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Introduction

We introduce a framework for Data Assimilation (DA) in which the data is split into
multiple sets corresponding to low-rank projections of the state space. Algorithms are
developed that assimilate some or all of the projected data, including an algorithm
compatible with any generic DA method. The major application explored here is
PROJ-PF, a projected Particle Filter. The PROJ-PF implementation assimilates highly
informative but low-dimensional observations. The implementation considered here is
based upon using projections corresponding to Assimilation in the Unstable Subspace
(AUS). In the context of particle filtering, the projected approach mitigates the collapse
of particle ensembles in high dimensional DA problems while preserving as much
relevant information as possible, as the unstable and neutral modes correspond to
the most uncertain model predictions. In particular we formulate and numerically
implement a projected Optimal Proposal Particle Filter (PROJ-OP-PF) and compare

to the standard optimal proposal and to the Ensemble Transform Kalman Filter.

Key Words: Data Assimilation, Numerical Analysis, Dimension Reduction

Received . ..

assumptions, while other techniques have been developed to

Many data assimilation techniques were developed based on
extending assumptions of linearity in the state space and data
models and under the assumption of Gaussian errors. Several

techniques have proven to be successful in weakening these
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explicitly overcome these obstacles. Important among these are
particle filters (Doucet et al. 2000), a key subject of this paper.
Particle filters have proven to be successful for low dimensional
assimilation problems but tend to have difficulty with higher
dimensional problems. Different variants of particle filters have

been developed to combat these difficulties, including implicit
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particle filters, proposal density methods, the optimal proposal,
etc. (Chorin et al. 2010; Snyder et al. 2008; van Leeuwen 2010;
Snyder 2011; Morzfeld et al. 2012). Recent work has often
focused on the issue of localization (Farchi and Bocquet (2018),
e.g.), and two localised particle filtering algorithms (Poterjoy
and Anderson 2016; Potthast et al. 2019) have been applied in
an operational geophysical framework. In the localised particle
filter of Potthast et al. (2019) observations are projected onto the
subspace spanned by the ensemble of model forecasts to reduce

the dimension of the observations.

Our contribution in this paper is to develop a framework for
data assimilation schemes in which the data are constrained by
an arbitrary projection to lie in some subspace of observation
or model space. We explicitly obtain a form for the reduction
in data dimension, and an expression that determines how much
the posterior of the Bayesian DA scheme is affected by use
of the projection. While the projection is not specified, the
key idea is that some physically based reduction technique can
then be employed in concert with a DA scheme. In such a
way the assimilation step is performed in a space of very low

dimension.

The derivation in this paper was motivated in large part by
assimilation in the unstable subspace (AUS) techniques. These
techniques have largely focused on projection in the tangent space
of the nonlinear model using Lyapunov vectors while employing
the original data or observational model. The techniques and
framework developed in this paper allow for combinations of
(time dependent) projected and unprojected physical and data
models, and their formulation is independent of the source of
the projections. The framework and techniques lead to several
natural applications. In particular, we develop a new particle filter
algorithm that makes use of the original, unprojected physical
and observation models for the particle update together with a
weight update employing the projected observation model and
a resampling scheme that restricts perturbations to the projected

space.

We now discuss the historical antecedents of the projections

in this manuscript, and connect them to other recent filtering

© 2020 Royal Meteorological Society

approaches. The AUS techniques (Carrassi et al. 2008a; Trevisan
et al. 2010; Palatella ef al. 2013) to improve speed and reliability
of data assimilation specifically address the partitioning of
the tangent space into stable, neutral and unstable subspaces
corresponding to Lyapunov vectors associated with negative,
zero and positive Lyapunov exponents. In particular, Trevisan,
d’Isidoro & Talagrand propose a modification of 4DVar, so-called
4DVar-AUS, in which corrections are applied only in the unstable
and neutral subspaces (Trevisan et al. 2010; Palatella et al. 2013).
These techniques are based on updating in the unstable portion of
the tangent space and may be interpreted in terms of projecting
covariance matrices during the assimilation step. Motivated by
these techniques for assimilation in the unstable subspace, in
de Leeuw et al. (2018) a new method is developed for data
assimilation that utilizes distinct treatments of the dynamics in
the stable and non-stable directions. The key piece of de Leeuw
et al. (2018) related to this work is the following projected model
update. For a smooth discrete time model u,+1 = Fn(un) and
projection I, and for {ugo)},szo any reference solution, solve

for {dn}2_:

W+ dpsr = Mg Fa(ul +dn), n=0,.., N = 1. (1)

Unlike most past work related to AUS our primary focus is on
developing a systematic approach to confining the data, not the
model, to the unstable subspace. In some of the initial works on
AUS (Carrassi et al. 2007, 2008b), either target observations at
the location where the unstable mode attains its maximum value,
or only the observations falling in the vicinity of the maximum,
were assimilated. Albeit empirical, that choice already signified
using only data projected on an approximation of the unstable
subspace, that was obtained by Breeding on the Data Assimilation
Cycle (BDAS). Furthermore, Gonzalez-Tokman and Hunt (2013);
Bocquet et al. (2017); Grudzien et al. (2018b,a); Frank and
Zhuk (2018); Reddy et al. (2020); Tranninger et al. (2020) are
all at least in part devoted to discussing the necessary and/or
sufficient criteria for filter stability in terms of the projection of

the observations into the unstable/neutral/weakly stable directions
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and this is directly related to the choice of adaptive observation

operators in Law et al. (2016).

Another branch of projected DA schemes use the ‘Dynamically
Orthogonal’ (DO) formulation (Sapsis and Lermusiaux 2009;
Sapsis 2010), in which the forecast model is broken into a partial
differential equation governing the mean field and a number
of stochastic differential equations describing the evolution of
components in a time-dependent stochastic subspace of the
original differential equation. The DO approach was used to
assimilate with different DA schemes in the subspace and mean
field space in Sondergaard and Lermusiaux (2013); Majda et al.
(2014); Qi and Majda (2015). These techniques use both a
projected and mean field model to make a forecast, similar to

using (1).

Projection-based DA schemes have been developed to assimilate
coherent structures (Maclean et al. 2017) or features (Morzfeld
et al. 2018) in the data. These approaches have used likelihood-
free sequential Monte Carlo methods, or an ad hoc ‘perturbed
observations’ approach, to deal with the difficulty of calculating
the likelihood function for a coherent structure. The derivation
in this paper may lead to an explicit likelihood for data-derived

coherent structures/features obtained via a projection.

