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Abstract.
Disordered stealthy many-particle systems in d-dimensional Euclidean space Rd are exotic

amorphous states of matter that suppress any single scattering events for a finite range of
wavenumbers around the origin in reciprocal space. They are currently the subject of intense
fundamental and practical interest. We derive analytical formulas for the nearest-neighbor
functions of disordered stealthy many-particle systems. First, we analyze asymptotic small-r
approximations and expansions of the nearest-neighbor functions based on the pseudo-hard-
sphere ansatz. We then consider the problem of determining how many of the standard n-point
correlation functions are needed to determine the nearest neighbor functions, and find that a
finite number suffice. Via theoretical and computational methods, we are able to compare
the large-r behavior of these functions for disordered stealthy systems to those belonging to
crystalline lattices. Such ordered and disordered stealthy systems have bounded hole sizes, and
thus compact support for their nearest-neighbor functions. However, we find that the approach
to the critical-hole size can be quantitatively different, emphasizing the importance of hole
statistics in distinguishing ordered and disordered stealthy configurations. We argue that the
probability of finding a hole close to the critical-hole size should decrease as a power law
with an exponent only dependent on the space dimension d for ordered systems, but that this
probability decays asymptotically faster for disordered systems, with either an increase in the
exponent of the power law or a crossover into a decay faster than any power law. This implies
that holes close to the critical-hole size are rarer in disordered systems. The rarity of observing
large holes in disordered systems creates substantial numerical difficulties in sampling the
nearest neighbor distributions near the critical-hole size. This motivates both the need for
new computational methods for efficient sampling and the development of novel theoretical
methods for ascertaining the behavior of holes close to the critical-hole size. We also devise
a simple analytical formula that accurately describes these systems in the underconstrained
regime for all r. These results provide a theoretical foundation for the analytical description of
the nearest-neighbor functions of stealthy systems in the disordered, underconstrained regime,
and can serve as a basis for analytical theories of material and transport properties of these
systems.

PACS numbers: 05.20.-y
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1. Introduction

In the study of disordered many-body systems, a large body of recent work (see Ref. [1] and
references therein) has promoted the concept of hyperuniformity [2] as a useful principle
for identifying exotic disordered systems with novel physical properties [1, 1, 3, 4, 6–15].
Hyperuniformity refers to systems with an anomalous suppression of long-range density
fluctuations. More specifically, given a d-dimensional point process, one considers the
variance σ2

N(R) of the number of particles within a spherical window of radius R as one
uniformly varies the location of the window or averages over an enemble. Quantitatively, a
hyperuniform system is one in which [2]

lim
R→∞

σ2
N(R)

v1(R)
= 0, (1)

where v1(R) = πd/2Rd/Γ(1+d/2) is the volume of a d-dimensional sphere of radius R. For
typical disordered systems, σ2

N(R) grows as Rd , so the above ratio tends to a positive constant.
Thus, hyperuniformity is defined by an asympotically slow growth of the number variance,
which is a key measure of the density fluctuations associated to a given scale in the system.
Equivalently, one can also identify hyperuniformity through the following condition on the
structure factor S(k) (obtainable through the scattering intensity) associated with the point
process [2]:

lim
|k|→0

S(k) = 0. (2)

Note that this definition excludes the forward scattering contribution in the scattering pattern.
The structure factor is related to the widely-used total correlation function h(r) = g2(r)−1,
where g2(r) is the pair correlation function, through a Fourier transform [16]:

S(k) = 1+ρ

∫
Rd

e−ik·rh(r)dr. (3)

Thus, Eq. (2) amounts to the following sum rule on the two-point statistics of the point
process [1]: ∫

Rd
h(r)dr =−1. (4)

There are many examples of hyperuniform systems, both ordered and disordered. In the
ordered case, we have trivially that all perfect crystals are hyperuniform, due to the presence of
a Bragg-peak spectrum. As a less trivial ordered example, we have that perfect quasicrystals
are also hyperuniform [17–19]. Disordered hyperuniform systems are considerably more
exotic, since typical disordered systems such as liquids and gases have S(k → 0) 6= 0 [2].
Examples include avian photoreceptor patterns [20], perfect glasses [3], maximally random
jammed packings [21–26], density fluctuations in the large-scale structure of the Universe
[27–30], fermionic point processes [31, 32], and superfluid helium [33, 34].
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(a) (b)

Figure 1: Scattering patterns (structure factor) for two 2D stealthy hyperuniform point
processes and small corresponding representative samples of the underlying real-space point
processes (inset). (a) The scattering pattern of a triangular lattice (see inset). (b) The
scattering pattern of a disordered stealthy hyperuniform system (see inset). Excluding the
forward scattering contribution, both structure factors exhibit the signature exclusion region
around the origin in which there are no single-scattering events, implying a suppression of
density fluctuations from infinite down to finite wavelengths. However, the disordered
pattern lacks sharp Bragg peaks, with the diffuse behavior of the scattering pattern away
from the origin being closer to that of a liquid. Note that while the stealthy disordered pattern
possesses short-range order more typical of a disordered liquid or gas (see inset), it has a
bounded hole size [1, 2].

In this article, we will focus on an important subset of hyperuniformity known as stealthy
hyperuniformity [4]. Stealthy hyperuniformity further generalizes the notion of mimicking an
aspect of a crystal’s long wavelength behavior while maintaining local disorder. A stealthy
hyperuniform system is one in which the structure factor vanishes in an entire range of
wavelengths near the origin [4]:

S(k) = 0, 0 < |k|< K. (5)

Crystals, due to their Bragg peaks, trivially satisfy this condition. Interestingly, one can also
find disordered systems that obey stealthy hyperuniformity [5, 12, 36]. An example of the
scattering pattern for a stealthy disordered system is compared to a stealthy ordered system in
Fig. 1. While both the ordered crystal and the disordered pattern exhibit a spherical exclusion
region with no scattering, the disordered pattern exhibits the continuous scattering usually
associated with liquids and gases everywhere else in the domain [1, 5].

One of the most powerful techniques for studying stealthy hyperuniform systems is a
collective coordinate optimization procedure [4–6, 14, 15, 36, 38–40, 42] that involves finding
the ground states of a class of bounded pair potentials with compact support in Fourier
space [4, 5, 36, 38, 40]. The highly degenerate ground states of such potentials are stealthy
hyperuniform by construction. This technique suggests the utility of defining a control
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parameter χ , which is a dimensionless measure of the ratio of constrained degrees of freedom
to the total degrees of freedom in such an optimization procedure. In the thermodynamic limit,
this control parameter can be written [4, 5]

χ =
v1(K)

2ρd(2π)d , (6)

where ρ is the number density of the point process. Since this formula involves only the
general properties of a stealthy system, such as the cutoff wavevector K, it can be used
to classify stealthy systems even beyond the collective coordinate framework. A system
with a small χ (relatively unconstrained) is disordered, and as χ increases, the short-range
order increases within a disordered regime [4–6, 14, 15, 36, 38–40, 42]. Upon reaching a
critical value of χ , there is a phase transition to predominantly crystalline ground states
[4–6, 14, 15, 36, 38–40, 42].

While the stealthiness of crystals is a trivial outcome of Bragg scattering, disordered
stealthy systems display highly unusual statistical geometric properties. For example, all
stealthy hyperuniform systems have a bounded hole size [1, 2], meaning that one cannot find
a sphere devoid of particles above a certan radius, and an “anti-concentration” property that
strictly bounds the density from above in a large enough subset of the system [2]. As a result of
these crystal-like geometric properties and fluid-like short-range order, the disordered variants
exhibit novel physical properties with implications for materials discovery. In particular, the
isotropy of these disordered phases generates direction-independent physical properties, in
stark contrast to typical crystalline systems. For example, disordered stealthy point processes,
which can be mapped to cellular dielectric networks, led to the first discovery of a complete
isotropic photonic band gap [6–11], which enables the construction of free-form waveguides
[8,9,11]. In addition, they possess certain nearly optimal transport properties (while remaining
isotropic) when used to model both inclusion-based and cellular composites [12, 13], which
emphasizes the importance of the underlying point process geometry. The link between
the unique structural properties of stealthy disordered processes and their obvious utility for
materials design is still not fully understood, but it has been conjectured that the bounded hole
size property plays a key role in producing their novel thermodynamic and physical properties,
including their desirable band gap, optical, and transport behaviors [1].

However, there is still much we do not know about the fundamental structural properties
of disordered stealthy processes. One such type of fundamental question involves determining
the analytical functional forms for the nearest-neighbor functions of a given particle or void
point in the system [3, 43]. These functions encode the statistical distribution of intuitive
geometric concepts such as the size of holes in a system, making them good candidates for
capturing the statistical properties of stealthy disordered processes, which possess bounded
hole sizes. These functions come in two general varieties: the void nearest-neighbor functions,
which identifies the nearest neighbor of an arbitrary spatial point in the system, and the particle
nearest-neighbor functions, which identify the nearest neighbor of an arbitrary particle in the
system. While these varieties are generally distinct, they can sometimes be related to each
other for specific point processes, such as equilibrium hard spheres [3, 43].

The nearest-neighbor functions and variants have played a key role in investigating



Nearest-Neighbor Functions for Disordered Stealthy Hyperuniform Many-Particle Systems 5

problems in a variety of scientific fields. These include the application of the Wigner
surmise in nuclear physics [31, 45], their fundamental appearance in the theory of liquids
and other amorphous systems [3, 43, 46–60], the study of astrophysical dynamics [61], the
characterization of membranes in cells [62], and the modeling of granular flows [63]. They
have also been applied to the study of fundamental problems in the mathematical discipline
of discrete geometry, including the covering and quantizer problems [64].

