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We introduce a framework for Data Assimilation (DA) in which the data is split into

multiple sets corresponding to low-rank projections of the state space. Algorithms are

developed that assimilate some or all of the projected data, including an algorithm

compatible with any generic DA method. The major application explored here is

PROJ-PF, a projected Particle Filter. The PROJ-PF implementation assimilates highly

informative but low-dimensional observations. The implementation considered here is

based upon using projections corresponding to Assimilation in the Unstable Subspace

(AUS). In the context of particle filtering, the projected approach mitigates the collapse

of particle ensembles in high dimensional DA problems while preserving as much

relevant information as possible, as the unstable and neutral modes correspond to

the most uncertain model predictions. In particular we formulate and numerically

implement a projected Optimal Proposal Particle Filter (PROJ-OP-PF) and compare

to the standard optimal proposal and to the Ensemble Transform Kalman Filter.
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1. Introduction1

Many data assimilation techniques were developed based on2

extending assumptions of linearity in the state space and data3

models and under the assumption of Gaussian errors. Several4

techniques have proven to be successful in weakening these5

†JM, ONR, grant: N00014-18-1-2204; ARC, grant DP180100050; EVV, NSF,
DMS-1714195 and DMS-1722578.

assumptions, while other techniques have been developed to 6

explicitly overcome these obstacles. Important among these are 7

particle filters (Doucet et al. 2000), a key subject of this paper. 8

Particle filters have proven to be successful for low dimensional 9

assimilation problems but tend to have difficulty with higher 10

dimensional problems. Different variants of particle filters have 11

been developed to combat these difficulties, including implicit 12
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particle filters, proposal density methods, the optimal proposal,13

etc. (Chorin et al. 2010; Snyder et al. 2008; van Leeuwen 2010;14

Snyder 2011; Morzfeld et al. 2012). Recent work has often15

focused on the issue of localization (Farchi and Bocquet (2018),16

e.g.), and two localised particle filtering algorithms (Poterjoy17

and Anderson 2016; Potthast et al. 2019) have been applied in18

an operational geophysical framework. In the localised particle19

filter of Potthast et al. (2019) observations are projected onto the20

subspace spanned by the ensemble of model forecasts to reduce21

the dimension of the observations.22

Our contribution in this paper is to develop a framework for23

data assimilation schemes in which the data are constrained by24

an arbitrary projection to lie in some subspace of observation25

or model space. We explicitly obtain a form for the reduction26

in data dimension, and an expression that determines how much27

the posterior of the Bayesian DA scheme is affected by use28

of the projection. While the projection is not specified, the29

key idea is that some physically based reduction technique can30

then be employed in concert with a DA scheme. In such a31

way the assimilation step is performed in a space of very low32

dimension.33

The derivation in this paper was motivated in large part by34

assimilation in the unstable subspace (AUS) techniques. These35

techniques have largely focused on projection in the tangent space36

of the nonlinear model using Lyapunov vectors while employing37

the original data or observational model. The techniques and38

framework developed in this paper allow for combinations of39

(time dependent) projected and unprojected physical and data40

models, and their formulation is independent of the source of41

the projections. The framework and techniques lead to several42

natural applications. In particular, we develop a new particle filter43

algorithm that makes use of the original, unprojected physical44

and observation models for the particle update together with a45

weight update employing the projected observation model and46

a resampling scheme that restricts perturbations to the projected47

space.48

We now discuss the historical antecedents of the projections49

in this manuscript, and connect them to other recent filtering50

approaches. The AUS techniques (Carrassi et al. 2008a; Trevisan 51

et al. 2010; Palatella et al. 2013) to improve speed and reliability 52

of data assimilation specifically address the partitioning of 53

the tangent space into stable, neutral and unstable subspaces 54

corresponding to Lyapunov vectors associated with negative, 55

zero and positive Lyapunov exponents. In particular, Trevisan, 56

d’Isidoro & Talagrand propose a modification of 4DVar, so-called 57

4DVar-AUS, in which corrections are applied only in the unstable 58

and neutral subspaces (Trevisan et al. 2010; Palatella et al. 2013). 59

These techniques are based on updating in the unstable portion of 60

the tangent space and may be interpreted in terms of projecting 61

covariance matrices during the assimilation step. Motivated by 62

these techniques for assimilation in the unstable subspace, in 63

de Leeuw et al. (2018) a new method is developed for data 64

assimilation that utilizes distinct treatments of the dynamics in 65

the stable and non-stable directions. The key piece of de Leeuw 66

et al. (2018) related to this work is the following projected model 67

update. For a smooth discrete time model un+1 = Fn(un) and 68

projection Πn, and for {u(0)n }Nn=0 any reference solution, solve 69

for {dn}Nn=0: 70

u
(0)
n+1 + dn+1 = Πn+1Fn(u

(0)
n + dn), n = 0, ..., N − 1. (1)

Unlike most past work related to AUS our primary focus is on 71

developing a systematic approach to confining the data, not the 72

model, to the unstable subspace. In some of the initial works on 73

AUS (Carrassi et al. 2007, 2008b), either target observations at 74

the location where the unstable mode attains its maximum value, 75

or only the observations falling in the vicinity of the maximum, 76

were assimilated. Albeit empirical, that choice already signified 77

using only data projected on an approximation of the unstable 78

subspace, that was obtained by Breeding on the Data Assimilation 79

Cycle (BDAS). Furthermore, González-Tokman and Hunt (2013); 80

Bocquet et al. (2017); Grudzien et al. (2018b,a); Frank and 81

Zhuk (2018); Reddy et al. (2020); Tranninger et al. (2020) are 82

all at least in part devoted to discussing the necessary and/or 83

sufficient criteria for filter stability in terms of the projection of 84

the observations into the unstable/neutral/weakly stable directions 85
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and this is directly related to the choice of adaptive observation86

operators in Law et al. (2016).87

Another branch of projected DA schemes use the ‘Dynamically88

Orthogonal’ (DO) formulation (Sapsis and Lermusiaux 2009;89

Sapsis 2010), in which the forecast model is broken into a partial90

differential equation governing the mean field and a number91

of stochastic differential equations describing the evolution of92

components in a time-dependent stochastic subspace of the93

original differential equation. The DO approach was used to94

assimilate with different DA schemes in the subspace and mean95

field space in Sondergaard and Lermusiaux (2013); Majda et al.96

(2014); Qi and Majda (2015). These techniques use both a97

projected and mean field model to make a forecast, similar to98

using (1).99

Projection-based DA schemes have been developed to assimilate100

coherent structures (Maclean et al. 2017) or features (Morzfeld101

et al. 2018) in the data. These approaches have used likelihood-102

free sequential Monte Carlo methods, or an ad hoc ‘perturbed103

observations’ approach, to deal with the difficulty of calculating104

the likelihood function for a coherent structure. The derivation105

in this paper may lead to an explicit likelihood for data-derived106

coherent structures/features obtained via a projection.107

This paper is organized as follows. Data assimilation is reviewed108

in section 2 and projected DA is formulated in section 3.109

Algorithms for using the new projected data are introduced110

(section 4) and applied in several numerical experiments111

(section 5). A discussion (section 7) and bibliography conclude112

the paper.113

2. Data Assimilation114

Data assimilation methods combine orbits from a dynamical

system model with measurement data to obtain an improved

estimate for the posterior probability density function (pdf) of

a physical system. In this paper we develop a data assimilation

method in the context of the discrete time stochastic model

un+1 = Fn(un) + σn, n = 0, 1, ... (2)

