state.
Post-interview survey responses from FM-A paint a somewhat similar
picture. Though FM-A rated the building as having average efficiency
(Q1 scored 3/5), they also indicated that the building had a poor
building envelope (Q2 scored 2/5), very poor lighting controls (Q3
scored 1/5), and said that the AC unit breaks down often during hot
days (Q7 scored 2/4). FM-A also indicated that the building equipment
is fairly old, with an average age of equipment around 30 years. A

deeper analysis of the COBOp NonOp
Daily

_ KPI for school building A1 (Fig. 8a)
reveals that the second half of the year has a worse operational per-
formance, especially in the summer months, further pointing to an in-
efficient AC unit. Using the COBOp NonOp

Daily
_ KPI, FM-A knows which days

have worse operational performance and can more quickly identify
potential operational issues in the building before the end-of-month
utility bill.

School Building A2: For school building A2, the COBEnergy
Yearly KPI in-

dicates that the building is very efficient (with over 1.5 standard de-
viations away from average) and has relatively low occupant-driven
energy issues as COBE vol

Yearly
_ , COBOp vol

Yearly
_ , and COBNonOp vol

Yearly
_ are all more than

1.5 standard deviations away from the average. However, FM-A post-
interview survey responses indicated that the building is relatively in-
efficient (Q1 scored 2/5), has both poor HVAC unit and HVAC controls
(Q5 and Q6 scored 2/5) and that the AC units breaks down often during
hot days (Q7 scored 2/4). FM-A did also note that the equipment in this
school is much newer than school building A1, with an average age of
equipment around 20 years. Fig. 8b shows the COBEnergy

Daily KPI for every
day in the year for school building A2, where the summer months have
a relatively worse performance than the rest of the year—an important
insight that was missed by the FM.

Summary: The perceptions of FM-A are mixed when compared to the
insights found using the KPIs. For school building A1, FM-A felt that the
AC unit was somewhat problematic, which was corroborated with the
result from the BRTemp

Yearly KPI. Although FM-A felt the building had
average energy performance, they proceeded to indicate that nearly
every system in the building faced significant issues, which is corro-
borated with the COBEnergy

Yearly KPI. However, FM-A had very different
perceptions about school building A2 than what the KPIs indicated. FM-
A thought the school was inefficient but the KPIs indicate differently.
Nevertheless, FM-A also recognized that the equipment was much
newer than school building A1 which could be a source of the overall
more energy efficient building. Given the relative inexperience of FM-A
(< 4 years’ experience), and that about half of what FM-A perceived to
be true was reflected in the KPIs, our framework could help FM-A
corroborate intuitions (e.g., the poor building envelope of school
building A1) or investigate where his/her perceptions of building op-
erations are misaligned with the data (e.g., the overall efficiency of
school building A2).

Table 2
Post-interview survey questions (shortened) and their relevant KPIs. These questions are used to compare to the performance labels outputted from the MEMPI
framework.

Question
Number

Question (abbreviated) Relevant Yearly KPIs Relevant Non-Yearly KPIs Range

Q1 Overall energy efficiency? COBEnergy
Yearly 1–5

Q2 Building envelope efficiency? COB COB BR, ,Energy
Yearly

E vol
Yearly

Temp
Yearly

_ , BRCool
Yearly 1–5

Q3 Lighting controls capability? COB COB COB, ,Energy
Yearly

Op NonOp
Yearly

Weekend
Yearly

_
COBEnergy

Daily , COBWeekend
Weekly ,

COBOp NonOp
Daily

_

1–5

Q4 Lighting system efficiency? COB COB,Energy
Yearly

E vol
Yearly

_ , COBOp vol
Yearly

_ , COBNonOp vol
Yearly

_
1–5

Q5 HVAC controls capability? COB COB BR BR COB, , , ,Energy
Yearly

Weekend
Yearly

Temp
Yearly

Cool
Yearly

Op NonOp
Yearly

_
COBWeekend

Weekly , COBOp NonOp
Daily

_
1–5

Q6 HVAC system efficiency? COB COB COB BR, , ,Energy
Yearly

E vol
Yearly

Op vol
Yearly

Temp
Yearly

_ _ , BRCool
Yearly 1–5

Q7 AC performance during hot
days?

COB BR BR, ,Energy
Yearly

Temp
Yearly

Cool
Yearly 1–4

Q8 How much do occupants
affect energy performance?