This paper is organized as follows. Data assimilation is reviewed
in section 2 and projected DA is formulated in section 3.
Algorithms for using the new projected data are introduced
(section 4) and applied in several numerical experiments
(section 5). A discussion (section 7) and bibliography conclude

the paper.

2. Data Assimilation

Data assimilation methods combine orbits from a dynamical
system model with measurement data to obtain an improved
estimate for the posterior probability density function (pdf) of
a physical system. In this paper we develop a data assimilation

method in the context of the discrete time stochastic model

Un+41 :Fn(un)+0'n, n=20,1,... (2)

© 2020 Royal Meteorological Society

where u, € RV are the state variables at time n and o, ~
N(0,Q), i.e., drawn from a normal distribution with mean zero
and model error covariance Q. Let the sequence {u, u}, ...}, be
a distinguished orbit of this system, referred to as the true solution
of the model, and presumed to be unknown. As each time ¢, is
reached we collect an observation yy, related to v/, via

yn =Hup + 0, yn €RY 3)
where H : RN — RM M < N, is the observation operator, and
the noise variables 7, are drawn from a normal distribution
nn ~ N(0,R) with zero mean and known observational error
covariance matrix R. In general the observation operator can be
nonlinear.
We formulate DA under the ubiquitous Bayesian approach.
Consider the assimilation of a single observation, yn, at time step
n. Given a prior estimate p(up) of the state, Bayes’ Law gives
P(un|yn) x p(yn|un)p(un). Using (3) the likelihood function is,

up to a normalization constant,
1 T -1
P(ynlun) o< exp | =5 (yn —Hun)” R (yn — Hun)| . (4)

This procedure, which we have written for the assimilation
of data at a single observation time, readily extends to the
sequential assimilation of observations at multiple times under
the assumptions that the state is Markovian and the observation
errors at different times are conditionally independent (see for

example Budhiraja et al. (2017)).

In the following we introduce some key DA schemes. Not much
detail is given here, but the interested reader is referred in
particular to three recent books on DA, (Reich and Cotter 2015;

Law et al. 2015; Asch et al. 2016).

2.1. Kalman Filtering

The Kalman Filter and later extensions are ubiquitous in DA,

and are now briefly described. For a linear model, i.e. where (2)
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is
Up+1 = Anpun + On, (5)

and for the linear observation operator H, the Kalman Filter
calculates the exact posterior wun|yn ~ N (uy, Py), where the

analysis variables are

u?L :qu + Kn(yn — Hu{) ) (©6)

PS¢ =(I-K,H)P{. %)
The weight matrix K, is the Kalman gain matrix
-1

K, = PiH” (HP{LHT + R) . ®)

The superscript f is reserved for forecast variables, obtained at

time n by using (5) to update {ug_;, P& _ 1},
uly = Ap_1uf 1 +on1 ©)

P/ =A, P! AL +Q. (10)

Two extensions of the Kalman Filter are prevalent in nonlinear
DA, the Extended Kalman Filter (EKF) and Ensemble Kalman
Filter (EnKF). Neither give the exact posterior for a nonlinear
model.

2.1.1. Extended Kalman Filter

The nonlinear model (2) is used to make the forecast ufl, and
then the update of the covariance (10) is applied using the

linearisation
_ a F, n
T du

A, an

a
Unp

If the observation operator is a nonlinear function h(), the

linearization
H, - & (12)
dul| ¢
up
is used everywhere except to compute the innovation y, — h(ufl)

in the calculation of y;.
The EKF is suitable for low dimensional nonlinear filtering, but

the required linearizations are nontrivial for high-dimensional

© 2020 Royal Meteorological Society

filtering. The EnKF by contrast is well suited to high

dimensions.
2.1.2.  Ensemble Kalman Filter

The Ensemble Kalman Filter is a Monte Carlo approximation of
the Kalman Filter that is well suited to high dimensional filtering
problems, introduced in Evensen (1994); Burgers et al. (1998).
An ensemble of forecasts un’i are made at time ¢, ¢ from 1 to L.
Then the forecast covariance P£ is approximated by the sample

covariance of the ensemble, and the analysis ensemble ugp* is

a,i

obtained in such a way that its mean wj = % ZZ uy satisfies
(6) and its sample covariance satisfies (7). In this paper we will
use analysis updates corresponding to the Ensemble Transform
Kalman Filter (ETKF) (Bishop et al. 2001). For more details and

a modern introduction to the Ensemble Kalman Filter, see e.g.

Evensen (2009) and Carrassi et al. (2018).

2.2.  The Particle Filter

Particle Filters (PF) are a collection of particle based data
assimilation schemes that do not rely on linearization of the
dynamics or Gaussian representations of the posterior; see Doucet
et al. (2001) for a comprehensive review. The basic idea is to
represent the prior distribution p(un), previously the forecast,
and the posterior distribution p(un|yn), previously the analysis,
by discrete probability measures. Suppose that at time n — 1 we

have the posterior distribution (u’, _;,w’,_1), supported on points

1
n—1)-"

U .uk | and with weights w} ,,...w% ;. Each w! | >
0 and 25:1 w! | = 1. Here L is the number of particles that
are used to approximate the distribution. The two key steps in the
Particle Filter are as follows:

Prediction step. Propagate each of the particles u!, | — u,. One
simple choice, the bootstrap PF, is to use the state dynamics (2) to
forecast each particle.

This gives the forecast probability distribution as a discrete

probability measure concentrated on L points {u®}2, with

weights {w;, 1}/ ;.

Filtering step. Update the weights {w!_,}%, using the

observation yy. In the bootstrap PF the update is
i i i

W, = cWn_1p(yn|un), (13)
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where ¢ is chosen so that ZiL:1 wfl =1.

This scheme is easy to implement but suffers from severe
degeneracy, especially for high dimensional observations: even
ten independent observations are sufficient to produce degenerate
weights. That is, after a few time steps all the weight tends to
concentrate on a few particles. A partial remedy is to monitor the
Effective Sample Size (ESS) and resample when the ESS drops
below some threshold in order to refresh the particle cloud; see

e.g. Doucet et al. (2001); Budhiraja et al. (2017).

2.2.1. The Optimal Proposal

The optimal proposal particle filter (OP-PF) (Snyder et al. 2008;
Doucet et al. 2000; Snyder 2011; Van Leeuwen 2012, e.g.)
attempts to address the degeneracy issue in particle filters with the
aim of ensuring that all posterior particles have similar weights.
The ‘proposal’ is the distribution used to update the particles
from one time step to the next. In the prediction step in the
basic particle filter above, the particles are updated using the
model, so the proposal density in that approach is (compare (2))

unlup 1 ~ N (Fa1(up 1), Q).