where un ∈ RN are the state variables at time n and σn ∼ 115

N (0,Q), i.e., drawn from a normal distribution with mean zero 116

and model error covariance Q. Let the sequence {ut0, ut1, . . . }, be 117

a distinguished orbit of this system, referred to as the true solution 118

of the model, and presumed to be unknown. As each time tn is 119

reached we collect an observation yn related to utn via 120

yn = Hutn + ηn, yn ∈ RM (3)

where H : RN → RM , M ≤ N , is the observation operator, and

the noise variables ηn are drawn from a normal distribution

ηn ∼ N (0,R) with zero mean and known observational error

covariance matrix R. In general the observation operator can be

nonlinear.

We formulate DA under the ubiquitous Bayesian approach.

Consider the assimilation of a single observation, yn, at time step

n. Given a prior estimate p(un) of the state, Bayes’ Law gives

p(un|yn)∝ p(yn|un)p(un). Using (3) the likelihood function is,

up to a normalization constant,

p(yn|un) ∝ exp
[
−1

2
(yn −Hun)T R−1 (yn −Hun)

]
. (4)

This procedure, which we have written for the assimilation 121

of data at a single observation time, readily extends to the 122

sequential assimilation of observations at multiple times under 123

the assumptions that the state is Markovian and the observation 124

errors at different times are conditionally independent (see for 125

example Budhiraja et al. (2017)). 126

127

In the following we introduce some key DA schemes. Not much 128

detail is given here, but the interested reader is referred in 129

particular to three recent books on DA, (Reich and Cotter 2015; 130

Law et al. 2015; Asch et al. 2016). 131

2.1. Kalman Filtering 132

The Kalman Filter and later extensions are ubiquitous in DA,

and are now briefly described. For a linear model, i.e. where (2)
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is

un+1 = Anun + σn, (5)

and for the linear observation operator H, the Kalman Filter

calculates the exact posterior un|yn ∼ N (uan,P
a
n), where the

analysis variables are

uan =ufn + Kn(yn −Hufn) , (6)

Pan = (I−KnH) Pfn. (7)

The weight matrix Kn is the Kalman gain matrix

Kn = PfnHT
(
HPfnHT + R

)−1
. (8)

The superscript f is reserved for forecast variables, obtained at133

time n by using (5) to update {uan−1,Pan−1},134

ufn = An−1u
a
n−1 + σn−1 , (9)

135

Pfn = An−1P
a
n−1A

T
n−1 + Q . (10)

Two extensions of the Kalman Filter are prevalent in nonlinear136

DA, the Extended Kalman Filter (EKF) and Ensemble Kalman137

Filter (EnKF). Neither give the exact posterior for a nonlinear138

model.139

2.1.1. Extended Kalman Filter140

The nonlinear model (2) is used to make the forecast ufn, and141

then the update of the covariance (10) is applied using the142

linearisation143

An =
∂Fn
∂u

∣∣∣∣
ua
n

. (11)

If the observation operator is a nonlinear function h(), the144

linearization145

Hn =
dh

du

∣∣∣∣
uf
n

(12)

is used everywhere except to compute the innovation yn − h(ufn)146

in the calculation of yan.147

The EKF is suitable for low dimensional nonlinear filtering, but148

the required linearizations are nontrivial for high-dimensional149

filtering. The EnKF by contrast is well suited to high 150

dimensions. 151

2.1.2. Ensemble Kalman Filter 152

The Ensemble Kalman Filter is a Monte Carlo approximation of 153

the Kalman Filter that is well suited to high dimensional filtering 154

problems, introduced in Evensen (1994); Burgers et al. (1998). 155

An ensemble of forecasts uf,in are made at time tn, i from 1 to L. 156

Then the forecast covariance Pfn is approximated by the sample 157

covariance of the ensemble, and the analysis ensemble ua,in is 158

obtained in such a way that its mean ūan = 1
L

∑
i u
a,i
n satisfies 159

(6) and its sample covariance satisfies (7). In this paper we will 160

use analysis updates corresponding to the Ensemble Transform 161

Kalman Filter (ETKF) (Bishop et al. 2001). For more details and 162

a modern introduction to the Ensemble Kalman Filter, see e.g. 163

Evensen (2009) and Carrassi et al. (2018). 164

2.2. The Particle Filter 165

Particle Filters (PF) are a collection of particle based data 166

assimilation schemes that do not rely on linearization of the 167

dynamics or Gaussian representations of the posterior; see Doucet 168

et al. (2001) for a comprehensive review. The basic idea is to 169

represent the prior distribution p(un), previously the forecast, 170

and the posterior distribution p(un|yn), previously the analysis, 171

by discrete probability measures. Suppose that at time n− 1 we 172

have the posterior distribution (uin−1, w
i
n−1), supported on points 173

u1n−1, . . . u
L
n−1 and with weights w1

n−1, . . . w
L
n−1. Each win−1 ≥ 174

0 and
∑L
i=1 w

i
n−1 = 1. Here L is the number of particles that 175

are used to approximate the distribution. The two key steps in the 176

Particle Filter are as follows: 177

Prediction step. Propagate each of the particles uin−1 7→ uin. One 178

simple choice, the bootstrap PF, is to use the state dynamics (2) to 179

forecast each particle. 180

This gives the forecast probability distribution as a discrete 181

probability measure concentrated on L points {uin}Li=1 with 182

weights {win−1}Li=1. 183

Filtering step. Update the weights {win−1}Li=1 using the 184

observation yn. In the bootstrap PF the update is 185

win = cwin−1p(yn|uin), (13)
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where c is chosen so that
∑L
i=1 w

i
n = 1.186

This scheme is easy to implement but suffers from severe187

degeneracy, especially for high dimensional observations: even188

ten independent observations are sufficient to produce degenerate189

weights. That is, after a few time steps all the weight tends to190

concentrate on a few particles. A partial remedy is to monitor the191

Effective Sample Size (ESS) and resample when the ESS drops192

below some threshold in order to refresh the particle cloud; see193

e.g. Doucet et al. (2001); Budhiraja et al. (2017).194

2.2.1. The Optimal Proposal195

The optimal proposal particle filter (OP-PF) (Snyder et al. 2008;196

Doucet et al. 2000; Snyder 2011; Van Leeuwen 2012, e.g.)197

attempts to address the degeneracy issue in particle filters with the198

aim of ensuring that all posterior particles have similar weights.199

The ‘proposal’ is the distribution used to update the particles200

from one time step to the next. In the prediction step in the201

basic particle filter above, the particles are updated using the202

model, so the proposal density in that approach is (compare (2))203

uin|uin−1 ∼ N (Fn−1(uin−1),Q).204

The optimal proposal density is p(uin|uin−1, yn). Given the205

additive noise of the model (2) and a linear observation operator206

H, the optimal proposal update in each particle is Gaussian207

with uin|uin−1, yn ∼ N (mi
n,Qp), and we obtain the explicit208

update209

uin = mi
n + φ, φ ∼ N (0,Qp) (14)

where

mi
n =Fn−1(uin−1) + QHT

(
HQHT + R

)−1
Iin , (15)