In addition to their utility in describing systems of fundamental scientific and
mathematical interest, one can use them to derive statistics to characterize the microstructure
of complex materials. One example of such a derived quantity is the distribution of pore sizes
in a heterogeneous material [65, 66]. They can also be used to estimate transport properties,
such as the rate of a diffusion-controlled reaction [65,67–69]. Determining accurate formulas
for the nearest-neighbor functions of a system can thus aid in materials discovery.

Based on strong theoretical and computational evidence, Zhang, Stillinger, and Torquato
[1] formulated the surprising conjecture that any stealthy system has the aforementioned
bounded hole size property, which was subsequently proven by Ghosh and Lebowitz [2].
It is important to note that the converse is not true; there exist systems such as random
sequential addition at the saturation state that have bounded holes by construction but are
not stealthy [70,71]. The nearest-neighbor functions of disordered stealthy systems have also
been studied computationally in light of their connection with transport properties [12], and a
few results are known based on analytical approximations we will use later in this article [5].
However, to date, there has not been a systematic theoretical investigation of their nearest-
neighbor statistics, and little is known about their asymptotics as the critical-hole radius (i.e.
radius of the largest possible hole) rc is approached.

In this article, we obtain accurate theoretical expressions for these functions for
disordered stealthy hyperuniformity. The accuracy of our formulas is verified through
simulations presented in Refs. [1,4–6,42]. We pay particular attention to the small-r behavior
of the functions and asymptotics on approach to the critical-hole size.

In the small-r regime, we are able to obtain a variety of approximations and bounds due
to the pseudo-hard-sphere ansatz [5], which is valid when considering stealthy point processes
with low to intermediate χ . In particular, we are able to derive small-r expansions that can
provide useful approximations, even outside the small-χ limit. We also provide supporting
evidence for a new conjecture on the validity of two upper bounds. Going beyond the methods
based on the pseudo-hard-sphere ansatz, we demonstrate that the nearest-neighbor functions
can be determined by a finite number of gn(r

n), in contrast with the general case, which
requires an infinite number of gn(r

n). In the large-r regime, we consider the scaling behavior
of these functions as they approach the critical-hole size. We compare their behavior to that
of ordered point configurations through theoretical arguments and the analysis of simulation
data. We encounter substantial numerical difficulty due to the rarity of finding holes close
to the critical-hole radius, which we argue is exacerbated in disordered systems due to the
expectation that the hole probability vanishes more quickly in the presence of disorder. This
difficulty points to the need for the development of more efficient simulation methods for
these exotic potentials as well as further research into theoretical methods for determining



Nearest-Neighbor Functions for Disordered Stealthy Hyperuniform Many-Particle Systems 6

the behavior of holes near the critical-hole radius. We also discuss a useful prescription for
linking the small-r and near-rc regime into an approximation accurate over all r, as validated
by comparison to simulations. Finally, we comment on the large-r asymptotic behavior of the
nearest-neighbor functions of stealthy systems at positive temperature, where they lose their
strict stealthiness property, and show that they are also expected to lose their bounded holes
property.

Section 2 covers the basic theory of the nearest-neighbor functions and stealthy
hyperuniform point processes. In Sec. 3, we provide analytical bounds and approximations
obtained through the pseudo-hard-sphere approximation valid at small-r. We consider the
problem of determining how many of the gn(r

n) are needed to determine the nearest-neighbor
functions of stealthy systems in Section 4. Section 5 presents a description of the asymptotic
behavior near the critical-hole size of the nearest-neighbor functions. Section 6 discusses
the problem of linking the small and large-r regimes to obtain expressions for the nearest-
neighbor functions over all r. Section 7 describes positive temperature results. In Sec. 8, we
summarize our findings and makes some concluding remarks.

2. Preliminaries

2.1. Definitions for Nearest-Neighbor Functions

2.1.1. “Void” Quantities The nearest-neighbor functions are special cases of the general n-
point canonical function and thus obey the same mathematical properties, such as the rigorous
bounds described below [72]. We will begin by defining the void nearest-neighbor probability
density function HV (r) as in [3]:

HV (r)dr = probability that at an arbitrary located point in the system, the nearest point

in the point process lies between r and r+dr. (7)

This probability density is also closely related to the pore-size probability density function of
the two-phase system that forms when the points are decorated with spheres of radius R [65].
Under this assumption, the pore-size function becomes [65]

P(δ ) =
HV (δ +R)

φ1
, (8)

where φ1 is the volume fraction of the void phase.
The associated complementary cumulative distribution function, called the void

exclusion probability function, is given by [3]

EV (r) = 1−
∫ r

0
HV (r′)dr′. (9)

This has the following interpretation [3]:

EV (r) = probability that given an arbitrary location in the void, a ball of radius r

centered at that location is devoid of points. (10)

This definition is often given succintly as the probability of finding a hole of radius r.
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We can define a third nearest-neighbor function by expressing HV (r) in terms of a
conditional probability density GV (r) [3]

HV (r) = ρs1(r)GV (r)EV (r), (11)

where s1(r) is the surface area of a d-dimensional sphere of radius r. Thus, GV (r) has the
interpretation [3]:

ρs1GV (r)dr = probability of finding a particle between r and r+dr given that

one has found a hole of radius r. (12)

The asymptotic behavior of the function GV (r) is intimately related to the work required
to create a cavity of radius r in an equilibrium system at positive temperature [47]. This
enables one to relate the long-range behavior to the ratio of the pressure and temperature of a
system [47]:

GV (r→ ∞) =
p

ρkBT
. (13)

To assist in building intuition for the behavior of these functions, we note that the Poisson
point process has a void exclusion probability function of [4]

EV (r) = exp(−ρv1(r)) . (14)

One of the key features of the nearest-neighbor functions of stealthy systems is their limited
support due to their bounded hole size [1, 2], in contrast to the infinite support of many
disordered point processes, including the Poisson distribution. A more detailed comparison
of the void nearest-neighbor functions for several different physical systems is described in
the Supplementary Material [74].

The nth moments 〈rn〉 of the functions HV (r) and EV (r) are important summary statistics
for a point process, and are defined by [64]

〈rn〉=
∫

∞

0
rnHV (r)dr = n

∫
∞

0
rn−1EV (r)dr n ∈ Z+. (15)

In particular, the first moment of HV (r) gives the mean distance lV from an arbitrary location
in the void to the nearest point of the process:

lV ≡ 〈r〉=
∫

∞

0
rHV (r)dr =

∫
∞

0
EV (r)dr. (16)

2.1.2. “Particle” Quantities One can also define a corresponding set of functions that
measure the nearest-neighbor statistics with respect to an arbitrary particle rather than a void
point. The particle nearest-neighbor distribution function is defined [3]:

HP(r)dr = probability that the nearest point to a point of the point

process lies between r and r+dr. (17)

We can define EP(r) and GP(r) in the same manner as for the void functions [3]:

EP(r) = 1−
∫ r

0
HP(r)dr (18)

HP(r) = ρs1(r)EP(r)GP(r). (19)
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In general, the particle functions differ from the void functions for a given system, but
can sometimes be related to them for special systems. For example, the expression for EP(r)
for a Poisson point process is [3]

EP(r) = exp(−ρv1(r)) , (20)

which is the same as the expression for EV (r). In addition, the particle nearest-neigbor
functions can be determined from the void variants for hard-sphere systems [3]. We note in
passing that the relation between the void and particle variants of a given statistical quantity
are studied in the subject of Palm theory in stochastic geometry [75,76]. The interested reader
can refer to the Supplementary Material [74] for a comparison of the particle nearest-neighbor
functions for a variety of physical systems.

The moments of HP(r) and EP(r) can be related to each in a similar manner to that of the
void quantities [64]:∫

∞

0
rnHP(r)dr = n

∫
∞

0
rn−1EP(r)dr n ∈ Z+. (21)

The mean nearest-neighbor distance is the first moment of HP(r) or the integral over EP(r)
[43, 64]:

lP =
∫

∞

0
rHP(r)dr =

∫
∞

0
EP(r)dr. (22)

2.1.3. Series and Bounds Importantly, the nearest-neighbor functions can be represented as
a series expansion involving functionals of the standard n-point correlation functions gn(r) [3].
For example, in the case of a translationally invariant point process, the void exclusion
probability can be written [3]:

EV (r) = 1+
∞

∑
k=1

(−1)k ρk

k!

∫
gk(R

k)
k

∏
j=1

Θ(r−|x−R j|)dR j, (23)

where the value of x can be chosen arbitrarily. Note that this implies that the nearest-neighbor
functions incorporate partial information from higher-order distribution functions.

This series has a fundamental geometric interpretation, which can be seen by considering
the diagram given in Fig. 2. If one has a single point configuration, this figure shows that one
can compute EV (r) by computing the ratio of the volume outside a set of covering spheres of
radius r to the total volume in the process, normalized appropriately by either the fundamental
cell or by averaging over the Voronoi cells [55, 56, 77, 78]. The series (23) is then just the
computation of this volume fraction through the principle of inclusion-exclusion applied to the
spheres. More precisely, for a single point configuration, the above series (23) becomes [64]:

EV (r) = 1−ρv1(r)+
1

vF
∑
i< j

vint
2 (xi j;r)− 1

vF
∑

i< j<k
vint

3 (xi j,xik,x jk;r)+ · · · , (24)

where vF is the volume of the fundamental cell. This series is expected to truncate exactly
for any periodic system with a finite basis [64], such as the face-centered-cubic lattice and the
hexagonal-close-packed crystal. For example, in the case of the square and triangular lattices,
this series terminates at the two-body term [64]. However, as we will discuss in Section 5,
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Figure 2: A disordered stealthy system decorated with spheres of radius r and its Voronoi
diagram. The average over the Voronoi cells of the ratio of the area outside the spheres to the
total area of the cell is EV (r). This picture of EV (r) also demonstrates its relation to the
covering problem, where the critical-hole radius rc needed to cover all space is known as the
covering radius [64].

it may also truncate for special disordered systems. We apply this geometric formulation
of the void nearest-neighbor functions in the numerically sampling of computer-generated
1D stealthy configurations later in the article; see the Appendix for details. In addition, this
view of the void functions demonstrates their close relation to important problems in discrete
geometry [64]. For example, in the covering problem, one defines the covering radius as
the minimum radius of the spheres in Fig. 2 required to cover all space [64]. Then, one
can define the problem as a search for the point configuration which minimizes the covering
radius [64] at unit density. While the covering radius is finite for any single periodic point
configuration with a finite basis, it is not necessarily finite for an arbitrary disordered point
process. However, in the case of stealthy point processes, it corresponds to the critical-
hole radius rc. It is worthwhile to note that the optimal configurations for the covering
problem are the triangular lattice in two dimensions and the body-centered-cubic lattice in
three dimensions [64, 79]. These lattices are also the entropically favored states for stealthy
systems in the ordered χ > 1/2 regime [6]. While we focus on the disordered regime in this
paper, these optimal configurations still play an important role, since for χ close to 1/2, the
disordered stealthy configurations will show precursor characterstics of these lattices.