The optimal proposal density is p(uf|u,_1,yn). Given the
additive noise of the model (2) and a linear observation operator
H, the optimal proposal update in each particle is Gaussian
with b |ul,_1,yn ~ N'(mb,Qp), and we obtain the explicit
update

ulh, = mh + ¢, ¢~ N(0,Qp) (14)

where

. . -1
mh =Fa—1(uh 1) + QHT (HQHT +R) I, (9)
Q,'=Q'+H'R'H, 16)
and I}, := yn — HF,,_1(u,_;). The mean of the particle m?, is

obtained by a Kalman filter step, albeit with Pf1 =Q.

Two applications of Bayes’ law (e.g. in Snyder (2011)) show that
the weight update for the i-th particle drawn from this proposal
satisfies w?, o< p(yn|ul,_1)w!,_; with a Gaussian likelihood

© 2020 Royal Meteorological Society

function,

wl, ocexp [—%(I:;)T (HQu” +R) (1:;)} Wy, (7)

As mentioned in the previous section, degeneracy - characterised
by a single particle with weight of approximately 1 - is a common
problem in the PF. In Snyder et al. (2015) it is shown that, of all PF
schemes that obtain f, using u,_; and ys,, the ‘optimal proposal’
above has the minimum variance in the weights. That is, it suffers
the least from weight degeneracy. In van Leeuwen et al. (2019)
this result is extended to any PF scheme that obtains v/, using

utt and yp.

However, in Snyder (2011) it is shown that the optimal proposal
requires an ensemble size L satistfying log L oc N x M for a
linear model, or will suffer from filter degeneracy. That is, filter
degeneracy is intimately connected to model and observation
dimension, and is a fundamental obstacle to Particle Filtering in

high dimensional problems.

3. Projected Data Models

We now develop an approach to decompose the observations
using projections defined in state space. A wealth of techniques
from dynamical systems theory can then be used to obtain low-
dimensional data models.

Suppose that at time n a dynamically significant rank p orthogonal

e RV*N g available, as well as data y, € RM.

projection IIj,
We next derive a projected data model consisting of a projected
obeservation operator, projected observation, and associated

observation error covariance.

Step One: lift the data into model space

In order to apply the projection II,, to data, we first need to find
an equivalent representation of the data in model space.
Assuming H has full row rank, we define an N-dimensional
vector o = H'y, where Hf = H'(HHT)™!, the pseudo
inverse of H. The data model for ¢, is

gn = Hlyn = Mol + Hpy = gl + 90 (18)
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where Iy =H'H is an orthogonal projection, and

¥n ~ N(0, HIRENT).

Using that HH' =1 one readily confirms that Hg, =y, =
Hu!, 4+ n,,. That is, the observation operator collapses ¢, onto
the standard data model. The transformation through H' has
not affected the output of a DA scheme, as p(jn|z) = p(yn|z);

however ¢, is of compatible dimension with IT,,.

Step Two: project the data into a rank p subspace

We now make use of the orthogonal projection II,. The idea
is to formulate a new data model, along the lines of Il,§n =
HnHHuﬁL—&-HnHTnn, that contains only the components of
the observation that align with the projection. The projected
data models that are developed here may be considered as
generalizations of the construction of observation operators (see

Grudzien et al. (2018a) Def. 13 and Law et al. (2016)).

Define yf, = Il gn = HnHTyn e RV, the projected observation.
The data model is

yh = T, H g, = My ggul, + én (19)
where &, ~ N(0, T, H'R(H')TT1,,). The data model v#, has a
singular normal distribution with support in the p-dimensional
subspace of model space spanned by the projection II,,. Some
information from the observations is typically lost in this step
by applying the projection. At the end of Section 3 we derive a
data model for the orthogonal data (that is discarded in (19)), and
in Section 4.1 we sketch a result that establishes the difference
between assimilating with the full data (3) and with the projected
data.. The likelihood yh|u of this distribution has an explicit

form using the pseudo-inverse (see e.g. Tsukuma and Kubokawa

(2015)) as
P 1 opyT trEh T )
pluhin) ocesp (20" (mer R 1) o)

where I% := yb — I, Iz u.

© 2020 Royal Meteorological Society

Remark 1. The product 11,11y is not generally an orthogonal
projection, and in some circumstances it might be desired to
instead identify the projection I that is the intersection of
I, and lyy. This projection i may be approximated by Von
Neumann’s algorithm or Dykstra’s projection algorithm. The
projection 1 should only be used if the transversality condition
p+ M — N >0 is satisfied; otherwise there is no guarantee
of any intersection between 11, and Tly. If the transversality
condition is satisfied, e.g., with a high dimensional observation
space, then we can replace the product of projections 11,11y with
the projection into the intersection L. Since in most applications
this will not be satisfied, throughout the rest of the paper we focus

on the use of the product of projections.

Step Three: reduce the projected data to a p-vector

To make explicit the reduction in the data dimension that has
been obtained by yh we introduce a low dimensional data
model. Denote by U, the matrix with orthonormal columns
satisfying II,, = U, UZ. This matrix may be already known (in
the examples in Section 3 U, is obtained first, and then II,, is
calculated from U, UL), or Uy, may be found via the singular
value or Schur decompositions.

Define y? = ULy? = UL, € RP, with the associated data

model

yh = Hiup +yn @21
where  HY =Ullly, v, ~N(O,R%), and RY=
ura'RENTU,.

The transformations between, and dimensions of, the different

data variables defined in this section are illustrated in

Figure 1.

3.1.  Properties of the projected data

Theorem 3.1 (Equivalence of v}, and y7). For the data models
associated with yb, and 3, given by (19) and (21), respectively,

p(yilu) = p(yh|w).
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Dimension:

Figure 1. The progression from the original data y,, to low-dimensional, projected
data y . The rectangular boxes contain data, or data-derived constructs. The vertical
placement of each box corresponds to the dimension of the data at each step:
N > M > p. Note that in practice one does not need to compute ,, or y%.