Q−1p =Q−1 + HTR−1H , (16)

and Iin := yn −HFn−1(uin−1). The mean of the particle mi
n is210

obtained by a Kalman filter step, albeit with Pfn = Q.211

Two applications of Bayes’ law (e.g. in Snyder (2011)) show that

the weight update for the i-th particle drawn from this proposal

satisfies win ∝ p(yn|uin−1)win−1 with a Gaussian likelihood

function,

win ∝ exp

[
−1

2
(Iin)T

(
HQHT + R

)−1
(Iin)

]
win−1 . (17)

As mentioned in the previous section, degeneracy - characterised 212

by a single particle with weight of approximately 1 - is a common 213

problem in the PF. In Snyder et al. (2015) it is shown that, of all PF 214

schemes that obtain uin using uin−1 and yn, the ‘optimal proposal’ 215

above has the minimum variance in the weights. That is, it suffers 216

the least from weight degeneracy. In van Leeuwen et al. (2019) 217

this result is extended to any PF scheme that obtains uin using 218

u1:Ln−1 and yn. 219

However, in Snyder (2011) it is shown that the optimal proposal 220

requires an ensemble size L satisfying logL ∝ N×M for a 221

linear model, or will suffer from filter degeneracy. That is, filter 222

degeneracy is intimately connected to model and observation 223

dimension, and is a fundamental obstacle to Particle Filtering in 224

high dimensional problems. 225

3. Projected Data Models 226

We now develop an approach to decompose the observations 227

using projections defined in state space. A wealth of techniques 228

from dynamical systems theory can then be used to obtain low- 229

dimensional data models. 230

Suppose that at time n a dynamically significant rank p orthogonal 231

projection Πn ∈ RN×N is available, as well as data yn ∈ RM . 232

We next derive a projected data model consisting of a projected 233

obeservation operator, projected observation, and associated 234

observation error covariance. 235

Step One: lift the data into model space 236

In order to apply the projection Πn to data, we first need to find

an equivalent representation of the data in model space.

Assuming H has full row rank, we define an N -dimensional

vector ỹn = H†yn where H† = HT (HHT )−1, the pseudo

inverse of H. The data model for ỹn is

ỹn = H†yn = ΠHu
t
n + H†ηn = ΠHu

t
n + ψn (18)
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where ΠH = H†H is an orthogonal projection, and237

ψn ∼ N (0,H†R(H†)T ).238

239

Using that HH† = I one readily confirms that Hỹn = yn =240

Hutn + ηn. That is, the observation operator collapses ỹn onto241

the standard data model. The transformation through H† has242

not affected the output of a DA scheme, as p(ỹn|x) = p(yn|x);243

however ỹn is of compatible dimension with Πn.244

Step Two: project the data into a rank p subspace245

We now make use of the orthogonal projection Πn. The idea246

is to formulate a new data model, along the lines of Πnỹn =247

ΠnΠHu
t
n + ΠnH†ηn, that contains only the components of248

the observation that align with the projection. The projected249

data models that are developed here may be considered as250

generalizations of the construction of observation operators (see251

Grudzien et al. (2018a) Def. 13 and Law et al. (2016)).252

Define ypn = Πnỹn = ΠnH†yn ∈ RN , the projected observation.

The data model is

ypn = ΠnH†yn = ΠnΠHu
t
n + ξn (19)

where ξn ∼ N (0,ΠnH†R(H†)TΠn). The data model ypn has a

singular normal distribution with support in the p-dimensional

subspace of model space spanned by the projection Πn. Some

information from the observations is typically lost in this step

by applying the projection. At the end of Section 3 we derive a

data model for the orthogonal data (that is discarded in (19)), and

in Section 4.1 we sketch a result that establishes the difference

between assimilating with the full data (3) and with the projected

data.. The likelihood ypn|u of this distribution has an explicit

form using the pseudo-inverse (see e.g. Tsukuma and Kubokawa

(2015)) as

p(ypn|u) ∝ exp

(
−1

2
(Ipn)T

(
ΠnH†R(H†)TΠn

)†
Ipn

)
(20)

where Ipn := ypn −ΠnΠHu.253

Remark 1. The product ΠnΠH is not generally an orthogonal 254

projection, and in some circumstances it might be desired to 255

instead identify the projection ΠH
n that is the intersection of 256

Πn and ΠH. This projection ΠH
n may be approximated by Von 257

Neumann’s algorithm or Dykstra’s projection algorithm. The 258

projection ΠH
n should only be used if the transversality condition 259

p+M −N > 0 is satisfied; otherwise there is no guarantee 260

of any intersection between Πn and ΠH. If the transversality 261

condition is satisfied, e.g., with a high dimensional observation 262

space, then we can replace the product of projections ΠnΠH with 263

the projection into the intersection ΠH
n . Since in most applications 264

this will not be satisfied, throughout the rest of the paper we focus 265

on the use of the product of projections. 266

267

Step Three: reduce the projected data to a p-vector 268

To make explicit the reduction in the data dimension that has

been obtained by ypn we introduce a low dimensional data

model. Denote by Un the matrix with orthonormal columns

satisfying Πn = UnUT
n . This matrix may be already known (in

the examples in Section 3 Un is obtained first, and then Πn is

calculated from UnUT
n ), or Un may be found via the singular

value or Schur decompositions.

Define yqn = UT
ny

p
n ≡ UT

n ỹn ∈ Rp, with the associated data

model

yqn = Hq
nu

t
n + γn , (21)

where Hq
n = UT

nΠH, γn ∼ N (0,Rq
n), and Rq

n = 269

UT
nH†R(H†)TUn. 270

The transformations between, and dimensions of, the different 271

data variables defined in this section are illustrated in 272

Figure 1. 273

3.1. Properties of the projected data 274

Theorem 3.1 (Equivalence of ypn and yqn). For the data models 275

associated with ypn and yqn given by (19) and (21), respectively, 276

p(yqn|u) = p(ypn|u). 277

278
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Dimension:

N

M

p

yn

ỹn ypn

yqn

H†

Πn

UT
n

Figure 1. The progression from the original data yn to low-dimensional, projected
data yqn. The rectangular boxes contain data, or data-derived constructs. The vertical
placement of each box corresponds to the dimension of the data at each step:
N ≥M ≥ p. Note that in practice one does not need to compute ỹn or ypn.

