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Abstract

Neighborhoods are the building blocks of cities, and thus significantly impact urban planning

from infrastructure deployment to service provisioning. However, existing definitions of

neighborhoods are often ill suited for planning in both scale and pattern of aggregation.

Here, we propose a generalized, scalable approach using topological data analysis to iden-

tify barrier-enclosed neighborhoods on multiple scales with implications for understanding

social mixing within cities and the design of urban infrastructure. Our method requires no

prior domain knowledge and uses only readily available building parcel information. Results

from three American cities (Houston, New York, San Francisco) indicate that our method

identifies neighborhoods consistent with historical approaches. Additionally, we uncover a

consistent scale in all three cities at which physical isolation drives neighborhood emer-

gence. However, our methods also reveal differences between these cities: Houston,

although more disconnected on larger spatial scales than New York and San Francisco, is

less disconnected at smaller scales.

Introduction

As the world has rapidly urbanized over the last several decades [1], a growing majority of the

global population is directly affected by the organization and design of urban functions. There

are significant corresponding needs to develop a robust scientific understanding of these sys-

tems and improve our provisioning of infrastructure systems. One impediment to satisfying

both of these goals is the subdivision of cities into objective and justifiable intra-urban spatial

units. Such “neighborhoods” inform the deployment of resources and provisioning of services

by governing agencies, ranging from sanitation to mobility to healthcare [2–5], both in current

practice and active research. As an example, redevelopment of informal settlements is often

currently achieved through masterplans of these services at the neighborhood scale [3]. Simi-

larly, active research suggests that understanding the spatial scale (that is, the geographic

extent) at which neighborhoods naturally form can productively inform the design, size, and

type of technology for distributed energy resources [4,6].
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However, the subdivisions currently used to inform this provisioning are often arbitrarily

defined, outdated, or otherwise unclearly suited for the task [7]. At best, there remains large

uncertainty about the optimality of plans or policies developed using the corresponding

boundaries due to zoning and scale aggregation issues imposed by the well documented Modi-

fiable Areal Unit Problem [8]. Resolving these challenges requires the definition of a zoning

and aggregation scheme that can be clearly justified for the urban function under study.

Urban mobility is one such urban function for which the definition of better neighborhood

boundaries would have broad impacts. The patterns of the movement of people through the

built environment impact many types of urban functions. Transportation infrastructure is the

most pronounced example [9]. Less obvious are the secondary impacts on, for example, energy

systems, which manifest through the daily cycle of neighborhood-scale building occupancy.

Moreover, these patterns of movement are also rough approximations of social interaction pat-
terns [10,11]. In addition to the naturally anticipated ramifications for social infrastructure

(e.g., schools, parks, libraries, grocery stores, and so forth), the power law scaling relationships

that many fundamental indicators of urban activity demonstrate with city population (includ-

ing GDP, patents, and crime) have theoretically predicted dependencies on social interaction

patterns [2,12–14]. Thus, defining zones that can be justified based on human mobility pat-

terns would have value for understanding a wide variety of urban functions and informing the

design of relevant services or infrastructure.

Neighborhoods have a long theoretical history of being qualitatively defined by barriers or

breaks in pedestrian mobility and associated social connectivity [15,16]. Such barriers are

described as being defined generically by open spaces such as transportation infrastructure,

parks, water bodies, and so forth, many of which describe the rights-of-way (ROWs) of past

infrastructure interventions [17,18]. Recent work on so-called Community Severance has

quantified the barrier impacts of the width of transportation infrastructure in particular, while

also suggesting that these findings may hold for the other types of barriers [19]. However,

there is limited work using a static width heuristic (i.e., the measured width of large barriers)

to define neighborhoods, particularly in an automated fashion.