Proof. The matrix U, has orthonormal columns, so UL = UZ
and for any matrix B

(U,B) =B'U}, = BfUL | (22)

t
(BUZ) —uhiB' = U,B'. 23)
Applying these results to (20), and using that II,, = U, UZ,

yh = Upyl, UL U, =L I} := yf — Mullygu, and I} = yf —

U g,
POADE %exp( )’ HTR(H”TH")T[’@)
- %exp( L (Ua1)" (R (UnI%))
= Lexp (-3 %1‘1 TUt U, (RY) UTULTY)
= Lew(-3un7T (RE)"11)
= plynlu)

24
where Ry, := U, ULHIR(H")TU,, UL and c is a normalising

constant. O

If in addition p < M (or 0 < p+ M — N < M for II,, = IIED),
and if HU,, is full rank, then the covariance matrix R% of
y# is invertible and y? has a standard normal distribution.
More generally for (HHT) "!R(HHT)~! = LTL, the Cholesky
factorization, consider the SVD of LHU,, = SXVT . The rank of
the covariance matrix R% = UL HTRHNTU,, = vETzVT is

equal to the number of non-zero singular values of 3.

Theorem 3.1 provides a blueprint for any DA system with a linear
observation operator to be efficiently implemented with projected
observations, involving the following changes: the observation yn

is replaced with y;, the observation operator H is replaced with

© 2020 Royal Meteorological Society

H{, and the assumed measurement covariance R . is replaced with

q
R;.

3.2.  The orthogonal data model

Though the focus of this paper is on the projected data, a data
model for the complementary orthogonal projection I — IIj, is

easy to write down. Define

T
yit = (U#) gn € RNP (25)

where Ui (U#)T = I —1II,,. The two projected data models are

not independent in general and have joint distribution

vl HY up, R} R,
~N ) , (20)

v HY b up, R{ , RL
where H" = (U) Iy, R = (UH)THIREANT UL, and

the off-diagonal covariances are RY, "= =ura'rREHTUL
T

and Rgl,n = (R({Z,n)

The joint distribution (26) is not used in this manuscript. The

cross-covariance term R?,  measures the information about the

12,n
projected subspace that is lost by not assimilating the orthogonal
component y?+. In ongoing work we are developing approaches
to factorise the posterior into two components, via (26), and apply

different DA methods to each component, incorporating the cross-

covariance terms.

4. Algorithms for Projected DA

In this section we discuss how some combination of the
standard/projected forecast models (2), (1) and data models (3),
(21), (25)—(26) may be used to form a ‘projected DA scheme’.

A projected data model changes the innovation, the observation
operator, and the observation error covariance. A projected
physical model changes the prior and model error covariances.
We want combinations of physical models, data models, and
DA techniques that optimize the assimilation, particularly of the

Particle Filtering schemes discussed in Section 2.2.

We identify the following approaches to assimilating with

projected data using the results of this paper:
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Algorithm 1 (Project data only, and discard the orthogonal
component). Apply a standard DA scheme using the unprojected
forecast model (2), but replace the standard data (3) with the
projected data yy, of (21). The observation operator is replaced
by H}, and the covariance matrix of the observations is replaced

by RY.

By careful construction, the unique component of ‘Algorithm 1’
is actually a modified Bayesian posterior. This construction of a
modified DA scheme as a modification to the posterior enables
modularity: any DA scheme suitable for nonlinear filtering may
be implemented with projected data models. In particular, this
projected DA algorithm is fully compatible with localized DA

schemes.

PROJ-PF uses the standard forecast model (2) to update the

particles, but computes the weight update with

wh ocexp [~ (v~ ) " (RE) ™" (y — Hiwn) | wi

27)

Another algorithm to be described is a novel, efficient PF
scheme taking advantage of the Optimal Proposal PF described

in section 2.2.1.

Algorithm 2 (PROJ-OP-PF: Blend projected and unprojected data
in the assimilation step). This algorithm describes a Particle
Filter, PROJ-OP-PF, that uses the typical optimal proposal
equations (14)—(15) for the particle update. The weight update
for each particle is computed using the projected data model only,
i.e. using the projected form of (17),

()" (T +rY) (1%)} Who

w! O(ep{ !
n XpP | —5
2

(28)
where I = I (ul,_1) ==yl —HLF, _1(uf,_;).

Algorithm 2 uses the original observation error covariance and the
original observation operator for the particle update but employs
the projected observation error covariance and the projected

observation operator for the weight update. This strategy will be
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tested on the chaotic Lorenz-96 system in Section 6. One major
advantage of this approach is that it requires no modification of
the numerical simulation used to obtain the forecast. A second
advantage is its efficiency; the full data are used for the particle
update step, over which the update is straightforward and the
dimension of the data does not lead to filter degeneracy; and
only the projected data are used to avoid filter degeneracy in the
weight update step. The scheme will prove to be more accurate
than either, OP-PF or an Algorithm 1 implementation of OP-PF,

in numerical tests.

Particle Filters can benefit from adding noise on resampling,
particularly with deterministic forecast models. The correct way
to do this is to generate noise sampled from a Markov chain that
leaves the target pdf unchanged, see e.g. Doucet et al. (2000). For
example, one can implement an accept-reject step for the particle.
For simplicity we either do not add noise, or add noise sampled
from N(0,w?I), where w € R must be tuned. We consider an

algorithm for projecting the noise on resampling.

Algorithm 3 (PROJ-RESAMP: Resampling in the Unstable
Subspace). When adding noise w to particles after resampling,
multiply this random vector by all, + (1 — &)1 for some « €

[0, 1].

When « =0 this algorithm is no different to the normal
resampling approach, but for « > 0 some proportion of the
uncertainty in resampling is constrained to lie in the space spanned
by the columns of U,,. If employed in concert with an accept-
reject step, this may improve the chances of acceptance. For AUS
the resampling scheme should add more noise in the directions
of greatest uncertainty in the forecast model, which provides one
advantage; a second advantage is that the algorithm does not shift

particles as far off the attractor.

4.1. Convergence results for projected algorithms

A normal line of inquiry for a new DA algorithm is to quantify
the conditions under which it will well represent the posterior
distribution, which neglecting time subscripts we write as p(u|y).
The projected algorithms above do not generally converge to

p(uly), and so there are two questions: ‘Does the algorithm
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converge to a known distribution?’, and "How different is that

distribution to the actual posterior?’.

Algorithm 1 clearly implements an approximation of the
distribution p(u|y?). That is, a Particle Filter implementation
would converge to p(uly?) in the limit as the number of
particles approaches infinity. The distribution approximated by
Algorithm 2 is a blending of p(u|y) and p(u|y?) that is non-trivial

to obtain in closed form.

We now quantify how the Algorithm 1 distribution p(u|y?) relates
to the standard posterior p(u|y). For this we will employ the
Hellinger distance: given two probability measures ;o and p/,
with associated probability distributions p and p’, the Hellinger

distance between the two is

29

de(p, 1) = [%/(\/@— WY dur/z .