Proof. The matrix Un has orthonormal columns, so U†n = UT
n

and for any matrix B

(UnB)† =B†U†n = B†UT
n , (22)(

BUT
n

)†
=(UT

n )†B† = UnB† . (23)

Applying these results to (20), and using that Πn = UnUT
n ,279

ypn = Uny
q
n, UT

nUn = I, Ipn := ypn −ΠnΠHu, and Iqn := yqn −280

UT
nΠHu,281

p(ypn|u) = 1
c exp

(
− 1

2 (Ipn)T
(

ΠnH†R(H†)TΠn

)†
Ipn

)
= 1

c exp
(
− 1

2

(
UnI

q
n

)T
(R̃n)†

(
UnI

q
n

))
= 1

c exp
(
− 1

2 (Iqn)TUT
nUn

(
Rq
n

)†
UT
nUnI

q
n

)
= 1

c exp
(
− 1

2 (Iqn)T
(
Rq
n

)†
Iqn

)
= p(yqn|u)

(24)

where R̃n := UnUT
nH†R(H†)TUnUT

n and c is a normalising282

constant.283

If in addition p ≤M (or 0 < p+M −N ≤M for Πn ≡ ΠH
n ),284

and if HUn is full rank, then the covariance matrix Rq
n of285

yqn is invertible and yq has a standard normal distribution.286

More generally for (HHT )−1R(HHT )−1 = LTL, the Cholesky287

factorization, consider the SVD of LHUn = SΣVT . The rank of288

the covariance matrix Rq
n = UT

nH†R(H†)TUn = VΣTΣVT is289

equal to the number of non-zero singular values of Σ.290

Theorem 3.1 provides a blueprint for any DA system with a linear291

observation operator to be efficiently implemented with projected292

observations, involving the following changes: the observation yn293

is replaced with yqn, the observation operator H is replaced with294

Hq
n, and the assumed measurement covariance R is replaced with 295

Rq
n. 296

3.2. The orthogonal data model 297

Though the focus of this paper is on the projected data, a data

model for the complementary orthogonal projection I−Πn is

easy to write down. Define

yq⊥n =
(
U⊥n

)T
ỹn ∈ RN−p , (25)

where U⊥n (U⊥n )T = I−Πn. The two projected data models are

not independent in general and have joint distribution

 yqn
yq⊥n

 ∼ N

Hq

n u
t
n

Hq⊥
n utn

 ,
 Rq

n Rq
12,n

Rq
21,n Rq⊥

n


 , (26)

where Hq⊥ = (U⊥n )TΠH, Rq⊥ = (U⊥n )TH†R(H†)TU⊥n , and 298

the off-diagonal covariances are Rq
12,n = UT

nH†R(H†)TU⊥n 299

and Rq
21,n =

(
Rq

12,n

)T
. 300

The joint distribution (26) is not used in this manuscript. The 301

cross-covariance term Rq
12,n measures the information about the 302

projected subspace that is lost by not assimilating the orthogonal 303

component yq⊥. In ongoing work we are developing approaches 304

to factorise the posterior into two components, via (26), and apply 305

different DA methods to each component, incorporating the cross- 306

covariance terms. 307

4. Algorithms for Projected DA 308

In this section we discuss how some combination of the 309

standard/projected forecast models (2), (1) and data models (3), 310

(21), (25)–(26) may be used to form a ‘projected DA scheme’. 311

A projected data model changes the innovation, the observation 312

operator, and the observation error covariance. A projected 313

physical model changes the prior and model error covariances. 314

We want combinations of physical models, data models, and 315

DA techniques that optimize the assimilation, particularly of the 316

Particle Filtering schemes discussed in Section 2.2. 317

We identify the following approaches to assimilating with 318

projected data using the results of this paper: 319
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Algorithm 1 (Project data only, and discard the orthogonal320

component). Apply a standard DA scheme using the unprojected321

forecast model (2), but replace the standard data (3) with the322

projected data yqn of (21). The observation operator is replaced323

by Hq
n, and the covariance matrix of the observations is replaced324

by Rq
n.325

By careful construction, the unique component of ‘Algorithm 1’326

is actually a modified Bayesian posterior. This construction of a327

modified DA scheme as a modification to the posterior enables328

modularity: any DA scheme suitable for nonlinear filtering may329

be implemented with projected data models. In particular, this330

projected DA algorithm is fully compatible with localized DA331

schemes.332

PROJ-PF uses the standard forecast model (2) to update the

particles, but computes the weight update with

win ∝ exp
[
−1

2

(
yqn −Hq

nun
)T (

Rq
n

)−1 (
yqn −Hq

nun
)]
win−1 .

(27)

333

Another algorithm to be described is a novel, efficient PF334

scheme taking advantage of the Optimal Proposal PF described335

in section 2.2.1.336

Algorithm 2 (PROJ-OP-PF: Blend projected and unprojected data

in the assimilation step). This algorithm describes a Particle

Filter, PROJ-OP-PF, that uses the typical optimal proposal

equations (14)–(15) for the particle update. The weight update

for each particle is computed using the projected data model only,

i.e. using the projected form of (17),

win ∝ exp

[
−1

2
(Iqn)T

(
Hq
nQ(Hq

n)T + Rq
n

)−1
(Iqn)

]
win−1 .

(28)

where Iqn ≡ Iqn(uin−1) := yqn −Hq
nFn−1(uin−1).337

Algorithm 2 uses the original observation error covariance and the338

original observation operator for the particle update but employs339

the projected observation error covariance and the projected340

observation operator for the weight update. This strategy will be341

tested on the chaotic Lorenz-96 system in Section 6. One major 342

advantage of this approach is that it requires no modification of 343

the numerical simulation used to obtain the forecast. A second 344

advantage is its efficiency; the full data are used for the particle 345

update step, over which the update is straightforward and the 346

dimension of the data does not lead to filter degeneracy; and 347

only the projected data are used to avoid filter degeneracy in the 348

weight update step. The scheme will prove to be more accurate 349

than either, OP-PF or an Algorithm 1 implementation of OP-PF, 350

in numerical tests. 351

Particle Filters can benefit from adding noise on resampling, 352

particularly with deterministic forecast models. The correct way 353

to do this is to generate noise sampled from a Markov chain that 354

leaves the target pdf unchanged, see e.g. Doucet et al. (2000). For 355

example, one can implement an accept-reject step for the particle. 356

For simplicity we either do not add noise, or add noise sampled 357

from N (0, ω2I), where ω ∈ R must be tuned. We consider an 358

algorithm for projecting the noise on resampling. 359

Algorithm 3 (PROJ-RESAMP: Resampling in the Unstable 360

Subspace). When adding noise ω to particles after resampling, 361

multiply this random vector by αΠn + (1− α)I for some α ∈ 362

[0, 1]. 363

When α = 0 this algorithm is no different to the normal 364

resampling approach, but for α > 0 some proportion of the 365

uncertainty in resampling is constrained to lie in the space spanned 366

by the columns of Un. If employed in concert with an accept- 367

reject step, this may improve the chances of acceptance. For AUS 368

the resampling scheme should add more noise in the directions 369

of greatest uncertainty in the forecast model, which provides one 370

advantage; a second advantage is that the algorithm does not shift 371

particles as far off the attractor. 372

4.1. Convergence results for projected algorithms 373

A normal line of inquiry for a new DA algorithm is to quantify 374

the conditions under which it will well represent the posterior 375

distribution, which neglecting time subscripts we write as p(u|y). 376

The projected algorithms above do not generally converge to 377

p(u|y), and so there are two questions: ‘Does the algorithm 378
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converge to a known distribution?’, and ’How different is that379