COB BR BR COB, , ,Energy
Yearly

Temp
Yearly

Cool
Yearly

E vol
Yearly

_ , COBOp vol
Yearly

_ , COBNonOp vol
Yearly

_ , COBWeekend
Yearly ,

COBOp NonOp
Yearly

_

COBEnergy
Daily , COBOp NonOp

Daily
_

1–5

Q9 Building equipment
automation capability?

COB COB COB, ,Energy
Yearly

Op NonOp
Yearly

Weekend
Yearly

_
COB COB,Op NonOp

Daily
Energy
Daily

_ ,

COBWeekend
Weekly

1–4

Q10 Building equipment age? COBEnergy
Yearly , COB COB,E vol

Yearly
Op NonOp
Yearly

_ _
COBEnergy

Daily , COBWeekend
Weekly ,

COBOp NonOp
Daily

_

1–50

J. Roth, et al. Applied Energy 276 (2020) 115435

12



5.3.2. Facility manager B (FM-B)
Background: FM-B has much more experience than FM-A with

8–12 years in his/her current job and 20 + years as a facility manager.
FM-B is responsible for the operation of over 35 buildings. FM-B stated
that energy efficiency is a secondary, or tertiary, responsibility and is
somewhat important to the district administration staff. However, FM-B
felt that energy efficiency is very important to him/her, and received
feedback from faculty, staff, and students around 2–3 times per month.
We received school specific information for two of the buildings in FM-
B’s portfolio (B3 and B4). Fig. 9 shows the yearly energy performance
labels produced from the MEMPI framework and compares them to the
survey answers provided by facility manager B.

School Building B3: Inspecting the KPIs displayed in Fig. 9, school
building B3 is indicated to be inefficient with a COBEnergy

Yearly KPI score of
23.84, have a well-working AC unit with a BRTemp

Yearly KPI score of 0.66,
and have poor weekday performance compared to weekends with a
COBWeekend

Weekly KPI score of −15.96. Based upon the post-interview survey
results, FM-B perceives this building to have average efficiency (Q1
scored 3/5), thinks the building equipment can handle most hot days
(Q7 scored 3/4), but wrote that many building systems are the sources
of frequent complaints. Most of the equipment in the building has au-
tomated controls (Q9 scored 3/4), as the equipment is relatively new
with an average age of just 5 years (Q10). Fig. 10a shows COBEnergy

Daily for
school building B3, where weekday and weekend days are differ-
entiated by shape, the blue line is the moving average, and the orange
line is the average score which is equal to COBEnergy

Yearly . School building B3
and B4 show the same pattern in their moving averages, where they

both experience spikes in scores in February, April, October, and De-
cember. These times align with the school vacations for this district and
highlights the large effect that occupants have on school energy con-
sumption.

School Building B4: For school building B4, the KPIs suggest that the
building is inefficient with a COBEnergy

Yearly KPI score of 27.63 and has a non-
operating state that is worse than the operating state with aCOBOp NonOp

Yearly
_

KPI score of 11.46 (more than one standard deviation below average).
The post-interview survey results share a similar story where FM-B
perceives this building to have average efficiency (Q1 scored 3/5),
believes building equipment can handle most days (Q7 scored 3/4) but,
again, states that most systems are the sources of frequent complaints.
Similar to school building B3, school building B4 has mostly automated
controls in-place where building equipment is about 5 years old on
average. Fig. 10b shows COBOp NonOp

Daily
_ for school building B4, where the

blue line is the moving average and the orange line is the average score
which is equal to COBOp NonOp

Yearly
_ . This plot shows that the operating per-

formance is superior to the non-operating performance, which aligns
with the perception that the HVAC equipment keeps up on most days
but is in contrast to the perception that the building equipment is often
faulty.

Summary: The perceptions of FM-B, based on the completed post-
interview survey, of the schools that they manage are somewhat in-
consistent. For both buildings, FM-B ranked the buildings as being
average in terms of energy efficiency, but then proceeded to state that
nearly all the building systems are the source of frequent complaints.
The KPIs suggest that both buildings are fairly energy inefficient, with

Fig. 7. Comparing the energy performance labels—produced by the MEMPI framework—against the perceptions of facility manager A for two buildings. The cells are
highlighted to indicate how far away each value is from the mean value for that KPI for all 569 school buildings.