Interestingly, this representation also forms a series of successive upper and lower
bounds, which is described by a powerful general formalism developed in Ref. [72]. For
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example, for a homogeneous and isotropic point process, one has [31, 72]

EV (r)≤ 1, (25)

EV (r)≥ 1−ρv1(r), (26)

and

EV (r)≤ 1−ρv1(r)+
ρ2

2
s1(1)

∫ 2r

0
xd−1vint

2 (x;r)g2(x)dx, (27)

where vint
2 (x;r) is the intersection volume of two spheres of radius r a distance of x apart,

which is known analytically in any dimension [80]. In the first three space dimensions, these
intersection volumes can be expressed, respectively, as [65]

vint
2 (x;r)
v1(r)

= Θ(2r− x)
(

1− x
2r

)
d = 1, (28)

vint
2 (x;r)
v1(r)

=
2
π

Θ(2r− x)

[
cos−1

( x
2r

)
− x

2r

√
1− x2

4r2

]
d = 2, (29)

vint
2 (x;r)
v1(r)

= Θ(2r− x)
[

1− 3
4

x
r
+

1
16

(x
r

)3
]

d = 3, (30)

where Θ(x) denotes the Heaviside step function. The last inequality (27) exactly gives EV (r)
whenever only two-body terms contribute, such as in the case of the square and triangular
lattices in 2D [64]. In the disordered case, this series can be used to derive low-r expansions
for EV (r) by expanding g2(r) in powers of r [31]:

g2(r)∼ a+br2 (r→ 0), (31)

where, for the purposes of simplification, we have used in advance the fact that there is good
evidence that the linear term in the preceding expansion vanishes for the types of disordered
stealthy hyperuniform systems considered in this article [5, 6]. The order to which EV (r) can
then be determined depends on the spatial dimension. In one and two dimensions, one can
obtain results of the form [31, 65]

EV (r)∼ 1−ρv1(r)+
ρ2a

2
v1(r)2 (r→ 0). (32)

In three and higher dimensions, one can obtain a fourth term [31, 65]:

EV (r)∼ 1−ρv1(r)+
ρ2

2

(
av1(r)2 +b

2d
d +2

r2v1(r)2
)

(r→ 0). (33)

We will derive expressions for the a and b coefficients valid at low and intermediate values of
χ in the next section.

One can repeat this analysis for HV (r),EP(r), and HP(r). One obtains the following
series expansions [3]:

HV (r) =
∞

∑
k=1

(−1)k+1 ρk

k!

∫
gk(R

k)
∂

∂ r

k

∏
j=1

Θ(r−|x−R j|)dR j, (34)

EP(r) = 1+
∞

∑
k=1

(−1)k ρk

k!

∫
gk+1(R

k+1)
k+1

∏
j=2

Θ(r−|R j−R1|)dR j, (35)
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HP(r) =
∞

∑
k=1

(−1)k+1 ρk

k!

∫
gk+1(R

k+1)
∂

∂ r

k+1

∏
j=2

Θ(r−|R j−R1|)dR j. (36)

Note that the sequence of partial sums can be written in the form [72]:

W n =
n

∑
k=0

X (k), (37)

where X represents one of the aforementioned functions, X (k) represents the kth term of the
series for that function, and we have reindexed the series for HV/P(r) to start at k = 0. Then,
one obtains bounds of the form [72]

X ≤W n n even,

X ≥W n n odd. (38)

We will explicitly use the first two successive bounds on HV (r) and EP(r) [31]:

HV (r)≤ ρs1(r), (39)

HV (r)≥ ρs1(r)−
ρ2

2
s1(1)

∫ 2r

0
xd−1sint

2 (x;r)g2(x)dx, (40)

EP(r)≤ 1, (41)

EP(r)≥ 1−Z(r), (42)

where sint
2 (x;r) = ∂vint

2 (x;r)/∂ r is the intersection surface area of two spheres of radius r a
distance x apart and Z(r) = ρs1(1)

∫ r
0 xd−1g2(x)dx is the cumulative coordination number. We

will also use the first bound on HP(r) [31]:

HP(r)≤ ρs1(r)g2(r). (43)

To obtain upper (lower) bounds on GV/P(r), one can match an upper (lower) bound on
HV/P(r) with a lower (upper) bound on EV/P(r) [31]. For example, in this paper, we will use
the bounds [31]:

GV (r)≤
1

1−ρv1(r)
, (44)

GV (r)≥
1− ρs1(1)

2s1(r)

∫ 2r
0 xd−1sint

2 (x;r)g2(x)dx

1−ρv1(r)+
ρ2

2 s1(1)
∫ 2r

0 xd−1vint
2 (x;r)g2(x)dx

, (45)

GP(r)≤
g2(r)

1−Z(r)
. (46)

As in the case of EV (r), one can use an expansion for g2(r) to derive low-r expansions
for all of the nearest-neighbor functions. In one and two dimensions, one finds [31]

HV (r)∼ ρs1(r)−ρ
2av1(r)s1(r) (r→ 0), (47)

GV (r)∼ 1+(1−a)ρv1(r) (r→ 0), (48)

EP(r)∼ 1−ρav1(r) (r→ 0), (49)

HP(r)∼ ρas1(r) (r→ 0), (50)

GP(r)∼ a (r→ 0). (51)
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In three dimensions, one finds [31]

HV (r)∼ ρs1(r)−ρ
2
[

av1(r)s1(r)+
24b

5
rv1(r)2

]
(r→ 0), (52)

GV (r)∼ 1+(1−a)ρv1(r)−
8ρb

5
r2v1(r) (r→ 0), (53)

EP(r)∼ 1−ρ

(
av1(r)+

3b
5

r2v1(r)
)

(r→ 0), (54)

HP(r)∼ ρ

(
as1(r)+

12b
5

rv1(r)
)

(r→ 0), (55)

GP(r)∼ a+br2 (r→ 0). (56)

2.2. Stealthy Hyperuniform Point Processes

The stealthy constraint given by Eq. (5) only involves the two-point information contained
in the point process. However, we will see it has implications for the form of the nearest-
neighbor functions, which incorporate higher-order information [72]. The configurational
space of all stealthy systems [defined by (5)] is infinitely large in the thermodynamic limit and
extremely complex, so we make a practical restiction of our focus to a specific distribution
over this space: the canonical ensemble as T → 0 [5, 6]. We will see that the study of this
well-defined ensemble provides powerful generic insights about stealthy systems.

2.2.1. Basic Definitions for Point Processes We introduce the general concepts applicable
to all point processes we will encounter throughout this article, using definitions that, while
not completely mathematically rigorous, will be sufficient for our purposes. One can think
of a d-dimensional point process as a configuration consisting of a countably infinite number
of points in Rd such that the density is well-defined [5]. If one has an ergodic process, one
can compute statistics of the point process such as the pair correlation function g2(r) through
either a volume average over a single point configuration or through an ensemble average over
many such configurations [65]. One important class of ordered point processes are known as
lattices, which are point processes described by a set of linearly independent lattice vectors
{vi} in Rd . The points are placed at the integer combinations of these lattice vectors, so that
the location of an arbitrary point is described by the expression:

r =
d

∑
i=1

mivi mi ∈ Z. (57)

One can generalize this notion to describe a periodic point process, which is an arbitrary
crystal, by including a finite set of basis vectors bn, which describe the position of the particles
in the fundamental cell given by the lattice vectors. Thus, the points of the crystal are given
by the union of the sets {rn}, where the members of the set for each n are given by

rn =
d

∑
i=1

miri +bn mi ∈ Z. (58)

One can then think of a disordered point process as one in which both the size of the basis set
and the volume of the fundamental cell grows to infinity, leaving the density fixed.
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2.2.2. Computer Simulation The above definition and ensemble lends itself easily to
computer simulation. We will use the collective-coordinate procedure pioneered in Refs. [5,6]
for producing ground states in the canonical ensemble. Consider a finite system with N
particles under periodic boundary conditions. Then, the structure factor can be evaluated
at every k in the reciprocal lattice of the fundamental cell with the equation

S(k) =
1
N

∣∣∣∣∣∑i
e−ik·ri

∣∣∣∣∣
2

, (59)

where the sum ranges over all the particles in the fundamental cell and ri is the position of the
ith particle. Note that k = 0 in the above sum corresponds to the forward scattering, and is
correspondingly omitted from the definition of stealthy hyperuniformity. In addition, observe
that the structure factor has an intrinsic inversion symmetry:

S(k) = S(−k). (60)

One can then define a many-particle system in which the particles interact with energy
function [6]

Φ =
1

vF
∑

k<|k|≤K
NS(k)−Φ0, (61)

where the sum ranges over the M independently constrained wavevectors and vF is the volume
of the fundamental cell. The constant Φ0 is determined by Parseval’s theorem, and can be
written [5, 6]:

Φ0 = (N(N−1)−2NM) . (62)

It is clear that all states of minimal energy Φ = −Φ0 are stealthy. One can then sample
the canonical ensemble by running a molecular dynamics simulation at a low temperature
(usually around 2× 10−4, 2× 10−6, and 1× 10−6 in 1, 2 and 3 dimensions, respectively,
see the Appendix). To obtain a ground state configuration, one minimizes the energy of the
molecular dynamics configuration using the L-BFGS algorithm [6]. For more details about
the algorithms used to generate configurations in this article; see the Appendix.