To bound this distance for Algorithm 1 we write p(u) = p(u|y)

and p’(u) = p(u|y?). The second distribution is written as

p(yly?Y)

30
Pyl y9) G0

p(uly?) = p(uly)
obtained via Bayes’ law in the form p(u) = p(uly) p(y)/p(y|u),
conditioning on y?, and using p(uly,y?) = p(uly). Factorising

both numerator and denominator, we obtain the final form

p(y?tly?)

. 31
p(yat|u, y?) Gl

p(uly?) = p(uly)

Substituting into (29) we obtain a bound for the consistency of

Algorithm 1 with the original posterior p(u|y),

- 2 1/2
/ 1 -
A (i ') = 2/(1 m> () du
: 2 1/2
1 p(yT*|y9)
= |zE* (1, B 32
2 ( p(yqllu,yq)> 2

An intuitive example of the above bounds in practice is a slow-
fast system with a slow manifold onto which the fast variables

are attracted. Choosing II,, to identify the slow variables will lead

© 2020 Royal Meteorological Society

to a small value of dg(u, ') for Algorithm 1 data assimilation
schemes, since knowledge of the slow variables is sufficient to
constrain the fast variables. In the case where there are few slow
variables and many fast variables, then, an Algorithm 1 Particle
Filter will be a much less degenerate implementation of the
Particle Filter that converges close to the desired posterior p(u|y).
The bounds (29)—(32) at present help to build intuition rather than
providing a practical tool: they only apply at a single assimilation
time, and it is difficult to infer a bound for the difference between
the Algorithm 1 posterior and the standard posterior over multiple

time steps.

5. Application: Assimilation in the Unstable

Subspace

For the remainder of the paper we will study the case where
the projection identifies the most unstable modes in the forecast
model. To determine these modes we employ the discrete QR
algorithm (Dieci and Van Vleck 2007, 2015). For the discrete time
model wni1 = Fn(un) +on with u, € RV, let Uy € RVXP

(p < N) denote a random matrix such that U Ug = I,

Up1Tn =Fp (un)Un ~ -

(33)
where UL +1Uny1 =TI and T4, is upper triangular with positive
diagonal elements. With a finite difference approximation the cost
is that of an ensemble of size p plus a reduced QR via modified
Gram-Schmidt to re-orthogonalize. Time dependent orthogonal
projections to decompose state space are 11, = U,UL and I —
I, =I—U,UL. In order to apply (33) to an ensemble DA
method, Uy must be specified and we must choose how to obtain
up, from the ensemble of particles at time ¢,,. We initialise Ug
from a modified Gram-Schmidt orthonormalization of a random
N X p matrix, and choose up := Y i wflu%, the weighted particle

mean.

5.1.  Projected approach and classical AUS techniques

This somewhat technical section establishes the relationship
between existing AUS algorithms and the projected data approach.

We consider the EKF-AUS (Trevisan and Palatella 2011; Palatella
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et al. 2013, e.g.). EKF-AUS is a modified EKF in which the
forecast covariance matrix P, is replaced by the projected matrix
I, P, leading to the Kalman gain
-1
K, =T, P/, HY [HHnPfLHnHT " R} T,
where the EKF forecast covariance matrix be and observation
operator H,, = H are described in Section 2.1.1. It is clear that

the EKF-AUS Kalman gain can be written as a combination of the

columns of Uy,.

For comparison, we write down the Kalman gain associated with

the data model (19),
:
Kn = P/ TIgIl, [HnHT (HP%HT n R) (HT)THn} . (35)

We choose this form to most closely resemble EKF-AUS; the
arguments of Theorem 3.1 guarantee that (35) is identical to the
Algorithm 1 implementation of the EKF.

The difference between the two Kalman gains is essentially that
(35) interchanges the position of H and II,, requiring the use
of H' in order to do so, but manages to project all terms in
the covariance-weighting inverse instead of only the forecast
covariance matrix. Unlike the classical AUS gain (34), (35) does
not restrict the analysis increment to the unstable subspace. The
innovation is vy — Hufl in classical AUS, but with (35) would be
Y — T Ilggud,.

That is, classical AUS uses the full data but restricts the
assimilation update to the unstable subspace via (34); Algorithm 1
restricts the innovation to the unstable subspace but the
assimilation update can distribute this innovation across the whole
of model space. The comparison between these algorithms here
is pedagogical, not competitive; the advantages of the EKF-
AUS algorithm are well established, while Algorithm 1 effects
a reduction in data dimension that we will explore for Particle

Filters, not the EKF.

Finally we obtain a form of EKF associated with the
projected model (1) and unprojected data. This is essentially
a re-derivation of EKF-AUS from the projected framework

employed in this paper, confirming that the two are compatible.

© 2020 Royal Meteorological Society

Consider a linear or linearized physical model uy,4+1 = Apun +
on. The projected model has the form wv,4+; = Bpu, +
p410n with By :=11,41AnIln, vp = pun, model error
covariances Q+1 := I, 1QIIl,+1, and observation operators
H,, := HII,,. The reduced dimensional projected model has
the form wy, 1 = Tnwy + UL, on with Ty := UL, A, Up,
Wy = Ugun, model error covariances Q4+ = U£+1QUn+1,
and observation operators H, := HU,,. Let f’fL and 15£ denote
the forecast covariance matrices for the projected and reduced
order models, respectively. Initialising with P/ = HOPS IIp and
15{; = UOTP{; Uy we see that by projecting and appropriate
modfication to the observation operators we obtain projected
and reduced order EKF-AUS forecast covariance matrices,

respectively.

We will now explore the benefits of the projected data algorithms
in an AUS framework, using (33) to calculate the projections, and

present examples from the Lorenz 96 system.

6. Numerics

Consider the system of ordinary differential equations introduced
in Lorenz (1996),

U = (Uip1 — ui—2) ui—1 —u; + I, (36)
for i =1,...,40 and F = 8. This ‘Lorenz-96’ system is chaotic
with 14 positive and 1 neutral Lyapunov exponents. We present

experiments in which the deterministic part of the model (2) is

given by an integration of (36) for a fixed time.

The primary focus of this section is Algorithm 2, PROJ-OP-PF,
compared to the OP-PF and ETKF.

6.1. Methods

The following five DA methods are compared.

1. PROJ-OP-PF, adding no noise on resampling. We compute

with each p from 1 to 20.

2. PROJ-OP-PF, adding Gaussian noise on resampling and

employing Algorithm 3 with o = 0.99. We consider each
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p from 1 to 20, and consider ten values of the noise on

resampling w, linearly spaced between 10~% and 1071
3. OP-PF, adding no noise on resampling.