distribution to the actual posterior?’.380

Algorithm 1 clearly implements an approximation of the381

distribution p(u|yq). That is, a Particle Filter implementation382

would converge to p(u|yq) in the limit as the number of383

particles approaches infinity. The distribution approximated by384

Algorithm 2 is a blending of p(u|y) and p(u|yq) that is non-trivial385

to obtain in closed form.386

We now quantify how the Algorithm 1 distribution p(u|yq) relates

to the standard posterior p(u|y). For this we will employ the

Hellinger distance: given two probability measures µ and µ′,

with associated probability distributions ρ and ρ′, the Hellinger

distance between the two is

dH(µ, µ′) =

[
1

2

∫ (√
ρ(u)−

√
ρ′(u)

)2
du

]1/2
. (29)

To bound this distance for Algorithm 1 we write ρ(u) = p(u|y)387

and ρ′(u) = p(u|yq). The second distribution is written as388

p(u|yq) = p(u|y)
p(y|yq)
p(y|u, yq) , (30)

obtained via Bayes’ law in the form p(u) = p(u|y) p(y)/p(y|u),389

conditioning on yq , and using p(u|y, yq) = p(u|y). Factorising390

both numerator and denominator, we obtain the final form391

p(u|yq) = p(u|y)
p(yq⊥|yq)
p(yq⊥|u, yq)

. (31)

Substituting into (29) we obtain a bound for the consistency of

Algorithm 1 with the original posterior p(u|y),

dH(µ, µ′) =

1

2

∫ (
1−

√
p(yq⊥|yq)
p(yq⊥|u, yq)

)2

ρ(u) du

1/2

=

1

2
Eµ
(

1−

√
p(yq⊥|yq)
p(yq⊥|u, yq)

)2
1/2

. (32)

An intuitive example of the above bounds in practice is a slow-392

fast system with a slow manifold onto which the fast variables393

are attracted. Choosing Πn to identify the slow variables will lead394

to a small value of dH(µ, µ′) for Algorithm 1 data assimilation 395

schemes, since knowledge of the slow variables is sufficient to 396

constrain the fast variables. In the case where there are few slow 397

variables and many fast variables, then, an Algorithm 1 Particle 398

Filter will be a much less degenerate implementation of the 399

Particle Filter that converges close to the desired posterior p(u|y). 400

The bounds (29)–(32) at present help to build intuition rather than 401

providing a practical tool: they only apply at a single assimilation 402

time, and it is difficult to infer a bound for the difference between 403

the Algorithm 1 posterior and the standard posterior over multiple 404

time steps. 405

5. Application: Assimilation in the Unstable 406

Subspace 407

For the remainder of the paper we will study the case where

the projection identifies the most unstable modes in the forecast

model. To determine these modes we employ the discrete QR

algorithm (Dieci and Van Vleck 2007, 2015). For the discrete time

model un+1 = Fn(un) + σn with un ∈ RN , let U0 ∈ RN×p

(p ≤ N) denote a random matrix such that UT
0 U0 = I,

Un+1Tn =F ′n(un)Un ≈
1

ε
[Fn(un + εUn)− Fn(un)], n = 0, 1, ...

(33)

where UT
n+1Un+1 = I and Tn is upper triangular with positive 408

diagonal elements. With a finite difference approximation the cost 409

is that of an ensemble of size p plus a reduced QR via modified 410

Gram-Schmidt to re-orthogonalize. Time dependent orthogonal 411

projections to decompose state space are Πn = UnUT
n and I− 412

Πn = I−UnUT
n . In order to apply (33) to an ensemble DA 413

method, U0 must be specified and we must choose how to obtain 414

un from the ensemble of particles at time tn. We initialise U0 415

from a modified Gram-Schmidt orthonormalization of a random 416

N × p matrix, and choose un :=
∑
i w

i
nu

i
n, the weighted particle 417

mean. 418

5.1. Projected approach and classical AUS techniques 419

This somewhat technical section establishes the relationship

between existing AUS algorithms and the projected data approach.

We consider the EKF-AUS (Trevisan and Palatella 2011; Palatella
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et al. 2013, e.g.). EKF-AUS is a modified EKF in which the

forecast covariance matrix Pfn is replaced by the projected matrix

ΠnPfnΠn, leading to the Kalman gain

Kn =ΠnPfnΠnHT
[
HΠnPfnΠnHT + R

]−1
, (34)

where the EKF forecast covariance matrix Pfn and observation420

operator Hn ≡ H are described in Section 2.1.1. It is clear that421

the EKF-AUS Kalman gain can be written as a combination of the422

columns of Un.423

For comparison, we write down the Kalman gain associated with

the data model (19),

Kn = PfnΠHΠn

[
ΠnH†

(
HPfnHT + R

)
(H†)TΠn

]†
. (35)

We choose this form to most closely resemble EKF-AUS; the424

arguments of Theorem 3.1 guarantee that (35) is identical to the425

Algorithm 1 implementation of the EKF.426

The difference between the two Kalman gains is essentially that427

(35) interchanges the position of H and Πn, requiring the use428

of H† in order to do so, but manages to project all terms in429

the covariance-weighting inverse instead of only the forecast430

covariance matrix. Unlike the classical AUS gain (34), (35) does431

not restrict the analysis increment to the unstable subspace. The432

innovation is yn −Hufn in classical AUS, but with (35) would be433

ypn −ΠnΠHu
f
n.434

That is, classical AUS uses the full data but restricts the435

assimilation update to the unstable subspace via (34); Algorithm 1436

restricts the innovation to the unstable subspace but the437

assimilation update can distribute this innovation across the whole438

of model space. The comparison between these algorithms here439

is pedagogical, not competitive; the advantages of the EKF-440

AUS algorithm are well established, while Algorithm 1 effects441

a reduction in data dimension that we will explore for Particle442

Filters, not the EKF.443

Finally we obtain a form of EKF associated with the444

projected model (1) and unprojected data. This is essentially445

a re-derivation of EKF-AUS from the projected framework446

employed in this paper, confirming that the two are compatible.447

Consider a linear or linearized physical model un+1 = Anun + 448

σn. The projected model has the form vn+1 = Bnvn + 449

Πn+1σn with Bn := Πn+1AnΠn, vn = Πnun, model error 450

covariances Qn+1 := Πn+1QΠn+1, and observation operators 451

Hn := HΠn. The reduced dimensional projected model has 452

the form wn+1 = Tnwn + UT
n+1σn with Tn := UT

n+1AnUn, 453

wn = UT
nun, model error covariances Qn+1 := UT

n+1QUn+1, 454

and observation operators Hn := HUn. Let P̃fn and P̂fn denote 455

the forecast covariance matrices for the projected and reduced 456

order models, respectively. Initialising with P̃f0 = Π0P
f
0Π0 and 457

P̂f0 = UT
0 Pf0U0 we see that by projecting and appropriate 458

modfication to the observation operators we obtain projected 459

and reduced order EKF-AUS forecast covariance matrices, 460

respectively. 461

We will now explore the benefits of the projected data algorithms 462

in an AUS framework, using (33) to calculate the projections, and 463

present examples from the Lorenz 96 system. 464

6. Numerics 465

Consider the system of ordinary differential equations introduced

in Lorenz (1996),

u̇i = (ui+1 − ui−2)ui−1 − ui + F , (36)