Recent work on what have been termed sanctuary areas provides a potential method for

defining neighborhoods using the community severance heuristic. Modernist planners in the

1960s designed neighborhood units explicitly bounded by wide roads [20]. Thus, researchers

have attempted to extract such regions by identifying urban areas bounded by roads of

regional topological importance [21]. Interestingly, even pre-1960s intra-urban areas identi-

fied with these tools have found use in some urban morphology classification tasks [22]. This

finding is likely partially explained by community severance principles and that the topological

importance of individual roads correlates with their barrier width. However, this relationship

—between topological importance and width—is not guaranteed, and thus a framework that

uses barrier width directly, while also allowing the capture of other non-road barriers (e.g.,

parks), theoretically will have more utility. Using a width heuristic in characterizing neighbor-

hood boundary barriers also provides additional benefits. In particular, it allows for the defini-

tion of a hierarchy of nested neighborhoods parameterized by the barrier width, with larger

barriers defining geographically larger neighborhoods. This notion provides a potential com-

pliment to studies aimed at detecting hierarchical structure at the super-urban scale, generally

through an analysis of the fractal dimension of clusters [23–25]. Moreover, this hierarchy pro-

vides a range of scales to test for structural importance as opposed to an a priori assumption of

a single important user-defined scale.

Here, we develop an automated method for extracting neighborhood structure based on

readily available features of a city’s physical form: building parcels. Specifically, we are interested

in uncovering neighborhood substructures within a city and determining the natural scale
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upon which such neighborhoods form, where scale refers to the spatial extent of the neighbor-

hoods and barriers that define them. We compare the scales that emerge from this analysis

across three American cities (San Francisco, New York, and Houston) with varying topography,

transit modalities, and urban planning regimes. To do so, we use concepts from the topological

data analysis method of persistent homology. These methods allow us to identify characteristic

road and public-space scales in cities and to robustly distinguish them from the noise. Compar-

ing the locations and numbers of these scales across cities reveals a lack of consistency in mor-

phology even between cities that superficially appear to be similarly gridded. Given the

aforementioned relationship between neighborhoods and infrastructure service provisioning

within cities, our work also represents a significant step toward a more nuanced understanding

of how physical urban morphology shapes energy and mobility systems.

Results

Uncovering neighborhood structure

For the purposes of introducing a general set of methods, we define barriers here as the negative

space between places of interest—more specifically, between parcels. A parcel represents the

outer bounds of a given piece of (landed) property. Only parcels that correspond to buildings

are included; we exclude rail and road infrastructure, parking lots, parks, and other similar

open spaces. We collected parcels for three U.S. cities: San Francisco, Houston (the “urban

zone” within the I-610 loop), and the New York Borough of Manhattan [26]. These three cities

were chosen because they comprise a relatively diverse set of American geographies (east coast,

west coast, south), regulatory regimes, and periods of development. While much of Manhattan

was planned and built before the advent of the automobile, large sections of both San Francisco

and Houston were built (or re-built, in the case of San Francisco) afterwards. Additionally, a sig-

nificant portion of Houston was developed post World War II and the advent of the interstate

freeway system [27]. While Manhattan and San Francisco were also non-trivially impacted by

this new infrastructure, both cities saw widespread, and successful, opposition to most planned

freeways of the mid-20th century [28,29]. As a result, freeways—generally significant barriers—

are more prominent in the urban landscape of Houston as compared to the other two cities. In

addition, Houston is the only major city in the United States without Euclidean zoning laws dic-

tating parcel land use. This, however, has resulted in a greater emphasis on street and thorough-

fare plans, and thus relatively wide streets by American standards [26].

Identifying nested neighborhoods in this context is fundamentally a hierarchical clustering

problem, where identified clusters represent neighborhoods. Here, we use single linkage clus-

tering to directly parametrize the barrier width heuristic as a threshold � (see Methods for

more details). Note that more complex barrier measurements could be captured with the same

parameter. As a test of the method and to develop intuition, we first apply this framework to a

synthetic example. Results from this model problem demonstrate that our framework both

uncovers neighborhoods consistent with the notion of barriers and is robust to the noise that

is unavoidably present in real city building parcel data due to, for example, errors or inconsis-

tencies in public record-keeping (see S1 File for an extended discussion of the effects of noise

on our model). Next, we apply our framework to empirical data from our three chosen cities

and find that the neighborhood sub-structure we uncover in this objective, automated fashion

is consistent with the notions of barriers or edges described in the urban planning literature.

For example, we find that highways in particular behave as physical barriers that drive the par-

titioning of neighborhoods as described in seminal work by Lynch in the early 1960s [15].