4. OP-PF, adding Gaussian noise on resampling. We consider
ten values of the noise on resampling w, linearly spaced

between 10~% and 10~ 1.

5. ETKF. We consider ten values of multiplicative inflation for
the forecast ensemble between 1 and 1.1, and additionally
employ additive inflation of Q on the forecast covariance

matrix.

The first and third DA methods are benchmark schemes
that, compared to the second and fourth scheme, clarify the
contribution of noise on resampling to the good performance of

OP-PF and PROJ-OP-PF.

The goal of these experiments is to improve on the Optimal
Proposal Particle Filter; the ETKF is present as an example of a
very good DA method for this model. As outlined in Section 2,
the OP-PF is the least degenerate of a wide class of Particle
Filters, and further improving on its performance within the
Particle Filtering class of algorithms is a significant achievement.
The major advantage of PROJ-OP-PF over the ETKF is, as with
any Particle Filter, when filtering nonGaussian prior/posterior

distributions.

6.2. Experimental setup

We perform identical twin experiments: the true system state is
generated by the model update equation (2), and the role of DA is
to correct for errors in the initial condition and the realizations of

the model noise. All experiments fix the following.

* the number of ensemble members, L = 20.

* the initial conditions for each ensemble sampled from a
Gaussian with spread equal to the model noise, centred on
the true initial condition.

* model and true system dynamics are simulated with the
fourth order Runge-Kutta scheme with time steps of 0.01,

repeated until an observation time is reached.

© 2020 Royal Meteorological Society

¢ the methods are spun up by computing and then discarding
1000 analysis steps; performance is then measured over the
following 10, 000 analysis steps.

» each method is repeated twenty times at each of the possible

combinations of the tuning parameters listed above.

We present results for six distinct scenarios, or experiments.
The key parameters in each experiment are the model noise Q,
the observation covariance R, the time between observations
A =ty — tp—1, and the proportion of the state that is observed.
The first experiment produces a well-known test regime for the
Ensemble Kalman Filter. The final experiment is chosen according

to recommendations in Majda ez al. (2014):

"Demanding tests for filter performance are the
regimes of spatially sparse, infrequent in time, high-
quality (low observational noise) observations for a

strongly turbulent dynamical system."

Our implementation of this test is less extreme than in Majda et al.
(2014), but we only employ L = 20 particles (compared to 10, 000

in the cited paper).
Table 1 displays the key experimental parameters.

The first two experiments involve small values of Q. For these the
OP-PF essentially reduces to a bootstrap Particle Filter, which is
not accurate for the high-dimensional Lorenz-96 system (RMSE
around 5). In these two experiments only, we additively inflate
the value of Q used in the OP-PF and PROJ-OP-PF, (14)—(17)
and (28), by 0.3I40. This modification retains some of the optimal
proposal update and stabilises both OP-PF and PROJ-OP-PF
(though the best performing PROJ-OP-PF, in experiment 3, does

not use it).

6.3. Results

On average out of all experiments, PROJ-OP-PF has 13% less
RMSE than OP-PF, and resamples about half as often (49% of the
time). The advantages of PROJ-OP-PF are more pronounced in
Experiments 1-3, but there is some improvement over OP-PF in all
cases. These statistics are computed by comparing the best-tuned

PROJ-OP-PF to the best-tuned OP-PF (each averaged over 10%
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Q R A observation spacing
Exp. 1 (0.01)2140 I40 0.05 all vars observed
Exp.2 (0.01)%I (0.5)%I4 0.05 all vars
Exp.3  (0.1)% Iy (0.5)%Ly  0.05 all vars
Exp.4 (0.1)%Iy  (0.5)%Iy 0.05 every second var
Exp.5 (0.1)%Iy  (0.1)%Iy 0.05 every second var
Exp.6 (0.1)’Iy  (0.1)%Iy 0.1 every second var

Table 1. Key parameters for the Lorenz-96 experiments in Section 6. Each
row is a different experiment and the columns show the model noise,
observation noise, time interval between observations and proportion of state
space observed. The first experiment resembles a classic Lorenz-96 filtering
experiment. The final experiment has larger model uncertainty, more accurate
observations (harder for Particle Filters to avoid degeneracy), and infrequent,
partial observations. Only one parameter changes between each experiment;
in the online version of this article, that parameter is colored blue.

OP-PF: PROJ-OP-PF:

RMSE Resamp RMSE Resamp
Exp. 1 0.71 59% 0.53 8%
Exp.2  0.42 57% 0.35 5%
Exp.3  0.42 58% 0.36 5%
Exp. 4 1.78 58% 1.68 49%
Exp.5 0.81 62% 0.72 53%
Exp.6  0.57 61% 0.53 57%

Table 2. Summary, for each of the experiments described in Section 6.2, of the
RMSE and percentage of assimilation steps that trigger resampling. Results
only listed for the best tuned (minimal RMSE) implementations of OP-PF and
PROJ-OP-PF. The projected scheme beats OP-PF in all cases, ranging from a
modest (7%) improvement in both RMSE and resampling in Experiment 6, to
a25% improvement in RMSE and 85% reduction in the number of resampling
steps in Experiment 1.

time steps and over 20 repetitions of each experiment, at all tuning
parameters described in section 6.1). Full details for the tuning and
error scaling are presented in detail in the following subsection.
The best-tuned results for each experiment are summarised in

Table 2.

6.4. Detailed results

The optimally tuned parameters for each experiment are reported
in Table 3. Figures 2-7 show how varying the projection
rank p affects PROJ-OP-PF, compared to optimally tuned
implementations of the OP-PF and ETKF, in each experiment. For
each plot the tuned ETKF shows roughly what is achievable with
an ensemble of size 20, while OP-PF displays the poor filtering
performance of Particle Filters in high dimensions. PROJ-OP-PF
reduces, by up to half, the gap in RMSE between OP-PF and
ETKF

© 2020 Royal Meteorological Society
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OP-PF: PROJ-OP-PF:

w P w

Exp. 1 0 1 0

Exp. 2 0 1 0

Exp. 3 0 1 0

Exp.4  0.02 (—1%) 5 0.01(—1%)

Exp.5  0.01 (—4%) 7 1074 (—=5%)

Exp.6 107 (—2%) 9 107% (=3%)

Table 3. Summary, for each of the experiments described in Section 6.2,
of the optimal tuning parameters for OP-PF and PROJ-OP-PF. Numbers in
parentheses show the percentage reduction of the RMSE by employing noise
on resampling, compared to the benchmark OP-PF and PROJ-OP-PF schemes.
The optimal inflation for ETKF was 1.09 or 1.1 in all cases.