for i = 1, ..., 40 and F = 8. This ‘Lorenz-96’ system is chaotic 466

with 14 positive and 1 neutral Lyapunov exponents. We present 467

experiments in which the deterministic part of the model (2) is 468

given by an integration of (36) for a fixed time. 469

The primary focus of this section is Algorithm 2, PROJ-OP-PF, 470

compared to the OP-PF and ETKF. 471

6.1. Methods 472

The following five DA methods are compared. 473

1. PROJ-OP-PF, adding no noise on resampling. We compute 474

with each p from 1 to 20. 475

2. PROJ-OP-PF, adding Gaussian noise on resampling and 476

employing Algorithm 3 with α = 0.99. We consider each 477
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p from 1 to 20, and consider ten values of the noise on478

resampling ω, linearly spaced between 10−4 and 10−1.479

3. OP-PF, adding no noise on resampling.480

4. OP-PF, adding Gaussian noise on resampling. We consider481

ten values of the noise on resampling ω, linearly spaced482

between 10−4 and 10−1.483

5. ETKF. We consider ten values of multiplicative inflation for484

the forecast ensemble between 1 and 1.1, and additionally485

employ additive inflation of Q on the forecast covariance486

matrix.487

The first and third DA methods are benchmark schemes488

that, compared to the second and fourth scheme, clarify the489

contribution of noise on resampling to the good performance of490

OP-PF and PROJ-OP-PF.491

The goal of these experiments is to improve on the Optimal492

Proposal Particle Filter; the ETKF is present as an example of a493

very good DA method for this model. As outlined in Section 2,494

the OP-PF is the least degenerate of a wide class of Particle495

Filters, and further improving on its performance within the496

Particle Filtering class of algorithms is a significant achievement.497

The major advantage of PROJ-OP-PF over the ETKF is, as with498

any Particle Filter, when filtering nonGaussian prior/posterior499

distributions.500

6.2. Experimental setup501

We perform identical twin experiments: the true system state is502

generated by the model update equation (2), and the role of DA is503

to correct for errors in the initial condition and the realizations of504

the model noise. All experiments fix the following.505

• the number of ensemble members, L = 20.506

• the initial conditions for each ensemble sampled from a507

Gaussian with spread equal to the model noise, centred on508

the true initial condition.509

• model and true system dynamics are simulated with the510

fourth order Runge-Kutta scheme with time steps of 0.01,511

repeated until an observation time is reached.512

• the methods are spun up by computing and then discarding 513

1000 analysis steps; performance is then measured over the 514

following 10, 000 analysis steps. 515

• each method is repeated twenty times at each of the possible 516

combinations of the tuning parameters listed above. 517

We present results for six distinct scenarios, or experiments. 518

The key parameters in each experiment are the model noise Q, 519

the observation covariance R, the time between observations 520

∆ ≡ tn − tn−1, and the proportion of the state that is observed. 521

The first experiment produces a well-known test regime for the 522

Ensemble Kalman Filter. The final experiment is chosen according 523

to recommendations in Majda et al. (2014): 524

"Demanding tests for filter performance are the 525

regimes of spatially sparse, infrequent in time, high- 526

quality (low observational noise) observations for a 527

strongly turbulent dynamical system." 528

Our implementation of this test is less extreme than in Majda et al. 529

(2014), but we only employ L = 20 particles (compared to 10, 000 530

in the cited paper). 531

Table 1 displays the key experimental parameters. 532

The first two experiments involve small values of Q. For these the 533

OP-PF essentially reduces to a bootstrap Particle Filter, which is 534

not accurate for the high-dimensional Lorenz-96 system (RMSE 535

around 5). In these two experiments only, we additively inflate 536

the value of Q used in the OP-PF and PROJ-OP-PF, (14)–(17) 537

and (28), by 0.3I40. This modification retains some of the optimal 538

proposal update and stabilises both OP-PF and PROJ-OP-PF 539

(though the best performing PROJ-OP-PF, in experiment 3, does 540

not use it). 541

6.3. Results 542

On average out of all experiments, PROJ-OP-PF has 13% less 543

RMSE than OP-PF, and resamples about half as often (49% of the 544

time). The advantages of PROJ-OP-PF are more pronounced in 545

Experiments 1-3, but there is some improvement over OP-PF in all 546

cases. These statistics are computed by comparing the best-tuned 547

PROJ-OP-PF to the best-tuned OP-PF (each averaged over 104 548
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Q R ∆ observation spacing

Exp. 1 (0.01)2I40 I40 0.05 all vars observed

Exp. 2 (0.01)2I40 (0.5)2I40 0.05 all vars

Exp. 3 (0.1)2I40 (0.5)2I40 0.05 all vars

Exp. 4 (0.1)2I40 (0.5)2I20 0.05 every second var

Exp. 5 (0.1)2I40 (0.1)2I20 0.05 every second var

Exp. 6 (0.1)2I40 (0.1)2I20 0.1 every second var
Table 1. Key parameters for the Lorenz-96 experiments in Section 6. Each
row is a different experiment and the columns show the model noise,
observation noise, time interval between observations and proportion of state
space observed. The first experiment resembles a classic Lorenz-96 filtering
experiment. The final experiment has larger model uncertainty, more accurate
observations (harder for Particle Filters to avoid degeneracy), and infrequent,
partial observations. Only one parameter changes between each experiment;
in the online version of this article, that parameter is colored blue.

