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Abstract

Deaths are frequently under-estimated during emergencies, times when accurate mortality
estimates are crucial for emergency response. This study estimates excess all-cause, pneumo-
nia and influenza mortality during the coronavirus disease 2019 (COVID-19) pandemic using
the 11 September 2020 release of weekly mortality data from the United States (U.S.)
Mortality Surveillance System (MSS) from 27 September 2015 to 9 May 2020, using semipara-
metric and conventional time-series models in 13 states with high reported COVID-19 deaths
and apparently complete mortality data: California, Colorado, Connecticut, Florida, Illinois,
Indiana, Louisiana, Massachusetts, Michigan, New Jersey, New York, Pennsylvania and
Washington. We estimated greater excess mortality than official COVID-19 mortality in
the U.S. (excess mortality 95% confidence interval (CI) 100013-127501 vs. 78 834
COVID-19 deaths) and 9 states: California (excess mortality 95% CI 3338-6344) vs. 2849
COVID-19 deaths); Connecticut (excess mortality 95% CI 3095-3952) vs. 2932 COVID-19
deaths); Illinois (95% CI 4646-6111) vs. 3525 COVID-19 deaths); Louisiana (excess mortality
95% CI 2341-3183 vs. 2267 COVID-19 deaths); Massachusetts (95% CI 5562-7201 vs. 5050
COVID-19 deaths); New Jersey (95% CI 13170-16 058 vs. 10465 COVID-19 deaths);
New York (95% CI 32538-39 960 vs. 26 584 COVID-19 deaths); and Pennsylvania (95%
CI 5125-6560 vs. 3793 COVID-19 deaths). Conventional model results were consistent
with semiparametric results but less precise. Significant excess pneumonia deaths were also
found for all locations and we estimated hundreds of excess influenza deaths in New York.
We find that official COVID-19 mortality substantially understates actual mortality, excess
deaths cannot be explained entirely by official COVID-19 death counts. Mortality reporting
lags appeared to worsen during the pandemic, when timeliness in surveillance systems was
most crucial for improving pandemic response.

Introduction

The number of Coronavirus Disease 2019 (COVID-19) deaths may be under-reported, and
COVID-19 may be indirectly responsible for additional deaths. The Centers for Disease
Control and Prevention issues guidelines to determine cause of deaths, but underestimating
the death toll of natural disasters, heatwaves, influenza and other emergencies is common.
In some cases, the underestimates can be extreme: chikungunya was officially associated
with only 31 deaths during a 2014-2015 epidemic in Puerto Rico, but time-series analysis esti-
mated excess mortality of 1310 deaths [1]. Hurricane Maria’s mortality was officially only 64
deaths, but a 95% confidence interval for estimated excess mortality was between 1069 and
1568[2]. Deaths directly due to the COVID-19 pandemic may be underestimated due to
under-diagnosis [3], insufficient postmortem severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) tests, not seeking healthcare [4] and ascertainment bias. Deaths indirectly
due to an emergency are also common, due to an overloaded health system [5] or lack of
healthcare access for routine care: during the 2014 West Africa Ebola epidemic, lack of routine
care for malaria, HIV/AIDS and tuberculosis led to an estimated 10 600 additional deaths in
the area [6]. Health emergencies may also lead to indirect deaths from economic, social and
emotional stress [7] and crowded emergency departments [8].

In this study, we estimate excess all-cause, pneumonia and influenza mortality during the
COVID-19 pandemic, which includes deaths both directly and indirectly related to
COVID-19. Directly related COVID-19 deaths include deaths in patients who have undetected
SARS-CoV-2 due to false-negative tests [9] not seeking healthcare [4], or being turned away
from the emergency department due to emergency department crowding [8]. Testing and
forensic staff shortfalls lead to lack of postmortem testing. Indirect deaths are deaths not
due to COVID-19 and may include deaths among patients due to emergency department
crowding [8]; avoidance of hospitals due to fear of the virus; or avoidance of healthcare due
to the accompanying economic recession, such as loss of employment or income, or loss of
health insurance coverage [10].
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Methods
Data and measures

Weekly all-cause, pneumonia and influenza mortality for each
state from 27 September 2015 (week 40) to 9 May 2020 (week
19) were obtained from the National Center for Health
Statistics (NCHS) Mortality Surveillance System (MSS) data
release on 11 September 2020. The MSS presents weekly death
certificate counts, without regard to whether deaths were classified
as related to COVID-19. Based on ICD-10 multiple cause of death
codes, pneumonia and influenza deaths were also made available.
The timeliness in death certificate reporting varies by region, state
and cause of death [11]. We use pneumonia and influenza mor-
talities because COVID-19 deaths could be misclassified as pneu-
monia or influenza. The NCHS divides New York State into two
jurisdictions: New York City (NYC) and non-NYC New York
State, and we leave them separate for plots and combine them
for statistical models.