The degree of short, intermediate, and long-range order depends on the control parameter
χ defined in Eq. (6). For finite systems, we define χ as [5]

χ =
M

d(N−1)
, (63)

where M is the number of constrained degrees of freedom, N is the number of particles,
and d is the spatial dimension. We can recover Eq. (6) by going to the thermodynamic
limit [5]. It can be shown that the system undergoes a order-disorder transition at χ = 1/3 in
one dimension [38] and at χ = 1/2 in two and three dimensions [4–6, 14, 15, 36, 39, 40, 42].
We will focus on the disordered low-χ regime.
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3. Pseudo-hard-sphere Approximations to Nearest-neighbor Functions

We begin by deriving expressions useful at small-r for the nearest-neighbor functions of
our disordered stealthy point processes. These expressions are fundamentally based on the
pseudo-hard-sphere ansatz described below, and are valid for small enough χ . We also
make heavy use of the bounding series given in Section 2. Throughout, we will compare
to simulation data either taken from Ref. [12] or produced by the procedure described in the
Appendix.

3.1. Basic Theory

To use the upper and lower bounds on the nearest-neighbor functions given in Section 2, we
must first determine an accurate expression for the pair correlation function g2(r). Torquato,
Zhang, and Stillinger [5] developed an analytical theory valid at sufficiently small χ in the
limit of large systems, justifying their work through direct simulations of stealthy sytems.
They make the ansatz that the structure factor follows the behavior of the pair correlation
function of a hard-sphere system at a density related to χ [defined by (6)], namely,

S(k) = gHS
2 (r = k), (64)

where gHS
2 (r) is the pair correlation function for a hard-sphere system of diameter K and

packing fraction

η =
χ

α(K;K)2d , (65)

where α(r;R) = vint
2 (r;R)/v1(R) is the scaled intersection volume of two spheres of radius R

separated by r. This approximation closely follows the simulated S(k) and g2(r) for χ ≤ 0.15
[5, 6]. We will use this approximation as a starting point to derive theories valid at small
enough values of r. In particular, we will make use of the following low-χ expansion [5]:

S(k)≈Θ(k−K)

(
1+χ

α(k;K)

α(K;K)

)
, (66)

valid in any dimension. We will also use the generalized Orstein-Zernike relation [5]

H̃(k) = C̃(k)+
η

v1(K/2)
H̃(k)⊗C̃(k), (67)

where H̃(k) = S(k)−1 and C̃(k) = cHS(r = k), where cHS(r) is the standard direct correlation
function [16] for the aforementioned hard-sphere system. For a more detailed discussion of
the pair statistics of disordered stealthy systems; see the Supplementary Material [74].

3.2. 1D Results

In one dimension, the expression (66) can be inverted analytically to obtain g2(r). We plot
the results of numerically integrating this g2(r) with the bounds given in Section 2 in Fig. 3.
We see that this approximation does quite well at low χ .

Furthermore, we can derive an analytical expression for the g2(r) of a stealthy system
using exact results for hard spheres. We take the well-known exact solution for the direct
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Figure 3: Bounds and approximations of the nearest-neighbor functions based on the
pseudo-hard-sphere approximation for 1D stealthy systems. (a-c) Void functions for a
system at χ = 0.10, which is within the applicability of the pseudo-hard-sphere
approximation. (d-f) Void functions for a system at χ = 0.33, outside the applicability of the
pseudo-hard-sphere approximation. (g-i) Particle functions for a system at χ = 0.10. (j-l)
Particle functions for a system at χ = 0.33.
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correlation function of a hard-rod system and interpret it as the Fourier transform of the direct
correlation function for the stealthy system [5]:

C̃(k) =−Θ(K− k)
1−χk/K
(1−η)2 . (68)

.
We used this expression in Eq. (67), and analytically took the Fourier inversion. The

resulting expression for g2(r) was used to evaluate the bounds in Section 2 through numerical
quadrature. In Fig. 3, we verify that these expressions form upper bounds at low χ as
expected. In addition, they remain useful approximations for the void quantities even when
the pseudo-hard-sphere approximation for g2(r) breaks down at intermediate χ . However, in
the case of the particle quantities, the break down of the pseudo-hard-sphere approximation
creates significant inaccuracies at intermediate χ .

We can use the same approximation for g2(r) to obtain the low-r series for the nearest-
neighbor functions. We obtain the coefficient a:

a = 1−2χ +χ
2. (69)

For reference, we also show two tentative upper bounds, yet to be proven rigorously, even
in the pseudo-hard-sphere approximation. Note that combining Eqs. (9) and (11) gives [3]

EV/P(r) = exp
(
−ρs1(1)

∫ r

0
xd−1GV/P(x)dx

)
. (70)

Now, we make a conjecture based on observations from simulations (see the Supplementary
Material [74] for details), that

GP(r)≥ g2(r), (71)

yielding the putative upper bound

EP(r)≤ e−Z(r). (72)

While this bound was previously presented in the context of stealthy systems in Ref. [5],
it was not actually proved there. It is noteworthy that the bound is not generally obeyed
by any isotropic, homogeneous and ergodic point processes. Thus, its proof must involve
some nontrivial feature of the stealthy process, such as its propensity to cluster to a lesser
degree than a Poisson process (this can be through the observation that g2(0)< 1 for χ > 0).
Comparison of the relation (72) to data in Fig. 3 reveals that it indeed appears to form an
upper bound, as long as the pseudo-hard-sphere approximation is applicable. We can also
conjecture that bounds that apply rigorously to fermionic point processes will also be valid
for stealthy systems [31]:

GV (r)≥ 1, (73)

EV (r)≤ e−ρv1(r) (74)

Once again, comparison to simulations suggests that this is indeed the case (Fig. 3). Note that
formulas for HV/P(r) derived from these bounds do not bound HV/P(r), which can be seen in
Fig. 3.
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Figure 4: Bounds and approximations for the nearest-neighbor functions based on the
pseudo-hard sphere approximation for 2D stealthy systems. (a-b) GV (r) for a system at
χ = 0.10 and 0.33, respectively. (c-d) GP(r) for a system at χ = 0.10 and 0.33, respectively.

It would be of great interest to be able to prove these bounds. The right-hand side of
relation (74) has a simple physical interpretation, which is the void exclusion probability of
a Poisson point process [4]. Thus, our conjecture is that the void exclusion probability of
a stealthy point process is bounded above by that of a Poisson point process, aligning with
physical intuition that these processes do not tolerate large holes despite their disorder.

3.3. 2D Results

In two dimensions, it is generally harder to obtain results in the pseudo-hard-sphere
approximation due to the lack of exact hard-disk results. We can still use the low-χ expansion
given in Eq. (66), but we must numerically invert to obtain g2(r). We plot the result of using
this numerical g2(r) to evaluate the bounds in Fig. 4.

An accurate expression for the direct correlation function of 2D circular hard disks is
given by Baus and Colot [81]. They begin with the low-density expansion for the direct
correlation function, and make the ansatz that it describes the direct correlation function for
all fluid densities so long that one uses the appropriate scaling factor. The relevant result is
that we can take the Fourier transform of the direct correlation function of the stealthy system
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as

C̃(k) =− ∂

∂η
[ηz(η)]

(
1−u2

η +u2
ηα

(
k
u
,
K
2

))
, (75)

where z(η) = pv1(K/2)/ηkBT is the compressibility factor of the corresponding hard-disk
system and u is determined by the transcendental equation

2
π

(
u2(u2−4)sin−1

(
1
u

)
− (u2 +2)

√
u2−1

)
=

1
η2

(
1−4η−

[
∂

∂η
ηz(η)

]−1
)
. (76)

To complete this description, one must specify the compressibility factor z(η). We use the
following second-order expression from Refs. [65, 81]:

z(η) =
1+ 7π−12

√
3

3π
η2

(1−η)2 , (77)

which is accurate over the relevant hard disk packing fractions. Then, we combine Eqs.
(67) and (75) and take the Fourier inversion numerically to determine g2(r) for our stealthy
systems. We plot the result of using this g2(r) in the approximations given in Section 2 in Fig.
4. We see that the qualitative picture is similar to the 1D case.

We can use the preceding approximation for g2(r) to obtain the a coefficient used in the
low-r series for the nearest-neighbor functions. Taking K = 1, we find that

a = 1−
U
(
η
((

7π−12
√

3
)
(η−3)η−3π

)
−3π

)
24π3(η−1)3 , (78)

where

U =

(
u2 +2

)(
−
√

u2−1
)

η +
(
u2−4

)
u2η csc−1(u)+2π

2η(η((7π−12
√

3)(η−3)η−3π)−3π)ρ((u2+2)(−
√

u2−1)η+(u2−4)u2η csc−1(u)+2π)
3π2(η−1)3 +ρ

. (79)

3.4. 3D Results

Since we do not have an exact expression for g2(r) in 3D, we once again begin with the low-χ
expansion for S(k) in Eq. (66). We compute the Fourier inverse of this equation analytically,
and use it to evaluate the bounds of Section 2 numerically. This is compared with simulation
data in Fig. 5.