Fig. 8. Scatterplots of School A1 and School A2 with (a) highlighting trends related to operational performance (COBOp NonOp
Daily

_ ) and (b) highlighting trends related to
seasonality of overall efficiency (COB )Energy

Daily . The blue lines are the 7-day moving average while the orange lines are the average scores, which correspond to the yearly
KPI equivalent.
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school building B3 having more issues that arise during weekdays while
school building B4 instead appears to have issues during non-opera-
tional hours. Neither of these issues were identified by the facility
manager in the post-interview survey. Although FM-B has significantly
more experience than FM-A, they are also responsible for managing
nearly four times as many schools so may not be as aware of energy
issues occurring in each of their buildings. During the interviews, fa-
cility managers expressed their desire for quick, easily understood, and
contextualized feedback about the energy performance of their build-
ings, which can be achieved by displaying these KPIs, and is further
supported by previous work [3,48]. While post-interview survey results
from FM-B were somewhat inconsistent, it highlights the fact that FMs
are often not aware of issues in their buildings and need a tool like the
MEMPI framework.

5.3.3. Facility manager C
Background: FM-C has less than four years of experience as an FM at

the current school district but has between 4 and 8 years of experience
as a FM in general. FM-C is responsible for managing just over 20
schools in the district. Building energy efficiency is sometimes con-
sidered part of their responsibilities and is considered somewhat im-
portant by the district administration. FM-C says that maximizing en-
ergy performance of their buildings is important and says that they
receive energy feedback daily from faculty, staff, and students. We re-
ceived school-specific information for four building in FM-C’s portfolio.
Fig. 11 shows the yearly energy performance labels produced from the
MEMPI framework and compares them to the survey answers provided

by facility manager C.
School Building C5: For school building C5, the KPIs suggest that the

building is relatively inefficient with a COBEnergy
Yearly KPI score of 31.62, has

a worse non-operating state than operating state with aCOBOp NonOp
Yearly

_ KPI
score of 6.29, and has poor weekday performance compared to week-
ends with a COBWeekend

Weekly KPI score of −18.18, which can also be seen in
Fig. 12a. In the post-interview survey, FM-C perceived the building to
be inefficient (Q1 scored 2/5) and have poor HVAC, HVAC controls,
building envelope, and lighting (Q2–Q6 all scored 2/5). The FM stated
that the equipment is old, with an average age of about 30 years (Q10),
but that the equipment could handle most hot days (Q7 scored 3/4).
The KPIs corroborate the FM’s perception about this school being in-
efficient and having poor control systems, leading to the poor non-op-
erating state performance and negative COBWeekend

Weekly KPI scores.
School Building C6: For school building C6, the KPIs suggest that the

building is inefficient with a COBEnergy
Yearly KPI score of 36.40, is very tem-

perature sensitive with a BRTemp
Yearly KPI score of −0.92, and has poor

weekday performance compared to weekend performance with a
COBWeekend

Weekly KPI score of −17.10. In the post-interview survey, FM-C
perceives this building to be inefficient (Q1 scored 2/5) and have very
poor HVAC, HVAC controls, and a building envelope (Q2, Q5, and Q6
scored 1/5). The temperature sensitivity, due to the poor HVAC system
can be seen in Fig. 12b where the COBEnergy

Daily is plotted against the mean
daily temperature and the slope represents BRTemp

Yearly indicating that the
school is sensitive to hot days. The FM stated that the building equip-
ment is about 40 years old on average (Q10) which may be contributing
to the poor HVAC performance and overall building inefficiency.

Fig. 9. Comparing the energy performance labels—produced by the MEMPI framework—against the perceptions of facility manager B for two buildings. The cells are
highlighted to indicate how far away each value is from the mean value for that KPI for all 569 schools.

Fig. 10. Scatterplots of School B3 and School B4 with (a) indicating trends related to discrepancies between weekday/weekend overall efficiency COB( Energy
Daily ) and (b)

indicating trends for COBOp NonOp
Daily

_ scores. The blue lines are the 7-day moving average while the orange lines are the average scores, which correspond to the yearly
KPI equivalent.
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School Building C7: For school building C7, the KPIs suggest the
building to be somewhat temperature sensitive and to have an average
level of overall energy efficiency. Post-interview survey results show a
similar outcome with an average overall efficiency (Q1 scored 3/5),
poor lighting controls (Q3 scored 2/5), and ability to handle most hot
days (Q7 scored 3/4). Equipment is about 20 years old on average
(Q10). Although the FM’s perception of the school’s overall efficiency
aligns with the KPIs, the BRTemp

Yearly KPI, as shown in Fig. 12c, indicates a
high sensitivity to temperature which seems to have gone unnoticed, as
the FM indicated the HVAC equipment to be average (Q6 scored 3/5).
This implies that the MEMPI framework may be able to add extra in-
sight on hot days to the FM.