We identified 13 jurisdictions within this data that had high
numbers of reported COVID-19 deaths through 9 May 2020.
The states were: California, Colorado, Connecticut, Florida,
Illinois, Indiana, Louisiana, Massachusetts, Michigan, New
Jersey, New York, Pennsylvania and Washington.

Population estimates were from Vintage 2019 Census yearly
estimates for 1 July of each year 2010-2019, which were used to
obtain weekly population estimates [12].

We obtained COVID-19 mortality counts through 9 May 2020
from the COVID-19 Tracking Project, the New York Times and
the Centers for Disease Control Provisional Deaths. Usually,
CDC provisional counts were the highest estimate [13-15].
These three mortality counts differ, so we used the higher number
in all cases to be conservative with respect to the null hypothesis
that excess mortality can be explained entirely by official
COVID-19 death counts: that is, the lower bound of excess mor-
tality is below official COVID-19 deaths. To assess whether the
COVID-19 pandemic was associated with reduced emergency
department (ED) utilisation not for COVID-19, we identified 3
of the United States top 5 causes of death that present with
acute symptoms that require immediate treatment, for which
the choice not to seek healthcare may result in death: heart dis-
ease, chronic lower respiratory diseases and cerebrovascular dis-
ease. Among the 59 National Syndromic Surveillance Program
(NSSP) jurisdictions, we were only able to obtain daily ED visits
in New York City for asthma symptoms. We obtained daily
counts of asthma ED visits, age group (5-17, 18-64, 65+), bor-
ough and date from the New York City Department of Health
and Mental Hygiene’s EpiQuery website from 1 January 2016 to
9 May 2020. This study is an analysis of publicly available data
in broad categories such that individuals cannot be identified,
so it is not human subjects research and is exempt from requiring
human subjects board review.

Statistical analysis

We construct two models to capture the temporal behaviour of
death certificate data to estimate excess mortality during the
COVID-19 pandemic: a semiparametric model and a conven-
tional model estimating the difference in current death totals
starting from the beginning of the pandemic and the projected
deaths under normal conditions [16]. In what follows, we briefly
describe each excess deaths model. See Appendix for further
details.

R. Rivera et al.

Semiparametric model

We use a semiparametric model to capture the temporal behaviour
of mortality while measuring how the pandemic alters the ‘normal’
mortality pattern. This model was successfully deployed to estimate
excess deaths due to Hurricane Maria in Puerto Rico [2].

Specifically, we define a general additive model with the fol-
lowing covariates: the natural logarithm of population as an offset,
a smooth function of week of the year, year category and a binary
variable coded as 1 for dates on or after the start of the pandemic
and 0 prior to the starting point; its coefficient presents the
possibility that the mean death rate has changed after the start
of the pandemic at some location. The week of the year is
modelled non-parametrically with a penalised cyclic cubic regres-
sion spline function to capture seasonal mortality variations [15].
Preliminary analysis indicated overdispersion, so we used a
quasi-Poisson model to estimate the dispersion parameter [17].
We estimated coefficients by a penalised likelihood maximisation
approach, where the smoothing penalty parameters are deter-
mined by restricted maximum likelihood. The residuals of the
fitted model did not present remaining temporal dependence.

To estimate cumulative excess deaths, we sum the coefficients
of the indicator for the start of the pandemic. Approximate simu-
lations from the Bayesian posterior density are performed to
obtain 95% credibility intervals, which we refer to as confidence
intervals throughout.