A more accurate approximation is obtained using the Percus-Yevick approximation for
gHS

2 (r). This gives [16]

C̃(k)≈Θ(K− k)

(
−a1−6ηa2

k
K
− ηa1

2

(
k
K

)3
)
, (80)

where a1 = (1+ 2η)2/(1−η)4 and a2 = −(1+η/2)2/(1−η)4. We follow the same steps
as for the 1D case with an exact g2(r), and compare the results to simulation in Fig 5. We find
qualitatively similar trends to the 1D and 2D cases.
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Figure 5: Bounds and approximations to the nearest-neigbor functions based on the
pseudo-hard-sphere approximation for 3D stealthy ensembles. (a) Void functions for
χ = 0.10. (b) Void functions for χ = 0.33. (c) Particle functions for χ = 0.10. (d) Particle
functions for χ = 0.33.

Using a similar argument to the 1D case, we find that the low-r expansion using the PY
approximation to the pseudo-hard-sphere scheme [16], taking K = 1, is, given in terms of the
coefficients for Eq. (33):

a =
625−2750χ +775χ2−300χ3 +30χ4

25(5+4χ)2 , (81)

and

b =
3(200χ−55χ2 +8χ3)(625−1000χ +600χ2−160χ3 +16χ4)

1000(5+4χ)4 . (82)

3.5. Extension to Larger χ

While the pseudo-hard sphere approximation breaks down well before the order-disorder
transition at χ = 0.5, it is still possible to derive useful results from this approximation all
the way up to the transition point. The basic observation is that while the functional form
of the pair correlation function differs from the pseudo-hard-sphere approximation above
χ ≈ 0.15 [6], the value of g2(0), and thus the coefficient a that determines the leading order
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Figure 6: A comparison of the prediction for a(χ) from pseudo-hard-sphere theory to values
estimated from simulation. The value of a is obtained by using a quadratic extrapolation on a
numerically measured g2(r). Data for two and three dimensions were obtained from high
quality pre-existing simulations on small systems reported in Ref. [12]. (a) A comparison for
1D. As the low-χ approximation and exact solution of the pseudo-hard-sphere ansatz give the
same a, we only show one curve. (b) A comparison for 2D. We include predictions based on
the low-χ approximation and the Baus-Colot approximation. (c) A comparison for 3D. We
include predictions based on the low-χ approximation and the Percus-Yevick approximation.

contribution to the nearest-neighbor functions, can be well modeled using a simple extension
of this theory. In Fig. 6, we compare the analytical results for a(χ) given in the preceding
sections to simulation data. For the 1D case, the pseudo-hard-sphere result becomes steadily
worse as χ increases, but, as we will see in Section 6, this result can still be used to form
a useful theory of the void functions. For the case of 2 and 3 dimensions, we see that the
analytical prediction for a(χ) works very well until it crosses zero and becomes negative. In
Fig. 6, we only report simulation data with a non-zero value of a, as our method of obtaining a
relies on a quadratic extrapolation that becomes invalid when χ becomes large. However, for
our particular collection of finite configurations at large χ , we observe g2(r) = 0 for an entire
range of r near origin. Thus, one can obtain a useful analytical approximation by setting a(χ)
through the pseudo-hard-sphere approximation up to the zero crossing, and setting it to zero
thereafter.

4. Inclusion of Higher-order Information

In the previous section, the results were derived using only the one and two-point correlation
functions. However, as can be seen in series such as Eq. (23), the nearest-neighbor functions
in principle depend on the n-point correlation functions gn(r

n) up to arbitrary order in the
infinite system size limit. In this section, we will discuss conditions under which series of this
nature can be truncated using the bounded holes property, so that EV (r) is determined by a
finite number of terms in Eq. (23). This discussion also applies to single finite configurations
using the series (24), in which case the key observation is that the series can be truncated far
before the last vint

N (rN) term.
The bounded holes property plays a fundamental role in the truncation of this series.
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Figure 7: Clusters used to determine the highest order in the series (23) needed to evaluate
EV (r) for the corresponding point process. (a) The least dense cluster of two particles for a
one-dimensional saturated RSA process with particles of unit diameter. (b) The densest
cluster of four particles for the same RSA process. (c) One of the degenerate least dense
clusters of four particles for the one-dimensional perturbed lattice described in the text. The
open circles represent the underlying lattice locations, while the filled circles represent the
points of the configuration. (d) The one of the degenerate least dense clusters of four
particles for the same perturbed lattice.

This can be seen in the following way. If one has a condition that prevents arbitrary clustering
of points, such as a requirement to be a packing [64], one can show that the series in Eq.
(23) must terminate after a finite number of terms for any given value of r. The bounded
holes property lets us then extend this observation to show truncation of the series for EV (r)
at all r, with an r-independent number of terms. Since the number of necessary terms to
keep generally grows with the value of r considered, the existence of a critical-hole size rc

allows us to compute the number of terms needed by finding the number of terms needed to
evaluate EV (rc). Thus, the preceding argument shows that the series (23) must terminate for
any packing with the bounded hole size property. This argument has been used to show the
truncation of the series (24) for all crystals [64], but we note that it applies equally to the
series (23) for random sequential addition at saturation.

We can also show the truncation property for the case of stealthy point processes. To do
this, we use the anti-concentration property proved in Ref. [2]. This states that for a box of
side length C/K, the number of particles in the box is bounded above by C′ρ/Kd , where C and
C′ are generic constants [2]. Since stealthy systems have bounded hole sizes, it is once again
sufficient to consider EV (rc). Since we have the strict upper bound on the number of particles
in a large enough box, we can also bound the maximum number of particles contained in the
decorated sphere surrounding each particle in the geometric interpretation given in Fig. 2.
Thus, the series must terminate after a finite number of terms. Note, however, that the number
of terms that we may need to consider in the series expansion (23) increases with decreasing
χ .
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χ Highest Order in Series (24)

0.050 16
0.10 10
0.20 6
0.30 5
0.33 4

Table 1: A table containing the highest order necessary to evaluate EV (r) through the series
(24) for 1D stealthy systems at various χ .

This last observation raises an interesting fundamental question concerning the number
of terms of Eq. (23) needed to describe a stealthy system. While we are not aware of
a method to solve this problem analytically for disordered stealthy systems, we present
analytical solutions for two interesting systems with the bounded holes property: the case
of one-dimensional random sequential addition at saturation and a specific one-dimensional
perturbed lattice.

For 1D random sequential addition at saturation, the truncation property is established
by the previous general principle concerning packings. One can find that the series truncates
at the g2(r) term by considering the two local configurations of four particles (or clusters)
given in Fig. 7. We will take the diameter of the spheres to be unity. The first cluster shows
that rc = 1 in this system, since starting at a separation of two, one can insert another particle
between the neighbors, contradicting the saturation assertion. The second cluster represents
the densest cluster possible while respecting the packing condition. Overlaying the covering
spheres as in Fig. 2 readily shows that one only needs to consider up to intersections of two
covering spheres, which corresponds to the g2(r) term.

The perturbed lattice we will consider is a one-dimensional lattice of unit spacing where
the points (indexed by i) are displaced by independent random variables δi are independently
drawn from an arbitrary distribution with compact support over [−∆,∆]. We further restrict
0 < ∆ < 1/2, to prevent transposition of particles. It is interesting to note that this system
is hyperuniform [82], but not stealthy hyperuniform. One should also be aware that this is
very specific case of a perturbed lattice; in general, one can have correlations between the
δi or unbounded displacement distributions [82]. The series (23) truncates by virtue of this
system being a packing with a bounded hole size. One can see this by considering Fig. 7. The
first cluster shows that rc = (1+ 2∆)/2, while the second cluster shows that the system can
be considered a packing, since there is always a gap of 1− 2∆ between the particles. These
clusters also show that the number of terms needed is dependent on ∆. For ∆ ∈ (0,1/4], one
only needs up through the g2(r) term, however, for ∆ ∈ (1/4,1/2), one requires the addition
of the third order term.

The number of terms needed for stealthy systems in the series (24) can be determined
numerically. While this is computationally expensive in two and higher dimensions, it can be
determined in an efficient manner in one dimension by using the fact the intersection volume
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of n 1D spheres can be written as the intersection volume of the two spheres farthest apart in
the collection. The interested reader can refer to the Appendix for details. We have reported
the highest order needed for our 1D stealthy systems in Table 1. We see that the number of
terms needed increases with decreasing χ , as predicted from the general argument above. We
expect this trend to continue in higher dimensions.

5. Behavior on Approach to Critical-Hole Size

One of the surprising yet fundamental properties of any stealthy system is a bounded hole
size [1, 2]. This in turn implies that EV (r) and HV (r) have compact support and that GV (r)
diverges as it approaches the critical-hole size. We investigate the asymptotic behavior of the
nearest-neighbor functions as they approach this maximum hole size, using simple theoretical
arguments and computer simulations as our primary tools.

5.1. Fundamental Considerations

It is useful to generally classify the asymptotic behavior of the nearest-neighbor functions as
they approach the critical-hole size. One begins with the study of crystals, which are both
trivially stealthy due to the presence of Bragg peaks and have a trivially bounded hole size
which is found by identifying the location of the “deep holes” in the crystal [79]. In this case,
the hole probability function decays to zero as a power law [64]

EV (r)∼C(rc− r)γ (r→ r−c ), (83)

where γ is a positive exponent. It is possible to compute the exponent of this power law
analytically in the case of a crystal, and it takes the value γ = d for spatial dimension d [64].
To see this, note that there are a finite number of distinct Voronoi cells (Fig. 10), so we can
always find the set of deepest holes in the system, and no other hole will be infinitesimally
close to being as deep. In the intepretation of EV (r) as the ratio of the uncovered volume to
the total volume (Fig. 2), the uncovered volume around these holes will vanish according to
a power law consistent with the dimension of the system as the covered radius grows larger.
In practice, this characteristic γ = d power-law decay is most easily observed in systems with
high degrees of crystallographic symmetry. Examples include lattices and crystals with only
a few particles in the basis such as the hexagonal close-packed crystal. As the number of
particles in the smallest basis increases, the domain in which this power law is guaranteed to
be found shrinks, and disappears as the basis grows to infinity.