School Building C8: Finally, school building C8 KPIs suggest a
building that is slightly temperature sensitive and has large weekday
issues despite having an average overall average energy efficiency level.

FM-C also feels this building to be average in energy efficiency (Q1
scored 3/5) but have poor HVAC and lighting controls (Q3 and Q5
scored 2/5). Average equipment age for school building C8 is about
20 years (Q10) and FM-C feels like this building can also handle most
hot days (Q7 scored 3/4). In Fig. 12d, the COBOp NonOp

Daily
_ is plotted, where

there are two blue-lines which represent the moving average for the
weekdays and weekends, respectively. Even though the COBOp NonOp

Yearly
_

KPI—as represented by the orange line—provides little insight, the
COBOp NonOp

Daily
_ KPI shows a large difference between the weekdays and

weekends. Specifically, weekdays have a worse operational state while
the weekends have a worse non-operational state, corroborating the FM
views that the building has poor lighting controls. Furthermore, these
large daily and weekday/weekend differences in energy performance, if
promptly given to the FM, can help him/her identify operational in-
efficiencies which can lead to greater savings.

Fig. 11. Comparing the energy performance labels—produced by the MEMPI framework—against the perceptions of facility manager C for four buildings. The cells
are highlighted to indicate how far away each value is from the mean value for that KPI for all 569 school.

Fig. 12. Scatterplots of Schools C5, C6, C7 and C8. (a) indicates that C5 has poor weekday performance compared to weekends COB( Energy
Daily ). (b) indicates that C6 is

sensitive to hot days. (c) indicates that C7 has a high sensitivity to temperature. (d) indicates that C8 weekdays performs worse during operating hours on weekdays
but better on weekends. In (a) and (d), the blue lines are the 7-day moving average while the orange lines are the average scores.

J. Roth, et al. Applied Energy 276 (2020) 115435

15



Summary: With post-interview survey information for four schools,
this FM seemed to show high levels of awareness of their schools’
performance, as nearly all their post-interview survey results were
corroborated with what the KPIs suggested. KPIs for school buildings C5
and C6 indicate that they have below average energy efficiency while
indicating school buildings C7 and C8 were average, exactly what was
said by FM-C in the post-interview survey. Further, FM-C ranked school
C6 as having the worst HVAC and HVAC controls of all four schools,
which was reflected in the poor BRTemp

Yearly KPI score. Each of the schools
had KPIs that suggested worse weekday performance, however, FM-C
provided mixed results for inefficient building systems (controls vs. the
units themselves) for each of the schools. Inefficient systems could be
the primary drivers of inefficiency during the operating or daily hours,
or they could be driven by fluctuations in occupant behavior as it has
been shown to impact energy usage significantly [52]. Regardless, the
KPI framework presented here showed to largely align with the per-
ceptions of FM-C.

5.3.4. Discussion
Overall, our results indicate that the yearly KPIs generally align

with the perceptions of the three facility managers. However, several
conditions of performance were overlooked by the FMs. Generally, the
KPIs highlighted inefficiencies in areas of building equipment auto-
mation, lighting controls, and HVAC controls that were not indicated as
issues by the three facility managers. The results of our post-interview
survey highlight the FMs desire and ability to understand their effi-
ciency performance through quantitative metrics, such as the KPIs from
the MEMPI framework, rather than solely on intuition or personal
perception. In addition, these KPIs can inform FMs about occupant
behavior, which has been shown in numerous studies—and was also
corroborated in our interviews—to have a large effect on building en-
ergy use. An increased understanding of how energy is being wasted
can therefore help drive behavior change [59-62]. Although the pro-
posed framework offers a multitude of benefits, we doubt it would
provide more useful insights than an expensive, propriety BMS system
that requires installation. Instead, our framework offers a low-cost al-
ternative that aligns incentives from multiple stakeholders by lever-
aging existing smart meter infrastructure. But without any proper
feedback, energy issues go unidentified and wasteful user behavior is
unrecognized and unchanged [47].