For each state, we determine excess deaths due to the
COVID-19 pandemic from a starting point through 9 May, the
date of the most recent complete mortality data at the time of
our analysis. The starting point was the date after the most recent
inflection point in all-cause mortality, suggesting the onset of the
COVID-19 pandemic, chosen to balance concerns of deaths prior
to the official first cases and the sensitivity of the model to detect
small excess mortality in the limited available data, exacerbated by
the provisional counts being lower than actual deaths: 29 February
for Washington state, 28 March for Florida, Indiana and
Massachusetts and 21 March for the remaining 9 states and for
the United States as a whole. This semiparametric model can
incorporate population displacement [2], but we are not aware
of significant displacement during the pandemic. Specifically,
New York City was uniquely affected during this first wave of
infections, with a public perception of widespread community
infections acquired in a crowded metropolitan area that relies
on public transportation. Analysis of data from smart phones
finds that about 400000 New York City residents, 5% of the
population of New York City, left the city between 1 March
and 1 May 2020, and departures were characterised by substantial
wealth and race disparities [18]. NYC residents dispersed to loca-
tions around the country, with most locations receiving less than
4000 people from this total, a negligible addition (<1%) to the
state populations; locations receiving more than 4000 people
included non-NYC New York State, Pennsylvania, New Jersey,
Connecticut and Florida [18].

A conventional excess deaths analysis

We also estimate excess mortality using a conventional excess
mortality method: we fit a quasi-Poisson semiparametric model
as above until 1 February 2020. The deaths from 8 February
2020 forward should follow a Poisson distribution with some
expected rate; the maximum-likelihood estimator of such rate is
the mean weekly deaths during this period. Weekly deaths are
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Fig. 1. Provisional weekly all-cause, pneumonia and influenza mortality counts for the United States from weekly data releases 10 April-12 June 2020.

approximately normally distributed with a variance that accounts
for overdispersion according to the scale parameter in the fitted
model. From this distribution, we simulate 10 000 weekly deaths
and subtract the results from the posterior distributions of the fit-
ted results. The 95% confidence interval is the range between the
2.5% and 97.5% percentiles of all excess deaths.

The models were fit using version 1.8-28 of the mgcv package
in R 4.0.2 [19, 20]. All code and data have been made publicly
available (https:/github.com/bakuninpr/COVID-Excess-Deaths-
US). The statistical analyses were conducted between April and
September 2020.

Assessing reduction in emergency department utilisation

To evaluate whether there was a reduction in emergency depart-
ment visits during the period from 21 March to 9 May, we fit a
quasi-Poisson  regression model for daily number of
asthma-related emergency department visits in New York City
syndromic surveillance data, controlling for borough, age group
and date, with a binary variable for date after 21 March 2020;
this model estimated a dispersion parameter of 1.95.

Results

Provisional death counts increase with each data release, especially
for recent weeks. The variation on reporting timeliness by state
hinders excess death assessment for the United States. Figure 1
shows all-cause mortality counts for successive data releases.
Successive releases of weekly mortality counts ‘blanket’ each pre-
vious release, with gaps between the lines representing differences
in each data release. During the pandemic, large gaps between
successive data releases during periods of higher deaths suggests
that mortality reporting lags are larger during periods of elevated
deaths: the discrepancy between the number of all-cause deaths
for the last week of the 1 April data release and the corresponding
entry of the 12 June release is 18%. In contrast, the discrepancy
between the number of all-cause deaths for the last week of the
29 May data release and the corresponding entry of the 12 June

release is 75%. The effects on mortality of the COVID-19 pan-
demic is clearly seen in Figure 2, although the effect has substan-
tial local variation. All states have excess pneumonia mortality
(Fig. 3), and New York City shows hundreds of excess influenza
deaths over several weeks (Fig. 4).

In the United States, we observe greater all-cause and pneu-
monia deaths (Fig. 5). Using the semiparametric model, between
21 March 2020 and 9 May 2020 we are 95% confident that all-
cause excess deaths in the United States were between 100013
and 127 501, compared with 78 834 reported COVID-19 deaths,
which is at least 21 179 more deaths than official COVID-19
deaths for the same time period. Pneumonia excess deaths
were between 40 066 and 47 391. Using the conventional method,
we found a 95% confidence interval of 106 940 and 143 478 for
all-cause excess deaths in the United States, and 41 613 and 47
841 for pneumonia deaths.

For each state Table 1 presents 95% confidence intervals for
all-cause, pneumonia and influenza excess deaths. We estimated
greater excess mortality than COVID-19 deaths in 10 of 13 states:
Florida, Indiana and Washington present significant all-cause
excess mortality but there was no evidence of them exceeding offi-
cial COVID-19 death counts. However, relative to expected num-
bers of pneumonia and influenza deaths, we observe excess
pneumonia deaths in all states studied, and excess influenza
deaths in New York while excess influenza deaths in New Jersey
are less clear (Table 1). We evaluated influenza mortality in the
District of Columbia, the other urban-only area, but influenza
deaths were not higher than usual (not shown), in contrast to
New York City.