The asympotic form (83) then implies

HV (r)∼ γC(rc− r)γ−1 (r→ r−c ) (84)

GV (r)∼
γ

ρs1(r)(rc− r)
(r→ r−c ). (85)

The behavior of GV (r) is particularly interesting. It diverges with a pole of order one, which
we will see is a generic feature of the GV (r) of stealthy systems. For the case of the disordered
stealthy systems studied here, it is a reflection of the fact that we are taking the limit T → 0
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Figure 8: The nearest-neighbor functions for a square lattice. We can see that EV (r) and
HV (r) have compact support, which we know is guaranteed by stealthiness. (a) The void
exclusion probability decays with a power law with exponent γ = 2. (b) The previous
behavior of EV (r) implies a linear decay of HV (r). (c) We see that GV (r) diverges with a
pole of order one. (d) By plotting 1/GV (r), we can ascertain the asymptotic behavior of the
other functions by the slope of the linear zero-crossing.

while the pressure remains positive [5] (Eq. (13)). We can visualize the near-rc behavior of
these functions easily by plotting 1/GV (r) (Fig. 8). We see that a linear decay of 1/GV (r)
with a specified relation between the slope to the zero crossing is associated with a crystal-like
power law decay.

However, in the disordered case, we find that the exponent is typically not given by
γ = d. One in general expects to find a larger value, implying that the holes vanish more
quickly as one approaches rc, and we first give an intuitive argument for this fact. Since the
number of distinct Voronoi cells is infinite in the general disordered case, it is possible to have
a continuum of vertices with distances close to rc. While the deepest hole in each cell still
closes with the characteristic γ = d power-law decay, the fraction of uncovered holes is also
decreasing as one gets closer to rc. This is in contrast with the crystalline case, where the gap
between the farthest and next-to-farthest vertex ensures that this fraction is constant. Thus,
we expect the hole probability to reach zero asymptotically faster in the case of a disordered
system, since one is both covering up volume and decreasing the fraction of cells in which
there are uncovered holes near rc.
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While we are not aware of a method to compute the exponent γ analytically in the case of
a disordered stealthy system, we will work through the two examples of non-stealthy systems
with bounded holes introduced in Section 4, and verify that γ > d. In the case of a one-
dimensional random sequential addition process at saturation, one has that the void exclusion
probability assuming spheres of unit diameter is given by [46]

EV (r) = 1−2(1− r)
∫

∞

0

H(t)
t2 dt−2

∫
∞

0

H(t)
t3

[
1− e−(2r−1)t

]
dt, (86)

where

H(t) = e−2[γe−Ei(−t)], (87)

where γe is Euler’s constant and Ei(t) is the exponential integral. We then expand the
exponential in the second integrand around r = 1 and find

EV (r)∼ 4(1− r)2
∫

∞

0

H(t)e−t

t
dt + · · · (r→ 1−), (88)

where we have crucially used the fact that∫
∞

0

H(t)
t2 dt = 2

∫
∞

0

H(t)e−t

t2 dt, (89)

which can be shown by integration by parts. Thus, for this one-dimensional disordered
process, the exponent γ has increased to γ = d +1. One interesting but currently unresolved
question is whether the formula γ = d+1 holds for saturated RSA processes in all dimensions.

0

p(z)

z

1/2

1-2 1+21

Figure 9: The gap distribution function p(z) for the one-dimensional perturbed lattice
described in the text.

The approach implicitly used above by taking results from Ref. [46] is also of
fundamental theoretical interest. Thus, we will now describe it in some detail, and derive
new general results concerning the near-rc behavior of the functions involved. In one
dimension, we analyze systems by introducing the gap distribution function p(z), which gives
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the probability density to observe a gap with length between z and z+dz between neighboring
particles [31]. Since one can relate [31, 46]

EV (r) = ρ

∫
∞

2r
p(z)(z−2r)dz, (90)

one can derive the near-rc behavior of p(z) for systems with bounded holes by expanding
around r = rc:

EV (r) = 2ρ p(2rc)(rc− r)2 +
4ρ

3
d
dz

p(z)
∣∣∣∣
z=2rc

(rc− r)3 + · · · . (91)

From this expansion, it is seen that if EV (r) decays with a power law with exponent γ = n as
r→ rc, then p(z) decays as a power law with exponent γ = n−2 as z→ 2rc.

We apply this observation to determine the asymptotic behavior of the 1D perturbed
lattice considered in Section 4, given a specific form of the displacement distribution. As a
concrete example, we consider a uniform displacement distribution. By using the fact that
the gap between particles i and i+ 1 can be written in terms of the displacement variables
of Section 4 as z = 1−δi +δi+1, and that the distribution of the sum of independent random
variables is the convolution of their individual distributions [83], one can verify that the gap
distribution of this system is that given in Fig. 9. Upon inserting this form of p(z) into Eq.
(90) and expanding around r = rc = (1+2∆)/2, we find that

EV (r)∼
(rc− r)3

3∆2 (r→ r−c ). (92)

Thus, this 1D system has a power-law decay of EV (r) with exponent γ = d +2. However, we
emphasize that this system is a special type of perturbed lattice, with a specific bounded
displacement distribution and uncorrelated displacements. It is clear from Eq. (91) that
one can obtain any γ ≥ 2 by specifying the asymptotic behavior of p(z), but it would be
interesting to also determine whether adding correlations between displacements or going to
higher spatial dimensions would change the result.

The intuitive argument for the increase of the exponent γ also suggests another intriguing
possibility, which we will use in Section 6. In principle, one can have that the hole probability
function decays faster than any power law. One simple functional form that exhibits this
asymptotic behavior is [84]:

EV (r)∼C exp
(
− ζ

rc− r
+ · · ·

)
(r→ rc), (93)

giving rise to the following asymptotic forms for HV (r) and GV (r):

HV (r)∼
(

ζC
(rc− r)2 + · · ·

)
exp
(
− ζ

rc− r
+ · · ·

)
(r→ rc) (94)

GV (r)∼
ζ

ρs1(r)(rc− r)2 + · · · (r→ rc). (95)

This behavior gives a divergent GV (r) with a pole of order two. In general, a pole of any
order would be permissible, but we only explicitly consider the order two case. If we consider
instead the reciprocal function 1/GV (r), we see that a quadratic (or any higher order) decay
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Figure 10: A schematic of Voronoi cells and spherical covering areas that demonstrates that
the EV (r) of a crystalline system decays as a power-law with exponent γ = d close to the
critical-hole size. A crystal has a finite number of distinct Voronoi cells, and thus there exists
a gap between the set of vertices at a distance rc and the next farthest set of vertices. Thus,
we can conclude the proposed behavior through considering the decrease in volume of a
small uncovered corner.

is associated with an EV (r) that decays faster than any crystal on approach to the critical-hole
size. It is possible to specify a specific distribution for the 1D perturbed lattice considered
previously that can be shown to possess an EV (r) that decays faster than any power law,
although we have not been able to compute the exact form of Eq. (95). One takes the
displacement distribution u(δ ) as

u(δ ) =
1
I

exp
(

1
δ 2−∆2

)
−∆ < δ < ∆, (96)

and zero elsewhere, where I is the normalization constant needed to create a well-defined
probability density function. One can then verify through judicious replacements of pieces
of the convolution integrand for p(z) by constants that form upper bounds that p(z) decays
faster than any power law as z→ 2rc. This implies through Eq. (91) that EV (r) also decays
faster than any power law, since the coefficient for each term in the series will be zero [84,85].
However, the use of these coarse upper bounds in the argument prevents us from extracting
the exact asymptotic behavior. It would be interesting to identify a system for which a form
of GV (r) with a higher-order pole could be exactly computed.

Given the fundamental importance of the near-rc behavior described above, it is essential
to develop intuition for the case of stealthy systems. Since we currently lack strong enough
direct theoretical tools, we provide some preliminary data via computer simulations that
contextualizes these simple arguments.

5.2. Simulation Results

Here, we present simulation results for GV (r) in 1, 2, and 3 dimensions (Fig. 11). We sample
GV (r) through a geometric method in 1D and by binning the nearest neighbors in 2D and
3D; see the Appendix for details. While the obtained statistics are not good enough to draw
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Figure 11: Simulations of 1/GV (r) for the first three spatial dimensions. See the Appendix
for details on system and ensemble size. (a) Simulations for 1D. (b) Simulations for 2D. (c)
Simulations for 3D.

robust conclusions, in two and three dimensions, we can see the beginning of a cross-over
in the form of a decreased slope for 1/GV (r) on the larger-χ samples. This suggests that
EV (r) for these configurations will either have power-law tails with large values of γ , or
that they will have an EV (r) that decays faster than any power law. In one dimension, the
behavior at higher-χ is somewhat more complicated, with a plateau forming at χ = 0.20 and
disappearing in the χ = 0.33 data. This disappearance is likely due to a subtle finite size
error, where crystallization is enhanced close to the χ = 1/3 order-disorder transition that
exists in the thermodynamic limit [38]. Indeed, we observe that a small amount of long-order
develops in the form of slowly decaying oscillations in the pair correlation function for our
χ = 0.33 data. However, we still report these curves throughout the article, since we expect
this error to be much less noticeable both in GV (r) far from the critical-hole size and in the
less sensitive quantities EV (r) and HV (r). We observe that the likely behavior close to rc for
EV (r) is a power-law decay, however, this does not necessarily imply that this is the case for
all dimensions. Whether the true asympotics for EV (r) are power-law decays or not, these
results suggest that while both crystals and disordered stealthy systems have bounded hole
sizes, the functions HV (r) and EV (r) of disordered systems approach their asymptotic value
much more quickly as one moves toward the critical-hole size.