To track long-term sustainability goals, which is an important
practice for achieving energy savings [63], FMs can use the annual and
monthly KPIs. To gain insight during times of different occupancy levels
and identify issues with control settings, schedules, and different pieces
of building equipment, FMs can use the KPIs that measure different
operational states. To modify their daily operations, which would ul-
timately lead to energy savings [47,64,65], FMs can use the timely
feedback provided by daily KPIs. As shown by the daily KPIs in Figs. 8,
10, 12 high variability exists in energy performance day-to-day. By
measuring performance every day, the MEMPI framework provides
deeper insight into building dynamics that are difficult to capture when
examining a building for only one day, which is the case for traditional
energy audits—they lack insight into building operations over any
period of time and only provide a snapshot, though detailed, of energy
performance [66]. Because facility managers have many re-
sponsibilities—with energy efficiency being only one of them—the
MEMPI framework can help them validate the energy performance of
their buildings and be alerted to issues that were previously overlooked.

6. Limitations and future work

While our proposed MEMPI framework addresses many of the
concerns highlighted by facility managers, its introduction also pre-
cipitates several limitations. First, it is important to note that proprie-
tary building management systems—which often include new equip-
ment, devices, sensors, and more—likely offer better opportunities to

help facility managers save energy. However, as noted in the inter-
views, many building owners cannot afford to install such systems
meaning that facility managers must do without. Furthermore, the fa-
cility manager (FM) views’ are predominately associated with their
time working at public schools throughout the state of California. FMs
that work in the private sector, or in other states or countries, may have
a different experience than expressed by our interviewees. The ten
participants were also recruited through a snowball sampling process
where there is an added risk of self-selection bias in the results, as those
who agreed to be interviewed nominated themselves willingly. Finally,
given the data that we use for our quantitative analysis and KPI con-
struction is historical, from the 2014–2015 academic year, the post-
interview survey results obtained from the FMs rely on their recall of
school conditions from two years prior. This prohibited us from vali-
dating the insights derived from the daily KPIs. Further user testing can
be applied to see if FMs notice more issues that inform their actions and
lead to increased energy savings. More up-to-date data would allow us
to examine the efficacy of the proposed framework to display some of
its other mentioned benefits.

Like other smart meter research, this system could be extended to be
more useful to utilities and energy service providers (ESCOs) by finding
patterns in the KPIs for large portfolios of buildings. For example, dif-
ferent clustering techniques could be examined to determine if they can
help identify customers for various energy efficiency programs. By
providing an alternative way of quickly distilling profile load types for
customer segregation, utilities may find overlooked patterns in the data
that better highlights energy performance that can be used for more
targeted programs. Further, this framework could be used with fore-
casting algorithms to better identify buildings that are likely to ex-
perience a decrease in energy performance. For example, daily scores
from multiple buildings could be compiled—potentially achieved
through clustering algorithms if the dataset is large—thereby creating a
panel dataset, which could be used as inputs into a machine learning
algorithm that would produce future predicted scores. If the model
predicts a decrease in performance, the facility manager could be
alerted ahead of time. Such forecasting algorithms could help facility
managers with preventative maintenance if they know their buildings
are likely to experience breakdowns in equipment in the near future.

7. Conclusions & implications

In this paper, we integrate methods from social, building and data
sciences to contribute:

1) Insights into the limitations of current EMIS systems based on in-
depth qualitative interviews of 10 facility managers and energy
consultants.

2) A novel data-driven Multitiered Energy Management Performance
Indicator (MEMPI) framework that takes a facility manager centric
viewpoint, embeds lessons learned from the industrial energy
management research field to create Key Performance Indicators
(KPIs) and leverages high-fidelity data emerging from existing smart
meter infrastructure.

3) Comparative analysis of the MEMPI framework using real smart
meter data from 569 buildings in California, USA and case studies of
8 case study buildings. Results indicated that the yearly KPIs gen-
erally align with the perceptions of the three facility managers.
However, several conditions of performance were overlooked by the
FMs. Generally, the KPIs highlighted inefficiencies in areas of
building equipment automation, lighting controls, and HVAC con-
trols that were not indicated as issues by the three facility managers.