With the conventional model, we estimate more excess all-
cause deaths than reported COVID-19 cases except in Colorado,
Florida, Indiana and Washington (Table 1); and once more excess
pneumonia deaths are observed for all states. These results are
also consistent with the excess mortality results for the earlier
data release covering through 9 May 2020 (not shown).

The results of the semiparametric and conventional models are
generally compatible. But since our conventional model also
reflects random fluctuations in mortality, prediction intervals
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Fig. 2. Weekly all-cause mortality grouped by year and state starting on week 40 of 2015 until 9 May 2020.
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Discussion

are obtained, which naturally present larger variation than confi-

dence intervals. Treating the deaths as fixed [16] would lead to
intervals that are misleadingly short on width. The larger uncer-
tainty in the conventional model makes it harder to interpret

excess deaths.

Using the quasi-Poisson model with the outcome daily
emergency department visits for asthma syndrome in NYC,
we found that during this period, asthma visits were 64%
lower than expected, a substantial drop (IRR=0.36, 95% CI

0.34-0.37).

et al.

We find substantial excess all-cause mortality that exceeds
the number of documented COVID-19 deaths in most of the
13 states evaluated: California, Colorado, Connecticut, Illinois,

Louisiana, Massachusetts, Michigan, New Jersey, New York and

Pennsylvania. Up until 9 May, we estimate over 100000 excess
deaths in the U.S. due to the COVID-19 pandemic. Mortality under-
estimation may reduce the public’s willingness to adhere to costly
and stressful non-pharmaceutical interventions, such as governors’

orders to stay at home, wear masks and engage in social distancing,
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The CDC has established guidelines for certifying COVID-19
deaths [21] and whether to collect postmortem specimens for
SARS-CoV-2 testing [22]. We propose the following potential
mechanisms for underestimation of pandemic death toll: under-
diagnosis of COVID-19 due to low availability of SARS-CoV-2
tests; indirect deaths from not seeking care for emergent
non-COVID-19 conditions; not seeking care for what appeared
to be non-severe COVID-19 and then experiencing sudden
declines characteristic of COVID-19; or needing treatment for
COVID-19 or other ailments and being turned away from
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emergency departments due to crowding, and subjective interpre-
tations of guidelines. COVID-19 test access has been quantified as
the percent of SARS-CoV-2 polymerase chain reaction (PCR)
tests that are positive; the percent of PCR tests that are positive
decreased during this period, suggesting increased test access
[23]. However, substantial heterogeneity in test availability across
states [13] means that excess mortality may not decrease substan-
tially unless test availability increases in high-prevalence states.
Some excess mortality may include indirect deaths from emer-
gent non-COVID-19 conditions due to delaying healthcare, due
to fear of becoming infected with SARS-CoV-2 during the
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Table 1. Excess all-cause, pneumonia and influenza mortality 95% confidence intervals from 2 models, from states with the largest reported COVID-19 mortality data as of 9 May 2020, and with official COVID-19 toll