This observation explains why it is extremely difficult to sample the near-rc behavior for
disordered stealthy systems. Since EV (r) vanishes as the critical-hole size is approached, the
faster decay implies that for any finite configuration, the event of observing a hole with size
sufficiently close to the critical-hole size is rarer than that of a crystalline system. Thus, one
needs to sample much larger systems, unlike in the case of a crystal, for which a single copy
of the fundamental cell suffices. This observation is also closely linked to one made by Zhang,
Stillinger, and Torquato [1], which is that it is easier to observe large holes for χ close to 1/2
than for smaller χ , since the relative lack of close-range order for small χ implies that the
event of finding a large hole becomes correspondingly rarer.
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Figure 12: Comparisons between simulations and the theories given in Eqs. (97) and (98).
(a-c) 1/GV (r) for two different values of χ in one, two, and three dimensions, respectively.
(d-f) The void mean nearest-neighbor distance lV as a function of χ for one, two, and three
dimensions, respectively.

6. Towards Accurate Expressions for Nearest-neighbor Functions Over the Whole
Domain

We now devise an approximation that matches the contributions to the small-r and near-rc

expressions discussed above. The basic strategy is to make a change of asymptotic scale on
the small-r asymptotic expansion for GV (r) given in Eq. (48) so that it matches either the
pole-of-order-one asymptotics of Eq. (85) that gives rise to a power law decay of EV (r) or the
pole-of-order-two asymptotics of Eq. (95) that gives rise to an exponential decay of EV (r) as
r approaches rc. While there are many ways of doing this, one fruitful choice is to take either
the pole-of-order-one formula:

GV (r) = 1+
(1−a)v1(rc)ρv1(r)

v1(rc)− v1(r)
, (97)

or the pole-of-order-two

GV (r) = 1+
(1−a)v1(rc)

2ρv1(r)
[v1(rc)− v1(r)]2

, (98)

where the maximal hole size rc is given by the formula [1]:

rc =
(d +1)π

2K
. (99)
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Figure 13: The function GV (r) sampled at positive temperatures for (a) a 2D ensemble at
χ = 0.10 and (b) a 3D ensemble at χ = 0.49, as well as the saturating values predicted by
Eq. (101).

In addition to connecting behaviors consistent with the small-r expansions given in Section 3
and our observations concerning the close-to-critical-hole-size regime presented in Section 5,
we believe they satisfy the bounds given by the inequalities (44) and (45) (although we have
not constructed a rigorous proof of this proposition). They have been compared to simulation
data for GV (r) and lV in Fig. 12. We can see that in one and two dimensions, the pole-of-order-
two formula (98) is more accurate, with good agreement at low-χ and tolerable agreement at
intermediate χ . While this formula gives different asymptotics than is apparent in the data for
1/GV (r) for the 1D system at χ = 0.30 given in Fig. 11, this is likely balanced by lessening
the error at smaller r, which dominates the contribution to lV . In three dimensions, the two
formulas give similar predictions, with the more accurate approximation being determined by
the value of χ . We also see that the prediction for lV qualititatively breaks down past a certain
χ , where we believe higher-order coefficients such as b must be included.

7. Positive Temperature

For sufficiently small temperatures, we have that the pressure of a stealthy system is expliclitly
given by [5]

p∼ ρT +
ρ2v0

2
. (100)

From Eq. (13), we then have a prediction for the asympotic value of GV as (taking ρ = 1):

GV (r→ ∞)∼ 1+
1

2T
. (101)

Note that this formula implies that there will be a singular change in behavior of holes in the
system as one increases the temperature, even infinitesimally, from T = 0. The presence of a
finite asymptote suggests that one can in principle expend an arbitrarily large amount of work
to create an arbitrarily large hole. Thus, since this system is in equilibrium, the maximum hole
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size will be unbounded in the infinite volume limit at positive temperature. This is in stark
contrast to the ground state behavior, where Eq. (101) does not apply due to the presence of
the divergence. This divergence is ultimately derived from the fact that the relation between
GV (r) and the work required to produce a hole becomes singular at T = 0 [47].

We have plotted the results of simulations at positive temperatures for GV (r) in Fig.
13. However, none of these cases definitively asymptote to the predicted value before the
simulated data becomes very imprecise. We are unsure whether this discrepancy is caused by
the difficulty of sampling GV (r) at large r and positive T , or whether the linear approximation
(100) simply breaks down. We can also see that for some values of χ and T , the behavior of
GV (r) can become non-monotonic.

8. Conclusions and Discussion

In summary, we have obtained bounds and approximations to the nearest-neighbor functions
valid in the small-r and χ regimes through the use of the pseudo-hard-sphere ansatz,
formally advanced a pair of conjectured bounds, showed that the nearest-neighbor functions
of stealthy systems can be determined by a finite number of gn(r

n), investigated the close-to-
critical-hole-size regime through theoretical arguments and simulation, and combined insights
from these analyses to form an approximation valid for small χ and all r. We showed
that disordered stealthy processes appear to possess different behavior from their ordered
counterparts as they approach their critical-hole size. Finally, we have given the asymptotic
behavior of GV (r) for finite temperature systems, and concluded that we expect stealthy
systems to lose their bounded hole size property, even at arbitrarily small temperatures.

These results both answer fundamental questions about the statistical properties of
stealthy hyperuniform systems and raise new avenues of inquiry. They suggest that the
asysmptotic behavior of the nearest-neighbor functions near the critical-hole size is different
for ordered and disordered stealthy systems, but obtaining more complete evidence in favor
of this proposition will likely require the development of new methods for the investigation of
stealthy systems. This may either take the form of numerical methods to sample large holes
or an increase in efficiency in which these unusual potentials can be simulated, or theoretical
methods to directly obtain the asymptotic behavior. In addition, the singular disappearance
of a bounded hole size at positive temperature further incentivizes studies of the positive
temperature regime, as one may find other unusual statistical characteristics of these systems.

In addition to the implications for these systems as point processes, those results which
apply at intermediate χ can also be used to comment on the structure of disordered packings
of intermediate density, as any finite stealthy system can be decorated with spheres whose
diameter depends on χ to obtain a packing. Considered as two-phase systems, these packings
are also stealthy hyperuniform [12].

Having outlined methods for obtaining good analytical approximations to these
functions, we can then investigate applications to the field of heterogenous materials.
Accurate expressions for the nearest neighbor functions can be used to place bounds on or
estimate the trapping constant [65, 67–69] and fluid permeability [65] of two-phase systems
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d χ Figs. N Nsnap Nstep Neq Unit Cell

1 0.0499 T1,6,11,12 9300 500 5000 200 Integer Lattice
1 0.10002 T1,3,6,11,12 6600 500 5000 200 Integer Lattice
1 0.1998 T1,6,11,12 4600 500 5000 200 Integer Lattice
1 0.2998 T1,6,11,12 3800 500 5000 200 Integer Lattice
1 0.3301 T1,3,6,11,12 3600 500 5000 200 Integer Lattice
2 0.0502 6,11,12,S3 9300 500 5000 200 Triangular Lattice
2 0.1002 4,6,11,12,S3,S4 6600 500 5000 200 Triangular Lattice
2 0.201 6,11,12,S3 4600 500 5000 200 Triangular Lattice
2 0.3301 4,6,11,12,S3,S4 3600 500 5000 200 Triangular Lattice
3 0.519 11,12 9300 500 5000 200 BCC Lattice
3 0.101 5,11,12,S1,S2 6600 500 5000 200 BCC Lattice
3 0.207 11,12 4600 500 5000 200 BCC Lattice
3 0.331 5,11,12 3600 500 5000 200 BCC Lattice
3 0.492 11,12 3000 500 5000 200 BCC Lattice
2 0.101 13 6600 300 5000 200 Square Lattice
3 0.491 13 2000 200 5000 600 Cubic Lattice

Table A1: A table containing simulation parameters for systems used throughout article. The
figure numbers prefixed with a T refer to tables and those prefixed with an S refer to the
Supplementary Material [74].

derived from these point processes. These bounds may find use in identifying applications for
stealthy processes in materials engineering.
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Appendix A. Simulation Details

In this Appendix, we give details on the numerical methods used to produce results in this
article, with the exception of the two and three dimensional results given in Fig. 6, which is
partially based on a resampling of data presented in Ref. [12].
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Appendix A.1. Collective Coordinate Procedure

Our collective coordinate procedure is similar to the one used in Refs. [1,5,6,12,42], but with
a few key differences. The first is that the the time step choice algorithm and general structure
of the program has been modified. We still adjust the time step based on the log-ratio of the
energy between snapshots, but the threshold depends on the total number of snapshots Nsnap

taken. Denote the number of steps between samples to be Nstep. During the initial time step
choice and equilibration phase, one first evolves the system Nstep/2 steps, and then adjust the
timestep by sending

∆t→



0.5∆t E > 0.0005/Nsnap

0.9∆t 0.0005/Nsnap ≥ E > 0.0003/Nsnap

0.95∆t 0.0003/Nsnap ≥ E > 0.0002/Nsnap

1.2∆t E < 0.000001/Nsnap

1.05∆t 0.000001/Nsnap ≤ E < 0.00005/Nsnap

∆t otherwise,

(A.1)

where

E =

∣∣∣∣2ln(Ei/Ei+1)

Nstep

∣∣∣∣ . (A.2)

Then, one repeats the above Neq times. Afterwards, one evolves the system for Nstep/2 using
an Andersen thermostat and Nstep/2 without an Andersen thermostat, and takes a snapshot at
the end with the L-BFGS algorithm (for ground states). One repeats this Nsnap times.

We have justified this change through a blocking analysis, where we have observed that
upon splitting each trajectory into five equal portions sequentially, the value of g2(r) observed
in each sub-trajectory is similar. Whenever an uncertainty for g2(r) was necessary (e.g., in the
extrapolation to obtain the numerical a coefficient) it is estimated by assuming each snapshot
contributes independently to the final value. This independence assumption was corroborated
by a standard block uncertainty analysis [86]. In three dimensions, we occasionally drop the
first bin of g2(r) because no counts are recorded, even though the likely value of g2(r) is not
zero. This is likely a finite size effect.