OP-PF: PROJ-OP-PF:

RMSE Resamp

Exp. 1 0.71 59%

Exp. 2 0.42 57%

Exp. 3 0.42 58%

Exp. 4 1.78 58%

Exp. 5 0.81 62%

Exp. 6 0.57 61%

RMSE Resamp

0.53 8%

0.35 5%

0.36 5%

1.68 49%

0.72 53%

0.53 57%

Table 2. Summary, for each of the experiments described in Section 6.2, of the
RMSE and percentage of assimilation steps that trigger resampling. Results
only listed for the best tuned (minimal RMSE) implementations of OP-PF and
PROJ-OP-PF. The projected scheme beats OP-PF in all cases, ranging from a
modest (7%) improvement in both RMSE and resampling in Experiment 6, to
a 25% improvement in RMSE and 85% reduction in the number of resampling
steps in Experiment 1.

time steps and over 20 repetitions of each experiment, at all tuning549

parameters described in section 6.1). Full details for the tuning and550

error scaling are presented in detail in the following subsection.551

The best-tuned results for each experiment are summarised in552

Table 2.553

6.4. Detailed results554

The optimally tuned parameters for each experiment are reported555

in Table 3. Figures 2–7 show how varying the projection556

rank p affects PROJ-OP-PF, compared to optimally tuned557

implementations of the OP-PF and ETKF, in each experiment. For558

each plot the tuned ETKF shows roughly what is achievable with559

an ensemble of size 20, while OP-PF displays the poor filtering560

performance of Particle Filters in high dimensions. PROJ-OP-PF561

reduces, by up to half, the gap in RMSE between OP-PF and562

ETKF.563

OP-PF: PROJ-OP-PF:

ω

Exp. 1 0

Exp. 2 0

Exp. 3 0

Exp. 4 0.02 (−1%)

Exp. 5 0.01 (−4%)

Exp. 6 10−4 (−2%)

p ω

1 0

1 0

1 0

5 0.01 (−1%)

7 10−4 (−5%)

9 10−4 (−3%)

Table 3. Summary, for each of the experiments described in Section 6.2,
of the optimal tuning parameters for OP-PF and PROJ-OP-PF. Numbers in
parentheses show the percentage reduction of the RMSE by employing noise
on resampling, compared to the benchmark OP-PF and PROJ-OP-PF schemes.
The optimal inflation for ETKF was 1.09 or 1.1 in all cases.

Figure 2. PROJ-OP-PF results scaling p for experiment 1 (compare Tables 1, 2 and
3). The best tuned PROJ-OP-PF covers 36% of the gap from the OP-PF error to the,
probably optimal, ETKF error, and reduces the proportion of resampling to almost
none.

Figure 3. PROJ-OP-PF results scaling p for experiment 2. The best tuned PROJ-
OP-PF scheme covers 21% of the gap from the best tuned OP-PF to the ETKF.

Figure 4. PROJ-OP-PF results scaling p for experiment 3. The best tuned PROJ-
OP-PF scheme covers 48% of the gap from the best tuned OP-PF to the ETKF.

Figure 5. PROJ-OP-PF results scaling p for experiment 4. This experiment is by
far the most challenging for PROJ-OP-PF, which at best has RMSE 1.68 (and
resamples on 49% of assimilation steps) compared to RMSE 1.78 (58%) for
OP-PF. One can instead (p = 2) reduce resampling by a factor of about half,
corresponding to a much less tight ensemble and better higher order statistics,
without greatly affecting the RMSE.
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Figure 6. PROJ-OP-PF results scaling p for experiment 5. Compared to OP-PF one
can tune PROJ-OP-PF for RMSE, covering 28% of the gap from the best tuned
OP-PF to the ETKF, or (p = 3) reduce resampling without affecting the RMSE.

Figure 7. PROJ-OP-PF results scaling p for experiment 6. Compared to OP-PF one
can tune PROJ-OP-PF for RMSE, covering 12% of the gap from the best tuned
OP-PF to the ETKF, or (p = 2) reduce resampling without affecting the RMSE.

Figure 8. RMSE over time of OP-PF (solid line, red in the online version),
PROJ-OP-PF (dots, blue in the online version) and ETKF (dashed, black in
the online version). OP-PF frequently spikes in error, while PROJ-OP-PF spikes
less frequently. For visualisation we plot the rolling mean RMSE of every five
assimilation steps and restrict the plot to a subset of assimilation times.

The RMSE over time from all methods from a subset of one run564

from experiment 5 is visualised in Figure 8. We see that both565

Particle Filter methods have similar minimum RMSE to the ETKF,566

but also frequently spike in error. The advantage of PROJ-OP-567

PF is that the error spikes are much less frequent, and smaller568

in amplitude. The more severe degeneracy of OP-PF, compared569

to PROJ-OP-PF, is visible in Figure 9, where an ensemble from570

experiment 5 is shown by plotting six state variables at the 6000-571

th assimilation step.572

The ETKF is generally stable with low RMSE for multiplicative573

inflation equal to or larger than 1.02 (1.04 in experiments 4-574

6). However it may be under-dispersive with spread lower than575

RMSE, and for this reason the optimal inflation was 1.1 in all576

cases. For each experiment in order, the spread in the ETKF was577

Figure 9. Details of all ensembles after an assimilation step, plotting six spatial
coordinates. Coloured splotches show the ensembles, each plotted slightly apart in
the horizontal direction for visualisation. From left to right in each coordinate: OP-
PF (blue crosses in the online version), which has just resampled, is tightly spread
in four of the six plotted coordinates, and has significant error in many; PROJ-OP-
PF (green circles) has a larger spread and tends to be closer to the truth (black star).
The EnKF (red squares) is closest to the truth in four of six coordinates. Note that
none of the variables plotted in this figure were observed.

0.20, 0.10, 0.13, 0.19, 0.06, 0.06. The final three spreads can be 578

widened to approximately equal the RMSE by taking a much 579

larger value of the multiplicative inflation, 1.3. The additive 580

inflation of Q is needed in experiments 4-6, else the ETKF suffers 581

large RMSE values (> 3). 582

6.5. Compete with EnKF by including model error 583

The previous experiments outline, over diverse scenarios, the 584

advantage of PROJ-OP-PF over OP-PF. We now adapt Harlim 585

and Hunt (2007)’s example scenario in which non-Gaussian 586

filters can compete with the EnKF, and confirm the advantage 587

of PROJ-OP-PF in that case. The idea is to introduce model 588

error: all DA methods will obtain forecasts using forcing F = 589

6 in (36), whereas the true system state is generated with 590

the original forcing F = 8. Experiments in this section will 591

otherwise replicate the prior sections: experimental setup as 592

given in Section 6.2, and key parameters for each experiment 593

given in Table 1. The principal result is that PROJ-OP-PF out- 594

performs the tuned ETKF (which, as before, performs best with 595

larger multiplicative inflation) in three of six experiments, with 596

roughly equal performance in a fourth. Given that the posterior 597

for the Lorenz-96 system is generally almost Gaussian, this is a 598

remarkable result. Figure 10 shows the relative performance of 599

all three schemes for Experiment Three. Summary statistics are 600

provided for all DA schemes in Table 4. 601
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Figure 10. RMSE over time for a single realization of Experiment Three with
model error, described in Section 6.5. For visualisation purposes we plot the rolling
mean of the RMSE over ten assimilation steps. Our algorithm PROJ-OP-PF now
out-performs the ETKF, and maintains its advantage over OP-PF.

OP-PF: PROJ-OP-PF: ETKF:

RMSE Res

Exp. 1 0.73 58%

Exp. 2 0.42 57%

Exp. 3 0.42 57%

Exp. 4 1.97 58%

Exp. 5 1.40 84%

Exp. 6 1.25 95%

RMSE Res

0.60 10%

0.36 5%

0.36 6%

1.88 50%

1.17 100∗%

1.15 100∗%

RMSE

1.29

1.25

0.61

1.25

1.16

0.91

Table 4. Statistics for experiments with model error (compare Table 2 without
model error). Tuned parameters are given in Table 3, except for Experiments 5
and 6 in which PROJ-OP-PF uses ω = 0.1. The 100% resampling for PROJ-
OP-PF in those experiments can be reduced if ω is smaller (at a commensurate
cost to RMSE.) For three experiments, including the standard benchmark for
the EnKF, Experiment One, PROJ-OP-PF significantly outperforms both OP-
PF and the ETKF, with drastically reduced resampling compared to OP-PF.