All-cause excess deaths

Pneumonia excess deaths

Influenza excess deaths

COVID-19
Jurisdiction Start date Deaths Semiparametric Conventional Semiparametric Conventional Semiparametric Conventional
California 21 March 2020 2849 (3338, 6344) (3638, 9058) (1729, 2370) (1969, 2900) (=75, 52) (120, 359)
Colorado 21 March 2020 1130 (1175, 1730) (960, 1882) (620, 803) (557, 807) (—26, 15) (—61, 36)
Connecticut 21 March 2020 2932 (3095, 3952) (3092, 4008) (651, 844) (638, 864) (—20, 5) (—63, 18)
Florida 28 March 2020 1840 (1271, 2856) (392, 3934) (1100, 1439) (1373, 1966) (=39, 21) (—200, 7)
llinois 21 March 2020 3525 (4646, 6111) (5111, 7357) (1974, 2422) (2088, 2566) (=20, 44) (8, 129)
Indiana 28 March 2020 1490 (1400, 2078) (1198, 2613) (679, 882) (588, 941) (—28, 14) (—60, 66)
Louisiana 21 March 2020 2267 (2341, 3183) (2522, 3834) (1042, 1263) (970, 1288) (=3, 27) (14, 68)
Massachusetts 28 March 2020 5050 (5562, 7201) (5516, 7152) (2044, 2456) (2012, 2439) (~100, 39) (~111, 34)
Michigan 21 March 2020 5036 (5581, 7171) (5514, 7474) (2386, 2926) (2458, 2910) (=52, 28) (—36, 138)
New Jersey 21 March 2020 10465 (13170, 16 058) (13 834, 15 567) (5550, 6539) (5879, 6375) (2, 46) (—46, 61)
New York 21 March 2020 26584 (32538, 39 960) (35632, 38 802) (12 016, 14 310) (12 860, 13 623) (694, 911) (640, 930)
Pennsylvania 21 March 2020 3793 (5125, 6560) (4653, 6809) (1757, 2135) (1686, 2135) (—65, —8) (~96, 90)
Washington 29 February 2020 925 (559, 1633) (421, 1796) (358, 623) (359, 674) (-3,72) (—20, 78)
United States 21 March 2020 73834 (100 013, 127 501) (106 940, 143 478) (40 066, 47 391) (41613, 47 841) (15, 1385) (—33, 2896)

All data used included mortality until 9 May 2020 included in the 4 September 2020 data release.
The semiparametric method uses a starting date, but the conventional method does not.

The table presents prediction intervals using the conventional method, although we refer to confidence intervals throughout for consistency.
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COVID-19 pandemic. Other research suggests that patients with
heart attacks and stroke delayed seeking care due to the
COVID-19 pandemic [24]. Our research suggests some deaths
could include deaths from chronic lower respiratory diseases,
such as deaths due to not seeking care for asthma syndrome. In
this research study, we were not able to access emergency depart-
ment visit data for acute coronary syndromes, only asthma syn-
drome ED visits in NYC. When the complete 2020 mortality
data are released, we would expect more deaths at home coded
as chronic lower respiratory diseases, cardiovascular disease and
cerebrovascular diseases than usual; normally, these are three of
the top five causes of death in the US, so reduced care-seeking
could contribute substantially to excess mortality [25].

Patients who suspect COVID-19 may not seek healthcare or
may be turned away from emergency departments: these patients
would not have SARS CoV-2 test results, so they would not be
coded as COVID-19 deaths. Many patients with influenza-like ill-
ness (ILI) never seek healthcare, including patients likely to have
severe effects: about 45% of patients with heart disease and 52%
with COPD delay at least 3 days [26], and during a flu pandemic
care-seeking increases by only about 10 percentage points [4].
Dyspnoea/breathlessness predicts healthcare seeking for ILIs
[27]. However, most severe or fatal COVID-19 cases do not pre-
sent with dyspnoea [28], and lung damage can be substantial even
without dyspnoea [29]. Sudden health declines have been
observed in COVID-19 inpatient populations: patients decline
in minutes from ambulatory/conversant to unresponsive and
requiring resuscitation [30], and such sudden health declines
could also occur in outpatient populations.

Some but not all of the excess COVID-19 mortality is captured
by pneumonia excess mortality, but some sudden deaths seem to
occur among patients without apparent pneumonia [31]. These
deaths may be due to cardiac injury [32], kidney or liver injury
[33], or hypercoagulability [34]. Further, our results suggest that
excess deaths for cardiovascular, cerebrovascular, kidney or liver
failure without coding for COVID-19 may be apparent when
these data become available.

Advantages of the semiparametric model

The CDC estimates and publishes excess mortality counts during
the COVID-19 pandemic, but without quantifying uncertainty
like our methods do. It can be shown that under a mixed
model representation, the semiparametric model estimates are
the best linear unbiased predictors [35]. Moreover, the intervals
from our two methods always overlap. Yet the semiparametric
method yields more precise confidence intervals than a conven-
tional approach, which must estimate prediction intervals.
Prediction intervals are wider than confidence intervals because
they account for uncertainty in post-pandemic deaths. That is,
for week 19 of 2020, the conventional model estimates excess
deaths as the difference between the observed deaths, and what
pre-pandemic projected forward model expects the number of
deaths to be. Those observed deaths in week 19 are subject to ran-
dom variation in mortality which the interval must account for.
In contrast, the semiparametric model estimates excess deaths
as the difference of two expected values: expected mortality
with a pandemic period indicator and expected mortality without
a pandemic period indicator. Intervals of parameters are always
narrower than for random variables. Wider intervals hinder inter-
pretation of excess deaths, so we focus on the results from the
semiparametric model. The semiparametric model is also less

affected by under-reporting during the pre-pandemic period
than the conventional approach.