60 b 8. 22309023090 2.8.0.

P2 0 2.8 0 23 .0.3.8.9
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40

RMSE

20

... .. OP-PF

——&—— PROJ-OP-PF

0

% Resampling steps

1357911 15 19
Projection rank p

1357911 15 19
Projection rank p

Figure 2. PROJ-OP-PF results scaling p for experiment 1 (compare Tables 1,2 and
3). The best tuned PROJ-OP-PF covers 36% of the gap from the OP-PF error to the,
probably optimal, ETKF error, and reduces the proportion of resampling to almost
none.
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Figure 3. PROJ-OP-PF results scaling p for experiment 2. The best tuned PROJ-
OP-PF scheme covers 21% of the gap from the best tuned OP-PF to the ETKF.
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Figure 4. PROJ-OP-PF results scaling p for experiment 3. The best tuned PROJ-
OP-PF scheme covers 48% of the gap from the best tuned OP-PF to the ETKF.
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Figure 5. PROJ-OP-PF results scaling p for experiment 4. This experiment is by
far the most challenging for PROJ-OP-PF, which at best has RMSE 1.68 (and
resamples on 49% of assimilation steps) compared to RMSE 1.78 (58%) for
OP-PE. One can instead (p = 2) reduce resampling by a factor of about half,
corresponding to a much less tight ensemble and better higher order statistics,
without greatly affecting the RMSE.

Prepared using gjrms4.cls



564

565

566

567

568

569

570

571

572

573

574

575

576

577

0. J. R. Meteorol. Soc.

——&—— PROJ-OP-PF

GBE0EE0EE0E80E80E8058

0

v2
1.2 % 3K XXX KX KK X KX K
... ... OP-PF g 60
1 ——6—— PROJ-OP-PF o0
m — O— ETKF (=] 40
w0 =
= A
A~ 3 20
17}
Q
~
X

1357911 15 19
Projection rank p

1357911 15 19
Projection rank p

Figure 6. PROJ-OP-PF results scaling p for experiment 5. Compared to OP-PF one
can tune PROJ-OP-PF for RMSE, covering 28% of the gap from the best tuned
OP-PF to the ETKEF, or (p = 3) reduce resampling without affecting the RMSE.
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Figure 7. PROJ-OP-PF results scaling p for experiment 6. Compared to OP-PF one
can tune PROJ-OP-PF for RMSE, covering 12% of the gap from the best tuned
OP-PF to the ETKEF, or (p = 2) reduce resampling without affecting the RMSE.

RMS error

Figure 8. RMSE over time of OP-PF (solid line, red in the online version),
PROJ-OP-PF (dots, blue in the online version) and ETKF (dashed, black in
the online version). OP-PF frequently spikes in error, while PROJ-OP-PF spikes
less frequently. For visualisation we plot the rolling mean RMSE of every five
assimilation steps and restrict the plot to a subset of assimilation times.

The RMSE over time from all methods from a subset of one run
from experiment 5 is visualised in Figure 8. We see that both
Particle Filter methods have similar minimum RMSE to the ETKF,
but also frequently spike in error. The advantage of PROJ-OP-
PF is that the error spikes are much less frequent, and smaller
in amplitude. The more severe degeneracy of OP-PF, compared
to PROJ-OP-PF, is visible in Figure 9, where an ensemble from
experiment 5 is shown by plotting six state variables at the 6000-

th assimilation step.

The ETKF is generally stable with low RMSE for multiplicative
inflation equal to or larger than 1.02 (1.04 in experiments 4-
6). However it may be under-dispersive with spread lower than
RMSE, and for this reason the optimal inflation was 1.1 in all

cases. For each experiment in order, the spread in the ETKF was

© 2020 Royal Meteorological Society

13
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5 7 9 11 13 15

Spatial coordinate i

Figure 9. Details of all ensembles after an assimilation step, plotting six spatial
coordinates. Coloured splotches show the ensembles, each plotted slightly apart in
the horizontal direction for visualisation. From left to right in each coordinate: OP-
PF (blue crosses in the online version), which has just resampled, is tightly spread
in four of the six plotted coordinates, and has significant error in many; PROJ-OP-
PF (green circles) has a larger spread and tends to be closer to the truth (black star).
The EnKF (red squares) is closest to the truth in four of six coordinates. Note that
none of the variables plotted in this figure were observed.

0.20, 0.10, 0.13, 0.19, 0.06, 0.06. The final three spreads can be
widened to approximately equal the RMSE by taking a much
larger value of the multiplicative inflation, 1.3. The additive
inflation of Q is needed in experiments 4-6, else the ETKF suffers

large RMSE values (> 3).

6.5. Compete with EnKF by including model error

The previous experiments outline, over diverse scenarios, the
advantage of PROJ-OP-PF over OP-PF. We now adapt Harlim
and Hunt (2007)’s example scenario in which non-Gaussian
filters can compete with the EnKF, and confirm the advantage
of PROJ-OP-PF in that case. The idea is to introduce model
error: all DA methods will obtain forecasts using forcing F' =
6 in (36), whereas the true system state is generated with
the original forcing F' = 8. Experiments in this section will
otherwise replicate the prior sections: experimental setup as
given in Section 6.2, and key parameters for each experiment
given in Table 1. The principal result is that PROJ-OP-PF out-
performs the tuned ETKF (which, as before, performs best with
larger multiplicative inflation) in three of six experiments, with
roughly equal performance in a fourth. Given that the posterior
for the Lorenz-96 system is generally almost Gaussian, this is a
remarkable result. Figure 10 shows the relative performance of
all three schemes for Experiment Three. Summary statistics are

provided for all DA schemes in Table 4.
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Figure 10. RMSE over time for a single realization of Experiment Three with
model error, described in Section 6.5. For visualisation purposes we plot the rolling
mean of the RMSE over ten assimilation steps. Our algorithm PROJ-OP-PF now
out-performs the ETKF, and maintains its advantage over OP-PF.

OP-PF: PROJ-OP-PF: ETKF:

RMSE  Res RMSE  Res RMSE
Exp.1 073  58% 0.60 10% 1.29
Exp.2 042 57% 0.36 5% 1.25
Exp.3 042 57% 0.36 6% 0.61
Exp.4 197  58% 1.88  50% 1.25
Exp.5 140  84% 117 100"% 1.16
Exp.6 125  95% 115 100"% 0.91

Table 4. Statistics for experiments with model error (compare Table 2 without
model error). Tuned parameters are given in Table 3, except for Experiments 5
and 6 in which PROJ-OP-PF uses w = 0.1. The 100% resampling for PROJ-
OP-PF in those experiments can be reduced if w is smaller (at a commensurate
cost to RMSE.) For three experiments, including the standard benchmark for
the EnKF, Experiment One, PROJ-OP-PF significantly outperforms both OP-
PF and the ETKF, with drastically reduced resampling compared to OP-PF.