These barriers are particularly evident in Houston with its many wide highways that cut

through the urban core. The Katy Freeway (I-10) northwest of downtown Houston is
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popularly known as an example of a particularly wide highway [30]. Our method identifies the

neighborhood to the north of this highway as one of the more isolated large sections of the city

within the loop (Fig 1B). However, we find that the most isolated neighborhood in the 610

Loop is the Third Ward (Fig 1A). This particular neighborhood was systematically enclosed by

I-45 and State Highway 288 over the period between the late 1960s and the early 1980s. The

construction of these highways led to an exodus of wealthier residents and community decline

in the latter half of the twentieth century [31]. This change in local character subsequently

changed perceptions of the boundaries of the Third Ward. The original political definition

included much of what is now Downtown, with borders at Main Street to the northwest as

well as Congress Street and Harrisburg Boulevard to the northeast [32]. However, more mod-

ern definitions of the Third Ward now often define SH 288 and I-45 as the northwest and

northeast borders, respectively [33]; these are the exact same boundaries that we find using

our method.

Recovering these shifting neighborhood boundaries in an objective fashion without using

any domain knowledge is valuable and demonstrates the complexity of the information

embedded within the urban form. Additionally, this result can be seen as a validation of the

ideas behind our method that then gives us confidence to use it to uncover features of the

urban landscape that are not a priori known. Since our technique is by construction hierarchi-

cal (see Methods), we can use it to identify a nested sequence of barrier-defined neighbor-

hoods. Each neighborhood in this sequence will be bounded by similar types of edges;

however, these edges will increase in width as we move higher in the hierarchy. We interpret

the width of the bounding edges as a proxy for the isolation of one neighborhood from its

neighbor; thus, the distinction between two neighborhoods at a higher level in the hierarchy is

larger than two neighborhoods lower. For example, consider the neighborhood north of I-10

described earlier. This neighborhood can be further subdivided in two along the White Oak

Bayou. These subdivisions roughly correspond with the Greater Heights neighborhood to the

east and Lazybrook/Timbergrove neighborhood to the west [34,35].

Scales of neighborhood partition

Now that we have demonstrated that our techniques can reasonably identify neighborhood

substructure, both individually and hierarchically, we can use them to investigate urban mor-

phology more generally. In particular, we aim to characterize the phenomenon of neighbor-

hood partitioning globally over entire cities. To do so, we first model the hierarchical

subdivision of neighborhoods by barriers of specific widths as a Markov chain. The state space

for this process is the set of all possible barrier widths {0,1,. . .,maxc(Bc)}, where Bc refers to the

width at which neighborhood c is born (i.e., is first identified in our single-linkage clustering

method). Thus, the analog of time in this stochastic process is the level in the dendrogram,

proceeding from the birth of a parent cluster to the birth of a child cluster. In this context, the

transition probabilities Pij of the stochastic process refer to the subdivision probability that a

neighborhood bounded by a barrier of width i will be subdivided by a barrier of width j, where

i> j. It is reasonable to treat this stochastic process as Markovian because there is no a priori
reason to expect that neighborhoods of some scale are always subdivided in the same way.

These values allow us to study the relationship between bounding and subdividing edges, as

well as the most disproportionate widths of barriers that subdivide neighborhoods. Note that

much of the activity in the subdivision probability matrix P is likely to be near the diagonal,

reflective of imperfections in the structure of the city (e.g., a grid where one street was platted

slightly narrower). Thus, entries farther from the diagonal are more indicative of interesting

structure in the city. Barrier widths that subdivide a variety of larger neighborhoods will see
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multiple of these entries in their respective column. Since P is row stochastic but not column

stochastic [36], the sum over the columns ∑iPij captures these deviations. In particular, ∑iPij is a

vector representing how disproportionately all barrier widths subdivide neighborhoods across

the entire city. We term this quantity the disproportionality vector.

Fig 1. (a) The Third Ward, indicated in dark blue, as described by our method. Modern definitions for the northeast and northwest

borders are the highways shown in orange; the original political boundaries are shown in red. (b) Neighborhood separated from the rest

of Houston by the Katy Freeway (and I-45) in the northwest corner of the Houston I-610 loop (light blue and grey). This neighborhood

can be further subdivided by our method into two neighborhoods roughly corresponding to the Greater Heights and Lazybrook/

Timbergrove “super neighborhoods” as defined by the city government (black lines).

https://doi.org/10.1371/journal.pone.0245067.g001
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Although this measure describes which barrier widths are globally (that is, across all widths)

disproportionate, it does not provide a description of which widths characterize continuous

local regions of high disproportionality. However, these characteristically disproportionate

widths are very meaningful, as they highlight different width regimes that do not exist solely

due to noise in the data. To isolate these characteristic barrier widths, we turn to the concept

of persistence from topological data analysis. Persistence is analogous to the topographic

prominence problem of identifying which peaks characterize mountains, though generalized

to local maxima (or minima) across all functions [37]. We apply this idea to the disproportion-

ality vector and extract the most persistent barrier widths (see Methods for more details).