Misclassification of excess deaths

We quantify higher pneumonia mortality than expected in all 13
states and higher influenza deaths primarily in New York. For
New Jersey, even when adjusting for COVID-19 official deaths,
pneumonia and influenza mortality, excess deaths are still signifi-
cant, which raises two potential explanations: COVID-19 deaths
may have been misclassified or New Jersey may have had more
indirect deaths than other states. With only limited cause of
death data, our analysis is unable to distinguish between misclas-
sified COVID-19 deaths and indirect deaths.

Many excess influenza deaths in New York City appear to be
misclassified COVID-19 deaths. If NYC’s COVID-19 emergency
declaration led people with seasonal influenza not to seek care,
we would expect to see a sharp reduction in the number of posi-
tive influenza cases around the date of the emergency declaration.
However, the number of positive influenza tests in New York City
decreased steadily throughout March 2020 with no steep drop
around the date of the COVID-19 emergency declaration [36].
Because seasonal influenza seemed to taper off during March
2020, while influenza deaths in NYC increased until April 11th.
This suggests that many excess influenza deaths were misclassified
COVID-19 deaths, rather than a resurgence of undiagnosed influ-
enza. The apparent misclassification of COVID-19 deaths as
influenza in New York City does not appear attributable to urba-
nicity because we observed no excess influenza mortality in the
District of Columbia, the other urban-only area. The likely mis-
classification of COVID-19 deaths as influenza may be due to het-
erogeneity in cause of death determination and/or COVID-19
presentations between New York City and the states examined.
Alternatively, the misclassification may occur in many jurisdic-
tions, but it is more detectable in NYC due to the large number
of deaths.

Mortality displacement hypothesis

Excess mortality during heatwaves and influenza pandemics often
shows mortality displacement (or harvesting effect), where subse-
quent mortality declines [37]. Longer observation periods could
detect mortality displacement, but inconsistent non-
pharmaceutical intervention policies across the United States
may cause elevated mortality due to COVID-19 to persist over
longer durations than during typical influenza pandemics.

Strengths and limitations

Our hypothesised mechanisms for excess mortality are based on
existing research, but the available mortality data are insufficient
to test these hypotheses. For example, deaths at home are not
published weekly or systematically. The available U.S. data include
data aggregated over all states stratified by age (0-17, 18-64, 65 +)
and region; however, these data do not allow identification of all-
cause mortality trends by region or age because some states’ data
are incomplete, even by the available completeness measure,
which understates completeness during periods of elevated
mortality.

Our analysis examines excess deaths associated with the
COVID-19 pandemic. It is likely that the longer the period
since the beginning of the pandemic, the more indirect causes
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of death are included in our excess deaths estimate. The vast
majority of excess mortality is not attributable to social distancing
or the pandemic-induced recession because recessions are gener-
ally associated with lower mortality [38]. Furthermore, the statis-
tical methods used can estimate excess mortality in regions with
considerable increases in fatalities. In regions with very small
number of increased deaths, our methods may not be able to
detect the effects of the pandemic because the confidence inter-
vals would be too wide.

We can evaluate whether emergency department visits for
asthma in New York City decreased during the COVID-19 pan-
demic but not whether the decrease in asthma ED visits increased
mortality because chronic lower respiratory mortality data from
this period are not currently available. We were unable to obtain
data from the other 58 NSSP jurisdictions, or for acute coronary
syndromes that could suggest stroke or heart attack.

Implications for policy and practice

Research can identify populations at risk for mortality that may
not be included in the official COVID-19 counts, and the overlap
with groups affected by other health disparities, so resources can
be allocated to the most affected communities. Excess mortality
may be reduced by prioritising research, including random sam-
ple testing of people without symptoms and postmortem tests
[39]. To avoid ascertainment bias, random sample postmortem
testing can identify atypical disease presentations that may be
under-recognised in clinical settings. In the face of testing limita-
tions, postmortem tests may be viewed as expendable, but post-
mortem testing can improve patient care by identifying gaps in
diagnosis and treatment.