6.6. Outlook

We now place the results of our experiments in more context.
A key difference between our tuned PROJ-OP-PF and related
works is the optimal selection of the subspace dimension: for
our Experiments One to Three, the optimal dimension was p =
1, and the largest value considered was p = 9. This is in stark
contrast with AUS: in (Trevisan and Palatella 2011; Palatella
et al. 2013, e.g.) the optimal subspace dimension is typically
the number of positive and stable Lyapunov exponents (14 in
our experiments), and Grudzien et al. (2018b,a) incorporate
model error and conclude the optimal subspace dimension is
larger still. Quinn et al. (2020) consider reduced rank DA in
three coupled Lorenz-63 systems and conclude that the optimal
subspace dimension is the Kaplan-Yorke dimension, again larger
than the dimension of the unstable-neutral subspace. In some
manner, all of the above papers are considering lowering the

dimension of the model—whether for reduced order modelling
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or to represent some ensemble in model space. By contrast our
approach projects the data, and preserves the full rank model

forecast.

We consider three reasons for the smaller subspace dimension.
First note that the PROJ-OP-PF algorithm uses the data in two
ways: the original, non-projected form is used in an EnKF-like
step to update the particles, then the reduced order data is used to
update the particle weights. So we can understand that our method
may still perform well with small p if the combination of the full
rank particle update with the low rank weight update is sufficient

to approximate the posterior distribution.

Secondly, we conjecture that the effect of reduced data may
relate to synchronization. Pecora and Carroll (1990, 1991); Pecora
et al. (1997) show that if one inserts values for certain variables
into a dynamical system, and solves the dynamical system with
essentially arbitrary initial conditions in the remaining variables,
then the solution synchronizes with the true solution. In this
work we are forcing with projected data that for each time is
a linear combination of the model variables. We conjecture that
this may provide a synchronizing effect even if the dimension of
the projected data is lower than the number of positive Lyapunov

exponents.

Lastly we note that there is a reason to anticipate that the optimal
dimensions for projected data and projected models may differ.
In the reduced order physical models, the optimal subspace
dimension has more to do with sufficiently resolving solutions
so that particles provide good approximation of the true solution.
If we are projecting the data (only), then the particles can well
approximate the true solution and we only need to determine
their importance, i.e., their weights. The projected data models
may, due to containing less information, update the weights more
slowly, but they also avoid the degeneracy issues with large data
dimension (see, e.g., Bengtsson et al. (2008); Snyder et al. (2008);
Van Leeuwen (2009)).

This manuscript provides a framework for the use of projections
in reduced order data models. The framework empowers future
research to investigate optimal projections for various classes

of problems. Some contemporary works provide insight: Beeson
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and Sri Namachchivaya (2020) find best results using projections
calculated from future time intervals, and (Carrassi et al. 2020,
Section 5.1) argue that there is limited benefit to the projected
approach if the model is deterministic. The second reference
includes an explicit proof that, for a perfect deterministic model
with uncorrelated observation errors (R = I), projecting to a
lower dimension does not reduce filter degeneracy; therefore we
learn that the benefit of employing projections is related to model
error, model noise, and/or correlated observation errors. Along
these lines, Albarakati et al. (2021) extend the PROJ-OP-PF
scheme to project both the model and data and consider other
reduced order modeling techniques in addition to AUS. Numerical
results with a 38100-dimensional Shallow Water Equation show
that the projected model dimension should be at least the Kaplan-
Yorke dimension, but the projected data dimension can be much

smaller.

7. Discussion

In this work a new approach to DA has been derived that allows
for dimension reduction of the data using a projection defined
in state space. The chief application has been Particle Filters
Assimilating in the Unstable Subspace, which the classical AUS
approach is unsuitable for because ensemble methods already
project the forecast strongly into the unstable subspace (Bocquet
and Carrassi 2017). By contrast the new approach sharply reduces
filter degeneracy in a predictable fashion, improves filter accuracy
and allows one to construct a sensible resampling scheme that
adds more noise in more uncertain directions. Algorithms resting
on the projected DA approach were tested on the chaotic Lorenz
96 system that provides a challenging scenario for particle filters.
The main algorithm tested was a particle filter, PROJ-OP-PF
that mixes projected and unprojected data based on the optimal
proposal. The discrete QR technique used to find the unstable
subspace in this work is rigorously justified and the additional
cost incurred by it is proportional to employing an ensemble size
of the dimension of the projected subspace. The PROJ-OP-PF
scheme makes only the most basic use of the data in the space
orthogonal to whatever projection is employed. Projecting the data
to lower the dimension of the observations generally reduces both

the RMSE and the resampling as compared to OP-PF. Resampling

© 2020 Royal Meteorological Society

is essentially always better in our experiments and the RMSE is
only worse for PROJ-OP-PF with extremely low rank projections

in experiments 4 and 5.

Interesting extensions to these techniques include the use of
nonlinear observation operators and the application of spatial
localization techniques. Due to the modular approach we have
taken by introducing projected observations, existing localization
techniques for particle filters can be applied as they would with the
original unprojected observations. In addition, the combination
of projected physical model and projected observational model
allow for a combination of localized and unlocalized systems
to be employed much like the way projected and unprojected
data models are used in Proj-OP-PF. In this work we have
considered full rank, linear observation operators. There are some
straightforward extensions to nonlinear observation operators both
when using state space based projections and observation space
based projections. For state space based projections, the full
rank assumption is not necessary, only the existence of HT
which can be formed using the SVD. For nonlinear observation
operators, the linearization of H could be used to form DH(z)".
Observation space projections, e.g., using PCA, remove the
need for Hf or DH(z)" and can be applied directly to obtain
projected data models for both linear and nonlinear observation

operators.

Future work will generalise the projected DA approach to employ
two assimilation methods, one in the projected and one in the
orthogonal space. Such manipulations are done in Majda et al.
(2014); Slivinski et al. (2015), for example, and formulated for
model error in AUS in section 3.2 of Grudzien et al. (2018b).
The methods formulated in this paper have also been extended
to particle filters that project both model and data; the resulting
scheme was successfully applied to a high-dimensional shallow

water model in Albarakati et al. (2021).
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