These values are labeled as characteristically disproportionate widths.
We plot the subdivision probability matrices, disproportionality vectors, and characteristi-

cally disproportionate widths for San Francisco, Manhattan, and the core portion of Houston

(inside the 610 freeway loop) in Figs 2A, 3A and 4A. We find that although each city has dis-

tinct scales at which neighborhoods form, a potentially universal scale of 18–19 m appears

across all three cities. This similarity indicates that despite the significantly divergent land-use

and urban planning policies of San Francisco and New York (centralized) versus Houston

(decentralized), neighborhoods tend to be severed by, or, equivalently, form around, barriers

of similar width. This potentially universal scale of neighborhood development is likely an

artefact of the typical width of a U.S. car lane of 2.7–3.6m [38]. Thus, a typical two to three lane

road with parking and pedestrian facilities on both sides would approach ~18m in width. The

existence of this potentially universal scale suggests that, structurally, there is a different regime

of neighborhood partition around barriers larger than 18-19m than below or at that threshold.

This regime change indicates that any barrier (e.g., a roadway, railway, or park) wider than 18-

19m causes relatively more physical isolation between subregions in all three cities than is typi-

cal, and thus drives the emergence of neighborhoods.

Beyond this single potentially universal scale, however, neighborhood partitioning begins

to diverge between the three cities, with each city’s larger scales being driven by its own local

features. For San Francisco, we find that neighborhoods also form at scales of 24m and 30m.

Fig 2C shows the neighborhoods that have primary internal edges of width 24m. Several

intriguing and interpretable features are apparent at this scale. Throughout the Mission Dis-

trict, for example, we find that these internal barriers tend to be east-west streets. The sur-

rounding edges, however, tend to be north-south streets, perhaps reflecting the larger

gradations in “neighborhood feel” when traveling east to west. 24m stands out as the second

significant scale in subdivision probability across all neighborhoods bounded by wider edges.

The primary pattern of north-south corridors in the Mission District is again apparent at this

scale. Similarly, we find that the Richmond and Inner/Outer Sunset Districts also have well

defined east-west corridors, albeit with narrower edges dividing them. The different morphol-

ogies between the neighborhoods north and south of Market St are also well highlighted (with

South of Market being severed uniformly by the wider 24m roads) by this analysis, reflecting

the historical development patterns of the city [39].

We find that Houston (Fig 4) has neighborhoods that form at a smaller scale (15 m) than

those in either New York or San Francisco. Moreover, the neighborhoods formed at this

scale lie near the periphery of the city, in contrast with the other two cities whose neighbor-

hoods that form at smaller scales tend to lie near their older, central sections. This result is

somewhat surprising given Houston’s strong preference towards the private automobile for

travel [40], which might imply that wider, car-oriented streets ought to dominate across the

entire city. Comparing the disproportionality vectors for Houston and New York directly,

we find that although Houston tends to have neighborhood partitions disproportionately

occur at larger scales (due the preponderance of wider barriers), it does indeed begin at
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smaller scales than New York. New York, on the other hand, sees more of its neighborhood

partitions occur in a small range between 17m and 18m. This result suggests that although

Fig 2. (a) Subdivision Matrix for San Francisco, with subdivisions by top three characteristically disproportionate

widths (see methods): (b) 19m, 34m, and (c) 24m highlighted. Each cell in the matrix represents the probability that the

next interior divider for a cluster bounded by a road of width i has width j (where i is represented by rows and j is

represented by columns). The first column (0�) in this matrix is the sum total for any edge of width less than 11m to

accommodate noise introduced by data downsampling. See Methods for more details. The distribution at the top is the

sum of these probabilities row wise—the disproportionality vector—showing internal widths that disproportionately

subdivide neighborhoods across the entire city.

https://doi.org/10.1371/journal.pone.0245067.g002
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Houston, across the entire city, has larger divisions than Manhattan, the smallest scales of

neighborhoods are more closely tied together and isolated than in Manhattan. Similar pat-

terns emerge when comparing San Francisco and Houston. In general, Houston appears to

exhibit more heterogenous neighborhood partitioning, perhaps reflecting its distinct plan-

ning ethos.