Overall, the proposed MEMPI framework aims to bridge the gap
between data-driven energy management models and qualitative do-
main knowledge held by facility managers to provide more compre-
hensive insights into the energy performance of buildings. Additionally,
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the MEMPI framework combines benefits of benchmarking, utility bill
tracking, and energy information systems into one low-cost system that
aligns incentives of multiple stakeholders including policymakers,
building owners, and facility managers. Given that extensive smart
meter infrastructure is already in place, we propose using new high-
fidelity consumption data to provide a comprehensive view of energy
use that can be tailored to inform a range of stakeholders—policy-
makers, facility managers, and building owners. Policymakers are
pushing to have more buildings undergo energy benchmarking given its
potential to help enhance building energy efficiency. Facility managers
require a low-cost energy management system that provides compar-
isons to other similar buildings (i.e., benchmarking), quickly provides
relevant information about energy performance, and provides action-
able insights that can be immediately implemented. Building owners
require a system that can provide high-level temporal insights into their
building portfolio that can help them prioritize resource allocation and
investments related to energy efficiency. In the end, this work aims to
provide a framework for better understanding the energy performance
of existing building stock and provide a pathway for more informed
energy efficiency decision-making across policymakers, facility man-
agers and building owners.
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Appendix A

Variable Name Characteristic and Explanation

District Type District Ownership Type Description
Educational Type Educational Option Type Description
Charter School A “Y” or “N” value indicating whether a school is a charter school in the current academic year.
High Grade Highest grade offered
Enrollment A total count of K-12 students enrolled (primary or short-term) on Census Day (the first Wednesday in October). These data were submitted to

CALPADS as part of the annual Fall 1 submission.
Total free meal count Of the Enrollment (K-12), a total unduplicated count of students who meet household income or categorical eligibility criteria for free meals based on

one or more of the following reasons: (1)applying for the National School Lunch Program (NSLP); (2) submitting alternative household income
forms; (3) student homeless or migrant statuses in CALPADS; (4) being “directly certified” through CALPADS as participating in California's food
stamp or CalWORKs programs during July - November; or (5) being identified through the weekly CALPADS Foster Matching process or matched by
the LEA through the CALPADS online match process as being in Foster Placement or Foster Family Maintenance on Census day. The Free Meal Count
(K-12) is not displayed on any CALPADS report; however, this count represents the official Free Meal Count (K-12) for the academic year.

Percent eligible free The percent of students eligible for free meals. [Free Meal Count (K-12) divided by Enrollment (K-12)].
FRPM count Of the Enrollment (K-12), a total unduplicated count of students who meet household income or categorical eligibility criteria for free or reduced

meals (FRPM) based on one or more of the following reasons: (1) applying for the National School Lunch Program (NSLP); (2) submitting alternative
household income forms; (1) student homeless or migrant statuses in CALPADS; (4) being “directly certified” through CALPADS as participating in
California's food stamp or CalWORKs programs during July - November; or (5) being identified through the weekly CALPADS Foster Matching
process or matched by the LEA through the CALPADS online match process as being in Foster Placement or Foster Family Maintenance on Census
day.

Percent eligible FRPM The percent of students eligible for free or reduced price meals (FRPM). [FRPM Count (K-12) divided by Enrollment (K-12)].
EDP 365 The total cost for the current expense of education.
Current expense ADA Total ADA (average daily attendance) is defined as the total days of student attendance divided by the total days of instruction. This is the total cost

of the ADA.
Current expense per ADA The total cost per ADA or the EDP_365 divided by the Current Expense ADA.
School Type The type of school as either “High School”, “Unified”, or “Elementary”
Area (sqft) Total area of the school building(s) in square feet
Median Household Income The median household income for the zip code taken from the US Census Bureau
Temperature max The maximum temperature recorded during the day in Fahrenheit
Temperature min The minimum temperature recorded during the day in Fahrenheit
Temperature mean The average daily temperature for the day in Fahrenheit
Dewpoint The average daily dewpoint temperature for the day in Fahrenheit
Temperature wetbulb The average daily wetbulb temperature for the day
Heating degree day (HDD) Number of degrees that the day's average temperature was below 65 degrees Fahrenheit
Cooling degree day (CDD) The number of degrees that the day's average temperature was above 65 degrees Fahrenheit
Total precipitation The total amount of precipitation (water equivalent) in inches
Standard pressure The total standard pressure for the day in Hg
Result speed The resulting wind speed for the day
Average wind speed The daily average wind speed in miles per hour
Max5speed The max speed of wind with a duration of 5 min
Max2speed The max speed of wind with a duration of 2 min
Temperature mean squared The average daily temperature squared
Heating degree day squared (-

HDD_2)
The heating degree day (HDD) squared
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Cooling degree day squared (-
CDD_2)

The cooling degree day (CDD) squared

Temperature mean natural log The natural log transformation of the average daily temperature
Weekend Dummy variable where “1″ is a weekend and ”0″ is a weekday
Enrollment per area The total enrollment per unit area (Students per square foot)

Appendix B

Table of the survey questions—see attached document.

Appendix C

Interview protocol—see attached document.
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