6.6. Outlook602

We now place the results of our experiments in more context.603

A key difference between our tuned PROJ-OP-PF and related604

works is the optimal selection of the subspace dimension: for605

our Experiments One to Three, the optimal dimension was p =606

1, and the largest value considered was p = 9. This is in stark607

contrast with AUS: in (Trevisan and Palatella 2011; Palatella608

et al. 2013, e.g.) the optimal subspace dimension is typically609

the number of positive and stable Lyapunov exponents (14 in610

our experiments), and Grudzien et al. (2018b,a) incorporate611

model error and conclude the optimal subspace dimension is612

larger still. Quinn et al. (2020) consider reduced rank DA in613

three coupled Lorenz-63 systems and conclude that the optimal614

subspace dimension is the Kaplan-Yorke dimension, again larger615

than the dimension of the unstable-neutral subspace. In some616

manner, all of the above papers are considering lowering the617

dimension of the model—whether for reduced order modelling618

or to represent some ensemble in model space. By contrast our 619

approach projects the data, and preserves the full rank model 620

forecast. 621

We consider three reasons for the smaller subspace dimension. 622

First note that the PROJ-OP-PF algorithm uses the data in two 623

ways: the original, non-projected form is used in an EnKF-like 624

step to update the particles, then the reduced order data is used to 625

update the particle weights. So we can understand that our method 626

may still perform well with small p if the combination of the full 627

rank particle update with the low rank weight update is sufficient 628

to approximate the posterior distribution. 629

Secondly, we conjecture that the effect of reduced data may 630

relate to synchronization. Pecora and Carroll (1990, 1991); Pecora 631

et al. (1997) show that if one inserts values for certain variables 632

into a dynamical system, and solves the dynamical system with 633

essentially arbitrary initial conditions in the remaining variables, 634

then the solution synchronizes with the true solution. In this 635

work we are forcing with projected data that for each time is 636

a linear combination of the model variables. We conjecture that 637

this may provide a synchronizing effect even if the dimension of 638

the projected data is lower than the number of positive Lyapunov 639

exponents. 640

Lastly we note that there is a reason to anticipate that the optimal 641

dimensions for projected data and projected models may differ. 642

In the reduced order physical models, the optimal subspace 643

dimension has more to do with sufficiently resolving solutions 644

so that particles provide good approximation of the true solution. 645

If we are projecting the data (only), then the particles can well 646

approximate the true solution and we only need to determine 647

their importance, i.e., their weights. The projected data models 648

may, due to containing less information, update the weights more 649

slowly, but they also avoid the degeneracy issues with large data 650

dimension (see, e.g., Bengtsson et al. (2008); Snyder et al. (2008); 651

Van Leeuwen (2009)). 652

This manuscript provides a framework for the use of projections 653

in reduced order data models. The framework empowers future 654

research to investigate optimal projections for various classes 655

of problems. Some contemporary works provide insight: Beeson 656
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and Sri Namachchivaya (2020) find best results using projections657

calculated from future time intervals, and (Carrassi et al. 2020,658

Section 5.1) argue that there is limited benefit to the projected659

approach if the model is deterministic. The second reference660

includes an explicit proof that, for a perfect deterministic model661

with uncorrelated observation errors (R = I), projecting to a662

lower dimension does not reduce filter degeneracy; therefore we663

learn that the benefit of employing projections is related to model664

error, model noise, and/or correlated observation errors. Along665

these lines, Albarakati et al. (2021) extend the PROJ-OP-PF666

scheme to project both the model and data and consider other667

reduced order modeling techniques in addition to AUS. Numerical668

results with a 38100-dimensional Shallow Water Equation show669

that the projected model dimension should be at least the Kaplan-670

Yorke dimension, but the projected data dimension can be much671

smaller.672

7. Discussion673

In this work a new approach to DA has been derived that allows674

for dimension reduction of the data using a projection defined675

in state space. The chief application has been Particle Filters676

Assimilating in the Unstable Subspace, which the classical AUS677

approach is unsuitable for because ensemble methods already678

project the forecast strongly into the unstable subspace (Bocquet679

and Carrassi 2017). By contrast the new approach sharply reduces680

filter degeneracy in a predictable fashion, improves filter accuracy681

and allows one to construct a sensible resampling scheme that682

adds more noise in more uncertain directions. Algorithms resting683

on the projected DA approach were tested on the chaotic Lorenz684

96 system that provides a challenging scenario for particle filters.685

The main algorithm tested was a particle filter, PROJ-OP-PF686

that mixes projected and unprojected data based on the optimal687

proposal. The discrete QR technique used to find the unstable688

subspace in this work is rigorously justified and the additional689

cost incurred by it is proportional to employing an ensemble size690

of the dimension of the projected subspace. The PROJ-OP-PF691

scheme makes only the most basic use of the data in the space692

orthogonal to whatever projection is employed. Projecting the data693

to lower the dimension of the observations generally reduces both694

the RMSE and the resampling as compared to OP-PF. Resampling695

is essentially always better in our experiments and the RMSE is 696

only worse for PROJ-OP-PF with extremely low rank projections 697

in experiments 4 and 5. 698

Interesting extensions to these techniques include the use of 699

nonlinear observation operators and the application of spatial 700

localization techniques. Due to the modular approach we have 701

taken by introducing projected observations, existing localization 702

techniques for particle filters can be applied as they would with the 703

original unprojected observations. In addition, the combination 704

of projected physical model and projected observational model 705

allow for a combination of localized and unlocalized systems 706

to be employed much like the way projected and unprojected 707

data models are used in Proj-OP-PF. In this work we have 708

considered full rank, linear observation operators. There are some 709

straightforward extensions to nonlinear observation operators both 710

when using state space based projections and observation space 711

based projections. For state space based projections, the full 712

rank assumption is not necessary, only the existence of H† 713

which can be formed using the SVD. For nonlinear observation 714

operators, the linearization of H could be used to form DH(x)†. 715

Observation space projections, e.g., using PCA, remove the 716

need for H† or DH(x)† and can be applied directly to obtain 717

projected data models for both linear and nonlinear observation 718

operators. 719

Future work will generalise the projected DA approach to employ 720

two assimilation methods, one in the projected and one in the 721

orthogonal space. Such manipulations are done in Majda et al. 722

(2014); Slivinski et al. (2015), for example, and formulated for 723

model error in AUS in section 3.2 of Grudzien et al. (2018b). 724

The methods formulated in this paper have also been extended 725

to particle filters that project both model and data; the resulting 726

scheme was successfully applied to a high-dimensional shallow 727

water model in Albarakati et al. (2021). 728
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