Fig 3. (a) Subdivision Matrix for New York, with top three characteristically disproportionate widths of (b) 18m, (c)

30m, and (d) 42m highlighted. The bottom portion of the figure depicts the clusters (solid color) with primary internal

edges of width 18m, 30m, or 42m (internal black lines).

https://doi.org/10.1371/journal.pone.0245067.g003
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Discussion

We have introduced an automated, objective method to construct a multi-scale hierarchy of

neighborhoods in cities. These neighborhoods, constructed to follow natural breaks in urban

mobility through an application of community severance theory, have potential applications in

Fig 4. (a) Subdivision Matrix for Houston, with top two (sub 50m) characteristically disproportionate widths of (b)

16m, and (c) 18m highlighted. The bottom portion of the figure depicts the clusters (solid color) with primary internal

edges of width 16m or 18m (internal black lines). Note that the disproportionality vector appears spread over a larger

set of values (both smaller and larger) than New York and San Francisco.

https://doi.org/10.1371/journal.pone.0245067.g004
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areas ranging from transportation modeling to studies of urban allometry. This method also

allows us to extract the most characteristically disproportionate scales for individual cities. Our

method uses only simple data—the shape and locations of buildings in space—that is readily

obtainable, potentially even from publicly available satellite imaging [41]. From this informa-

tion, we build a dendrogram from which the important scales can be found by calculating sub-

division probabilities.

We applied this method to three US cities with distinct geographic histories and planning

regimes. We find that many known neighborhood boundaries, such as highways, railroads,

and water bodies, are well described by the neighborhood hierarchy, as expected. Similarly, the

regions adjacent to these boundaries that are identified as neighborhoods roughly correspond

to traditional definitions that rely on a significant amount of specific local knowledge. Despite

the differences between these three cities, we consistently find the most disproportionate scale

to be 18-19m. This points to some latent feature that consistently drives neighborhood parti-

tioning, at least in the United States. However, we find that the range of scales that divides

neighborhoods is far more diverse in Houston than in New York or San Francisco. In particu-

lar, we note that Houston has characteristically disproportionate scales both smaller and large

than those found in New York, perhaps implying that Houston is more closely connected

locally but more divided at larger scales. Both of these patterns demonstrate how the method

we have introduced provides a succinct, readily comparable way to analyze neighborhood par-

titions across scales for individual cities.

These results clearly point to future extensions of the method we have presented. In particu-

lar, it naturally can be used to conduct a similar analysis for additional cities across the United

States. This would allow us to measure the extent to which the common scale we have found

here is universal across all American cities, and to develop a better understanding of the under-

lying latent features that drive such universal scales. Similarly, future work could examine

which city cores, if any, tend to be heterogeneously divided like Houston, as opposed to uni-

formly divided like San Francisco or New York. These extensions of our work could further

inspect the relationships between the morphological features uncovered by this method and

historical narratives of individual cities. In particular, further work could seek to understand

how the characteristic scales uncovered by this method differ across neighborhoods of differ-

ent ages of construction. Such historical contextualization would greatly aid the interpretation

and use of the method’s results for planning in local contexts.

Our methods also allow for the use of bespoke distance metrics that may capture different

barrier effects. Future work could include distance metrics with, for example, embedded topo-

graphic elevation or bike lane network topology. Finally, future work is needed to understand

how our results generalize to cities around the world, especially those that do not have similar

histories of gridded development or centralized planning (e.g., informal settlements). The sim-

plicity of the required input data is ideal for this purpose. The rise of remote sensing imaging

and deep learning is making it possible to capture building footprints anywhere in the world

[41]. Thus, our proposed methods will be relatively easy to extend even to areas with limited

traditional government datasets.