To identify under-use of healthcare for cardiovascular and
cerebrovascular  conditions, National Surveillance System
Program data should include these indications and current data
should be available for all NSSP locations. New York City’s system
suggests that this change to make data more quickly available is
feasible. NSSP jurisdictions are given substantial discretion over
which syndromes are included and may consider centralised stan-
dards impractical, but such standards would make data useful
nationwide, in addition to locally.

Future federal pandemic planning should include upgrades to
state vital statistics infrastructure, so that all states can report
deaths in a timely fashion. As suggested after earlier pandemics
[40], pandemic planning should identify how to release more
detailed data so that research can discriminate between mechan-
isms of excess mortality, especially for high-vulnerability jurisdic-
tions. Research using detailed data will find some spurious
findings, including cases who died with the virus but not of the
virus, but more detailed data will save lives by identifying vulner-
able communities to allocate resources to, as well as atypical
symptoms of the disease.

Conclusions

Excess all-cause mortality exceeding the number of reported
COVID-19 deaths is evident in the United States and in many
states during the first three months of the pandemic. Greater
test availability, including postmortem tests, can yield more accur-
ate mortality counts and case-fatality ratios and increase the pub-
lic’s willingness to adhere to non-pharmaceutical interventions to
reduce transmission.
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Appendix
Detailed methods

Semiparametric excess mortality model
Covariates include week of the year, year, an indicator function that presents
the possibility that the mean death rate has increased after the start of the
emergency in a location, and the natural logarithm of population as an offset.
Week of the year is modelled non-parametrically to capture seasonal mortality
variations. Let D, = number of certified deaths at time index ¢, N, = population
size. We use p, as an indicator of time period ¢ falls in. The indicator variable
permits us to estimate excess deaths. Specifically, p,=0 represents the pre-
emergency period; p, = 1, the period after the emergency. Moreover, let week,.
=week of year, and year, = a categorical year effect.

Assuming D; follows a Poisson distribution, we fit a semiparametric model;

log(u,) = log(Ny) + B, + Byp: + f(week;) + year: (A1)

where u, = E(D/|t,p,N,week,year,). The natural logarithm of N, is an offset
variable; while f is a smooth function of week, which accounts for within
year variation. f is fit using a penalised cyclic cubic regression spline [19].

Preliminary analysis indicates overdispersion, so we used a quasi-Poisson
model to estimate the dispersion parameter [17]. We estimated coefficients
by a penalised likelihood maximisation approach, where the smoothing pen-
alty parameters are determined by restricted maximum likelihood. The resi-
duals of the fitted model (1) did not present remaining temporal dependence.

The fit of model (A1) can be used to estimate excess deaths through the
difference between the estimated model with p, =1, vs. the estimated model
with p,=0. Let f, = E(D/|tp,=1,N,weekyyear,), ) = E(D|t,p, = 0,N,week,
year,), and b,, b, estimate S,,5; respectively. Then [2],

[1‘ _ {pt — egn-%—](week:)ﬂ’wn(elog(N;)ifl _ 1) (AZ)
When p, =0, then [, — W, =0. Equation (A2) is the maximum likelihood esti-
mator for expected excess deaths at t.

To estimate cumulative excess deaths we use (A2)

r

Yo =)

t=q

(A3)

for any time period starting at index g and ending at r. Approximate simula-
tions from the Bayesian posterior density are performed to obtain 95% cred-
ibility intervals, which we refer to as confidence intervals throughout.

Conventional mortality method

Conventional excess mortality methods build a temporal mortality model until
time m < T, then use this model to predict deaths from time m + 1 to time T,
and excess deaths are the difference between the deaths between times m + 1
and T and the predicted deaths from the model. Uncertainty is usually quan-
tified through the uncertainty of the parameters on the regression model [16],
which ignores natural random fluctuations in mortality from time m+1 to
time T. We tackle this problem combining the Bayesian posterior density
described in the semiparametric model section with uncertainty on weekly
mortality.

First, we fit a quasi-Poisson semiparametric model similar to the one pre-
sented in the previous section, but here we only use data until 1 February 2020.
The deaths from 8 February 2020 forward should follow a Poisson distribution
with some expected rate; the maximum likelihood estimator of such rate is the
mean weekly deaths during this period. The weekly deaths are approximately
normal with a variance that accounts for overdispersion according to the scale
parameter in the fitted model. From this distribution, we simulate 10000
weekly deaths and subtract the results from the posterior distributions of the
fitted results. The 95% confidence interval is the range between the 2.5%
and 97.5% percentiles of all excess deaths.
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