The second change is that we conduct our simulations at ρ = 1 rather than K = 1. This
has important implications for the choice of temperature used to equilibrate the system before
taking snapshots. While we use the same values as Ref. [6] (T = 2× 10−4,2× 10−6, and
1×10−6 for one, two, and three dimensions, respectively), it should be noted that this choice
actually corresponds to physically distinct systems, since changing the density changes how
far the particles need to move to obtain the same difference in energy. We have justified
this choice by also simulating at temperatures one order of magnitude below those stated
above. We observe that g2(r) does not change when simulated with this lower equilibration
temperature.

In general, we work with larger systems that have been equilibrated for a shorter amount
of time and with fewer snapshots than the corresponding work in Refs. [1, 5, 6, 12, 42]. The
values of the system size N, Nsnap, Nstep, and Neq along with the shape of the unit cell of each
system and a specification of which figures the data is used in, is given in Table A1.
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Throughout the article, we have used the rounded values of χ appearing in the figures
to compute theoretical curves. Due to the finite size effects implicit in Eq. 63, one cannot
obtain exactly these values of χ with our chosen system sizes. Instead, we use a relatively
close value of χ , which rounds correctly to two significant figures. To give an idea of how
much error is made when making this choice, we have reported the values of χ to the next
non-trivial significant figure in Table A1. Figures where χ appears as the bottom axis use
more precise estimates of χ .

Appendix A.2. Sampling the Nearest-Neighbor Functions

For the void quantities in one dimension, we use the fact that EV (r) is the ratio of uncovered
space to total space in Fig. 2 and that HV (r) is the surface area of the covered space [3]. This
has been used previously to compute accurate results in two and three dimensions [55–57].
For the purposes of this article, we note that this interpretation gives rise to a simple method
in 1D. In particular, we can sample the nearest neighbor function by simply compiling a
list of all the gap sizes in the system, and computing the uncovered length of these gaps at
each r. To ensure a meaningful estimate of the uncertainty in our calculation, we drop any
r for which fewer than 10 individual gaps contribute. The uncertainty for HV (r) and EV (r)
are then computed as the standard deviation of the mean with the value from each snapshot
being treated as independent. GV (r) is computed as the ratio, and the uncertainty propagated
linearly.

For the void functions in two and three dimensions and the particle functions in all
dimensions, we use a sampling strategy. One computes the function HV/P(r) through binning
nearest neighbor observations, the function EV/P(r) by recording every observation where
the nearest neighbor is at least r away, and GV/P(r) by taking their ratio. Since this method
involves estimating a sensitive statistical quantity through a quotient, care must be taken to
reduce systematic error. To this end, we compute these quantities using multiple bin sizes,
and compare them to ensure that we have obtained a stationary estimate with respect to bin
size. To ensure a meaningful estimate of the uncertainty in our calculation, we drop any bin
for which fewer than 10 observations contribute to HV (r). Uncertainties for HV (r) and EV (r)
are computed by assuming each snapshot contributes independently to the final value, and the
uncertainty for GV (r) is propagated through the ratio linearly.

We also sample EV (r) via the series (24) in 1D for the purpose of determining how many
terms in the series is needed. To do this, we use the fact that vint

n (rn) is just vint
2 (r), where r is

taken as the distance between the two points farthest apart. Thus, we can compute the series
for EV (r) to arbitrary order as follows: first, compute all of the pair distances up to r and the
number of particles m contained between the pair, and then compute the contribution of the
pairs according to the formula

E i j
V (r) =

m

∑
k=0

(−1)k
(

m
k

)
vint

2 (ri j). (A.3)

Finally, one sums the contribution of all pairs to obtain EV (r). The highest order needed is
then mc+2, where mc is the highest m value observed in the calculation for EV (rc). The value
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of rc is determined by looking for a large drop in EV (r), as past rc, the value of EV (r) is very
close to zero. This drop is typically many orders of magnitude.
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[11] Milošević M M, Man W, Nahal G, Steinhardt P J, Torquato S, Chaikin P M, Amoah T, Yu B, Mullen R A
and Florescu M 2019 Sci. Rep. 9 1–11 ISSN 2045-2322 URL https://www.nature.com/articles/
s41598-019-56692-5

[12] Zhang G, Stillinger F H and Torquato S 2016 J. Chem. Phys. 145 244109 ISSN 0021-9606 URL
https://aip.scitation.org/doi/10.1063/1.4972862

[13] Torquato S and Chen D 2018 Multifunct. Mater. 1 015001 ISSN 2399-7532 URL https://doi.org/10.
1088%2F2399-7532%2Faaca91

[14] Batten R D, Stillinger F H and Torquato S 2009 Phys. Rev. Lett. 103 050602 URL https://link.aps.
org/doi/10.1103/PhysRevLett.103.050602

[15] Batten R D, Stillinger F H and Torquato S 2009 Phys. Rev. E 80 031105 URL https://link.aps.org/
doi/10.1103/PhysRevE.80.031105

[16] Hansen J P and McDonald I R 1986 Theory of Simple Liquids 2nd ed (London: Academic Press) URL
https://www.elsevier.com/books/theory-of-simple-liquids/hansen/978-0-08-057101-0

[17] Zachary C E and Torquato S 2009 J. Stat. Mech. 2009 P12015 ISSN 1742-5468 URL https://doi.org/
10.1088%2F1742-5468%2F2009%2F12%2Fp12015
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Supplementary Material

1. Comparison of Nearest-Neighbor Functions for Selected Systems

In developing intuition for the behavior of the nearest-neighbor functions, it is instructive
to compare their behaviors for a variety of systems of physical importance. In Fig. S1
below, we compare the void nearest-neighbor functions for the Poisson point process, an
equilibrium hard-sphere fluid, and a representative disordered stealthy hyperuniform system
at intermediate χ . If we focus on just HV (r) and EV (r), it may appear that the stealthy
hyperuniform process falls “between” that of equilibrium hard spheres and the uncorrelated
Poisson process, but inspection of GV (r) makes it clear that the large-r behavior of the stealthy
system is qualitatively different than that of the non-stealthy systems. Stealthy systems have
compact support for HV (r) and EV (r) [1, 2], which manifests itself clearly as a divergence
of GV (r) at a finite r. Thus, while in principle one can compute all three functions from
knowledge of just one, one can obtain a clearer understanding of the behavior of a system by
considering each in turn.

We plot the particle nearest-neighbor functions for the same systems in Fig. S2 of the
Supplementary Material. Similar to the case of the void quantities, the divergence of GP(r) is
indicative of the bounded hole property of stealthy systems. It is also important to note that
the determination of the particle properties is in some sense “harder” for stealthy systems than
for previously investigated systems. While there are fundamental symmetries in the Poisson
process and equilibrium hard-sphere fluid systems that allow for the determination of the
particle from the void quantities [3], no such symmetry exists in our stealthy hyperuniform
systems.
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Figure S1: The void nearest-neighbor functions EV (r), HV (r), and GV (r) for a Poisson point
process at ρ = 1, an equilibrium hard-sphere system at ρ = 1 and φ = 0.4, and a stealthy
ensemble at ρ = 1 and χ = 0.10. The Poisson results were computed with an exact formula
[4], the hard-sphere system was computed with an accurate approximation based on the
Carnahan-Starling formula [3], and details concerning the stealthy ensemble can be found in
the Appendix of the main article. (a) and (b) We can see that the Poisson process as the
widest distribution of hole sizes and nearest-neighbor distances. (c) The bounded hole size
property of the stealthy ensemble can be clearly seen in the divergence of GV (r).
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Figure S2: The particle nearest-neighbor functions EP(r), HP(r), and GP(r) for a Poisson
point process at ρ = 1, an equilibrium hard-sphere system at ρ = 1 and φ = 0.4, and a
stealthy ensemble at ρ = 1 and χ ≈ 0.10. The Poisson results were computed with an exact
formula [4], the hard-sphere system was computed with an accurate approximation based on
the Carnahan-Starling formula [3], and details concerning the stealthy ensemble can be
found in the Appendix of the main article. (a) and (b) We can see that the equilibrium hard
sphere process has sharply localized nearest-neighbor statistics. (c) The presence of a
bounded hole size for the stealthy ensemble can be clearly seen in the divergence of GP(r).
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Figure S1: A comparison of (a) S(k) and (b) g2(r) for simulated 2D stealthy systems at
ρ = 1 and a variety of χ . See the Appendix of the main article for the simulation details of
the systems shown.

2. Pair Statistics of Stealthy Hyperuniform Point Processes

In this section, we investigate the pair statistics (the pair correlation function g2(r) and the
structure factor S(k)) of stealthy systems. While theoretical expressions and simulation data
on these two correlation functions have previously been reported in Refs. [5] and [6], we
make several observations of key interest in the main article. In Fig. S1 below, we show
S(k) and g2(r) for 2D stealthy system at various χ . One sees that as χ is increased, the
maximum constrained wavevector K for which S(k) = 0 increases, and one has an increase
in short-range order in the form of stronger low-r correlations in g2(r). In Fig. S2 of the
Supplementary Material, we compare GV (r) and GP(r) to the pair correlation function g2(r).
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Figure S2: A comparison of the correlation functions g2(r), GV (r), and GP(r) for a variety
of stealthy systems. (a-c) Comparisons for χ ≈ 0.10 (see Appendix of main article for
details) for one, two, and three dimensions, respectively. (d-f) Comparisons for χ ≈ 0.33
(see Appendix of main article for details) for one, two, and three dimensions, respectively.

In the case of hard sphere systems, these functions are directly related at contact [3]. While
no simple relation exists in the case of stealthy systems, one can still observe a number of
useful generalities. One finds that for stealthy systems, there exists good numerical evidence
for the conjecture GV (r) ≥ GP(r) ≥ g2(r), at least for small enough r. One can also see that
while g2(r) and GP(r) tend to the same value as r→ 0, GV (r) always tends to unity.
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