Finally, our proposed methods open the door for further studies testing critical hypothesis

on the impact urban-scale physical structures have on the dynamics of urban functions, from

mobility to social networks. For example, one could use the neighborhoods we have identified

here to study the effect of severing boundaries on urban-scale mobility patterns. The relation-

ships between these barrier defined neighborhoods and the flow-hierarchy defined in [42] is

particularly interesting. Alternatively, one could measure the morphology of social interactions

within and across different neighborhoods—potentially providing grounding for assumptions

made in urban-scaling research.
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Methods

Data

We collected parcel data for Houston, San Francisco, and New York City. The Houston and

New York data were subset to smaller geographic units: the I-610 loop in Houston and Man-

hattan in New York. Outlying islands for San Francisco and Manhattan were also removed.

The remaining parcels were subset to those that represent buildings, removing rail and road

infrastructure, parking lots, parks, and other similar open spaces. This process left 148,353 par-

cels for San Francisco, 39,736 parcels for New York City, and 149,434 parcels for Houston. To

aid our analysis and interpretation, the geometries for all three cities were re-projected into

Euclidean space using the corresponding Universal Transverse Mercator (UTM) zone coordi-

nate system. The resulting parcels in San Francisco were down-sampled to points along the

perimeter 4 meters apart to improve computation time.

Raw data are available from the corresponding local government websites and updated reg-

ularly. Processed data, including geometries used to subset the data and code, are available at

https://github.com/Urban-Informatics-Lab/auto-urban-substructure-ident [43–49].

Single linkage clustering

In Single Linkage Clustering, a subset of objects are defined to belong to the same cluster if

they are within a distance � from each other. At � = 0, each object belongs to a cluster than only

include objects immediately adjacent. As � increases, the number of clusters decreases until all

objects belong to the same cluster. See [50] for implementation details. In the context of this

research, clusters represent neighborhoods. This clustering process is equivalent to particular

filtrations of simplices in the persistent homology literature, from which we borrow some ter-

minology. The clusters produced by this algorithm are equivalent to the 0 dimensional homol-

ogy classes in a Vietoris-Rips or Cech complex for equivalent parameter � [51]. All homology

classes are characterized by a birth and death � corresponding to the smallest and largest values

at which the class exists, respectively [37,51,52]. However, we have one small difference in ter-

minology. In the persistent homology literature, all (0-dim) homology classes are born at � = 0,

and, at a merge, only one of the classes is marked as “dying.” Here, however, all clusters in a

merge have the corresponding � associated as their death. The same � becomes the birth for a

new cluster.

The objects in our metric space are parcel geometries. The distance metric is the Euclidean

distance between two parcels, discretized to the integers for ease of computation. The main ben-

efit of applying Single Linkage Clustering on this particular metric space is ease of interpretabil-

ity. The � at which two clusters of parcels merge (and a new cluster is born) is a measurement of

the width of the negative space between them. As negative space in this dataset is reflective of

barriers by virtue of not including roads or open space, the birth and death values of an individ-

ual cluster represent the width of barriers that, respectively, subdivide and bound it.

Persistence

Persistence is closely related to the mountaineering concept of topographic prominence.

Topographic prominence attempts to answer the question “what is a mountain?” with the

understanding that not every single local maximum (of elevation in this case) qualifies the

peak as its own mountain. A mountain, such as Everest, may have two or more summits, one

of which is considered prominent—and defines the height of the mountain—and one that is

not. This prominence is measured as how far one has to descend from one peak before begin-

ning the ascent on a taller peak [37].
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In Topological Data Analysis, topographic prominence is analogous to persistence, as antic-

ipated earlier, and is measured similarly. A primary context for its use is persistence-based

clustering, in which the mountains in the previous example are analogous to clusters organized

around basins (or hills) of attraction [53]. Persistence-based clustering works by applying an

algorithm parametrized by the persistence threshold τ twice for two different values of the

parameter. When τ =1, this algorithm produces a persistence diagram depicting the birth (in

this context, the value of the maximum) and death (the lowest value between the local maxi-

mum and the highest adjacent maximum) for each local maximum. Typically, births are plot-

ted on the horizontal axis while deaths are plotted on the vertical axis; in this context, the

persistence of each maximum is encoded in its y-distance above the line y = x. This diagram

can then be used to identify τ for the second pass of the algorithm, which identifies clusters

with local maxima that persist longer than τ. We use this clustering technique to identify per-

sistent clusters in the disproportionality vector, with the local maxima of the clusters identified

as the characteristic disproportionate widths.

Supporting information

S1 File. Supporting information for automated identification of urban substructure for

comparative analysis.

(PDF)
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